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Abstract

This paper studies the evolution of both characteristics of reciprocity - the willing-
ness to reward friendly behavior and the willingness to punish hostile behavior. Firstly,
preferences for rewarding as well as preferences for punishing can survive evolution pro-
vided individuals interact within separated groups. This holds even with randomly formed
groups and even when individual preferences are unobservable. Secondly, preferences for
rewarding survive only in coexistence with self-interested preferences. But preferences for
punishing tend either to vanish or to dominate the population entirely. Finally, the evolu-
tion of preferences for rewarding and the evolution of preferences for punishing influence
each other decisively. The existence of rewarders enhances the evolutionary success of
punishers, but punishers crowd out rewarders.
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1 Introduction

This paper addresses three questions concerning the evolution and co-evolution of both char-
acteristics of reciprocity - the willingness to reward friendly behavior and the willingness to
punish hostile behavior: 1) How can preferences for rewarding and preferences for punishing
survive the evolutionary competition with purely self-interested preferences? 2) What struc-
tural differences distinguish the evolution of the willingness to reward from the evolution of
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the willingness to punish? 3) How is the evolution of one side of reciprocity influenced by the
evolution of the other side?

Self-interested preferences are a standard assumption in economic theory. But several
experimental studies offer substantial evidence that at least some people are not exclusively
driven by self-interest. A significant number of people are willing to reward friendly and/or to
punish hostile behavior of an opponent even if this is costly and does not maximize their own
material payoffs1. From an evolutionary standpoint2 the observed coexistence of reciprocal
and self-interested preferences seems puzzling: A rational self-interested individual can always
mimic reciprocal behavior, if thereby, he maximizes his expected material payoff. But in the
event of his action being unobservable or punishment being impossible, he behaves selfishly
and receives a higher material payoff. Apparently, self-interested individuals should always
outperform reciprocal individuals and reciprocal preferences should vanish due to natural
selection.

This paper shows that preferences for rewarding as well as preferences for punishing can
survive evolutionary competition with purely self-interested preferences if players interact
within separated groups and if they can condition their strategy on the distribution of pref-
erences within their own group. This holds even if individual preferences are unobservable,
groups are formed randomly and players interact anonymously in random pairings.

However, there are crucial structural differences between the evolution of preferences for
rewarding and the evolution of preferences for punishing. Rewarders can successfully invade a
population of self-interested players. But they cannot drive them out completely. Preferences
for rewarding survive only in coexistence with self-interested preferences. But, preferences for
punishing either drive out self-interested preferences or they die out themselves. The option
to punish hostile behavior results either in a “culture of punishment” - where all players are
willing to punish hostile behavior - or in a “culture of laissez faire” - where nobody is willing
to incur the costs of punishing.

The co-evolution of both aspects of reciprocity influences our results decisively if there is
an option to reward friendly behavior as well as an option to punish hostile actions. Rewarders
enhance the evolutionary success of preferences for punishing, but punishers tends to crowd
out preferences for rewarding. In fact, rewarders may serve as a catalyst for the evolution
of punishers. Rewarders can invade a population of self-interested types. Their existence
can enable punishers to invade successfully and finally to crowd out self-interested as well as
rewarding types.

Our results are driven by the marginal effect a player has on the distribution of preferences
within his group. This marginal effect is advantageous for a reciprocator and can outweigh

1For a survey of the experimental literature see Fehr and Gächter [9] or Fehr and Schmidt[10].
2The process of evolution may be interpreted in terms of biological- as well as cultural evolution or even

as a process of learning. Under the weak assumptions described below, our results hold independent from the
interpretation. Therefore, we delay the discussion of the relevance of each interpretation to Section 3.
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the costs of rewarding or punishing. To see this consider pairwise interactions of the following
structure: A first moving player (player 1) may either cooperate or defect. Cooperation is
costly for player 1 but profitable for a second moving player (player 2). Player 2 observes this
action and can then reward and/or punish player 1 (both is costly) or remain inactive. Player 1
cooperates only if he expects player 2 to be reciprocal with a sufficiently high probability. Since
individual preferences are unobservable player 2 estimates the probability of meeting a certain
type by the fraction of this type in his group. Hence, players 1 cooperate if the number of
reciprocal players in their group is above a certain threshold, otherwise they defect. Having
reciprocal preferences leads to a material advantage for player 2 when he is pivotal in his
group, i.e. his type is decisive in whether the number of reciprocal preferences in his group is
just above or just below the threshold for cooperation.

Under which circumstances outweighs this material advantage the losses incurred for re-
warding or punishing? The intuition for our main result is derived from the following observa-
tion: The hope for reward as well as the fear of punishment can induce players 1 to cooperate.
But, when most players 1 cooperate it is relatively expensive for player 2 to reward coop-
eration whereas the willingness to punish is almost for free. On the other hand when most
players 1 defect, the willingness to reward is almost for free, whereas it is expensive to punish
defection. A higher fraction of rewarders or punishers leads to a higher fraction of groups
in which cooperation occurs. Therefore, rewarders are relatively successful when most play-
ers 2 are self-interested, whereas punishers become more successful the more players 2 have
reciprocal preferences.

The question as to how reciprocity or social preferences can survive evolution has been
tackled by different authors from biology, psychology, economics and other social sciences.
Sethi and Somanathan [30] have reviewed this literature recently, in which they classify ex-
isting explanations for the survival of reciprocity in sporadic interactions into three basic
mechanisms3 4: commitment, assortation, and parochialism.

Commitment: If preferences are observable reciprocal preferences may serve as an advan-
tageous commitment device. A reciprocal player is credibly committed to reward friendly
or punish unfriendly behavior. Therefore, he may induce friendly behavior of a first-moving
player. This may enhance his evolutionary success. The results of Güth and Yaari [15], Güth
[14], Bester and Güth [4] and partly Sethi [27] and Höffler [17] are based on this argument.

Assortation: Efficiency enhancing behavior becomes evolutionary more successful, if play-
3They also survey ”repetition” as a fourth explanation in non-sporadic interactions.
4Huck and Oechssler [19] find a further mechanism to explain how preferences for punishing unfair behavior

might survive evolution. They look at ultimatum games in which costs of punishing unfair behavior are very
small compared to the punishment and the inverse group-size. In the role of a proposer punishers have the
relative advantage over materialists in their group, that they are slightly less likely to be matched with a
punisher. Therefore, unfair offers of materialists are more likely to be rejected. In the role of responders
punishers have the disadvantage of incurring the costs of punishing. But if these costs are sufficiently small
this disadvantage is more than compensated by the relative advantage when being in the role of a proposer.
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ers are not matched randomly, but interact with higher probability with players of their own
type. In particular, most of the literature on group selection focuses on this idea to explain
the evolutionary survival of social preferences. Price [25] first offered a mathematical descrip-
tion. Bergstrom [2] investigated the relation between assortative matching and the evolution
of cooperation. Notice that initially random groups may become assortative over time by the
evolution of preferences inside groups if no reshuffling of groups occurs5 (compare e.g. Cooper
and Wallace [8]). For surveys of this literature on assortative group selection see Sober and
Wilson [31] and more recently Bergstrom [3].

Parochialism: Types that act to enhance efficiency if they are in a group of mainly their
own type and act to reduce efficiency if they are in a group of mainly self-interested players may
survive evolution even if the matching is non-assortative. Sethi and Somanathan [29] showed
that conditional altruists who behave friendly towards other altruists but spiteful towards
materialists may be more successful than pure materialists. Similarly Gintis [13] looked at
conditional punishers, who punish defectors only if there are enough other punishers in their
group. They also survive evolution6.

This paper contributes to the literature by weakening the degree of observability required
to explain the survival of social preferences. The explanation of this paper for the survival
of reciprocal preferences is related to the idea of commitment. But individual preferences
need not be observable7. Players observe only the overall distribution of preferences within
their own group. The marginal effect of a player on the distribution of preferences in his
group drives our results8. Even more importantly, our setting allows the analysis of both
sides of reciprocity in a unified framework. We find crucial structural differences between the
evolution of preferences for rewarding and the evolution of preferences for punishing. Finally,
our framework enables us to demonstrate that the co-evolution of both sides of reciprocity
influences the results decisively.

The remainder of the paper is organized as follows: Section 2 presents the model and
analyzes the three cases which arise naturally: 1) Player 2 might have only the costly option
to reward cooperation. 2) Player 2 might have only the costly option to punish defection.
3) Player 2 might have the options to reward cooperation as well as the option to punish

5A different endogenous justification of assortative matching arises if preferences are partly observable, see
e.g. Frank [11].

6Notice that punishers may enhance efficiency, because they can induce cooperation of a first-moving player.
7Bowles and Gintis [6] and Friedman and Singh [12] consider also the case when individual preferences

are unobservable for the evolution of types who punish non-cooperative behavior . But, in contrast to our
paper, the results of Bowles and Gintis depend critically on the assumption that there does not exist a type
of player who cooperates but refuses to punish non-cooperative behavior. Friedman and Singh need implicitly
the assumption that second-order punishment (i.e. the punishment of non-punishers) is costless. See Sethi and
Somanathan [30] for a more detailed discussion of these papers.

8A similar effect plays a role in the model by Höffler [17]. He considers a learning process of bounded
rational workers in a stylized principal agent model. In equilibrium some agents play fair and other don’t -
similar to the coexistence result in case 1 of our model.
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defection. Section 3 discusses our results and finally Section 4 concludes.

2 The Model

We use the indirect evolutionary approach9 to describe the evolution of preferences: Individ-
uals may have different preferences. We only impose the restriction that preferences can be
described by subjective utilities for each possible outcome. The subjective utility an individ-
ual assigns to an outcome may not coincide with the material payoff he receives. Individuals
choose their strategies according to their own preferences and their knowledge about prefer-
ences of their opponents, i.e., they play perfect Bayesian equilibria. They receive material
payoffs according to played strategies. A type who receives higher material payoffs has more
offsprings (or imitators) and his fraction grows. Subjective utilities of an individual are only
important to determine his actions. The evolutionary success is only influenced by the result-
ing material payoffs.

We consider pairwise sequential interactions of the following structure: Player 1 moves
first. He can either cooperate (C) or defect (D). Cooperation leads to a material gain for
player 2 (c2 > d2) but is costly for player 1 (d1 > c1). Player 2 observes the action of player 1
and then chooses his reaction. Three cases are analyzed. In case 1, player 2 can reward
cooperation of player 1 (by the amount of r) but this is costly (costs cr) . In case 2, player 2
can punish defection of player 1 (by the amount p) which is also costly (costs cp). In case 3,
player 2 can do both, either reward or punish player 1. The interaction of case 3 is illustrated
in figure 1. Case 1 and case 2 are obtained from this figure by removing the option to punish
or the option to reward respectively.

Figure 1: Interaction
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with c1 + r > d1 > c1 > d1 − p and c2 > c2 − cr > d2 > d2 − cp.

9Compare Güth and Yaari [15].
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If all players maximize only their own material payoff (and are known to do so) all three
games are solved easily by backward induction. Player 2 never incurs any costs in the last
stage. This is anticipated by player 1. Therefore, player 1 defects in the first stage. This out-
come tends to result also in an evolutionary setting, if individual preferences are unobservable
and if all players are “playing the field” (i.e, no group structure is imposed)10. The reason
is simple: Someone who chooses a strategy which maximizes his material payoffs earns more
than someone who doesn’t. However, results change when the total population is divided up
into separated groups and when players interact only within their own group.

Whether the fraction of players of a certain preferences type grows or shrinks depends
on their individual material payoffs. With the law of large numbers in mind we concentrate
our analysis on deterministic approximations to the evolutionary dynamics11. The results of
this paper hold for any payoff-monotonic dynamics. By payoff monotonicity we mean that
the fraction of a preference-type with higher (equal) average material payoff grows faster
(equally fastly) than the fraction of a preference-type with lower (equal) average material
payoff. Furthermore, it is convenient to assume a continuous dynamics.

Assumption 1 The evolutionary dynamics can be described by regular payoff monotonic
growth rates12.

Furthermore, we say that a population state forms a stable equilibrium if it is an Asymptoti-
cally Stable State - a standard concept in evolutionary game theory13.

What preference types are relevant for our analysis? In general each player assigns a sub-
jective von Neumann-Morgenstern-utility to each outcome. These subjective utilities depend
on the actual position of the player and may differ completely from his material payoffs14. We
are mainly interested in the evolution of preferences for the position of player 2 - reciprocal
behavior is only possible in that position. However, the evolutionary success of preferences for
position 2 depends on the behavior of players 1. The following proposition helps to analyze
the behavior of players 1:

10Nöldeke and Samuelson [23] give an example to illustrate that in general the subgame-perfect Nash equi-
librium is not the only evolutionary stable equilibrium. Similarly, the results by Sethi and Somanthan [28]
rely on the fact that non-credible threats can survive in certain evolutionary settings. However, Hart [16] and
Kuzmics [21] show that the subgame-perfect Nash equilibrium results if certain limits are taken in a suitable
way. See also Ok and Vega-Redondo [24] for a justification of the evolution of self-interested preferences when
preferences are unobservable.

11This is very common in evolutionary game theory even if not entirely innocuous. For some caveats with
this approach see Boylan [7]. For a thorough discussion of a deterministic dynamics as limit of a stochastic
dynamics see Benaim and Weibull [1].

12The formal definition of a regular payoff monotonic growth rate can be found in Weibull [32] or in the
appendix of our working paper version.

13See Weibull [32] or in the appendix of our working paper version for the precise definition.
14In the most general case 3 there exist 4 possible outcomes. A preference type is therefore characterized

by a tuple of 8 subjective utilities (modulo a linear transformation). The first 4 subjective utilities describe a
players preferences if he happens to play in position of player 1, the remaining 4 subjective utilities describe
his preferences in position of player 2.
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Proposition 1 In any stable distribution of preference-types the fraction of players 1 who
behave inconsistent with an expected material payoff maximizer must be zero.

The proof is given in the appendix15. This result justifies to simplify the analysis by

Assumption 2 In position 1 all players maximize their expected material payoffs.

But when players happen to play in position 2 four classes of preferences may be relevant:
We call someone a “rewarder” if he is willing to incur costs to reward a friendly action, a
“punisher” if he is willing to incur costs to punish a hostile action16, a “reciprocator” if he is
willing to do both and “self-interested” if he is neither willing to incur costs to reward friendly
nor to punish hostile behavior. We say someone has “social preferences” if he is either a
rewarder, a punisher or a reciprocator. In case 1 and 2 only two of these types matter,
respectively.

The large (or infinite) population is divided up randomly into separated groups of (2N)
players. N players are drawn randomly to play in position 2, the remaining N players play in
position 117. By “randomly” we mean that a players type does not influence the probabilities
of the types of his group-members, i.e.:

Assumption 3 The probability that k+ of the N players 2 in a group are rewarders, k−
are punishers, krc are reciprocal and ks are self-interested (with k+ + k− + krc + ks = N) is
multinomial distributed18:

MN,γ−,γ+,γrc,γs(k+, k−, krc, ks) =
N !

k+!k−!krc!ks!
γ

k+
+ γ

k−
− γkrc

rc γks
s (1)

where γi is the fraction of the i-th type in the total population (hence γ+ + γ−+ γrc + γs = 1).

In case 1 and case 2 only two types of preferences are relevant. Then, the multinomial
distribution reduces to the binomial distribution:

BN,γ(k) =
N !

k!(N − k)!
γk(1− γ)N−k. (2)

15The intuitive reason for why Prop.1 holds for position 1 but not for position 2 is easier to understand once
the entire model is presented. The crucial point is that player 2 observes the action of player 1 and therefore
does not condition his action on the distribution of types within his group. However, player 1 needs to estimate
the probabilities of meeting a certain type by the type distribution within his group and is therefore influenced
by this distribution.

16The literature calls preferences for rewarding also “positively-reciprocal” and preferences for punishing
“negatively-reciprocal”.

17We might also reshuffle the positions of all players for each interaction. The main results would not change.
18An even more natural choice would be the multi-hyper-geometrical distribution (drawing without replace-

ment). For simplicity we approximate it by the multinomial distribution. The qualitative results are not
affected and the approximation is good for a large total population.
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Individuals interact in random pairings within their group. Individuals do not know the
type of their respective counterpart, but we assume them to know the frequency of each
preference-type in their group:

Assumption 4 Individuals know the fractions of the different types within their own group
(but they don’t know the type of their randomly matched opponent).

This assumption is not entirely innocuous, but we relegate the detailed discussion to
section 3. In order to abstract from repeated games effects, we assume individuals to play
anonymously and finitely often. Hence, player 2 need not fear any consequences in a later
stage whatever action he takes19.

After a finite number of interactions preferences are replicated according to received mate-
rial payoffs and all groups are completely reshuffled. A new cycle starts with the new fractions
γi of the different preference types in the total population. Timing of events in our model is
illustrated graphically in Figure 2.

Figure 2: Timing of events
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Case 1: Costly Rewarding

Case 1 concentrates on the possibility for player 2 to reward friendly behavior of player 1.
First, player 1 decides whether to cooperate or defect. Player 2 observes this action. In case
player 1 cooperates, player 2 may either incur the costs to reward player 1 or refuse to do
so20. This game is also known as ”trust game” and is illustrated in figure 3.

Player 1 maximizes his expected material payoff. Player 2 has either preferences for
rewarding and rewards cooperation or he has self-interested preferences and does not reward

19This argument would become more involved if players guessed the fraction of e.g. rewarding players in their
group from observed behavior instead of simply knowing it as assumed in Assumption 4. Then a self-interested
player might tradeoff between costs of rewarding cooperation and gains from other players believing to live in
a group with a higher fraction of a certain (e.g. reciprocal) type. See also the discussion in section 3.

20We could give player 2 an additional option to reward player 1 after defection. But it is straightforward to
show that preferences for rewarding defection cannot be part of any stable equilibrium. Therefore, we ignore
this possibility.
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Figure 3: Interaction in case 1
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with c1 + r > d1 > c1 and c2 > c2 − cr > d2.

cooperation of player 1. The evolutionary process determines the fractions of each type in
equilibrium.

We consider a group where k of the N players 2 have preferences for rewarding cooperation.
Player 1 will base his decision whether to cooperate or whether to defect on his expected
material payoff. Player 1 does not know the type of his opponent, but he knows the fraction
k
N of players 2 in his group, who would reward cooperation. Hence, player 1 expects an average
material payoff of (c1 + k

N r) for cooperation. If player 1 defects he receives surely a payoff
of d1. Therefore, player 1 will cooperate if c1 + k

N r > d1 or equivalently if21 k > N d1−c1
r .

Hence, cooperation occurs in a group only if the number of rewarding players 2 is above this
threshold. We denote this threshold by k∗.

Definition 1 k∗ is the highest number of rewarding players 2 in a group which is still not
sufficient to induce player 1 to cooperate. In other words
k ≤ k∗ ⇒ player 1 defects
k > k∗ ⇒ player 1 cooperates.

Calculation of k∗ is straightforward:

k∗ =
⌊
N

d1 − c1

r

⌋
, (3)

where bxc denotes the largest natural number smaller or equal to the real number x. k∗ is an
integer with 0 ≤ k∗ ≤ N − 1.

In groups with k∗ or less rewarding players 2 no cooperation occurs. Players 1 defect and
players 2 receive a material payoff of d2 - independently of their types. In groups with more

21For notational simplicity we define the tie breaking rule that player 1 defects if his expected payoff for
defecting equals that for cooperating.
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than k∗ rewarding players 2 players 1 cooperate. A rewarding player 2 receives a material
payoff of (c2 − cr). A self-interested player 2 exploits cooperation of player 1 and receives a
material payoff of c2. These payoffs are summarized in table 1.

Table 1: Material payoffs of player 2

Payoffs in groups with k ≤ k∗ Payoffs in groups with k > k∗

Rewarder d2 c2 − cr

Self-interested d2 c2

For a player 2 the probability that exactly k of the other (N−1) players 2 in his group have
preferences for rewarding is BN−1,γ(k) = (N−1)!

k!(N−1−k)!γ
k(1 − γ)N−1−k, where γ is the fraction

of rewarders in the total population. If this player has preferences for rewarding the total
number of rewarders in his group is (k + 1), otherwise it remains k. Hence, a self-interested
player 2 receives an expected material payoff of22

ūs(γ) = d2

k∗∑

k=0

BN−1,γ(k) + c2

N−1∑

k=k∗+1

BN−1,γ(k) (4)

and a rewarding player 2 receives an expected material payoff of

ū+(γ) = d2

k∗−1∑

k=0

BN−1,γ(k) + (c2 − cr)
N−1∑

k=k∗
BN−1,γ(k). (5)

Due to the assumption 1 of payoff monotonicity the fraction of rewarding players grows (falls)
if they receive a higher (lower) average payoff than the self-interested type. Hence, we can
see from the sign of the difference

ū+(γ)− ūs(γ) = (c2 − cr − d2)BN−1,γ(k∗)− cr

N−1∑

k=k∗+1

BN−1,γ(k) (6)

= (c2 − cr − d2)
(

N − 1
k∗

)
γk∗(1− γ)N−1−k∗ − cr

N−1∑

k=k∗+1

(
N − 1

k

)
γk(1− γ)N−1−k

when the fraction of rewarding players increases, decreases or remains stable. First, we con-
sider the case c2 − d2 − cr ≤ 0, i.e. gains of cooperation for player 2 are smaller than costs of
rewarding. Then, all terms on the right hand side of equation 6 are negative (or zero) and a
self-interested player 2 earns always more than a rewarding player 2.

22A different way to calculate this is to multiply the payoff of a rewarding (self-interested) player 2 in a
group of k rewarding players 2, multiply it by k (N − k) and weight it by the probability that a group has k
rewarding players 2 (i.e. the binomial coefficient). If we sum this up over all 0 ≤ k ≤ N and divide it by the
total number of players 2 of that type we get the average payoff. Of course, the results remain unchanged.
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Proposition 2 If c2 − d2 − cr ≤ 0, i.e. the cost for rewarding exceed player 2’s gains from
player 1’s cooperation, then only an entirely self-interested population is stable23.

But mainly we are interested in the case c2 − d2 − cr > 0, i.e. gains from cooperation for
player 2 exceed his costs of rewarding. Then, there is a chance for the survival of preferences
for rewarding . In fact, for k∗ < N−1 preferences for rewarding and self-interested preferences
coexist in any stable equilibrium:

Proposition 3 (Coexistence) Let c2−d2−cr > 0 and k∗ < N−1. Then, the monomorphic
population states (i.e. states with a fraction γ = 0 or γ = 1 of rewarders) are unstable for any
payoff monotonic dynamics. Preferences for rewarding can invade a self-interested population
and self-interested preferences can invade a population of rewarders.

Remark 1 If c2 − d2 − cr > 0 and k∗ = N − 1 then only a monomorphic population of
preferences for rewarding forms a stable equilibrium.

All proofs are relegated to the appendix.
For an intuitive understanding of Proposition 3 first consider a population consisting

almost entirely of rewarders. Then, almost all groups consist almost entirely of rewarding
players 2. Therefore, players 1 cooperate in almost all groups. A rewarding player 2 receives
a payoff of (c2 − cr) only, whereas a self-interested player 2 saves the costs of rewarding and
earns the higher payoff of c2. Therefore, the fraction of self-interested players grows.

The intuition why preferences for rewarding can invade a self-interested population is
slightly more involved. Consider a population consisting almost entirely of self-interested
players. Then, the vast majority of groups contain too few rewarding players 2 to induce
cooperation of players 1. In these groups self-interested and rewarding players 2 receive the
same payoff d2. But in a small number of groups the fraction of rewarding players 2 is above
the threshold k∗ and players 1 are willing to make the advanced concession of cooperation.
Every player in these groups receives a higher payoff than most players in groups without
cooperation. But the fraction of rewearding players 2 in this groups is at least k∗

N and therefore
far above the fraction of rewarders in the total population (which is close to zero). Therefore,
rewarding players profit relatively more from this successful groups and can invade a self-
interested population.

If k∗ = N −1 the result changes for the following reason: Then, self-interested preferences
cannot invade a population of rewarders. Even if a self-interested player 2 is the only invader
in his group he destroys cooperative behavior of players 1. Hence, if k∗ = N − 1 rewarding
players 2 do always at least as good as self-interested players 2.

23A population is called stable if it is an asymptotical stable state of the dynamics. For details see e.g.
Weibull [32] or the appendix of the working paper version.
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According to proposition 3 only mixed populations are candidates for stable preference
distributions. In fact, there exists a unique stable equilibrium.

Theorem 1 (Unique mixed equilibrium) Let c2−d2−cr > 0 and k∗ < N−1. Then there
exists a unique stable equilibrium. Self-interested preferences and preferences for rewarding
coexist in this equilibrium.

Figure 4 illustrates the dynamics of the evolutionary process for an example. The difference
in average material payoffs between rewarders and self-centered individuals is plotted as a
function of γ for N = 20, d1 = 1, c1 = 0, r = 2, d2 = 5, c2 = 0, cr = 1. The fraction of
rewarders in the stable equilibrium of this example is γeq ≈ 0.5876. If the fraction γ of
rewarding individuals is below γeq then they earn a higher average material payoff and their
fraction γ increases. If γ > γeq rewarding players earn less and γ decreases. Due to the
assumed continuity of the evolutionary dynamics γ converges to γeq.
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Figure 4: (ū+ − ūs) as function of γ for N = 20, d1 = 1, c1 = 0, r = 2, d2 = 5, c2 = 0, cr = 1.

Efficiency: Player 1 cooperates only if his expected material payoff under cooperation is
higher than under defection. On the other hand preferences for rewarding can only survive if
player 2 receives a higher material payoff after cooperation and rewarding than after defection.
Hence, the existence of preferences for rewarding can only lead to a Pareto-improvement (in
material payoffs) in comparison to a purely self-interested population. But for k∗ < N − 1
non-rewarding self-interested players survive, too. Hence, inefficient defection occurs in some
groups and the outcome is still inefficient.

Comparative Statics for Case 1

The fraction γeq of rewarders in the unique stable equilibrium is characterized by the equation
ū+(γeq)− ūs(γeq) = 0. Inserting equation 6 and rearranging leads to

c2 − cr − d2 = cr

N−1−k∗∑

k=1

(N − 1− k∗)!k∗!
(N − 1− k∗ − k)!(k∗ + k)!

(
γeq

1− γeq

)k

, (7)
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for 0 < γeq < 1. The comparative statics is easily derived from this condition.
First, we consider the dependence of the equilibrium fraction γeq of rewarding players on

the group-size N . N enters into equation 7 not only directly but also via k∗ =
[
N c2−d2

r

]
.

Due to the truncation k∗ is only almost proportional to N . In general, a higher group size N

tends to decrease γeq. But for some values the truncation can invert this effect slightly. To
avoid such problems we concentrate in the following proposition on sequences of N for which
k∗
N ≡ c is kept constant.

Proposition 4 An increase in the group size N , keeping k∗
N constant, lowers the fraction γeq

of preferences for rewarding in equilibrium.

Intuitively, larger groups reduce the probability of being pivotal. Therefore, the advantage
of being a rewarder is reduced. Hence, the fraction of rewarding players decreases in equi-
librium24. This result is consistent with the common feeling that in large anonymous groups
the level of cooperation is lower. The influence of a single player on the reputation of a large
group is small. In larger groups a lower number of rewarding players survive in equilibrium.

Now we consider the dependence of γeq on the parameters of the game. We start with the
influence of the costs cr player 2 has to incur if he rewards cooperation.

Proposition 5 Higher costs cr of rewarding lead to a lower fraction γeq of the preferences
for rewarding in equilibrium. Furthermore, lim

cr→0
γeq = 1 and lim

cr→(c2−d2)
γeq = 0.

Intuitively, higher costs of rewarding do not influence the incentives of player 1, but reduce
the fitness of rewarding players 2. Therefore, their fraction is reduced in equilibrium.

Proposition 6 Higher gains of cooperation (c2−d2) lead to a higher fraction γeq of rewarding
players 2 in equilibrium. Furthermore, lim

(c2−d2)→cr

γeq = 0 and lim
(c2−d2)→∞

γeq = 1.

The intuition is straightforward, again. If gains of cooperation increase then gains from being
pivotal increase for a rewarding player 2. The costs are not effected. Therefore, the fraction
of rewarding players 2 increases.

Lemma 1 If the threshold k∗ of rewarding players 2 in a group (above which players 1 in
that group start to cooperate) increases, then the fraction of rewarding players 2 in equilibrium
increases.

The intuition for this lemma is slightly involved. An increase in k∗ means that there have to
be more rewarding players 2 in a group in order to induce cooperation of player 1. Hence, a

24The last argument is not entirely complete. The probability of having to bear the costs for rewarding may
also decrease and therefore a counterbalancing effect may arise. We can show, that the equilibrium fraction
of rewarders decreases with the group size, but so far we have not be able to show whether the equilibrium
fraction does or does not converge to zero if the group size goes to infinity. Numerical results suggests that γeq

decreases only slowly and may not converge to zero.
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lower number of self-interested players 2 can free-ride without putting cooperation in danger.
Therefore, the total number of self-interested players 2 decreases.

From lemma 1 we can easily derive two further results. The costs of cooperation for
player 1 (d1 − c1) and the amount of the possible reward r enter in equation 7 only through
k∗. Hence,we obtain

Corollary 1 The equilibrium fraction γeq of rewarding players increases (weakly) if the costs
(d1 − c1) of cooperation for player 1 increase.

Corollary 2 The equilibrium fraction γeq of rewarding players decreases (weakly) if the amount
r by which a player 1 can be rewarded cooperation increases.

Both corollaries might seem counterintuitive at first glance. But the intuition is similar to that
of lemma 1. Increasing costs of cooperation or a decreasing reward make it more difficult to
induce player 1 to cooperate. Therefore, free-riding by a self-interested player 2 becomes more
likely to destroy cooperation. Hence, the fraction of self-interested players has to decrease in
equilibrium.

Case 2: Costly Punishment

In case 1, player 2 had only the possibility to reciprocate positively, i.e. to reward a friendly
action. In case 2 we analyze the evolution of preferences if there exists the possibility for
player 2 to punish hostile behavior (i.e. defection) of player 1. This punishment is costly25.
The interaction is illustrated in Figure 5.

Player 2 has either preferences for punishing or self-interested preferences. A punishing
player 2 is willing to incur the costs to punish player 1 in case of defection. But if player 2 is self-
interested he avoids these costs and does not punish defection of player 1. Player 1 maximizes
his expected material payoff. In a group where k of the N players 2 have preferences for
punishing player 1 expects an material payoff of (d1 − k

N p) after defection. After cooperation
he receives a material payoff of c1. Therefore, player 1 cooperates if and only if26 c1 > d1− k

N p

or equivalently if k > N d1−c1
p . Analogously to case 1 we denote the threshold by k∗∗.

Definition 2 k∗∗ is the highest number of punishing players 2 in a group which is still insuf-
ficient to induce a self-interested player 1 to cooperate. In other words
k ≤ k∗∗ ⇒ player 1 defects
k > k∗∗ ⇒ player 1 cooperates.

25We might allow for this punishment after cooperation as well as after defection of the first player. But -
similar to case 1 - preferences which lead to punishment after cooperation (e.g. spiteful preferences) vanish in
our model due to natural selection. Again, we simplify the analysis by looking at the possibility of punishment
only if player 1 defected.

26Again, we assume the tie breaking rule that player 1 defects if he is indifferent.
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Figure 5: Interaction in case 2
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with c1 + p > d1 > c1; c2 > d2; cp > 0.

The calculation of k∗∗ is straightforward:

k∗∗ =
[
N

d1 − c1

p

]
. (8)

k∗∗ is an integer with 0 ≤ k∗∗ ≤ N − 1.
In groups with k∗∗ or less punishing players 2 no cooperation occurs. Players 1 defect.

In response punishing players 2 receive material payoffs of (d2 − cp). Self-interested players 2
avoid costs of punishing and receive higher material payoffs of d2. In groups with more than
k∗∗ punishing players 2 players 1 cooperate. Therefore, players 2 receive - independently of
their types - material payoffs of c2. The payoff structure is summarized in table 2.

Table 2: Material payoffs of player 2

Payoffs in groups with k ≤ k∗∗ Payoffs in groups with k > k∗∗

punisher d2 − cp c2

Self-interested d2 c2

Now let γ be the fraction of punishers in the total population. Analogously to case 1
self-interested players 2 receive an expected material payoff of

ūs(γ) = d2

k∗∗∑

k=0

BN−1,γ(k) + c2

N−1∑

k=k∗∗+1

BN−1,γ(k) (9)
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and punishing players 2 the expected material payoff of

ū−(γ) = (d2 − cp)
k∗∗−1∑

k=0

BN−1,γ(k) + c2

N−1∑

k=k∗∗
BN−1,γ(k). (10)

Due to the assumption of payoff monotonicity the fraction of punishers grows (falls) if pun-
ishing players 2 receive a higher (lower) average payoff than self-interested players 2. Hence,
we are interested in the sign of the difference

ū−(γ)− ūs(γ) = (c2 − d2)BN−1,γ(k∗∗)− cp

k∗∗−1∑

k=0

BN−1,γ(k) (11)

= (c2 − d2)
(N − 1)!

(k∗∗)!(N − 1− k∗∗)!
γk∗∗(1− γ)N−1−k∗∗ − cp

k∗∗−1∑

k=0

(N − 1)!
k!(N − 1− k)!

γk(1− γ)N−1−k.

For 0 < γ < 1 follows

ū−(γ)− ūs(γ) T 0 (12)

⇔ c2 − d2 T cp

k∗∗−1∑

k=0

(k∗∗)!(N − 1− k∗∗)!
k!(N − 1− k)!

(
1− γ

γ

)k∗∗−k

. (13)

The right hand side of equation 13 is strictly decreasing and continuous in γ, tends to 0 if γ

tends to 1 and to infinity if γ tends to zero. The left hand side of equation 13 has a fixed
positive value. Hence, there exists only one equilibrium of mixed types which is unstable.
We denote the fraction of punishers in this unstable equilibrium by γcut. The only stable
equilibria are the corner solutions.

Theorem 2 Let k∗∗ > 0. Then, the two monomorphic equilibria - in which either all players
have preferences for punishing or all players have self-interested preferences - are stable.
The unique mixed equilibrium is not stable.

In contrast to case 1 the option to punish defection drives the population to a monomorphic
state. Either a “culture of punishment” develops, where all players are willing to punish, or
a “culture of laissez faire”, where nobody bothers to punish defectors. The evolutionary
dynamics is illustrated by Figure 6.

Theorem 2 is very intuitive. If virtually no player 2 is willing to punish defection a single
punisher is very unfit. In almost any group he is the only punisher and unable to enforce
cooperation of player 1. Player 1 defects and the punishing player 2 has to pay the costs cp

of punishing. Therefore, he is less fit than a self-interested player 2 who does not punish. On
the other hand if virtually all players 2 are willing to punish they seldom have to prove this.
Players 1 in almost all groups cooperate in order to avoid punishment. Only in few groups
in which the number of punishing players 2 is below the threshold k∗∗, self-interested and
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Figure 6: (ū− − ūs) as function of γ for N = 20, d1 = 1, c1 = 0, p = 2, d2 = 5, c2 = 0, cp = 1.

punishing players 2 receive different payoffs. But most of these groups are just one punisher
below the threshold. In these groups a punishing player 2 is pivotal in inducing cooperation.
Therefore, he benefits from his preferences.

In the equilibrium of a population of punishers players 1 always cooperate and no player 2
has to prove his willingness to punish. How would the results change if players 1 make
mistakes and fail to cooperate sometimes? Appendix D demonstrates that results change only
slightly if probabilities of mistakes are sufficiently small. There remain two stable equilibria.
The equilibrium consisting only of self-interested preferences remains stable. However, a
population consisting only of punishers is no longer stable. A small fraction of self-interested
players can invade. But the fraction of self-interested invaders remains arbitrary small if
probabilities of mistakes are sufficiently small27. Hence, there might still develop a culture of
punishment with a high fraction of punishers and a small fraction of self-interested players.

Results of case 2 differ from case 1 also in terms of efficiency (in material payoffs). In
order to be able to rank the outcomes we take the point of view of a player who does not
know yet whether he plays in player-position 1 or 2 and might play in each position with equal
probability. Then, cooperation is efficient if d1 − c1 < c2 − d2, i.e. if player 2 profits more
from cooperation than player 1 loses. However, defection (and no punishment) is efficient if
d1 − c1 > c2 − d2. The option to punish defection can enforce complete cooperation (in a
world without mistakes and in the right equilibrium). If d1 − c1 < c2 − d2 this is efficient.
But cooperation can be enforced by the threat of punishment also in cases where cooperation
is inefficient. Hence, the possibility to punish defection can be efficiency enhancing as well as
efficiency reducing.

The unstable mixed equilibrium separates the basins of attraction of both stable equilib-
ria. If the initial fraction of punishers is below γcut then only self-interested players survive,
otherwise only punishers. The lower the value of γcut the more initial population states evolve
to a population of punishers. We relegate the comparative statics of γcut to appendix C.

27However, a moderate probability of mistakes may result in a significant shift of the punisher equilibrium.
See Appendix D for details.
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In case 2 there are two equilibria and we don’t know wether a “culture of punishment” or
a “culture of laissez faire” develops. However, case 3 suggests that the survival of preferences
for punishing becomes more likely if player 2 has both options - punishing and rewarding.
In fact, under suitable conditions only an entirely population forms an evolutionary stable
equilibrium in case 3.

Case 3: Costly Rewarding or Costly Punishment

In case 3 player 2 has both options - costly punishing after defection and costly rewarding
after cooperation. This allows us to analyze the co-evolution of preferences for rewarding
and preferences for punishing, i.e. how the evolution of one side of reciprocity influences the
evolution of the other side. The interaction is illustrated in Figure 7.

Figure 7: Interaction in case 3
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with c1 + r > d1 > c1 and c2 > c2 − cr > d2 > d2 − cp.

All players 1 maximize their expected material payoffs. There are four different types
of players 2 28: Self-interested players neither reward cooperation nor punish defection.
Punishers do not reward cooperation, but punish defection. Rewarders reward cooperation,
but do not punish defection. Reciprocal players reward cooperation as well as they punish
defection. In order to reduce technical problems, we make the following29

Assumption 5 The material loss p for player 1 after being punished equals his material gain
r after being rewarded, i.e. p = r.

Due to Assumption 5 punishers and rewarders have exactly the same influence on the behavior
of players 1 in their group. Hence, material payoffs of all other players 2 are not effected if

28Again, we neglect generic cases of preferences which associate the same subjective utility to different
outcomes.

29The general intuition for the results of this section holds without this assumption, but assumption 5
simplifies the analysis considerably.
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we replace a punisher by a rewarder or vice versa. We know from the analysis of case 2 that
preferences for punishing are evolutionary more successful if their own fraction grows. Hence,
punishers profit also from a growing fraction of rewarders. Any kind of reciprocity helps to
induce cooperation of players 1 and reduces costs of being a punisher.

Remark 2 Higher fractions of rewarders and higher fractions punishers enhance the evolu-
tionary success of preferences for punishing.

Conversely, we know from case 1 that the evolutionary success of preferences for rewarding
relative to self-interested preferences decreases if their own fraction becomes too large. Hence,
the same must hold for too large a fraction of punishers. Furthermore, relative to preferences
for punishing the success of preferences for rewarding is reduced by an increase of the fraction
of any type of reciprocity. The higher the fraction of rewarders or punishers, the more groups
are above the threshold for cooperation. Therefore, costs of rewarding grow whereas the costs
of punishing fall.

Remark 3 Higher fractions of rewarders and higher fractions of punishers reduce the evolu-
tionary success of preferences for rewarding relative to the success of preferences for punishing.

This interdependence between the evolution of both types of reciprocity has interesting con-
sequences. Consider an entirely self-interested population. Preferences for punishing cannot
invade such a population directly, as shown in Case 2. But preferences for rewarding can
invade (see Case 1). If enough rewarders invade, they may serve as a “catalyst” and enable
the invasion of punishers. The more punishers invade, the more successful they become and
finally they drive out self-interested players as well as rewarders.

Remark 4 Preferences for rewarding may serve as a catalyst for the evolution of preferences
for punishing. Rewarders can invade an entirely self-interested population. Their existence
enables punishers to invade, too. Finally, preferences for punishing become more and more
successful and drive out self-interested preferences as well as preferences for rewarding.

Now we look for stable equilibria in case 3. First, we check for stable monomorphic
populations, i.e stable populations of only one preference-type.

Proposition 7 The only monomorphic stable equilibrium consists entirely of punishers.

Are there other stable equilibria consisting of several preference types? The answer de-
pends on the parameters of the model. For certain parameters this is the only stable equi-
librium. For others there exist further stable equilibria. It is easier to capture the basic
intuition if reciprocal preferences are neglected. Hence, for the moment we restrict ourselves
to the possibilities of self-interested preferences, preferences for rewarding and preferences for
punishing. Consider a population consisting only of rewarders and self-interested and players.
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According to Case 1 this population evolves towards a unique equilibrium containing both
preference types. Can a small fraction of punishers invade in this equilibrium? The answer
depends on the fraction γeq of rewarders in equilibrium. Since we assumed p = r the effect
of a rewarding player 2 on any other player 2 in his group is precisely the same as the ef-
fect of a punishing player 2 at the same place. Hence, preferences for punishing can invade
this equilibrium if and only if the fraction γeq of rewarders in this equilibrium (determined
by Equation 7) is higher than the threshold γcut (determined by Equation 13) above which
preferences for punishing become more successful than self-interested ones. Preferences for
punishing become relatively more successful, the higher their own fraction of the population.
Therefore, once preferences for punishing can invade, they drive out all other preferences and
the dynamics leads to the monomorphic equilibrium of preferences for punishing.

Proposition 8 Let γeq be defined by equation 7 and γcut by equation 13.
If reciprocal preferences are neglected, i.e. only the subspace of self-interested preferences,
preferences for rewarding and preferences for punishing is considered, then

a) if γeq > γcut, then the only stable equilibrium is a monomorphic population, where all
players have preferences for punishing. The population converges to this equilibrium
from any interior state.

b) If γeq < γcut, then there are two stable equilibria. One stable equilibrium is the monomor-
phic population of preferences for punishing. In the other stable equilibrium preferences
for rewarding and self-interested preferences coexist30. In this equilibrium the fraction
of preferences for rewarding is γeq.

Figure 8 illustrates the dynamics of the evolutionary process in case 3 with the parameters
of our previous examples. Here we have γeq > γcut and the equilibrium with a fraction γeq of
rewarders and a fraction γcut of self-interested players is not stable: Punisher earn a higher
average payoff, invade successfully and drive out all other preferences.

Including reciprocal preferences does not change the basic intuition. Preferences for pun-
ishing form still a stable equilibrium and a mixture of a fraction of γeq with preferences for
rewarding and 1−γeq self-interested preferences remains a stable equilibrium under the slightly

30Notice that even in the case of Prop.8b) where we have still two stable equilibria it is in Case 3 more likely
to end up in the monomorphic equilibrium (compared to Case 2). This is meant in the spirit of the model by
Kandori et al. [20]: Imagine that each member of the entire (large but finite) population mutates with small
probability to any other preference-type. Then, the minimum number of mutations necessary to move from the
monomorphic equilibrium to the basin of attraction of the other equilibrium is exactly the same as in case 2.
But the other way around less mutations are sufficient to move the population from the bi-morphic equilibrium
to the basin of attraction of the monomorphic equilibrium. That is because the rewarders are advantageous
for the invasion of the punishing type.
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Figure 8: Case 3 with γeq > γcut: (ū+ − ūs) and (ū− − ūs) as functions of γ ≡ γ+ + γ− for
N = 20, d1 = 1, c1 = 0, r = 2, d2 = 5, c2 = 0, cr = 1.

more restrictive condition γeq < min{γcut; γh}, where γh is defined by the equation

c2 − d2 − cr = cp

k∗∗−2∑

k=0

(k∗∗ − 1)!
k!

(N − k∗∗)!
(N − 1− k)!

(
1− γh

γh

)k∗∗−1−k

. (14)

The tightening of the condition is necessary to ensure that reciprocal preferences cannot
invade the mixed equilibrium either. Furthermore, reciprocal preferences can be part of an
equilibrium only under very special conditions. If most groups induce players 1 to cooperate,
preferences for punishing tend to outperform reciprocal ones, since they do not have to bear
the costs of rewarding. If on the other hand most groups are not able to induce cooperation,
then preferences for rewarding tend to outperform reciprocal ones since they do not bear the
costs of punishing in the frequent cases of defection. But for certain parameters there exist
equilibria with a positive fraction of reciprocal preferences. These additional equilibria are
not robust to small changes in parameters of the model and are not very plausible. Therefore,
we relegate the discussion of these equilibria to the appendix E and focus attention on the
discussed equilibria summarized in the following

Proposition 9 Let γeq be defined by equation 7,γcut by equation 13 and γh by equation 14.
Then, for any payoff-monotonic selection dynamics holds

a) a monomorphic population of punishers forms a stable equilibrium.

b) If γeq < min{γcut, γh}, then also a population with a fraction γeq of rewarders and a
fraction (1− γeq) of self-interested players forms a stable equilibrium.

So far, preferences for punishing will - once they invade - drive out preferences for reward-
ing completely. In equilibrium either preferences for rewarding or preferences for punishing
survive, but not both. However, both sides of reciprocity can survive in one equilibrium, if
player 1 cannot be forced to participate in the interaction, i.e. player 1 has an additional
outside option as illustrated in figure 9.
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Figure 9: Interaction in case 3 with outside option
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with c1 + r > d1 > o1 > c1; c2 > c2 − cr > o2 > d2 > d2 − cp.

Now, a population consisting only of punishers is not stable any more. The threat of
punishment alone can only deter player 1 from defecting. But player 1 opts out as long as he
does not expect to be rewarded for cooperation. Analogous to case 1 reciprocal players who
reward and punish can invade the population of punishers. In some groups their willingness to
reward induces players 1 to cooperate instead of opting out. This makes reciprocal preferences
initially more successful until reciprocal preferences and preferences for punishing are in a
mixed equilibrium31. Hence, there is an equilibrium in which all or most players are willing
to punish defection, some of them do reward cooperation and some don’t32.

A different explanation for the survival of both types of reciprocity arises if individuals
engage in different types of interactions - sometimes similar to case 1, sometimes similar to
case 2 or 3. If players have general preferences and do not have different preferences for
different types of interactions, then some rewarders, some punishers and reciprocators can
survive33.

31This equilibrium is only Lyapunov stable but not asymptotically stable. That is because payoffs do not
change if some reciprocal players are replaced by rewarders. But the set of population states with a fraction of
(1 − γeq) of punishers, γ ∈ [0; γeq] of reciprocators and (γeq − γ) of rewarders forms an asymptotically stable
set of equilibria.

32For certain parameters there exist further equilibria, but the detailed analysis is beyond the scope of this
paper.

33The question how far preferences may depend on the respective interaction is a subtle one. On the one
hand preferences should not be expected to evolve independently for any type of interaction. On the other hand
people may well classify interactions by broad categories and their preferences may well depend on whether they
assign a certain interaction to one category or another. Empirical evidence as well as theoretical approaches
in the direction of Samuelson [26] could offer interesting insights to this question.
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3 Discussion

Our results hold for any payoff-monotonic evolutionary dynamics. Hence, our model can be
interpreted in terms of biological- or cultural evolution as well as processes of learning by
success and failure. The assumption 3 of regularly reshuffling may seem to strong for real
world applications. But, precisely this assumption allows us to abstract from assortative group
selection effects and to isolate the effects we are interested in. From a theoretical standpoint
this strengthens our results: Preferences for punishing or rewarding can survive evolution even
without effects of assortative matching.

The findings of our evolutionary analysis seem to fit observed human behavior reasonably
well. Some people do reward friendly behavior, while some others don’t. The willingness to
punish hostile behavior seems more robust than the willingness to reward friendly behavior.
However, in most experimental studies a significant number of individuals does not punish
defection. This may seem to contrast the statement of Theorem 2, that either only punishers
survive or no punisher at all. But, if moderate mistakes are included in our analysis, as we
do in Appendix D, then a significant number of self-interested players may survive in the
”punisher equilibrium”.

Furthermore, in our analysis we assumed implicitly that preferences are formed indepen-
dently for each type of interaction. This seems plausible if different types of interaction are
clearly distinguishable and if each of these interactions played an important role during the
process of evolution. However, in unfamiliar situations individuals might act as they are used
to in situations which they consider similar. For instance, in experimental studies of the Ul-
timatum Game some players might compare the game to a common project of equal partners
whereas other compare it to a bargaining with their superior. If in the “real world” a common
culture of punishing has developed in the first case and a culture of laissez-faire in the second,
then only some players punish unfair offers in the experiment34.

Further applications arise if we consider the evolutionary dynamics as a learning process
and preferences as rules of behavior35. All over the world some street traders try to cheat
tourists and other sell them fair quality - in accordance with case 1. In contrast, different
countries seem to have different norms for how to wait for a bus: In England everybody queues
and trying to push your way to the front can provoke harsh reactions. In Italy however nobody
queues and there is no way for an individual to enforce queueing. In accordance with case 2
Italy and England seem to have evolved in to different equilibria.

How robust are our results? Appendix D demonstrates that sufficiently small trembles
of players change the results only slightly. But the assumption 4 that the distribution of

34This interpretation fits well with findings of Henrich et al. [18]. They conduct an experiment with the
ultimatum game in 15 small-scale societies and find that peoples strategies depend strongly on culture and
norms of their society.

35The time scale to reach an equilibrium is then considerably smaller.
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preferences in a group is common knowledge remains to be discussed. The assumption is con-
siderably weaker then assuming observability of individual preferences. For instance, consider
the newspaper boxes in many towns. Often you can simply take a newspaper and there is no
control for whether you pay for the newspaper or whether you don’t. At the end of the day
you do not know who payed for the newspaper, but by counting the money you have a good
estimator which fraction payed. However, there is still a problem with assumption 4 which
becomes apparent by considering a group with a number of e.g. rewarding players 2 just
below the threshold k∗ which would induce players 1 to cooperate. A self-interested player 2
in this group would prefer to be a rewarder, because this increases his material payoff. In case
the fraction of rewarders in the group is not common knowledge - as assumed - but has to be
learned from other people’s behavior in previous periods, then even a self-interested player 2
might have an incentive to incur the costs of rewarding in order to sustain cooperation. But
it has to be noticed, that he prefers the case when another self-interested player 2 of his group
mimics rewarding behavior instead of him. Hence, without assumption 4 players 2 might
try to build a reputation - not individually, but a reputation of their group. One way to
avoid such group reputation building effects is to assume that players have a sufficiently low
discount factor. Then player 2 is not willing to forgo current profits for future gains from
group reputation and the true fractions of each types can easily be learned in a first round36.
A different way to avoid group reputation building by players 2 is to relax the assumption
of (costless) perfect rationality. Group reputation building is rather complex for player 2.
Furthermore, in equilibrium all types receive the same average material payoff. Hence, in
equilibrium small costs of thinking can make sure, that player 2 plays according to his type
in each period.

4 Conclusions

This non-assortative group selection model offers an explanation for the evolutionary survival
of both sides of reciprocal preferences. Despite individual behavior and preferences being
unobservable, individuals continue to have a marginal effect on the “reputation” of his group,
which influences the behavior of the other players in their group. This effect is sufficient to
enable preferences for rewarding and preferences for punishing to survive the evolutionary
competition with self-interested preferences. Preferences for rewarding as well as preferences
for punishing can induce cooperative behavior. But there is an intrinsic difference between
both preference types: Preferences for rewarding tend to coexist with self-interested prefer-
ences, whereas preferences for punishing tend either to dominate the population completely
or to vanish entirely. Furthermore, rewarders enhance the evolution of preferences for punish-

36In case of the evolution of “genes for reciprocity” one may object that the discount factor should be
derived endogenously from the process of evolution. However, at least in the context of cultural evolution an
exogenously given discount rate seems a reasonable assumption.
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ing. Preferences for rewarding are able to invade a self-interested population and may then
as a “catalyst” enable the invasion of preferences for punishing. Punishers on the other hand
crowd out rewarders and may even drive them out completely.
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A Some Definitions from Evolutionary Game Theory

Most standard concepts in evolutionary game theory are formulated for the evolution of strate-
gies. Here we look at the evolution of preferences. The main reason is that this term captures
better the aim of our paper - we want to understand why people might have reciprocal pref-
erences. The following definitions are analogous to their counterparts in evolutionary game
theory.
Let t1, t2, . . . , tn be a finite number of possible preference types and γ1, γ2, . . . , γn their frac-
tions of the total population, i.e. γ1, γ2, . . . , γn ≥ 0 and

∑n
i=1 γi = 1. We call the vector

γ ≡ (γ1, γ2, . . . , γn) a population state. The set of all possible population states is therefore a
n− 1 dimensional simplex in Rn. We call this set ∆. The following definitions concerning se-
lection dynamics is analogous to the ones commonly used in evolutionary game theory (see e.g.
Weibull [32]). We focus on continuous selection dynamics defined on the simplex ∆ in terms
of growth rates gi(γ) for the population shares associated with each preference type i ∈ n as
follows

γ̇i = gi(γ)γi (15)

where g is a function with open domain X containing ∆.

Definition 3 A regular growth rate function is a Lipschitz continuous function g : X →
Rn with open domain X containing ∆, such that g(γ) · γ = 0 for all γ ∈ ∆

For any regular growth rate function there exists a unique solution ξ(t, γ0) to equation 15
through any initial value γ0. Moreover ξ is continuous in t ∈ T and γ0 ∈ ∆ (Picard-Lindelöf
theorem).

Definition 4 A regular growth rate is called payoff monotonic if for all γ ∈ ∆

u(ti, γ) < u(tj , γ) ⇔ gi(γ) < gj(γ), (16)

where u(ti, γ) stands for the average material payoff of type ti when the state of the total
population is γ.

Hence payoff monotonicity means that the fraction of types receiving higher average material
payoffs grow with a higher rate.
To check the stability of a population state, we look at asymptotic stability. We will refer in all
proofs to the metric induced by the maximum-norm. The proofs would extend straightforward
to other metrics (e.g. the Euclidian-metric).

Definition 5 A population-state γ is called Lyapunov stable if every neighborhood B of γ

contains a neighborhood B0 of γ such that ξ(t, γ0) ∈ B for all γ0 ∈ B0 ∩ Cand t ≥ 0.
A state γ ∈ C is called asymptotically stable if it is Lyapunov stable and there exists a
neighborhood B∗ such that limt→∞ ξ(t, γ0) = γ holds for all γ0 ∈ B∗ ∩ C.
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Definition 6 A closed set A ⊂ C is Lyaponnov stable if every neighborhood B of A

contains a neighborhood B0 of A such that γ+(B0 ∩ C) ⊂ B. A closed set A ⊂ C is asymp-

totically stable if it is Lyapunov stable and if there exists a neighborhood B∗ of A such that
ξ(t, x0)t→∞ → A for all x0 ∈ B∗ ∩ C.

B Proofs

B.1 Proof of Proposition 1

Player 2 conditions his choice of action only on the action chosen by player 1. In particular,
he does not condition his behavior on the distribution of preference-types in his group, even
if he could do so. This fact is due to our assumption that players have preferences only over
outcomes and not over other players preferences or their distribution. Since player 2 can
observe the action of player 1, he can guess the outcomes resulting to his own action directly.
Hence, player 2 chooses his strategy independent of the distribution of preference-types in his
group. Now assume that a positive fraction of players 1 acts in a way that earns them an
expected material payoff strictly lower than the maximum. Then, the population cannot be
stable since expected material payoff maximizers can either invade in this population or their
fraction grows, q.e.d.

B.2 Proof of Proposition 3

Equation 6 describes the difference in expected material payoffs as a function of the fraction
γ of rewarders in the entire population. N is kept constant. The first term of the right hand
side has a positive sign, the remaining terms are negative. First we consider small γ. The
positive first term is of the order k∗ in γ whereas the remaining negative terms are at least of
the order (k∗+1) in γ. Hence, the right hand side of equation 6 is positive for sufficient small
γ. Therefore, γ grows if the fraction of the rewarders is sufficiently small. In other words, an
entirely self-interested population is not stable.

In a similar way we prove that the fraction of self-interested players increases if most
players have preferences for rewarding, i.e. if γ is close to 1. If γ converges to 1 then the first
term of equation 6 converges to zero whereas the remaining sum of negative terms converges
to (−cr) (in fact, the last term converges to −cr and all the remaining terms to zero). Hence,
the fraction γ of rewarders decreases if their fraction of the total population is sufficiently
large. In other words, a population entirely of rewardes is not stable either, q.e.d.

B.3 Proof of Theorem 1

From proposition 3 we know that the difference in the average material payoffs ūpos(γ)− ūs(γ)
is above zero for small γ and below zero for γ close to 1. Since ūpos(γ)− ūs(γ) is continuous in
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γ there must exist an interior γeq with ūpos(γeq)− ūs(γeq) = 0. We will see in the next step,
that γeq is the unique value strictly between 0 and 1 satisfying this equation. Hence, for all
values below γeq the difference is above 0 and for all values above γeq the difference is below
0. Hence, this equilibrium is stable.
Uniqueness follows directly from the necessary condition for an interior equilibrium, i.e. equa-
tion 7:

c2 − cr − d2 = cr

N−1−k∗∑

k=1

(N − 1− k∗)!k∗!
(N − 1− k∗ − k)!(k∗ + k)!

(
γ

1− γ

)k

. (17)

The right hand side is strictly increasing in γ. The left hand side is constant. Therefore,
equation 17 is satisfied at most for one γeq, q.e.d.

B.4 Proof of Proposition 4

We assumed k∗
N ≡ q constant, i.e. k∗ = qN with 0 < q < 1. We can rearrange the equilibrium

condition 7 into

c2 − cr − d2 = cr

N−1−k∗∑

k=1

((
k∏

l=1

N − k∗ − l

k∗ + l

)(
γ

1− γ

)k
)

(18)

= cr

N(1−q)−1∑

k=1

((
k∏

l=1

(1− q)N − l

qN + l

)(
γ

1− γ

)k
)

. (19)

Now we prove that for constant γ the right hand side is strictly increasing in N . Since the
left hand side is constant, γeq has to fall in order to equilibrate both sides again.
The number of terms increases with N . Since all terms in equation 18 are positive it is
sufficient to prove that each term increases in N . By extending N to real numbers we find

∂

∂N

(
(1− q)N − l

qN + l

)
=

l

(qN + l)2
> 0, (20)

q.e.d.

B.5 Proof of Proposition 5

The right hand side of equation 7 is strictly increasing in γ. For any value of cr equation 7
must hold in equilibrium. If we now choose a new cnew

r > cr, the left hand side becomes
smaller whereas the right hand side would increase if we keep γ fixed. Therefore, γ has to
decrease in order to decrease the right side and satisfy equation 7 again. Hence the new
equilibrium fraction of rewarders is lower. Furthermore, if cr tends to 0, then the left hand
side tends to the positive value c2− d2, whereas the right hand side would tend to zero if γ

1−γ

remained bounded from above. Therefore, γ must tend to 1 if cr tends to zero. Finally, if cr
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tends to (c2−d2), then the left hand side tends to zero, but the right hand side can only tend
towards zero if γ tends to zero, too, q.e.d.

B.6 Proof of Proposition 6

The proof of proposition 6 is completely analogous to the proof of proposition 5.

B.7 Proof of Lemma 1

We consider the equilibrium condition in form of equation 18. The left hand side is not
effected by a change in k∗. The right hand side is effected in two ways if k∗ increases. First,
the number of terms is reduced and second, each of the remaining terms becomes smaller.
Both effects diminish the value of the right hand side. Therefore, γeq has to increase in order
to equilibrate both sides again, q.e.d.

B.8 Proof of Corollary 1 and Corollary 2

k∗ = [N d1−c1
r ] is weakly increasing in (d1− c1) and weakly decreasing in r. Hence, corollary 1

and 2 follow directly from lemma 1, q.e.d.

B.9 Proof of Proposition 7

An entirely self-interested population can be invaded by preferences for rewarding and vice
versa (case 1). Furthermore, an entirely reciprocal population can be invaded by preferences
for punishing (then cooperation occurs still in all groups, but preferences for punishing save
the costs of rewarding). Only a monomorphic population of punishers cannot be invaded by
other preferences (Self-interested preferences cannot invade as shown in case 2. Reciprocal
preferences or preferences for rewarding cannot invade either. Cooperation would still occur
in all groups. Hence, rewarding is costly but the threat to punish is for free).

B.10 Proof of Proposition 8

Step 1 proves that the equilibria in proposition 8 are stable. Step 2 shows that no other
equilibrium can be stable (in the subspace without reciprocal preferences). Step 3 proves that
in case a) the population converges from any interior state to a monomorphic population of
punishers.

Step 1: The monomorphic population of punishers forms a stable equilibrium by prop. 7.
Theorem 1 in case 1 states that there exists a unique stable equilibrium with a fraction of
γeq rewarders in the subspace of self-interested preferences and preferences for rewarding. It
remains to be shown that for γeq < γcut (i.e. in case b)) this equilibrium is stable also in
the subspace which includes preferences for punishing. Let γ+ be the fraction of rewarders,
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γ− the fraction of punishers in the total population and define γ̃ ≡ γ+ + γ−. Due to p = r

(assumption 5) the action of player 1 depends only on the total fraction γ̃ of rewarders and
punishers. Hence, expected material payoffs of any type of player 2 depend only on γ̃, too:

ūs(γ̃) = d2

k∗−1∑

k=0

BN−1,γ̃(k) + d2BN−1,γ̃(k∗) + c2

N−1∑

k=k∗+1

BN−1,γ̃(k) (21)

ū+(γ̃) = d2

k∗−1∑

k=0

BN−1,γ̃(k) + (c2 − cr) BN−1,γ̃(k∗) + (c2 − cr)
N−1∑

k=k∗+1

BN−1,γ̃(k) (22)

ū−(γ̃) = (d2 − cp)
k∗−1∑

k=0

BN−1,γ̃(k) + c2BN−1,γ̃(k∗) + c2

N−1∑

k=k∗+1

BN−1,γ̃(k) (23)

Hence, we obtain for the differences in average material payoffs

ū+(γ̃)− ūs(γ̃) = (c2 − d2 − cr) BN−1,(γ̃)(k
∗) + (−cr)

N−1∑

k=k∗+1

BN−1,(γ̃)(k) (24)

ū−(γ̃)− ūs(γ̃) = −cp

k∗−1∑

k=0

BN−1,(γ̃)(k) + (c2 − d2) BN−1,(γ̃)(k
∗) (25)

ū−(γ̃)− ū+(γ̃) = −cp

k∗−1∑

k=0

BN−1,(γ̃)(k) + cr

N−1∑

k=k∗
BN−1,(γ̃)(k) (26)

The first equation corresponds to equation 7 of case 1 - only γ is now replaced by (γ̃). In
particular, the fraction of rewarders will increase relative to the fraction of self-interested
preferences if γ̃ < γeq ( and decrease if γ̃ > γeq). Similarly, the second equation corresponds
to equation 13 of case 2. In particular, this means that the fraction of punishers decreases
relative to the fraction of self-interested players as long as γ̃ < γcut. By putting these two
observations together we see that for γeq < γ̃ < γcut both the fraction of preferences for
rewarding γ+ as well as the fraction of preferences for punishing γ− decrease relative to the
fraction (1−γ+−γ−) of self-interested preferences. Hence, (γ̃) decreases in absolute terms. The
dynamic is continuous in γ+ and γ− and therefore also in (γ̃). Hence, if initially γ0

++γ0− < γcut

then (γ̃) remains below (or equal to) min{γ0
+ + γ0−, γeq}. In particular, γ− decreases relative

to the fraction of self-interested preferences with a rate strictly above a constant strictly
positive rate. Hence, also γ− converges absolutely to zero. Now it is straightforward to prove
Lyapunov- and asymptotic-stability of the population-state (γ+, γ−, γs) = (γeq, 0, 1 − γeq).
Let ε < γcut−γeq

3 . For any initial population state in the ε-neighborhood of (γeq, 0, 1 − γeq)
holds γ0

+ + γ0− < γcut. Therefore, γ− converges to zero. Due to the continuity of all average
payoff functions in γ+ and γ− the convergence of γ− to 0 implies convergence of γ+ to γeq.
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Step 2: Now we prove that there are no other equilibria in the subspace of preferences
for rewarding, preferences for punishing and self-interested preferences. First preferences for
punishing cannot coexist with self-interested preferences in a stable equilibrium: Replacing
any small fraction of the self-interested player by punishers enhances material payoffs of
punishers relative to self-interested players. Hence, an equilibrium containing both types
cannot be stable. Furthermore, preferences for rewarding and preferences for punishing cannot
form an equilibrium: Cooperation would occur in all groups and rewarders earn less because
they have to bear the costs of rewarding. A completely rewarding or a completely self-
interested population is not stable as shown in case 1. Hence, the only remaining candidates
for stable equilibria are either a population of only punishers (in fact, this equilibrium is
stable by prop. 7) or a heterogenous population of self-interested preferences and preferences
for rewarding. Case 1 showed that in equilibrium the fraction of preferences for rewarding
has to be γeq and the fraction of self-interested preferences 1− γeq. In step 1 we showed that
this equilibrium is stable for γeq < γcut. It remains to be shown that this equilibrium is not
stable for γeq > γcut. This follows from case 2: If γeq > γcut then preferences for punishing are
in this equilibrium more successful than self-interested preferences and can therefore invade
successfully.

Step 3 It remains to be shown that for γeq > γcut the population converges from any
interior state to the equilibrium of a monomorphic population of punishers. From any interior
state and for any regular selection dynamics the population state does not reach the boundaries
in finite time37, i.e. no preference-type vanishes completely in finite time. If initially γ̃ < γeq

then γ+ grows with positive rate relative to self-interested preferences as long as (γ̃) < γeq

and in particular the point where (γ̃) = γcut + γeq−γcut

2 is reached in finite time. In the
area where γcut < (γ̃) < γeq preferences for rewarding and preferences for punishing are
both more successful than self-interested preferences. Therefore, once (γ̃) ≥ γcut + γeq−γcut

2

holds, the dynamic process never changes this. Hence, after a finite time γ− increases with
a strictly positive rate compared to γs. In particular, this implies that γs converges to 0.
Hence, (γ̃) converges to 1 and in particular (γ̃) > γeq after some finite time. Then, rewarding
players 2 become less successful than self-interested players 2 (and therefore less successful
than punishing players 2) and converge to 0, too. In the end only preferences for punishing
survive and the fractions of other preferences converge to zero.

B.11 Proof of Proposition 9

Average material payoffs of each type are continuous in γ+, γ−, γrc and γs. Hence, if a single
invader of one type earns strictly less than incumbents, then this holds also for a sufficiently
small fraction of invaders.

37Compare e.g. Weibull [32] page. 141
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Part a): A population of punishers is stable in the subspace without reciprocal players
(proposition 8). Furthermore, reciprocal players cannot invade either: In this equilibrium
of only preferences for punishing cooperation occurs in all groups. Therefore, an invading
reciprocal player has no further pivotal benefit of being a rewarder in addition to being a
punisher. But he has to pay costs of rewarding. Hence, he is less successful and vanishes
again.

Part b): The proof of proposition 8 shows that for γeq < γcut an invading punisher earns
a strictly lower average payoff than any incumbent. Hence, it is sufficient to show that for
γeg < γh a reciprocal invader earns on average strictly less than any incumbent. Then,
stability of the equilibrium follows by arguments analogous to the proof of proposition 8. The
average material payoffs of a rewarder or a single reciprocal invader in this equilibrium are

ū+ = d2

k∗−1∑

k=0

BN−1,γeq(k) + (c2 − cr)
N−1∑

k=k∗
BN−1,γeq(k) (27)

ūrc = (d2 − cp)
k∗−2∑

k=0

BN−1,γeq(k) + (c2 − cr)
N−1∑

k=k∗−1

BN−1,γeq(k) (28)

Hence,

ūrc − ū+ = −cp

k∗−2∑

k=0

BN−1,γeq(k) + (c2 − d2 − cr)BN−1,γeq(k∗ − 1). (29)

For 0 < γeq < 1 we obtain by dividing through BN−1,γeq(k∗ − 1) the equivalence

ūrc − ū+ T 0 (30)

⇔ c2 − d2 − cr T cp

k∗−2∑

k=0

(k∗ − 1)!
k!

(N − k∗)!
(N − 1− k)!

(
1− γeq

γeq

)k∗−1−k

. (31)

The right hand side of equation 31 is strictly decreasing in γeq. Furthermore, the right hand
side would be equal to the left hand side if γeq = γh (this was precisely the definition of γh).
Hence, for γeq < γh the right hand side is strictly larger than the left hand side and therefore
ūrc − ū+ < 0, q.e.d.

C Comparative Statics of γcut in case 2

Let γcut be the fraction of punishers in the unstable mixed equilibrium. This fraction separates
the basins of attraction of the stable equilibria. If the initial fraction of punishing players is
below the cutoff γcut then this fraction decreases until the entire population has self-interested
preferences and nobody punishes defection. If on the other hand the initial fraction of pun-
ishing players is above the cutoff γcut then this fraction increases until the entire population
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has preferences for punishing. One might therefore interpret the value of γcut as an indicator
how likely it is to end up in one or the other equilibrium38. The comparative statics of γcut

is analogous to case 1 and can be derived directly from equation 13.
Higher costs of punishing diminish the basin of attraction of the punisher equilibrium:

Proposition 10 If the costs cp - which a player 2 has to bear in order to punish - increase,
then γcut increases, i.e. there have to be initially more punishers in order to end up in the
punishing equilibrium. Furthermore, limcp→0 γcut = 0 and limcp→∞ γcut = 1.

The intuition is straightforward: The higher the number of punishing players the cheaper
it is to be a punisher. If the costs of punishing increase, punishers become less fit. Hence,
punishing players need a higher fraction of punishers in order to be at least as successful as
non-punishers.

Higher gains from cooperation for player 2 are good for punishers. Hence, the basin of
attraction for their equilibrium becomes larger:

Proposition 11 If the gains of cooperation for the players 2 (c2 − d2) increase, then γcut

decreases, i.e. a lower initial fraction of punishing players is necessary in order to end up in
the punishing equilibrium. Furthermore, lim(c2−d2)→0 γcut = 1 and lim(c2−d2)→∞ γcut = 0.

Again, the intuition is straightforward: The higher the gains of cooperation for a player 2,
the higher his profit from being pivotal in inducing cooperation of players 1. Therefore,
a lower fraction of punishers is necessary in order to make punishing more successful than
non-punishing.

Lemma 2 If the threshold k∗∗ of punishing players 2 in a group above which the players 1
start to cooperate increases then γcut increases, i.e. there are more punishing players necessary
in order to end up in the punishing equilibrium.

Intuitively, a higher threshold k∗∗ makes it more probable to be in a group in which the
number of punishers is too low to induce cooperation. In these groups being a punisher is
costly. Therefore, fitness of punishers is lower and a higher initial fraction of punishers is
necessary to make punishing more successful than non-punishing.

Corollary 3 If player 1s costs for cooperation (d1 − c1) increase then γcut increases weakly,
i.e. a higher or equal fraction of punishers is necessary in order to end up in the punishing
equilibrium.

Corollary 4 If player 2s losses due to a punishment p increase, then γcut decreases weakly.
38Again, this interpretation is in the spirit of the model by Kandori et. al [20], where the size of the basins

of attraction determines the long run equilibrium
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D Extension: Small Mistakes

This appendix considers the possibility that some players 1 fail to play optimally. Assume
that player 1 trembles with small probability ε. In that case he defects even so he should
cooperate and vice versa. If ε is sufficiently small results of case 1 and case 2 change only
slightly:

Proposition 12 If player 1 trembles with sufficiently small probability ε then
in Case 1 there exist two stable equilibria: In the first equilibrium the fraction γeq

ε of
preferences for rewarding is close to the equilibrium fraction without mistakes γeq. In the
second equilibrium only self-interested preferences survive (i.e. γ = 0). If ε tends to zero then
γeq

ε tends to γeq. Moreover, the basin of attraction of the self-centered equilibrium tends to
zero.

in Case 2 there remain two stable equilibria. The monomorphic equilibrium where all
players have self-interested preferences is still stable. But a monomorphic population of pun-
ishers is not stable any more. Instead, there is a second stable equilibrium with a high fraction
of punishers and a low fraction of self-interested players. If ε tends to zero, the fraction of
preferences for punishing in this equilibrium is arbitrarily close to 1.

We discuss and prove only Case 2. The proof for Case 1 is analogous and written upon
request.

The intuition for Case 2 of proposition 12 is straightforward. In a world of no mistakes and
in the equilibrium where all players 2 are willing to punish, this threat is costless: Player 1
cooperates and no punishment is necessary. But if players 1 make sometimes mistakes being
a punisher is costly. If almost everybody else is a punisher the probability of being pivotal
tends to zero. But due to mistakes the costs of punishing do not vanish. A monomorphic
population of punishers is therefore no longer stable.

For a more formal proof consider average payoffs of both types. A self-interested player 2
receives an average material payoff of

ūs(γ) = (d2 + ε (c2 − d2))
k∗∗∑

k=0

BN−1,γ(k) + (c2 − ε (c2 − d2))
N−1∑

k=k∗∗+1

BN−1,γ(k) (32)

and the punishing type receives

ū−(γ) = (d2 − cp + ε (c2 − d2 + cp))

k∗∗−1X
k=0

BN−1,γ(k) + (c2 − ε (c2 − d2 + cp))

N−1X
k=k∗∗

BN−1,γ(k). (33)
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Hence, the difference in average payoffs between both types is

ū−(γ)− ūs(γ)

= − (1− ε) cp

k∗∗−1∑

k=0

BN−1,γ(k) + ((1− 2ε) (c2 − d2)− εcp) BN−1,γ(k∗∗)

−εcp

N−1∑

k=k∗∗+1

BN−1,γ(k)

= (1− 2ε)

(
−cp

k∗∗−1∑

k=0

BN−1,γ(k) + (c2 − d2) BN−1,γ(k∗∗)

)
− εcp. (34)

This difference is continuous in γ and ε. For γ = 0 the difference is negative. Hence, the
monomorphic equilibrium of self-interested preferences remains stable. Also for γ = 1 the dif-
ference is negative. Therefore, self-interested preferences can invade a population of punishers.
However, for ε sufficiently small there still exists a second stable equilibrium in addition to
γ = 0. In this second equilibrium punishers and self-interested types coexist. The fraction of
punishing types in this equilibrium converges to 1 if ε tend to 0.

Proof: Existence: For ε = 0 there exits a γ0 where the difference is positive. Due to
continuity in ε the difference at this γ0 is still positive for sufficiently small ε. Since the
difference is negative at γ = 1 there must exists a stable equilibrium between γ0 and 1 due to
continuity in γ.

Exactly one more stable equilibrium: The term in large brackets in equation 34 is a
polynomial of finite order. Hence, there are only a finite number of local minima. Let ∆ be
the minimum value of all local minima above zero. For ε < ∆

2∆+cp
we obtain (1−2ε)∆−εcp > 0

and therefore all local minima with positive value remain positive. Hence, for sufficiently small
ε there are still only two γ for which ū−(γ)− ūs(γ) = 0 - one (still unstable) equilibrium close
to the old unstable equilibrium and one stable equilibrium close to γ = 1, q.e.d.
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Figure 10: Case 2 with mistakes of probability ε = 0.1 and with γeq > γcut: (ū+ − ūs) and
(ū− − ūs) as functions of γ ≡ γ+ + γ− for N = 20, d1 = 1, c1 = 0, r = 2, d2 = 5, c2 = 0, cr = 1.
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Equation 34 is also helpful to analyze the case of mistake probabilities which are not
arbitrarily small, but of moderate size. We can adjust the payoff difference (ū− − ūs) by re-
scaling it slightly with (1−2ε) and then shifting it downwards by εcp. Figure 10 demonstrates
this for our example of case 2 with a mistake probability of ε = 0.1. Here, in the stable
“punisher equilibrium” with mistakes a fraction of γ− ≈ 0.74 has preferences for punishing,
but a fraction of (1− γ−) ≈ 0.26 has self-interested preferences.

E Further equilibria in case 3

First we derive a sufficient condition under which there are no other stable equilibria than
those of proposition 9. Second we analyze under which conditions there exist stable equilibria
consisting only of reciprocal and self-interested preferences and third we give the intuition
why no further stable equilibria exist.

The following lemma limits the possible candidates for stable equilibria.

Lemma 3 An equilibrium with a positive fraction γrc of reciprocal players can only be stable
if the fraction of γs self-interested players is also positive.

Proof: If γs = 0 then players 1 cooperate in all groups. Therefore, preferences for punishing
earn c1 in all groups whereas reciprocal preferences earn only c1 − cr. Hence, the equilibrium
is not stable, q.e.d.

In case 3 players 1 cooperate in their group if and only if c1 + k++krc

N r > d1 − k−+krc

N r,
i.e. k+ + k− + 2krc > N d1−c1

r . We define kef ≡ k+ + k− + 2krc, γ̃ ≡ γ+ + γ− and W (kef ) ≡
WN−1,γ−+γ+,γrc(kef ) as the probability that a group of N−1 players has the characteristic kef ,
i.e.

W (kef ) =
N−1∑

k̃,krc=0

k̃+2krc=kef

(
N − 1
k̃, krc

)
γ̃k̃γkrc

rc (1− γ̃ − γrc)
N−1−k̃−krc . (35)

The probabilities of a group having any characteristic kef must be 1, i.e.

2N−2∑

kef=0

W (kef ) = 1. (36)
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We can write down average material payoffs in new notation

ūrc = (d2 − cp)
k∗−2∑

kef=0

W (kef ) + (c2 − cr)
2N−2∑

kef=k∗−1

W (kef ) (37)

ū+ = d2

k∗−1∑

kef=0

W (kef ) + (c2 − cr)
2N−2∑

kef=k∗
W (kef ) (38)

ū− = (d2 − cp)
k∗−1∑

kef=0

W (kef ) + c2

2N−2∑

kef=k∗
W (kef ) (39)

ūs = d2

k∗∑

kef=0

W (kef ) + c2

2N−2∑

kef=k∗+1

W (kef ) (40)

An equilibrium with γrc > 0 can only be stable if ūrc = ūs (by lemma 3) and if ū+ ≤ ūrc and
ū− ≤ ūrc:

Lemma 4 The following conditions are all necessary for a stable equilibrium with a fraction
γrc > 0:

1.

cp

k∗−2∑

kef=0

W (kef ) + cr

2N−2∑

kef=k∗−1

W (kef ) = (c2 − d2) (W (k∗ − 1) + W (k∗)) (41)

2.

cp

k∗−2∑

kef=0

W (kef ) ≤ (c2 − d2 − cr)W (k∗ − 1) (42)

3.
cr

∑

kef=k∗
W (kef ) ≤ (c2 − d2 − cr + cp)W (k∗ − 1) (43)

The next corollary follows directly from condition 41:

Corollary 5 If

sup
γrc∈[0,1]

(γ++γ−)∈[0,1−γrc]

(W (k∗ − 1) + W (k∗)) <
min{cp, cr}

c2 − d2
(44)

then there is no stable equilibrium with γrc > 0, i.e. the stable equilibria of proposition 9 are
the only ones.

We now analyze under which conditions there exists a stable equilibrium consisting only of
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self-interested and reciprocal preferences, i.e. γ+ = γ− = 0 = γ+ + γ−. Notice that

WN−1,0,γrc(kef ) =





0 if kef odd

(N−1)!�
kef
2

�
!
�
N−1− kef

2

�
!
γ

�
kef
2

�
rc (1− γrc)

N−1− kef
2 if kef even.

(45)

It follows directly that for even k∗ condition 42 and condition 43 cannot be both fulfilled.
Hence for even k∗ there is no stable equilibrium consisting only of self-interested and reciprocal
preferences.

For odd k∗ on the other hand things are different. If an equilibrium with a positive fraction
of reciprocal and self-interested preferences is stable in the subspace of this two types, it is
stable also against invasion of preferences for rewarding or preferences for punishing. This can
be seen directly from average payoffs. In such an equilibrium the probability WN−1,0,γrc(kef =
k∗) of a group with characteristic kef = k∗ is 0, but these are the only groups where preferences
for rewarding or preferences for punishing perform better than self-interested ones. To check
existence of a stable equilibrium in the subspace of self-interested and reciprocal preferences
we just have to consider differences in average material payoffs of this two types, i.e.

ūrc(γrc)− ūs(γrc) = (46)

cp

k∗−2∑

k=0

BN−1,γrc(k) + (c2 − d2 − cr) (BN−1,γrc(k
∗ − 1) + BN−1,γrc(k

∗)) + cr

N−1∑

k=k∗+1

BN−1,γrc(k)

For k∗ ≥ 2 this difference is negative for γrc sufficiently close to zero or one. Hence, there
exists a stable equilibrium if and only if

sup
γrc∈[0,1]

(ūrc(γrc)− ūs(γrc)) > 0. (47)

This is summarized in the following

Corollary 6 Consider case 3:

a) For even k∗ there is no stable equilibrium consisting only of reciprocal and self-interested
preferences.

b) For odd k∗ and k∗ ≥ 2 there exists a stable equilibrium of only self-interested and reciprocal
preferences if and only if

sup
γrc∈[0,1]

(ūrc(γrc)− ūs(γrc)) > 0. (48)

Finally, we give the intuition why there are no stable equilibria with a mixture of three
or all four different preference-types in case 3. An equilibrium with positive fractions of
self-interested preferences and preferences for punishing is not stable because preferences for
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punishing become more successful than self-interested ones if a small deviation in their favor
occurs. Similarly, an equilibrium with positive fractions of preferences for rewarding and
reciprocal preferences is not stable because small deviation in favor of reciprocal preferences
make reciprocal preferences more successful than preferences for rewarding. Hence, in case 3
maximally two preference types coexist in equilibrium.
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F Notation

c1 : material payoff of player 1 if he cooperates and is not rewarded
c2 : material payoff of player 2 if player 1 cooperates and player 2 does not reward
d1 : material payoff of player 1 if he defects and is not punished
d2 : material payoff of player 2 if player 1 defects and player 2 does not punish
o1 : material payoff of player 1 if he chooses his outside option
o2 : material payoff of player 2 if player 1 chooses his outside option
cr : costs for player 2 when rewarding
cp : costs for player 2 when punishing
r : material gain of being rewarded for player 1
p : material loss of being punished for player 1
N : number of players 2 in each group
γ+ : fraction of rewarders in the total population
γ− : fraction of punishers in the total population
γrc : fraction of reciprocal players in the total population
γs : fraction of selfish players in the total population
γeq : fraction of rewarders in the stable mixed equilibrium of case 1
γcut : fraction of punishers in the unstable mixed equilibrium of case 2
k+ : number of rewarding players 2 in a specific group
k− : number of punishing players 2 in a specific group
krc : number of reciprocal players 2 in a specific group
ks : number of selfish players 2 in a specific group
k∗ : number of rewarding players 2 ≥ k∗ ⇒ players 1 cooperate (in case 1)
k∗∗ : number of punishing players 2 ≥ k∗∗ ⇒ players 1 cooperate (in case 2)
ū+(·) : average material payoff of a rewarding player 2
ū−(·) : average material payoff of a punishing player 2
ūrc(·) : average material payoff of a reciprocal player 2
ūs(·) : average material payoff of a selfish player 2
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