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Abstract

We propose and evaluate explicit tests of the null hypothesis of no difference in the

accuracy of two competing forecasts.  In contrast to previously developed tests, a wide

variety of accuracy measures can be used (in particular, the loss function need not be

quadratic, and need not even be symmetric), and forecast errors can be non-Gaussian, non-

zero mean, serially correlated, and contemporaneously correlated.  Asymptotic and exact

finite sample tests are proposed, evaluated, and illustrated.

Keywords:  Forecast evaluation, nonparametric tests, sign test, economic loss function,

forecasting, exchange rates



1.  INTRODUCTION

Prediction is of fundamental importance in all the sciences, including economics. 

Forecast accuracy is of obvious importance to users of forecasts, because forecasts are used

to guide decisions.  Forecast accuracy is also of obvious importance to producers of

forecasts, whose reputations (and fortunes) rise and fall with forecast accuracy. 

Comparisons of forecast accuracy are also of importance to economists more generally, who

are interested in discriminating among competing economic hypotheses (models). 

Predictive performance and model adequacy are inextricably linked--predictive failure

implies model inadequacy.

Given the obvious desirability of a formal statistical procedure for forecast accuracy

comparisons, one is struck by the casual manner in which such comparisons are typically

carried out.  The literature contains literally thousands of forecast accuracy comparisons;

almost without exception, point estimates of forecast accuracy are examined, with no

attempt to assess their sampling uncertainty.  Upon reflection, the reason for the casual

approach is clear:  correlation of forecast errors across space and time, as well as a number

of additional complications, makes formal comparison of forecast accuracy difficult. 

Dhrymes, et al. (1972) and Howrey et al. (1974), for example, offer pessimistic assessments

of the possibilities for formal testing.

In this paper we propose widely applicable tests of the null hypothesis of no

difference in the accuracy of two competing forecasts.  Our approach is similar in spirit to

that of Vuong (1989) in the sense that we propose methods for measuring and assessing the

significance of divergences between models and data.  Our approach, however, is based

directly on predictive performance, and we entertain a wide class of accuracy measures that

users can tailor to particular decision-making situations.  This is important, because, as is

well known, realistic economic loss functions frequently do not conform to stylized textbook

favorites like mean squared prediction error.  (For example, Leitch and Tanner (1991) and

Chinn and Meese (1991) stress direction of change, Cumby and Modest (1991) stress market
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and country timing, McCulloch and Rossi (1990) and West, Edison and Cho (1993) stress

utility-based criteria, and Clements and Hendry (1993) propose a new accuracy measure, the

generalized forecast error second moment.)  Moreover, we allow for forecast errors that are

potentially non-Gaussian, non-zero mean, serially correlated, and contemporaneously

correlated.

We proceed by detailing our test procedures in section 2.  Then, in section 3, we

review the small extant literature to provide necessary background for the finite-sample

evaluation of our tests in section 4.  In section 5 we provide an illustrative application, and

in section 6 we offer conclusions and directions for future research.

2.  TESTING EQUALITY OF FORECAST ACCURACY

Consider two forecasts, and of the time series   Let the

associated forecast errors be and  We wish to assess the expected loss

associated with each of the forecasts (or its negative, accuracy).  Of great importance, and

almost always ignored, is the fact that the economic loss associated with a forecast may be

poorly assessed by the usual statistical metrics.  That is, forecasts are used to guide

decisions, and the loss associated with a forecast error of a particular sign and size is

induced directly by the nature of the decision problem at hand.  When one considers the

variety of decisions undertaken by economic agents guided by forecasts (e.g., risk-hedging

decisions, inventory stocking decisions, policy decisions, advertising expenditure decisions,

public utility rate-setting decisions, etc.), it is clear that the loss associated with a particular

forecast error is in general an asymmetric function of the error, and, even if symmetric,

certainly need not conform to stylized textbook examples like mean squared prediction error

(MSPE).

Thus, we allow the time-t loss associated with a forecast (say i) to be an arbitrary

function of the realization and prediction,  In many applications, the loss function
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will be a direct function of the forecast error; that is,   To economize on

notation, we write from this point on, recognizing that certain loss functions (like

direction-of-change) don't collapse to form, in which case the full form

would be used.  The null hypothesis of equal forecast accuracy for two forecasts is 

E[g(eit)] = E[g(ejt)], or E[dt] = 0, where dt / [g(eit) - g(ejt)] is the loss differential.  Thus, the

"equal accuracy" null hypothesis is equivalent to the null hypothesis that the population

mean of the loss differential series is 0.

2.1  An Asymptotic Test

Consider a sample path of a loss differential series.   If the loss differential

series is covariance stationary and short memory, then standard results may be used to

deduce the asymptotic distribution of the sample mean loss differential.  We have

where

is the sample mean loss differential,

is the spectral density of the loss differential at frequency zero,
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is the autocovariance of the loss differential at displacement J, and : is the population mean

loss differential.  The formula for fd(0) shows that the correction for serial correlation can be

substantial, even if the loss differential is only weakly serially correlated, due to cumulation

of the autocovariance terms. 

Because in large samples the sample mean loss differential is approximately

normally distributed with mean : and variance the obvious large-sample

N(0,1) statistic for testing the null hypothesis of equal forecast accuracy is

where is a consistent estimate of  

Following standard practice, we obtain a consistent estimate of 2Bfd(0) by taking a

weighted sum of the available sample autocovariances,

where

is the lag window, and S(T) is the truncation lag.

To motivate a choice of lag window and truncation lag that we have often found

useful in practice, recall the familiar result that optimal k-step-ahead forecast errors are at

most (k-1)-dependent.  In practical applications, of course, (k-1)-dependence may be

violated for a variety of reasons.  Nevertheless, it seems reasonable to take (k-1)-dependence
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as a reasonable benchmark for a k-step-ahead forecast error (and the assumption may be

readily assessed empirically).  This suggests the attractiveness of the uniform, or

rectangular, lag window, defined by

(k-1)-dependence implies that only (k-1) sample autocovariances need be used in the

estimation of fd(0), as all the others are zero, so that S(T) = (k-1).  This is legitimate (that is,

the estimator is consistent) under (k-1)-dependence so long as a uniform window is used,

because the uniform window assigns unit weight to all included autocovariances.

Because the Dirichlet spectral window associated with the rectangular lag window

dips below zero at certain locations, the resulting estimator of the spectral density function is

not guaranteed to be positive semi-definite.  The large positive weight near the origin

associated with the Dirichlet kernel, however, makes it unlikely to obtain a negative estimate

of fd(0).  In applications, in the rare event that a negative estimate arises, we treat it as zero

and automatically reject the null hypothesis of equal forecast accuracy.  If it is viewed as

particularly important to impose nonnegativity of the estimated spectral density, it may be

enforced by using a Bartlett lag window, with corresponding non-negative Fejer spectral

window, as in Newey and West (1987), at the cost of having to increase the truncation lag

"appropriately" with sample size.  Other lag windows and truncation lag selection

procedures are of course possible as well.  Andrews (1991), for example, suggests using a

quadratic spectral lag window, together with a "plug-in" automatic bandwidth selection
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procedure.

2.2  Exact Finite-Sample Tests

Sometimes only a small number of forecast-error observations are available in

practice.  One approach in such situations is to bootstrap our asymptotic test statistic, as

done by Mark (1994).  Ashley's (1994) work is also very much in that spirit.  Little is known

about the first-order asymptotic validity of the bootstrap in this situation, however, let alone

higher-order asymptotics or actual finite-sample performance.  Therefore, it is useful to have

available exact finite-sample tests of predictive accuracy, to complement the asymptotic test

presented above.  Two powerful such tests are based on the observed loss differentials (the

sign test) or their ranks (Wilcoxon's signed-rank test).  (These tests are standard, so our

discussion is terse.  See, for example, Lehmann (1975) for details.)

The Sign Test.  The null hypothesis is a zero median loss differential:

 Note that the null of a zero median loss differential is not the

same as the null of zero difference between median losses; that

is,  For that reason, the null differs slightly

in spirit from that associated with our earlier-discussed asymptotic test statistic S1, but it

nevertheless has an intuitive and meaningful interpretation, namely

that

If, however, the loss differential is symmetrically distributed, then the null hypothesis

of a zero-median loss differential corresponds precisely to the earlier null, because in that

case the median and mean are equal.  Symmetry of the loss differential will obtain, for

example, if the distributions of are the same up to a location shift. 

Symmetry is ultimately an empirical matter and may be assessed using standard procedures. 

We have found roughly symmetric loss differential series to be quite common in practice.

The construction and intuition of a test statistic are straightforward.  Assuming that
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loss differential series is iid (and we shall relax that assumption shortly), the number of

positive loss-differential observations in a sample of size T has the binomial distribution

with parameters T and 1/2 under the null hypothesis.  The test statistic is therefore simply

where

Significance may be assessed using a table of the cumulative binomial distribution.  In large

samples, the studentized version of the sign test statistic is standard normal:

Wilcoxon's Signed-Rank Test.  A related distribution-free procedure that requires

symmetry of the loss differential (but can be more powerful than the sign test in that case) is

Wilcoxon's signed-rank test.  We again assume for the moment that the loss differential

series is iid.  The test statistic is

the sum of the ranks of the absolute values of the positive observations.  The exact finite

sample critical values of the test statistic are invariant to the distribution of the loss

differential--it need be only zero-mean and symmetric--and have been tabulated.  Moreover,
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its studentized version is asymptotically standard normal,

2.3  Discussion

Here we highlight some of the virtues and limitations of our tests.  First, as we have

stressed repeatedly, our tests are valid for a very wide class of loss functions.  In particular,

the loss function need not be quadratic, and need not even be symmetric or continuous.

Second, a variety of realistic features of forecast errors are readily accommodated. 

The forecast errors can be non-zero mean, non-Gaussian, and contemporaneously correlated. 

Allowance for contemporaneous correlation, in particular, is important because the forecasts

being compared are forecasts of the same economic time series, and because the information

sets of forecasters are largely overlapping, so that forecast errors tend to be strongly

contemporaneously correlated.  

Moreover, the asymptotic test statistic S1 can of course handle a serially correlated

loss differential.  This is potentially important because, as discussed earlier, even optimal

forecast errors are serially correlated in general.  Serial correlation presents more of a

problem for the exact finite sample test statistics S2 and S3 and their asymptotic counterparts

S2a and S3a, because the elements of the set of all possible rearrangements of the sample loss

differential series are not equally likely when the data are serially correlated, which violates

the assumptions on which such randomization tests are based.  Nevertheless, serial

correlation may be handled via Bonferroni bounds, as suggested in a different context by

Campbell and Ghysels (1994).  Under the assumption that the forecast errors and hence the

loss differential are (k-1)-dependent, each of the following k sets of loss differentials will be
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free of serial correlation:  {dij,1, dij,1+k, dij,1+2k, ...}, {dij,2, dij,2+k, dij,2+2k, ...}, ..., {dij,k, dij,2k, dij,3k,

...}.  Thus, a test with size bounded by " can be obtained by performing k tests, each of size

"/k, on each of the k loss differential sequences, and rejecting the null hypothesis if the null

is rejected for any of the k samples.  Finally, it is interesting to note that, in multi-step

forecast comparisons, forecast error serial correlation may be a "common feature" in the

terminology of Engle and Kozicki (1993), because it is induced largely by the fact that the

forecast horizon is longer than the interval at which the data are sampled, and may therefore

not be present in loss differentials even if present in the forecast errors themselves.  This

possibility can of course be checked empirically.

3.  EXTANT TESTS

In this section we provide a brief description of three existing tests of forecast

accuracy that have appeared in the literature and will be used in our subsequent Monte Carlo

comparison.

3.1  The Simple F Test:  A Naive Benchmark

If:

(1)  Loss is quadratic, 

(2)  the forecast errors are

(2a)  zero mean

(2b)  Gaussian

(2c)  serially uncorrelated

(2d)  contemporaneously uncorrelated,

then the null hypothesis of equal forecast accuracy corresponds to equal forecast error

variances (by (1) and (2a)), and by (2b) - (2d), the ratio of sample variances has the usual F-

distribution under the null hypothesis.  More precisely, the test statistic 
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is distributed as F(T, T), where the forecast error series have been stacked into the (Tx1)

vectors ei and ej.

Test statistic F is of little use in practice, however, because the conditions required to

obtain its distribution are too restrictive.  Assumption (2d) is particularly unpalatable for

reasons discussed earlier.  Its violation produces correlation between the numerator and

denominator of F, which will not then have the F distribution.

  

3.2  The Morgan-Granger-Newbold Test

The contemporaneous correlation problem led Granger and Newbold (1977) to apply

an orthogonalizing transformation due to Morgan (1939-1940), which enables relaxation of

assumption (2d).  Let xt = (eit + ejt) and zt = (eit - ejt), and let  x = (ei + ej) and z = (ei - ej). 

Then under the maintained assumptions (1) and (2a) - (2c), the null hypothesis of equal

forecast accuracy is equivalent to zero correlation between x and z (that is, Dxz = 0) and the

test statistic

is distributed as Student's t with T-1 degrees of freedom, where 
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(See, for example, Hogg and Craig (1978), pp. 300-303.)

Let us now consider relaxing the assumptions (1), (2a) - (2c) underlying the Morgan-

Granger-Newbold test.  It is clear that the entire framework depends crucially on the

assumption of quadratic loss (1), which cannot be relaxed.  The remaining assumptions,

however, can be weakened in varying degrees; we shall consider them in turn.

First, it is not difficult to relax the unbiasedness assumption (2a), while maintaining

assumptions (1), (2b) and (2c).  Second, the normality assumption (2b) may be relaxed,

while maintaining (1), (2a) and (2c), at the cost of substantial tedium involved with

accounting for the higher-order moments that then enter the distribution of the sample

correlation coefficient.  (See, for example, Kendall and Stuart (1979), Chapter 26.)  Finally,

the "no serial correlation" assumption (2c) may be relaxed in addition to the "no

contemporaneous correlation" assumption (2d), while maintaining (1), (2a) and (2b), as

discussed in the following subsection.

 

3.3  The Meese-Rogoff Test

 Under assumptions (1), (2a) and (2b), Meese and Rogoff (1988) show that

where
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This is a well-known result (e.g., Priestley, 1980, 692-693) for the distribution of the sample

cross-covariance function, cov((̂xz(s), (̂xz(u)), specialized to a displacement of 0.

A consistent estimator of E is:

where
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and the truncation lag S(T) grows with the sample size but at a slower rate.  Alternatively,

following Diebold and Rudebusch (1991), one may use the closely related covariance matrix

estimator,

Either way, the test statistic is
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Under the null hypothesis and the maintained assumptions (1), (2a) and (2b), MR is

asymptotically distributed as standard normal.

It is easy to show that, if the null hypothesis and assumptions (1), (2a), (2b) and (2c)

are satisfied, then all terms in E are zero except (xx(0) and (zz(0), so that MR coincides

asymptotically with MGN.  It is interesting to note also that reformulation of the test in

terms of correlation rather than covariance would have enabled Meese and Rogoff to

dispense with the normality assumption, because the sample autocorrelations are

asymptotically normal even for non-Gaussian time series (e.g., Brockwell and Davis, 1992,

221-222.)

3.4  Additional Extensions

In subsection 3.3, we considered relaxation of assumptions (2a) - (2c), one at a time,

while consistently maintaining assumption (1) and consistently relaxing assumption (2d). 

Simultaneous relaxation of multiple assumptions is possible within the Morgan-Granger-

Newbold orthogonalizing transformation framework, but much more tedious.  The

distribution theory required for joint relaxation of (2b) and (2c), for example, is complicated

by the presence of fourth-order cumulants in the distribution of the sample autocovariances,

as shown, for example, by Hannan (1970, p. 209) and Mizrach (1991).  More importantly,

however, any procedure based upon the Morgan-Granger-Newbold orthogonalizing

transformation is inextricably wed to the assumption of quadratic loss.

4.  MONTE CARLO ANALYSIS

4.1  Experimental Design

We evaluate the finite-sample size of test statistics F, MGN, MR, S1, S2, S2a, S3, and

S3a under the null hypothesis and various of the maintained assumptions.  The design

includes a variety of specifications of forecast error contemporaneous correlation, forecast
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error serial correlation and forecast error distributions.  In order to maintain applicability of

all test statistics for comparison purposes, we use quadratic loss; that is, the null hypothesis

is equality of MSPE's.  We emphasize again, however, that an important advantage of test

statistics S1, S2, S2a, S3 and S3a in substantive economic applications--and one not shared by

the others--is their direct applicability to analyses with non-quadratic loss functions.

Consider first the case of Gaussian forecast errors.  We draw realizations of the

bivariate forecast error process, with varying degrees of contemporaneous and

serial correlation in the generated forecast errors.  This is achieved in two steps.  First, we

build in the desired degree of contemporaneous correlation by drawing a (2x1) forecast error

innovation vector ut from a bivariate standard normal distribution, and then

premultiplying by the Choleski factor of the desired contemporaneous innovation correlation

matrix.  Let the desired correlation matrix be

Then the Choleski factor is

Thus, the transformed (2x1) vector vt = Put  This operation is repeated T times,

yielding

Second, MA(1) serial correlation (with parameter 2) is introduced by taking
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We use v0 = 0.  Multiplication by (1 + 22)-1/2 is done to keep the unconditional variance

normalized to 1.

We consider sample sizes of T = 8, 16, 32, 64, 128, 256 and 512, contemporaneous

correlation parameters of D = 0, .5 and .9, and moving-average parameters of 2 = 0, .5, .9. 

Simple calculations reveal that D is not only the correlation between vi and vj, but also the

correlation between the forecast errors ei and ej, so that varying the correlation of vi and vj

through [0, .9] effectively varies the correlation of the observed forecast errors through the

same range.  

We also consider non-Gaussian forecast errors.  The design is the same as for the

Gaussian case described above, but driven by fat-tailed variates (rather than (uit,

ujt)'), which are independent standardized t random variables with six degrees of freedom. 

The variance of a t(6) random variable is 3/2.  Thus, standardization amounts to dividing the

t(6) random variable by

Throughout, we perform tests at the " = .1 level.  When using the exact sign and

signed-rank tests, restriction of nominal size to precisely 10% is impossible (without

introducing randomization), so we use the obtainable exact size closest to 10%, as specified

in the tables.  We perform at least 5000 Monte Carlo replications.  The truncation lag is set

at 1, reflecting the fact that the experiment is designed to mimic the comparison of 2-step-

ahead forecast errors, with associated MA(1) structure.

4.2  Results

Results appear in Tables 1-6, which show the empirical size of the various test

statistics in cases of Gaussian and non-Gaussian forecast errors, as degree of

contemporaneous correlation, degree of serial correlation, and sample size are varied.

Let us first discuss the case of Gaussian forecast errors.  The results may be
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summarized as follows:

(1)  F is correctly sized in the absence of both contemporaneous and serial correlation, but is

missized in the presence of either contemporaneous or serial correlation.  Serial

correlation pushes empirical size above nominal size, while contemporaneous

correlation pushes empirical size drastically below nominal size.  In combination, and

particularly for large D and 2, contemporaneous correlation dominates and F is

undersized. 

(2)  MGN is designed to remain unaffected by contemporaneous correlation and therefore

remains correctly sized so long as 2 = 0.  Serial correlation, however, pushes

empirical size above nominal size.

(3)  As expected, MR is robust to contemporaneous and serial correlation in large samples,

but it is oversized in small samples in the presence of serial correlation.  The

asymptotic distribution obtains rather quickly, however, resulting in approximately

correct size for T > 64.

(4)  The behavior of S1 is similar to that of MR.  S1 is robust to contemporaneous and serial

correlation in large samples, but it is oversized in small samples, with nominal and

empirical size converging a bit more slowly than for MR.

(5)  The Bonferroni bounds associated with S2 and S3 work well, with nominal and empirical

size in close agreement throughout.  Moreover, the asymptotics on which S2a and S3a

depend obtain quickly.

Now consider the case of non-Gaussian forecast errors.  The striking and readily

apparent result is that F, MGN and MR are drastically missized in large as well as small

samples.  S1, S2a and S3a, on the other hand, maintain approximately correct size for all but

the very small sample sizes.  In those cases, S2 and S3 continue to perform well.  The results

are well-summarized by Figure 1, which charts the dependence of F, MGN, MR and S1 on T,

for the non-Gaussian case with D = 2 = .5.
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5.  AN EMPIRICAL EXAMPLE

We shall illustrate the practical use of the tests with an application to exchange rate

forecasting.  The series to be forecast, measured monthly, is the three-month change in the

nominal Dollar/Dutch Guilder end-of-month spot exchange rate (in U.S. cents, noon, New

York interbank), from 1977.01 to 1991.12.  We assess two forecasts, the "no change" (0)

forecast associated with a random walk model, and the forecast implicit in the three-month

forward rate (the difference between the three-month forward rate and the spot rate).

The actual and predicted changes are shown in Figure 2.  The random walk forecast,

of course, is just constant at 0, whereas the forward market forecast moves over time.  The

movements in both forecasts, however, are dwarfed by the realized movements in exchange

rates.

We shall assess the forecasts' accuracy under absolute error loss.  In terms of point

estimates, the random walk forecast is more accurate.  The mean absolute error of the

random walk forecast is 1.42, as opposed to 1.53 for the forward market forecast; as one

hears so often, "The random walk wins."  The loss differential series is shown in Figure 3, in

which no obvious nonstationarities are visually apparent.  Approximate stationarity is also

supported by the sample autocorrelation function of the loss differential, shown in Figure 4,

which decays quickly.

Because the forecasts are three-step-ahead, our earlier arguments suggest the need to

allow for at least 2-dependent forecast errors, which may translate into a 2-dependent loss

differential.  This intuition is confirmed by the sample autocorrelation function of the loss

differential, in which sizeable and significant sample autocorrelations appear at lags one and

two, and nowhere else.  The Box-Pierce test of jointly zero autocorrelations at lags one

through fifteen is 51.12, which is highly significant relative to its asymptotic null

distribution of  Conversely, the Box-Pierce test of jointly zero autocorrelations at
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lags three through fifteen is 12.79, which is insignificant relative to its null distribution

of

We now proceed to test the null of equal expected loss.  F, MGN, and MR are

inapplicable, because one or more of their maintained assumptions are explicitly violated. 

We therefore focus on our test statistic S1, setting the truncation lag at two in light of the

above discussion.  We obtain S1=-1.3, implying a p-value of .19.  Thus, for the sample at

hand, we do not reject at conventional levels the hypothesis of equal expected absolute error

-- the forward rate is not a statistically significantly worse predictor of the future spot rate

than is the current spot rate.

6.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

We have proposed several tests of the null hypothesis of equal forecast accuracy.  We

allow the forecast errors to be non-Gaussian, non-zero mean, serially correlated and

contemporaneously correlated.  Perhaps most importantly, our tests are applicable under a

very wide variety of loss structures.

We hasten to add that comparison of forecast accuracy is but one of many diagnostics

that should be examined when comparing models.  Moreover, the superiority of a particular

model in terms of forecast accuracy does not necessarily imply that forecasts from other

models contain no additional information.  That, of course, is the well-known message of the

forecast combination and encompassing literatures; see, for example, Clemen (1989), Chong

and Hendry (1986), and Fair and Shiller (1990).

Several extensions of the results presented here appear to be promising directions for

future research.  Some are obvious, such as generalization to comparison of more than two

forecasts, or perhaps most generally, multiple forecasts for each of multiple variables. 

Others are less obvious and more interesting.  We shall list just a few.

(1)  Our framework may be broadened to examine not only whether forecast loss
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differentials have nonzero mean, but also whether other variables may explain loss

differentials.  For example, one could regress the loss differential not only on a

constant, but also on a "stage of the business cycle" indicator, to assess the extent to

which relative predictive performance differs over the cycle.

(2)  The ability to formally compare predictive accuracy afforded by our tests may prove

useful as a model specification diagnostic, as well as a means to test both nested and

nonnested hypotheses under nonstandard conditions, in the tradition of Ashley,

Granger and Schmalensee (1980) and Mariano and Brown (1983).

(3)  Explicit account may be taken of the effects of uncertainty associated with estimated

model parameters on the behavior of the test statistics, as in West (1994).

Let us provide some examples of the ideas sketched in (2).  First, consider the

development of a test of exclusion restrictions in time-series regression, which is valid

regardless of whether the data are stationary or cointegrated.  The desirability of such a test

is apparent from papers like Stock and Watson (1989), Christiano and Eichenbaum (1990),

Rudebusch (1993), and Toda and Phillips (1993), in which it is simultaneously apparent that

(a) it is difficult to determine reliably the integration status of macroeconomic time series,

and (b) the conclusions of macroeconometric studies are often critically dependent on the

integration status of the relevant time series.  One may proceed by noting that tests of

exclusion restrictions amount to comparisons of restricted and unrestricted sums of squares. 

This suggests estimating the restricted and unrestricted models using part of the available

data, and then using our test of equality of the mean-squared errors of the respective one-

step-ahead forecasts.

As a second example, it would appear that our test is applicable in nonstandard

testing situations, such as when a nuisance parameter is not identified under the null.  This

occurs, for example, when testing for the appropriate number of states in Hamilton's (1989)

Markov switching model.  In spite of the fact that standard tests are inapplicable, certainly
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the null and alternative models may be estimated, and their out-of-sample forecasting

performance compared rigorously, as in Engel (1994).

In closing, we note that this paper is part of a larger research program aimed at doing

model selection, estimation, prediction, and evaluation using the relevant loss function,

whatever that loss function may be.  This paper has addressed evaluation.  Granger (1969)

and Christoffersen and Diebold (1994) address prediction.  These results, together with

those of Weiss and Andersen (1984) and Weiss (1991, 1994) on estimation under the

relevant loss function, will make feasible recursive, real-time, prediction-based model

selection under the relevant loss function.
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Table 1
Empirical Size Under Quadratic Loss, Test Statistic F

Gaussian Fat-Tailed   
T D 2=0.0 2=0.5 2=0.9 2=0.0 2=0.5 2=0.9 
                                                                                                                    

8 .0 9.85 12.14 14.10 14.28 15.76 17.21
8 .5 7.02  9.49 11.42  9.61 11.64 13.02
8 .9 0.58  1.26  1.86  0.57  1.13  1.79

16 .0 9.83 12.97 14.85 16.47 18.59 19.78
16 .5 7.30 10.11 11.89 11.14 13.55 14.94
16 .9 0.47  0.99  1.55   0.34  0.70  1.13

32 .0 9.88 12.68 14.34 18.06 19.55 20.35
32 .5 6.98  9.50  11.22 21.30 21.00 21.37
32 .9 0.23  0.55  1.00  0.01  0.07  0.23

 
64 .0 9.71 13.05 14.62 29.84 29.72 29.96
64 .5 6.48  9.25 10.62 23.48 23.93 24.15
64 .9 0.16  0.47  0.79  0.02  0.12  0.29

128 .0 10.30 13.41 14.99 30.34 30.95 31.26
128 .5 7.01 10.13 11.64 24.89 25.01 25.16
128 .9 0.16  0.50  0.74  0.11  0.44  0.73

256 .0 10.01 13.05 14.65 31.07 31.12 31.24
256 .5 7.37 10.31 11.78 25.48 25.45 25.70
256 .9 0.19  0.51  0.80  0.51  1.13  1.44

 
512 .0 10.22 13.51 15.25 31.45 32.38 32.60
512 .5 7.53 10.16 11.49 26.35 26.92 16.95
512 .9 0.18  0.50  0.85  0.81  1.58  2.06
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  All tests
are at the 10% level.  10000 Monte Carlo replications are performed.
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Table 2
Empirical Size Under Quadratic Loss, Test Statistic MGN

Gaussian Fat-Tailed
 T D 2=0.0  2=0.5  2=0.9  2=0.0  2=0.5

2=0.9 
                                                                                                                    

 
8 .0 10.19 14.14 17.94   18.10  21.89  25.65 
8 .5  9.96 14.66 18.61   16.00  20.51  24.19 
8 .9  9.75 14.53 18.67  11.76  16.31  20.00 
          
16 .0 10.07 14.34 17.54  20.33  24.54  27.08
16 .5  9.56 14.37 17.95  37.15  36.18  25.66
16 .9 10.02 14.70 18.20   12.01  16.76  19.81
          
32 .0  9.89 15.04 18.00   22.94  26.32  28.72
32 .5 10.08 15.11 17.95  20.23  23.76  26.20
32 .9  9.59 15.32 18.25  12.75  17.78  20.54

64 .0 10.09 15.37 17.99  24.56  28.15  30.00  
64 .5   9.95 15.18  18.15   21.10  25.18  27.28
64 .9  10.26 15.67  18.49  12.98  18.09  20.53

 
128 .0   9.96 15.09  17.59   26.47  29.50  30.94
128 .5  10.23 15.07  17.48  23.62  26.82  28.51
128 .9  10.11 15.05  18.05  14.34  18.89  21.56

 
256 .0 10.28 15.62 18.37   27.39  30.74  32.46
256 .5 10.60 16.02 18.44  23.81  28.38  30.31
256 .9 10.11 15.48 17.91  14.15  19.43  22.03

512 .0 10.12 15.34 17.68   27.64  30.55  32.14
512 .5  10.05 14.96  17.66  24.10  27.40  29.28
512 .9  9.90 15.09 17.53  14.78  19.16  21.49
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  All tests
are at the 10% level.  10000 Monte Carlo replications are performed.
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Table 3
Empirical Size Under Quadratic Loss, Test Statistic MR

 Gaussian Fat-Tailed   
T  D 2=0.0 2=0.5 2=0.9 2=0.0 2=0.5 2=0.9 
                                                                                                                    
 
8 .0 9.67 19.33 22.45 16.16 25.26 27.62
8 .5 9.50 19.00 22.07 14.81 24.50 26.99
8 .9 9.66 19.51 22.85 11.23 21.28 24.14

16 .0 9.62 13.92 14.72 19.94 22.56 23.06
16 .5 10.02 13.88 14.96 17.70 21.04 21.26
16 .9 10.04 13.82 14.94 11.76 15.68 16.70

32 .0 9.96 10.98 11.12 22.78 22.86 21.72
32 .5 9.68 11.46 11.66 19.78 20.32 20.14
32 .9 9.86 11.62 11.96 12.42 13.54 13.46

 
64 .0 10.32 11.02 11.04 24.50 22.60 21.58
64 .5 9.84 10.56 10.64 21.44 19.48 18.84
64 .9 9.58 10.58 10.34 13.38 13.38 13.20

128 .0 9.78 10.54 10.44 25.86 22.90 21.54
128 .5 10.02 11.04 11.18 22.76 20.26 19.44
128 .9 10.76 11.28 11.38 13.44 13.52 12.92

256 .0 10.04  9.90  9.58 27.16 23.74 22.70
256 .5 10.32  9.92  9.82 24.00 20.50 19.18
256 .9 9.92 10.16 10.34 13.38 12.70 12.24

 
512 .0 9.94 10.48 10.56 26.92 23.40 21.78
512 .5 9.52 10.56 10.48 23.56 20.52 19.36
512 .9 9.80  9.82  9.88 13.96 12.98 12.74
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  All tests
are at the 10% level.  At least 5000 Monte Carlo replications are performed.
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Table 4
Empirical Size Under Quadratic Loss, Test Statistic S1

Gaussian Fat-Tailed
T D 2=0.0 2=0.5 2=0.9 2=0.0 2=0.5 2=0.9 
                                                                                                                    

8 .0 31.39 31.10 31.03 31.62 29.51 29.07
8 .5 31.37 30.39 29.93 31.21 29.71 29.36
8 .9 31.08 30.19 30.18 31.18 30.12 29.75

16 .0 20.39 19.11 18.94 19.26 18.50 18.32
16 .5 20.43 19.52 18.86 19.57 17.67 17.63
16 .9 20.90 19.55 19.59 20.15 18.38 18.16

32 .0 12.42 12.28 12.18 11.30 11.64 11.56
32 .5 13.32 13.22 12.94 11.54 10.66 10.84
32 .9 12.60 13.38 13.22 11.16 11.22 11.50

64 .0 12.47 12.11 11.94 12.44 11.62 11.36
64 .5 12.76 12.49 12.35 12.10 12.26 12.10
64 .9 12.21 12.23 12.03 13.00 12.36 12.16

128 .0 11.72 11.94 12.04 11.48 10.72 10.28
128 .5 11.44 11.72 11.60 10.84 10.96 10.96
128 .9 11.76 11.26 11.34 11.50 10.66 10.86

256 .0 11.11 10.65 10.66 12.06 11.67 11.79
256 .5 10.90 10.39 10.48 12.16 11.46 11.60
256 .9 10.69 10.79 10.75 11.51 11.59 11.16

512 .0 11.15 10.67 10.63 10.06 9.46 9.62
512 .5 10.90 10.39 10.49 9.94 9.66 9.76
512 .9 10.31 10.09 10.05 10.12 10.12 10.06
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  All tests
are at the 10% level.  At least 5000 Monte Carlo replications are performed.
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        Table 5
Empirical Size Under Quadratic Loss, Test Statistics S2 and S2a

Gaussian Fat-Tailed   
T     D    2=0.0  2=0.5  2=0.9    2=0.0  2=0.5  2=0.9 
                                                                                                                    
     
S2, Nominal Size = 25%
8    .022.24 22.48 22.38 23.94 23.46 23.34
8    .522.14 23.46 22.16 23.08 24.80 23.06
8    .922.24 23.02 22.66 22.92 23.26 22.86  
          
S2, Nominal Size = 14.08%
16   .013.46 13.26 13.14 13.62 13.06 13.76
16   .514.22 13.46 12.92 13.70 13.24 13.62
16   .913.08 13.84 13.28 12.86 13.06 13.20

S2, Nominal Size = 15.36%
32   .014.36 14.52 14.28 14.54 14.32 14.30     
32   .514.36 14.06 13.94 15.08 14.36 15.02
32   .914.68 14.62 13.46 14.94 14.76 14.52

S2a, Nominal Size = 10%       
64   .09.72 9.92 9.42 9.68 10.36 10.44
64   .59.66 10.34 9.68 9.52 10.06 10.00
64   .910.84 9.46 10.34 9.40 8.98 10.02

S2a, Nominal Size = 10%                 
128  .0 11.62 11.62 11.84 12.22 12.20 11.42
128  .5 11.66 11.62 11.90 12.06 11.94 11.44
128  .9 11.22 11.72 11.28 12.06 10.76 11.40
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  At least
5000 Monte Carlo replications are performed.
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Table 6
Empirical Size Under Quadratic Loss, Test Statistics S3 and S3a

Gaussian Fat-Tailed   
T D 2=0.0  2=0.5 2=0.9 2=0.0 2=0.5 2=0.9
                                                                                                                    

S3, Nominal Size = 25%
8 .0 22.50 22.92 22.90 23.26 23.34 21.96
8 .5 22.98 22.26 23.06 23.42  23.86 22.88
8 .9 23.16 22.36 24.24 24.26 23.32 23.34

S3, Nominal Size = 10.92%
16 .0 10.62 10.06 10.40 10.16 10.42 9.84
16 .5 10.38 10.92 10.32 10.54 10.94 10.34
16 .9 10.64 10.18 9.62 10.58 10.96 10.64

S3, Nominal Size = 10.12%
32 .0 10.72 10.28 9.30 9.90 10.00 9.98
32 .5 10.56 10.00 10.02 10.40 10.64 10.30
32 .9 10.92 10.44 10.30 10.46 9.96 10.70

S3a, Nominal Size = 10%
64 .0 9.38 9.54 9.16 9.64 9.24 8.84
64 .5 9.80 10.02 9.66 9.58 8.82 8.78
64 .9 9.90 9.24 9.68 9.92 9.78 10.00

S3a, Nominal Size = 10%
128 .0 9.94 9.70 9.12 9.82 9.04 8.46
128 .5 9.52 10.00 9.32 10.08 9.24 9.20
128 .9 9.46 9.64 9.42 9.28 9.22 9.26
                                                                                                                    

Notes:  T is sample size, D is the contemporaneous correlation between the innovations
underlying the forecast errors and 2 is the coefficient of the MA(1) forecast error.  At least
5000 Monte Carlo replications are performed.
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Figure 1
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Figure 2
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Note to figure:  The solid line is the actual exchange rate change.  The short dashed line is
the predicted change from the random walk model, and the long dashed line is the predicted
change implied by the forward rate. 
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Figure 3



37



38

Figure 4
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Notes:  The first eight sample autocorrelations are graphed, together with Bartlett's
approximate 95% confidence interval.




