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Abstract. This paper describes a new algorithm for constructing the set of free bitangents
of a collection ofn disjoint convex obstacles of constant complexity. The algorithm runs

in time O(nlogn + k), wherek is the output size, and us&3(n) space. While earlier
algorithms achieve the same optimal running time, this is the first optimal algorithm that
uses only linear space. The visibility graph or the visibility complex can be computed in
the same time and space. The only complicated data structure used by the algorithm is a
splittable queue, which can be implemented easily using red—black trees. The algorithm
is conceptually very simple, and should therefore be easy to implement and quite fast in
practice. The algorithm relies on greedy pseudotriangulations, which are subgraphs of the
visibility graph with many nice combinatorial properties. These properties, and thus the
correctness of the algorithm, are partially derived from properties of a certain partial order
on the faces of the visibility complex.

1. Introduction

Visibility graphs (for polygonal obstacles) were introduced by LozaemeP and
Wesley [18] for planning collision-free paths among polyhedral obstacles; in the
plane a shortest euclidean path between two points runs via edges of the visibility graph
of the collection of obstacles, augmented with the source and target points. Since
then numerous papers have been devoted to the problem of their efficient construction

* A preliminary version of this work appeared in tReoceedings of th&1th Annual ACM Symposium on
Computational Geometrywancouver, June 1995, pages 248-257.



420 M. Pocchiola and G. Vegter

Table 1. Optimal time visibility graph algorithms.

Space Time Source Obstacles Data structures
n n2 Edelsbrunner-Guibas [8]n points Simple
k k+nlogn Hershberger[12] Simple polygon  Simple
(k+n) with n vertices (Finger search trees +
O(n)-triangulation algorithm)
k k+nlogn Ghosh—-Mount [10] nline segments  Split-find data structure

of Gabow and Tarjan [9]
k k+nlogn Pocchiola—Vegter [24] n convex sets Split-find
n k+nlogn This paper n convex sets Splittable queues

[4], [8], [10]-[12], [14], [23]-[25], [27], [29], [30] as well as their characterization (see
[1], [2], [6], [22], [26], and the references cited therein).

This paper describes a new algorithm for constructing the (tangent) visibility graph
of a collectionO of n disjoint convex obstacles of constant complexity. Its running
time isO(nlogn + k), wherek is the output size, and its working space is linear. The
algorithm is extendible to the case where the objects are allowed to touch each other.
Therefore, our method can be adapted to compute the (classical) visibility graph of a set
of disjoint polygons in the plane (e.g., by triangulating the polygons and applying the
extended version of our algorithm to the collection of edges of the triangulation). While
earlier algorithms [10], [12], [14], [24] achieve the same optimal running time, under
various assumptions on the nature of the obstacles (see Table 1), this is the first optimal
algorithm that uses only linear space. The only complicated data structure used by the
algorithm is a splittable queue, which can be implemented easily using red—black trees.
The algorithm is conceptually very simple, and should therefore be easy to implement
and quite fast in practice. We are convinced that the algorithm also works for obstacles
of nonconstant complexity; see Section 3.4.5.

Recall that ditangents a closed line segment whose supporting line is tangent to two
obstacles at its endpoints; it is callfdeif it lies in free spacdi.e., the complement of
the union of the relative interiors of the obstacles).gxterior (resp.interior) bitangent
is a bitangent lying on the boundary of (resp. in the interior of) the convex hull of the
collection of obstacles. We denote Bythe set of free bitangents of the collection of
obstacles. The endpoints of these bitangents subdivide the boundaries of the obstacles
into a sequence of arcs; these arcs and the free bitangents are the edges of the visibility
graph of the collection of obstacles, as illustrated in Fig. 1. Our main result is the
following.

Theorem 1. Let B be the set of free bitangents of a collecii®wof n pairwise disjoint
obstaclesand let k be the cardinality of Brhere is an algorithm that computes the
set B in Qk + nlogn) time and Qn) working space—under the assumption that
the bitangents between two obstacles are computable in constanttimieermore if
desired the algorithm can compute the visibility grapdr the visibility complekof the
collection of obstacles in the same space and time bounds
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Fig. 1. The visibility graph of a collection of four obstacles.

Our approach is to turB into a poset (partially ordered s&t3, <) and to compute a
linear extension of B, <), i.e., to embedk into a linear (total) order. In other words, we
solve the topological sorting problem [15], [16] faB, <).

To define this partial order, we first introduce some terminology. The set of unit
vectors in the plane is the 1-sphett Let exp: R — S? be the universal covering map
of the 1-sphere, defined by exp = (cosu, sinu). Furthermore, IeB°" be the oriented
version (double cover) dB, obtained by associating with eable B the twodirected
versions ofb. The subseKq of B®" x R is defined by

Xo = {(v,u) € B x R | exp(u) is the unit vector along}.

A pointb = (v, u) in Xg is called abitangentin Xp; the unoriented version of the
bitangentv € B°" is denoted by bib); u € R is called theslopeof b, denoted by
Slopgb). We identify a bitangent i8 with the corresponding bitangentXy with slope
in [0, ). Two bitangentd andb’ in X, arecrossing disjoint, etc., if the corresponding
bitangents bitb) and bi(b’) in B are crossing, disjoint, etc., as subsets of the plane.
The (partial) ordex on Xg is defined as followsdh < b’ if there is a counterclockwise
oriented curve joining (some point of) b to bit(b’), that runs along the edges (arcs
and bitangents) of the visibility graph of the obstacles, and that sweeps an angle of
Slopgb’) — Slopeb), as illustrated in Fig. 2. This order has several nice properties, on
which our algorithm is based. At this point we just mention that two crossing bitangents
are comparable with respectto(see Lemma 7). Since is compatible with the slope
order onXp, an obvious extension ef is the linear order obtained by sorting the elements
of Xg according to increasing slope. However, this is computationally too expensive. To
obtain the proper setting for dealing with the problem of extending a linear order on
Xo, We use the notion of filtérA special type of filter ofX, is the subset of bitangents

1 Afilter | of a poset(P, <) is a subset oP such thatifx € | andx <y, theny € |. The set of filters,
ordered by reverse inclusion, is a poset. Our main interest in the notion of filter is that, given twd fiteds
Jwith J € | andl\J finite, the sequencey, X2, . . ., xk of elements of \ J is a linear extension afl \ J, <)
if and only if the sequence of selts I, . .., I, defined byli\J = {Xi, Xj+1, ..., Xk}, Is an unrefinable chain
of filters in the interval [, J]. We borrow poset terminology from Stanley [28, Chapter 3] and McMullen [19].
To keep the paper self-contained, we review this terminology in Appendix A.
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Fig. 2. A counterclockwise oriented curve with initial poixtterminal pointy, and two cusp points. The two

cusp points subdivide the curve into three regular smooth counterclockwise subcurves, i.e., each of these three
subcurves can be described by a function[0, 1] — R2 with f/(t) = | f/(t)| exp(@(t)) # 0, whered(t) is

a continuous nondecreasing function. By definition the angle swept by the regular subési@) — 6(0),

and the angle swept by the curve is the sum of the angles swept by its regular subcurves. In the example the
angle swept between the two rays starting andy is slightly over 2r.

| (u), defined fou € R, that consists of all bitangents Xy whose slope is greater than
u. For each filted of (Xq, <) we define a maximal subsét(l) = {b,, ..., by} of | as
follows: (1) by is minimal inl, and(2) for 1 < i < m, the bitangenb;,; is minimal
in the set of bitangents it, disjoint from by, by, ..., ;. Since crossing bitangents
are comparable it follows thad (1) is well defined (independent of the choice of the
bi), and that min 1 < G(l). We prove that for each filter the setG(l) contains
3n — 3 bitangents, that subdivide free space into regions cakeadidotrianglesThis
subdivision, also denoted kg (1), is called a greedy pseudotriangulation. The regions
owe their name to their special shape, that is explained in more detail in Section 2.
We refer to Fig. 3 for an example of greedy pseudotriangulations associated with filters
of Xo-

Our algorithm maintains the greedy pseudotriangulath) as| ranges over a
maximal chain of filters of the interval [0), | (x)], namely the set of filters with
I (0) 2 1 2 I (). The basic operation that updates the pseudotriangulatiofiisat
a free bitangent, minimal in the filter. The key result is the following.

Theorem 2. Let | be afilter of( Xg, <) and letbe min< |. Then 1\ {b}) is obtained
from G(1) by flipping b i.e., by replacing b with the only minimal bitangent in{b}
disjoint from the other bitangents in (@) (see Fig 3).

If the obstacles are points, our method—translated into dual space—is an alternative
for the topological sweep algorithm for arrangements of lines, of Edelsbrunner and
Guibas [8]. Our pseudotriangulations replace their (upper and lower) horizon trees.
The paper is organized as follows. In Section 2 we recall the definition of the visibility
complexY of the collection of obstacles, a cell complex on the sptce St carrying
the view from points (inS?, the planeR? together with the point at infinity) along a
direction (inSY).
The setXo, introduced in this section, is the set of vertices (0-faces) of the universal
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Fig. 3. (a) The greedy pseudotriangulation associated with the fili@r of bitangents with slope: 0. The
dashed bitangents andb; are both minimal in the filtet (0). (b) The greedy pseudotriangulation associated
with the filter | (0)\{b1, bz} which is obtained fron (I (0)) by flipping b; andbsy.

cover X of Y, which is a cell complex on the universal cot x R of S? x S?,
induced by the universal covering map exR: — S* on the second component. We
introduce the partial ordek on the coverX and we prove that this order satisfies a
“minimum-element” property: the set of bitangents greater than a given bitangent and
crossing it has a minimum element. Then we prove Theorem 2 by interpreting the greedy
pseudotriangulations as maximal antichainsxadn X\ Xo. In Section 3 we show how

the flip operation can be efficiently implemented, using splittable queues.

2. The Visibility Complex
2.1. Terminology Pseudotriangles and Pseudotriangulations

LetO = {0, Oy, ..., Oy} be a collection ofi pairwise disjoint closed convex sef
(obstacles for short). We assume that the obstacles asgridt)y convex (i.e., the open

line segment joining two points of an obstacle lies in its interior) s(@poth(i.e., there

is a well-defined tangent line through each boundary point), and Brieral position

(i.e., no three obstacles share a common tangent line). In particular two bitangents in
B are disjoint or intersect transversally (i.e., not at their endpoints). These assumptions
are only for ease of exposition. The general case can be treated by standard perturbation
techniques; for example, to cover the case where obstacles are allowed to be points and
disjoint line segments the perturbation scheme may, e.g., consist of taking the Minkowski
sum with an infinitesimally small circle. Aseudotriangulatiorof a set of obstacles is

the subdivision of the plane induced by a maximal (with respect to inclusion) family of
pairwise noncrossing free bitangents. It is clear that a pseudotriangulation always exists
and that the bitangents of the boundary of the convex hull of the obstacles are edges of
any pseudotriangulation. Two pseudotriangulations of a collection of four obstacles are
depicted in Fig. 3. The subdivision owes its name to the special shape of its regions. A
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(a) (b)

Fig. 4. (a) A pseudotriangle. (b) Two disjoint pseudotriangles share exactly one common tangent line.

pseudotrianglaes a simply connected subsgtof the plane, such that (i) the boundary

dT consists of three convex curves, that share a tangent at their common endpoint,
and (ii) T is contained in the triangle formed by the three endpoints of these convex
chains. See Fig. 4(a). These three endpoints are callediip=of T. At each boundary

point of a pseudotriangle there is a well-defined tangent line, and there is a unique
tangent line to the boundary of a pseudotriangle with a given unoriented direction (more
formally the support function: S* — R of T is well defined, continuous, and satisfies

@1 (U) = —@7(—U)).

Lemma 3. The bounded free regions of any pseudotriangulation are pseudotriangles
Furthermore the number of pseudotrianglésf a pseudotriangulation of a collection
of n obstaclepgis 2n — 2, and the number of bitangents3s — 3.

Proof. Let R be a family of noncrossing free bitangents containing the bitangents of
the boundary of the convex hull of the collection of obstacles. Assume that some free
bounded face of the subdivision is not a pseudotriangle; from this we derive thaibt
maximal. This means that this face is not simply connected or that its exterior boundary
contains at least four cusp points. In both cases we a&ktbitangent as follows. Take

the minimal length closed curve, homotopy equivalent to the exterior boundary of the
face, and going through all cusp points of the exterior boundary but one. This closed
curve contains a free bitangent notiRy henceR is not maximal.

An extremal point is a point on the boundary of an obstacle at which the tangent line
to that obstacle is horizontal. Each pseudotriangle contains exactly one extremal pointin
its boundary (namely the touch point of the horizontal tangent line to the pseudotriangle).
Since there arer?— 2 extremal points in the interior of the convex hull of the obstacles
there are exactlyr2— 2 pseudotriangles. The last result is then an easy application of
the Euler relation for planar graphs. To see this, observe that the set of vertices consists
of all endpoints of bitangents. In particular every vertex has degree 3. Furthermore, the
number of edges, that lie on the boundary of some object, is equal to the number of
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Fig. 5. A pseudoquadrangle and its diagonals.

vertices. Finally, the total number of bounded regions is equal to the sum of the number
of pseudotriangles and the numbe) ¢f obstacles. O

Lemma4. LetT and T be two disjoint pseudotriangle$hen T and Thave exactly
one common tangent linSee Fig4(b).)

Proof. For the existence part we apply the Intermediate Value Theorem to the con-
tinuous function defined as the difference between the support functiochantl T'.

For the uniqueness we observe that tangent lines to a pseudotriangle cross inside the
pseudotriangle. O

We use this lastlemma only in the case wHEsndT’ are adjacent pseudotriangles (in
a pseudotriangulation). In that case the unioi @ndT’ is called goseudoquadrangle
andT andT’ share two common bitangents called the diagonals of the pseudoquadrangle
(see Fig. 5).

2.2. Definition of the Visibility Complex Revisited

The visibility complex was defined in [24] as a partition of the set of free rays. Here
we define the visibility complex as a partition of the whole set of rays (free or not free)
augmented with rays at infinity. This slight modification simplifies the description of the
combinatorial structure of the visibility complex and, in particular, of its cross sections.
We identify the plan&k? with a 2-sphere? minus a point, called the point at infinity.

Given a real numbeun € R let C, be an infinite strip, centered around a line through
the origin with slopeu + /2, large enough to contain all the obstacles. We denote by
L, andR, the two connected components®f\C,, whereL, comes befordr, along
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Fig. 6. The infinite stripCy.

lines with direction exgu) (see Fig. 6). The-free spacd-, is the closure o€\ | O.
Aray (p, u) is an element 052 x R, consisting of a poinp and a real numbar. The
point pis called theorigin of the ray, and the real numbeis called itsslope We denote
by y.i (resp.y_i) the set of raygp, u) emanating from and tangent to obstaCie(i.e.,

p € 30; and the tangent vector gtto O; is expu) € SY), that containO; in their
left (resp. right) half-plane; obviously,; andy_; are homeomorphic t&®. Similarly,
we denote by, o (resp.y_o) the set of raygp, u) emanating from and tangent to the
convex hull of the set of obstacles.

LetCi = O x R,and letC_ = |, Lu x {u} andC = [,z Ru x {u}. For a
point p in R? and a real numbar € R we are interested in the object (possilhly or
R,) that we can see from in the direction expu) € S*. This object is called theiew
from p alongu, or theforward viewfrom the ray(p, u) (thebackward viewfrom the ray
(p, u) is the forward view of th@ppositeray, (p, u + )). By definition the backward
(resp. forward) view from the point at infinity alongis L, (resp.Ry). The view from
a pointp inside an objecb; is this objectQ;, irrespective of the direction.

We define a cell compleX, whose underlying spade| is a quotient space of the
space of ray$? x R. More precisely, fop, g € S? andu € R, with p # g, we declare
(p, u) equivalent to(q, u) iff (1) the slope of the directed line frorp to g is equal to
u, up to an integer multiple of, and (2) the line segmenp] q] lies in u-free space
Fy. In this situation we writgp, u) ~ (g, u). The spaceéX| is the quotient space of
S? x R under the reflexive, transitive closure-ef By a slight abuse of terminology, an
equivalence class is calleday in | X|. If we fix u € R the set of rays inX| with slope
u is a two-dimensional set, homeomorphicst We refer to this set as thogoss section
of | X]| atu.

If pis a point inu-free space, the equivalence clasg pfu) consists of all points
of the form(q, u), where the poing ranges over the largest line segment with slape
in Fy, that containg. One may think of the cross section|of| atu as obtained from
S? by contracting the latter line segment, for all poingsin free space. The reader may
find it helpful to refer to the top half of Fig. 11. The rightmost part of that figure contains
a schematic picture of the cross sectiorXf atu = 0 (provided we forget about the
direction of the labeled edges). The labeled edges can be seen to represent equivalence
classes under, defined for the set of obstacles in the leftmost part of the figure (the

2 We refer to the video segment [7] for an illustration of this contraction process.
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setsLo and Ry are not depicted here). The sub$gtis subdivided into a humber of
strip-shaped regions. Each point on a labeled edge of the cross section corresponds to a
maximal free horizontal line segment in the strip-shaped region having the same label.
Also note that points inside an object constitute an equivalence class by themselves,
giving rise to the two-dimensional regions in the cross section. It is not hard to see that
the cross section is homeomorphicSé. In Fig. 11 the edge numbered 16 continues
directly into the edge numbered 1 via the point at infinity.

Theslopeof an equivalence class denoted by Slope), is the common slope of its
rays, and we denote by sgegthe set of origins of the rays in Observe that sép) is a
maximal (with respect to the inclusion relation) free line segment, unlesg(p, u)}
with p in the interior of someD; (or L, or R,). Arayr in |X] is said to be tangent to
obstacle0; if the line segment s€g) is tangent tdD; . We stress that the rayp, u+kr),
k € Z, are distinct points inX]|.

Observe that the canonical mapping fréthx R onto| X|, restricted to the interiors
Inte(C;) of Cj, withi € {1,...,n, 4+, —}, is one-to-one. Tha + 2 canonical images of
the sets IntéC;) and the & canonical images of the curves; in | X| induce a three-
dimensional cell (or face) decomposition|of|, denotedX. The 3-faces correspond to
collections of rays with origins in the interior of the obstacles (includingand R,),
i.e., the Int€C;), withi € {1,...,n, +, —}. The 2-faces correspond to collections of
rays with the same forward and backward views. The 1-faces correspond to collections
of rays with the same forward and backward views and tangent to the same obstacle.
The O-faces correspond to collections of rays which are tangent to two obstacles. A face
X is said to béboundedf Slope(x) is a bounded subset &, otherwise the face is said
to beunboundedThe only unbounded faces are the 3-faces, and the 2-face that contains
the rays whose origin is the point at infinity &f. We denote the sets of 0-, 1-, 2-, and
3-faces ofX by Xo, X1, Xz, and X3, respectively, and the set of bounded 2-faceXby

Lets be the mapping which associates thefpyu + ) with the ray(p, u). Clearly,
the (induced) mapping: | X| — | X|isanautomorphism of the compl&x The quotient
complexY := X/m? (whose underlying space is n@¥ x S?) is thevisibility complesof
the collection of obstacles. (In [24] the visibility complex was defined as the 2-skeleton
of X/m2.)

Let P(X) be the poset of faces of, augmented withy and | X|, ordered by the
inclusion relation of their closures. Similarly, we defiRg€Y) to be the poset of faces
of Y. The local combinatorial structure &(X) or P(Y) is described in the following
theorem. (See Fig. 7 and also [24]. We refer to Appendix A for the terminology on
abstract polytopes.)

Theorem 5. P(X) (P(Y)) is an abstract polytope of rank Furthermore the vertex-
figure of a vertex is the face poset of a three-dimensional simplex

Note that there is a canonical mappiag from the setX; of edges ofX onto the
set of arcs on the boundaries of the obstacles (these arcs correspond to edges of the
visibility graph of O, see Section 1). More precisely, fore X, the arc ar¢x) consists
of the origins of the rays i emanating from the object to which they are tangent. The
canonical mapping from the s, of vertices ofX onto the seB of free bitangents of
O is denoted byoit; see Fig. 7. In particular, the preimage under the mapping bit of the
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Fig. 7. (a) Two obstacles defining a vertbf the visibility complex with slopei. (b) (Local) cross sections
at slopesu — ¢, u, andu + ¢. (c) Neighborhood of a vertex of the visibility complex. (d) The Hasse diagram
of the vertex-figure of a vertex d?(X)

bitangent p, q] with slopeu € [0, 7) is the set of ray$p, u + k), k € Z. An element
of Xg is called abitangentin Xg.
A pseudotriangulatiom X is a maximal (with respectto the inclusion relation) family
of pairwise disjoint bitangents iKg. Clearly, if G is a pseudotriangulation ¥, then(1)
bit(G) is a pseudotriangulation of the collection of obstacles, and (2) Gase 3n — 3.
Let x be a 1-face (namely an edge) or a bounded 2-face M/e define sup (resp.
inf x) to be the ray with maximal (resp. minimal) slope in the closure.athe operator
sup (resp. inf) is a one-to-one correspondence between the set of bounded 2-¥ces in
and the set of vertices iXy. For a vertexx we denote by sug) the unique 2-face
with inf(y) = x. Similarly, inf(x) is the unique 2-facg with suply) = x. In this way
inf and sup are defined for all vertices, edges, and bounded 2-fa¢es of
For a bounded 2-facg the vertices sup and infx subdivide the boundary of
into two curves, called the upper and lower boundary of the face. Observe also that the
boundary of the unbounded 2-face has two connected components that are the canonical
images of the curves of rays o andy_o.

Remark 6. The numbers of 0-, 1-, 2-, and 3-faces of the visibility compiexare
2k, 4k, 2k + 1, andn + 2, respectively; her& is the number of free bitangents. This
equality is a consequence of the previous discussion, hamely on the bijection between
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the set of bounded 2-faces and the set of 1-faces, the shape of the vertex-figure, and
the numberif 4 2) of 3-faces. The number of flags Bi(Y) is 24 times the number of
vertices, i.e., 48.

2.3. The PosetX, <) and the “Minimum-Element” Property

Now we turnX into a poset X, <) by taking the transitive and reflexive closure of the
relation=, defined by

inf X < x < supx, VX € X1 U X3, D

i.e., fort,t’ € Xpwe havet < t’ if there exists a finite sequence of edges and/or 2-faces
X1, ..., X in X such that (1¥ = infxq, (2) supx; = infxj,q, fori =1,...,1 — 1,

and (3) supy = t’. Observe that we can replace each face that appears in the sequence
X1, ..., X by the sequence of edges of its upper (or lower) boundary. In other words,

t < t’if there is a counterclockwise oriented curve in the plane froit)dio bit(t") that

runs along the edges (arcs and bitangents) of the visibility graph of the obstacles (namely
the arcs ar¢x;) and the bitangents lgit;) with v; = inf x;, where we assume thatare
edges), and which sweeps an angle of S{tpe- Slopgt). Clearly, < is compatible

on Xp with the slope order. Observe that for alle X; U X3 the cell sup (resp.x)

covers the celk (resp. infx). Finally note that the unbounded cells are isolated points

in (X, <).

Observe that if two bitangents belong to the boundary of a pseudotriangle of some
pseudotriangulation, then they are comparable. The same conclusion holds if the two
bitangents are the diagonals of some pseudoquadrangle (namely the union of two adjacent
pseudotriangles) of some pseudotriangulation. From this observation we deduce a more
general condition of comparability.

Lemma 7. Lett andt be two bitangents in

(1) If bit(t) andsedt’) are crossingthen t and tare comparable with respect te.

(2) If seqt)\bit(t) andsedt’)\bit(t") are crossingsay in point pand if there is no
free line segment emanating fromtangent to an obstacle i@, and lying in the
wedge t\t, (here t, is the open half-plane bounded by the supporting line of
bit(t), that contains the line segmelit(t’)), then t and t are comparable with
respect to<.

(3) t < 7k(t"), for all sufficiently large k

Proof. Assume first that bjt) and bi(t") are crossing. Clearly it suffices to prove that

bit(t) and bitt") are the diagonals of a pseudoquadrangle of some pseudotriangulation.
To show the existence of a such pseudotriangulation we add four sufficiently small
obstacles near the crossing point ofbitand bi{t’) as indicated in Fig. 8(a). Now we
consider a pseudotriangulation (of the semaf 4 obstacles) that contains the bitangent
bit(t), and the 3x 4 = 12 bitangents shown dashed in Fig. 8(a). Up to some flip
operations we can assume that these 12 bitangents are the only bitangents that emanate
from the 4 new obstacles. Removing these 4 added obstacles and their 12 bitangents
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Fig. 8. (a) bit(t) and bi(t’) are crossing. The 4 added obstacles and the 12 added bitangents are shown
dashed. (b) set)\bit(t) and bitt") are crossing. (c) s€p\bit(t) and seg@’)\bit(t") are crossing.

yields a pseudotriangulation (since the number of remaining bitangents-s33 with

the desired property. A similar construction yields the result in the case whétre bit
and bi(t") are disjoint, either in the case where @ggbit(t) and bi{t’) are crossing

(see Fig. 8(b)), or in the case where @egbit(t) and se@’)\bit(t") are crossing (see

Fig. 8(c)). In this latter case the condition given in the lemma ensures that up to some
flip operations the added obstacle contributes only to the three dashed bitangents. After
removing the added obstacles and their bitangent&, lihd bi{t’) are edges of the
same pseudotriangle, and hence they are comparable.

Now we prove claim (3). We can assume thafthiand bi(t") are disjoint. Consider a
pseudotriangulatiofs that contains bit) and bitt"), and consider a curve in free space
that joins bitt) and bi(t"). This curve crosses a finite sequence of bitangen®, isaly
b1, by, ..., by Lettj € Xpsuchthatbittj) = bj, withto = t andt; = t’. Sincet; andt;;
are bitangents in the boundary of a pseudotriangle (or both on the convex hull), they are
comparable. Thereforte < 7% (t;,.1) for k; sufficiently large. It follows that < *(t")
for k sufficiently large k = >, k;). O

Now we come to the “minimum-element” property announced in the Introduction. We
denote byy the one-to-one mapping

t € Xo — supsup € Xo, )

i.e.,@(t) is the ray with maximal slope in the (closure of the) face for whichthe ray
with minimal slope. It can easily be checked that 7 = 7 o ¢.
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Fig. 9. lllustration of the proof of the “minimum-element” property.

Lemma 8 (“Minimum-Element” Property). Let t and t be two interior crossing bi-
tangents in X (i.e, bit(t) and bit(t’) are crossing with t < t’. Theng(t) < t’ (and

t < ¢ 1(t"). In other words ¢(t) is the minimum bitangent in the set of bitangents
crossing t and larger than.t

Proof. Let p be the intersection point of l§tf) and bi{p(t)), and letu and u* be
the slopes ot andg(t), respectively. Let(x) = (p, au + (1 — a)u*), sedt(x)) =
[a(@), b(a)], and

T= [ segt@).
a€l0,1]

Clearly, T is a subset of free space. Therefore the slope f greater than the slope
of ¢(t), and bite(t)) and se@’) are crossing (first case), or b is tangent to the
boundary ofT (second case). See Fig. 9 for an illustration. Hence it suffices to prove
thatt’ and¢(t) are comparable with respect toin order to conclude thap(t) < t'.
The first case is covered by Lemma 7, claim (1). In the second cd$® lsitangent to
the arc{b(e) | @ € (0, 1)}, or to the arda(x) | « € (0, 1)}. Both cases are covered by
claim (2) of Lemma 7. O

Remark 9. Note that ift is an exterior bitangent, then the $ett), 72(t), ...} is the
set of bitangents greater thaiand crossing; this set has a minimum element, namely
m(t).

2.4. Filters, Antichains and Greedy Pseudotriangulations

For a finite subsef of X we define the filterA™ of (Xg, <) by

AT ={xe Xg | y =< x forsomey € A}. 3)
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The complement oA™ in Xq is denoted byA~. For a filterl of (Xg, <) we let [ be the
subset ofX\ X, defined by

={xeX;UX; | supxel,infx ¢l }U {unbounded facés (4)

Note that, by definition, the set of unbounded faces is a subget of
A properfilter of a poset( X, <) is a filter which is a nonempty proper subsebaf

Lemma 10. The mapping I— [ is a one-to-one correspondence between the set of
proper filters of( Xy, <) and the set of maximal antichains@©f \ Xq, <), whose inverse
is the map A— AT.

Proof  Firstwe show thak is a maximal antichain afX\ Xo, <). Letx € I,y € X\ Xq
with x < y, ory < x. Theny ¢ I. If x < y we have sup < infy and, therefore,
infy € 1, since supx € |. This implies thaty ¢ I. A similar conclusion holds if we
assume thay < x. This proves that is an antichain.

Now we prove that the antichaih is maximal. Letx e X\ Xgo and consider the
unrefinable chair. . ., inf?(x), inf(x), X, sup(x), SUF(x), sup(x), ...}. By Lemma 7,
part (3), this chain joinsXo\I and I. Consequently, this chain intersedtsandx is

comparable with an element in Finally observe thatl)* = 1, since (1) min c (I)*
and (2)(min1)* = |. Note that, in view of Lemma 7, part (3),contains no infinite
decreasing chains. O

Theorem 11. Let A be a maximal antichain i0X\ X, <). Then

(1) A depends only on its subset bfaces More precisely A is the union of the
cofacesin RX) of its1-faces Furthermore P(A), the subposet of £X) induced
by A is an abstract polytope of rartk

(2) The numbers aof-, 2-, and3-faces in A are respectiveBn, 3n, and n+ 2 (and
consequently PA) is spherica).

Proof. Letx be an edge irA and lety be a 2-face incident ta. Clearly, infy < x <
supy, so infy € A~ and supy € A™. Thereforey € A.

Conversely, lety be a 2-face inA. Clearly, its upper chain and lower chain are
unrefinable, and join inf € A~ to supy € At. Therefore these two chains interséct
This proves claim (1).

The curvesy;, i € {£1,...,£n}, are edge-disjoint maximal chains, that together
cover the set of edges &f. Therefore there is exactly one edge of the maximal antichain
on each of these curves. Hence the number of edges in the antichainAs@rding
to claim (1) and Theorem 5, the number of incidences between edges and 2-faces of
a maximal antichain is three times the number of edges, and twice the number of 2-
faces. Therefore the number of 2-facesnsBlanarity is proved by computing the Euler
characteristic. O

Let | be afilter and leBy (1), Bx(l), ... be the sequence of subsets adefined by
(1) By(1) is the set of minimal bitangents in and (2)B;.1(1) is the set of minimal
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bitangents in the set of bitangentslimlisjoint from the bitangents iBy(1), ..., Bi(l).
Since the bitangents ig; (I ) are pairwise noncomparable they are pairwise disjoint, and
consequently J;., Bi(l) is a pseudotriangulation iX (in particularB; (1) = ¢ for i
sufficiently large). This pseudotriangulation is denoted3ty) and is called thgreedy
pseudotriangulation associated with the filke¥Finally, for a filter| we define

S(h={bel | o) &1} (5)

Now we come to the proof of Theorem 2, announced in the Introduction. We give
a slightly stronger form. Fol¥ C Xo we denote by (resp.Yex) the subset oY
consisting of interior (resp. exterior) bitangents.

Theorem 12.

(1) For all filters 1, and all interior (resp exteriof) bitangents be minl, the set
difference GI\{b})\G(l) is equal to{p(b)} (resp {m (b)}).

(2) Forallfilters I, all bitangents be G(l), and allt € | crossing hwe have b< t.

(3) For all filters 1 we have Gy (1) = Sne(l).

Proof. Claims (1) and (2) are obvious in the case whHeigan exterior bitangent (see
Remark 2); therefore we assume now thestan interior bitangent. We prove the theorem
by showing that claim (3) implies (1), and subsequently that (1) implies (2), after which
we establish the truth of claim (3).

First observe thap(b) is disjoint from anyb’ € G(l)\{b}, otherwisep(b) andb’
are comparable, with' < ¢(b) (indeed ifp(b) < b’, then, according to Lemma 8,
¢(b) < ¢~ 1(1); consequently~1(b) € |,i.e.,b’ & G(1)). According to Lemma 8 this
implies thatb’ < b, a contradiction wittb € min|. Therefore, it is sufficient to prove
thatp(b) is a bitangent irG(1\{b}). Suppose the contrary holds. The(b) intersects
someb’ € G(I\{b}), withb’" < ¢(b). However, according to Lemma 8, this implies that
b’ < b, a contradiction. Thus, claim (3) implies claim (1).

Now we prove that claim (1) implies claim (2). To this endlidte a filter, leto be a
bitangentinG (1) and lett be a bitangent ih which crosseb. We define the sequence of
filtersly, 2, ... byl = | andly.; = I\ Bi(lk). Observe that ib € G(Ix)\Bsi(lx) and
t € Iy, thenb € G(lx,1) andt € Iy, 1. Therefore, there existskasuch thab € B (ly).
From this we deduce thdt < t, sinceb is minimal in lx. Thus, claim (1) implies
claim (2).

Finally we prove claim (3) by proving successively that:

(i) Sni(l) € Gine(1) (in particular the bitangents i§q: (1) are pairwise disjoint).
(i) Gext(l) € Sxt(l) and CardSy(1) = Card Geyx(1) + 2.
(i) Card S(1) = 3n—1.

These three properties imply th@t,: (1) = Sn(l), since CardG(l) = 3n — 3.

3 Observe that if<1 is a total order orl , compatible with=< on I, then the elements of the 38(1) can
be enumerated as the sequehge,, ..., bsn—3, where (1)b; is the minimum bitangent iql, <;), and (2)
bj 11 is the minimum bitangent ifl, <1) disjoint fromby, by, .. ., bi.
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Letb be an interior bitangent. Thefir6t cas¢ there is &' € G(I) crossingb, with
b’ < b, or (second cagefor all b’ € G(1) crossingb we haveb < b'. In the first case
Lemma 8 implies that’ < ¢~1(b), and consequently thatg S(1). In the second case
b is smaller than any bitangent @(l) crossing it, thereford € G(l). This proves
claim (i).

For an exterior bitangemtying ony..» (resp.y—o) we denote bygucgt) the minimal
exterior bitangent greater tharying on y,.» (resp.y_o). Observe thasucgr (t)) =
m(sucat)) = ¢(t) whenevert is an exterior bitangent Xy, and that the number
of exterior bitangents ifB is defined bysucé = 72. Lett be the minimal element in
| lying on y, . Sincesucci(t) ¢ | it follows thatp~1(t) ande1((t)), which are
respectively equal to ~1(succ i (t)) andsucci(t), are notinl ; thust andz (t) are both
in S(1). A similar result holds for the minimal element insayt’, lying ony_». Now
we consider the sequence

t, succt), sucé(t), .. ..

Clearly, if sucd*X(t) € S(1), thensucd e S(I). Therefore, there is & such that
sucd(t) € S(I) for j = 0,1,...,k andsucd(t) ¢ S(I) for j > k. Now observe
thatz (t') lies ony, . Hence suck(t) = n(t'), sincer (t') € S(1) andsucar(t')) =
o) ¢ S(1). Similarly, suc& (t') = n(t), wherek’ is the greatest index such that
suc (t') e S(1). It follows thatsuc&*¥ (t) = 72(t) and, consequently, that-k’' = h.
Now observe thaGey(l) is a subset of

{t,t’, sucat), sucat’), sucé(t), sucé(t’), ..., },

and thasucd*1(t) & G(1) if sucd (t) & G(1). ThereforeGex(l) S Sx(1), Sincem (t)
andr (t') are not inGex(1). Furthermore, a cardinality argument shows tBat(l ) =
Gext(1) U {m (), m(t")}. This proves claim (ii).

Finally note thatS(l) = supi’ = supl\ X1, and consequently Carg(1) = 3n — 1,
according to Theorem 11. This proves claim (iii), and therefore completes the proof of
the theorem. O

3. The Greedy Flip Algorithm and Its Analysis
3.1. The Algorithm

Foru € R we denote by (u) the filter of bitangents iiX, with slope atleast. Theorem 2
suggests a very simple algorithm: maintain the greedy pseudotriangu¢lonwhile
| ranges over a maximal chain of filters in the interalQ), | ()]

Algorithm GREEDY FLIP ALGORITHM

1 compute the greedy pseudotriangulati®n= G(I (0));

2 repeat

3 select a minimal bitangebtin G with slope less than;

4 flipb; (i.e., replacé by ¢(b) (resp.z (b)) if bis an interior (resp. exterior)
bitangent)

5 until there are no more bitangents of slope less than
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Theorem 2 proves the correctness of this algorithm. Of course, we still have to explain
how to implement the flip operation (namely line 4) and how to select a minimal bitangent
with slope less tham (namely line 3), so that the total cost of these operatio(lg
time. Figure 10 illustrates the greedy flip algorithm. In this example the flipped bitangent
has minimal slope, and is therefore a minimal element with respect to the partiakorder

In Section 3.2 the construction of the initial pseudotriangula@dh(0)) is described
in detail. Section 3.3 describes how to select a minimal bitangent. Section 3.4 describes
an efficient implementation of the flip operation, whose amortized cost is analyzed in
Section 3.4.5.

3.2. Construction of the Initial Greedy Pseudotriangulatiori|@0))

Lemma 13. The greedy pseudotriangulation(€X0)) of a collection of n disjoint con-
vex obstacles in the plane can be computed {(nl0gn) time

Proof. The construction is based on a standard rotational saitepBentley—Ottmann,

from direction O to directionr, during which we maintain the visibility map associated

to the current direction. For simplicity assume that no free bitangent has slope 0. A useful
aid in the construction o6 := G(l (0)) is thegreedy visibility map Mu), associated

with a slopeu € [0, 7]. Let B(u) be the bitangents i with slope less than. Note
thatB(0) = ¢, andB(x) is the set of bitangents iB.

Every objectO contains two points having a tangent line with slap&hese points
are said to be of typkeft andright depending on whether the tangent line contains the
objectinits left or right half-plane. The points are denotedyy, left) andO(u, right).

The collection of all these points is denoted\byu).

Two distinct objectsO and O’ have exactly eight common directed tangent lines.
They form four pairs, denoted lYO, O/, t, ), wheret andzt’ are eithedeft or right.

For instance(O, O/, left, right) is the tangent line going fror® to O’, containingO
in its left half-plane andD’ in its right half-plane.

From each point oW (u) we shoot two rays, one with slopg the other one with
slopeu + . We extend these rays until they hit an object, or a bitangent in the collection
B(u). In this way we partition free space into a number of regions that contain either
one or two points ol (u) in their boundary. These regions are called triangular and
guadrangular, respectively. For convenience the two unbounded regions, in which we
can walk in directioru+ /2 andu — 1z /2, respectively, are called quadrangular as well,
even though they contain one point\fu) in their boundary.

If two triangular regions contain the same pombf V (u) in their boundary, they
are incident along one of the rays emerging from this point. We then merge these two
regions by removing this ray. The poiptis still the only point ofV (u) in the boundary
of the merged region, which therefore is still triangular. The subdivision of free space
that remains after removing all rays shared by triangular regions is callegtekdy
visibility mapwith respect tau. It is denoted byM (u). Figure 11 depictd/ (u) for the
initial directionu = 0, and the direction = 7 /2.

The greedy visibility mapM (0) coincides with what is usually called the horizontal
visibility map of the collectionO. It can be constructed i®(nlogn) time using a
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Fig. 10. The greedy flip algorithm. At each step the internal bitangent of minimal slope in the current
pseudotriangulation is flipped.



Topologically Sweeping Visibility Complexes via Pseudotriangulations 437

Fig. 11. (a) The labeled regions in the upper left part form the faces of the initial visibility M&p. The
graphrI"(0) is depicted in the upper right part. (b) The labeled regions in the lower left part, together with the
lightly shaded regions, are the regions of the visibility nh&pr /2). The lower right part represents the graph
['(7/2).

standard sweep line algorithm. Furthermore, the subdivisan) is just the greedy
pseudotriangulatio® (if we forget about the four unbounded faces that partition the
complement of the convex hull). So we try to maintddriu) asu ranges over [Or].

We describe the construction of the sequeB¢e) of bitangents belonging to the
pseudotriangulation. This method can be extended in a straightforward way to maintain
M (u) as well. The appearance of a free bitangent corresponds to the disappearance of
a quadrangular region. For example, in the situation depicted in the lower left part of
Fig. 11 the topology oM (u) will not change asi rotates beyond /2, untilu passes the
slope of the bitangent contained in the quadrangular region labeled “6.” We represent
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/
death(e) death(e)

Fig. 12. deathe) is the critical direction associated with regien

the subdivision corresponding to thaadrangularregions ofM (u) by a directed graph
I'(u), defined as follows.

Each quadrangular region & (u) contains two points o¥/ (u) in its boundary; We
connect these points by drawing a path in this region that is increasing with respect to
the directionu + /2. In this way we obtain a directed plane graptu), whose set
of edges is in one-to-one correspondence with the set of quadrangular fad&s)of
and whose vertices are the points\6fu) in the boundary of the quadrangular faces;
see Fig. 11. There are two infinite edges, corresponding to the quadrangular faces that
contain only one point o¥ (u) in their boundary. The gragh(0) contains 8 + 1 edges,
andTI'(7) contains four edges. We shall see that there are 3 events corresponding
to the disappearance of an edge, and therefore to the appearance of a bitangent. This is
of course related to Lemma 3.

Consider now an edge of the graphI’(u). Its terminal points aré’(u, ') and
O”(u, 7). There are at most two tangent lines of tyi'’, O”, 7/, "), whose slopes
lies between 0 and. Let deathe) be the direction of these lines that is minimal, if this
minimal element exists, or otherwise; see Fig. 12.

Let D(u) be the set of directions defined by

D(u) = {deathe) | eis an edge of (u) anddeathe) < x}.

The following obvious result is crucial for the correctness of the algorithm constructing
the initial pseudotriangulation.

Lemma 14. Letthe unitvectorstand U’ be the directions of two consecutive elements
of B(x).

1. The setD(u) does not change when u ranges over the open intéwall”).
2. The critical direction U is the minimal element @ (u), for u between tand u'.

We now describe the transition at the next critical direction, namely (i) updating the
graphr" (u) whenu passes this critical direction, and (ii) updating theR3ét). It is not
hard to see that (i) take3(1) time, and (ii) take$ (log n) time, due to the maintenance
of a priority queue. Figure 13 depicts a few cases.

We also describe the birth of pseudotriangles: the number of vertices of degree 3, plus
the number of triangular regions, is invariant. This is obvious in the situations depicted
in Fig. 13. It also holds in the case where at least one of the regiphsc, andd
is triangular, as illustrated in Fig. 14. Note that the triangular reggyow during the
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Fig. 13. Transitions during the construction of the pseudotriangulation.

sweep, so not all combinations of triangular and quadrangular regions are possible. For
instance, in the upper left part of Fig. 13 itis not possible that registriangular whilst

at the same timd is quadrangular, since in that case triangular regidioes not grow:

it shrinks near the edge along which itis incident wdtlFinally the pseudotriangulation
G(1(0)) can easily be computed from the set of bitangdiis).

3.3. Minimal Bitangents

Consider afiltedl , a bitangenb in the greedy pseudotriangulati@il ), and a pseudo-
triangle T of G(l). We denote byBr the set of bitangents € G(I) such that bitt)
appears in the boundary af. The partial order restricted toBr is a linear order.
The minimal element 0By is denoted bybr. We denote by tri (b) (resp.Rtri(b)) the
pseudotriangle o6G(l) incident upon bith) and—locally—to the left (resp. right) of
bit(b), oriented along the direction &f The initial point of a directed line segmeint
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Fig. 14. Transitions during the construction of the pseudotriangulation: at least one of the raglmres
andd is triangular, and hence not represented by an edge in the gr@ph

is denoted byfail(b), the terminal point byHeadb); sob is directed from its tail to its
head. Thébasepoinof T, denoted bypr, is the tail ofbr, if T = Rtri(br), or the head
of by, if T = Ltri(by).

The direction of the tangent line in a poiptof 9T is uniquely determined by the
requirement that its slope lies in the interval [SIdpe), Slope&br) + 7). This slope
is also called theslopeof p. Note that the slope is continuous 61, except at the
basepoint off . A directed subsegment 6 is called awalk (resp.reverse walkalong
aT if, going from the initial to the terminal point of the subsegment, we pass the points
of the subsegment in order of increasing (resp. decreasing) slope. A walk (resp. reverse
walk) goes around clockwise (resp. counterclockwise) when viewed from inside
In particular, the walk starting at the basepoinfloflefines a linear order on the set of
bitangents in bitBr), called theslope ordeywhich coincides, via the mapping bit, with
the linear order< on Br. We denote by, (resp.b_) the minimal bitangent irG(l)
lying ony,o (resp.y_o), if it exists.

Lemma 15. Let | be a filter Then an interior(resp exterior) bitangent b is minimal
in | if and 0n|y ifb= bRtri(b) = bLtri (b) (resp b= bRtri(b) =b_,orb= bLtri (b) = b+)

Proof. Assumeb is an interior bitangent. Let ande€ € X; be such that sup) =
sup€) = b, and such that ate) and ar¢e’) are on the boundaries &tri(b) and
Ltri (b), respectively. Clearlyp = bryip) (resp.b = biyiw) iff e € | (resp.€ € I).
Sinceb is minimal in| iff e, & € I, the result follows. A similar argument appliesif
is an exterior bitangent. O

The successive cusps we pass during a walk starting at the basepbjarefdenoted
by xt, yr andzr. If the basepoint is a cusp, then by definition izis Theforward and
backward T-views of pointp in dT are thepointsof intersection obT with the tangent
line at p, lying ahead of and behing, respectively. The point, whose forward (resp.
backward)T -view is pr, if T = Rtri(by) (resp.T = Ltri(by)), is denoted byyy. See
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Fig. 15. Forward and backward-views pp and p; of t cannot both have smaller slope than

also Fig. 18. To avoid confusion, we stress that the forward (resp. backward) view from
a point along a directed line is defined with respect to the sebstaclegand not with
respect to the set of pseudotriangles); see Section 2.2, where this view is defined as an
obstacle

For later use we isolate a simple, but crucial, feature of pseudotriangles of greedy
pseudotriangulations.

Lemma 16. Let T be a pseudotriangle of a greedy pseudotriangulation

1. If zt # pr,thenthe part oB T betweenzand pr is an arc
2. If yr lies between x and ¢, then the part obT between y and ¢ is an arc
(i.e., it contains no bitangen}s

Proof. We prove that no bitangent € Bt has forward and backward-views of
smaller slope. This will prove part (1), since all points on the segmept have both
forward and backward -view of smaller slope. A similar argument proves part (2).
To prove the claim, suppose that both the backward and forivargw, po and p;
say, oft have smaller slopes thanWe only consider the case in whigg has smaller
slope thanp;. See Fig. 15. Theil = Ltri(t), and the part obT betweenpy and p;
lies completely to the left of the line supportihg_ett’ be the other bitangent (different
from t) betweenT = Ltri(t) andRtri(t). We givet’ the direction that is compatible
with the slope of its head and tail. The bitang€rintersectd and its tailp’ is a point
on dT betweenpy and p1, therefore its slope is less than the slope.oflowever,t
andt’ are crossing; and consequently< t in contradiction with the greediness of the
pseudotriangulation (claim (2) of Theorem 12). This proves the lemma. O

3.4. Flipping Minimal Bitangents
3.4.1. The New Pseudotriangles’ Rnd L'. Consider a minimal bitangertt (with

respect to some filter), with R = Rtri(b) andL = Ltri(b). Let b* = ¢(b) be the
bitangent obtained by flipping Its tail and head are denoted pyandg*, respectively.
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ICase 1 | I Case 2

Fig. 16. The pseudotriangl® = Rtri(b*) (shaded) is obtained by flipping bitangdnt~urthermoreR’ is
the left or right pseudotriangle &f; (cases 1 and 2, respectively),aR’ does not contaibj; (case 3).

The right and left pseudotriangles bf (with respect to the filtet \{b}) are denoted

by R andL’, respectively. We denote iy andG’ the pseudotriangulations(l) and
G(l1\{b}), respectively. We consider the bitangentfor T = R/, L’. We only consider

the pseudotriangl®’ (the story forL’ is completely similar). Leby, be the successor of

bin Br. The minimal element oBg is one of the bitangents, andb*, namely the one

with smaller slope. Sb* = min Bg, if p* lies betweerb andbj, andby = minBg,
otherwise. Hence there are three basic cases, that return throughout this section. They
are illustrated in Fig. 16.

Casel: b and l; are not separated by a cusp of RhenR’ = Rtri(by), and p* does
not lie on the arc betwedmandby,. Therefore mirBr = by.

Case2: b and 4, are separated by a cusp of Bnd p* does not lie on the arc between b
and l;. ThenR’ = Ltri(bz) and minBr = bi. (Note: in this cas&r = Headby), as
in Fig. 16, orxg = Headb).)

Case3: b and 4, are separated by a cusp of Bnd p* lies on the arc between b an¢ib
Then minBg = b*.

The bitangent mii, - is defined similarly.
We now consider the pseudotriand®éin more detail, in particular its cusps , Yr,
andzr.

Casel: R = Ritri(bg). In this situationb and by are not separated by a cusp, so
Xr = Xgr. Furthermore, ifp* lies betweerxg andyg, then the second cugg is equal
to p*, otherwise it is equal tgr; see Fig. 17(a). Similarly, the third cugg is equal to
yL, if g* lies betweerx, andy, , otherwise itis equal tq*, as illustrated in Fig. 17(b).

Case2: R’ = Ltri (by) and l; = min Bg. In this case the basepoint Bf is Headby),
which lies betweerxg and yg. Therefore the first cuspr is equal top*, if p* lies
betweenxr and yr, otherwise it is equal tyr; again see Fig. 17(a). Similarly, the
second cuspr is equal toy, , if g* lies betweerx_ andy, , otherwise it is equal tg*;
see Fig. 17(b). Finally, the third cugg is equal taz, , if Headb) = Xxg, otherwise it is
equal toxg, as illustrated in Fig. 17(c).

Case3: R = Rtri(b*) and ¥ = min Bg. In this casdHeadb) = xg, and the tailp* of
b* lies on the arc 08 R separating andby,. Therefore the basepoint & is p*, which
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Fig. 17. The cusps oR'.

is also equal to the third cusig ; see the left part of Fig. 17(a) for this situation. Since
in this casexg is a cusp ofR, the second cuspr is equal toz,, as depicted in the left
part of Fig. 17(c). Finally Fig. 17(b) shows that the first cugpis equal toy, or g*,
depending on whether* lies betweery, andz, , or betweerx_ andy, .

Table 2 summarizes the previous discussion.

3.4.2. The Splittable Queueiwake[T]. Conceptually the flipping can be done by
walking—in the positive direction, starting at the basepoint—along the boundaries of
the pseudotrianglek (left) and R (right) incident upon the flipped bitangebt with
one leg in every pseudotriangle, such that at any moment the tangent lines at the points
underneath our left and right legs are parallel. We keep walking until these tangent lines
coincide. At that point we have fourat. This is too expensive, since some bitangents
may be passed during many walks involved in the flip operations. To cut the budget, we
need an auxiliary data structure, that enables us to start the walk at a more favorable point.
Observe that the tap* of b* lies between the first cusgk and the pointr, whose
tangent contains the basepofil(b) of R. Similarly, g* lies betweerx_ andqy .

Definition 17. For a pseudotriangl€, a point indT is calledawakeif it lies between
Xt andgr.

Table 2. The cusps oR'.

XR YR R
Casel XR YR OF p* yL org*
Case 2 YR OF p* yL org* ZL Or XR

]

Case 3 yL org* zZL p*
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Fig. 18. The set of points that am@vakein T is the segmentrqr, for T = L, R. When the algorithm flips
b =bgr = by, the walk ond T starts ing; (case 1) or in the cuspr (cases 2 and 3).

Note that the points 0§ R that are awake have forwarfd-view of smaller slope,
whereas the points awake & have backward -view of smaller slope; see Fig. 18.
Lemma 16 tells us that the set of points that are awake is a sequence of arcs and bitangents
on a convex chain, possibly followed by a single arc betwgeandgr (in casegr does
not lie betweerxy andyr).

If b and its successdr, in Br are not separated by the cusg, corresponding to
case 1 in Section 3.4.1, the poipt lies even betweegy andgg, whereqy, is the point
whose tangent contaiffsil(bg), as shown in Fig. 18.

So the walk along R starts at|, in case 1, and iig, otherwise. Similarly, the walk
alongdL starts ing, or in x_, whereq, is the point ondL’ whose tangent contains
Headb( ). Now x1 can be determined i©(1) time, but how do we determine;
efficiently, for T = L, R? To this end we consider the segmgntr of points indT,
thatare awake, as an alternating sequence of bitangents and arcs, or atoms for short, where
the atoms are in slope order. This sequence is representespiittable queugdenoted
by Awake[T], a data structure for ordered lists that allows for the following operations:

1. Enqueuean atom, either at the head or at the tail of the list.
2. Dequeudhe head or the tail of the list.
3. Splitthe sequence at an atomthis split is preceded by searchfor the atomx.

A few comments on the split operation are in order. We assume that the initial search
for the atomx is guided by a real-valued functiofi, say, defined for atoms in the se-
guence, that is monotonous with respect to the order of the atoms in the sequence. Now a
splitamounts to determining the atoxfor which f (x) = 0, and successively splitting

the sequence (destructively) into the subsequences of atoms with nelyatlges and

those with positivef -values. More specifically, to find the poig} (in case 1) we do a

split operation irAwake[T], where the search fay; is guided by the position dfail (b])

with respect to the tangent lines at the terminal points of an atom. See Section 3.4.3 for
more details on this split operation.

Lemma 18. There is a data structurémplementing a splittable queuguch that an
enqueue or dequeue operation takeg€lOamortized timeand a split operation at an
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atom x on a queue of n atoms takedd® min(d, n — d)) amortized timewhere d is the
rank of x in the sequence represented by the gudoesovera sequence of m enqueue
dequeue and split operations on a collection of n initially empty splittable queues is
performed in @m) time

For more details and a sketch of the proof see Appendix B. For our current purposes
we stress that we maintain, for each pseudotriafigl@ splittable queu@wake[T],
satisfying the following invariant:

Invariant 1.  Awake[T] represents the segmexitqgr of 9T (the atom containingr
being the head of the queue).

We now describe in more detail (i) how to compbteusingAwake[ Rl andAwake[L],
and (ii) how to restore Invariant 1 for the new pseudotrianleandL’. Subsequently
we prove that the total cost of (i) and (ii) amortizeSQgk).

3.4.3. Construction of b. If b and its successdi; in Br are not separated by the
cuspxg of R (case 1), then during the constructionldfthe walk alongd R starts in

gg- In this case weplit Awake[R] at g into AwakeMin [R] and AwakeMax[R], where

the atoms in the former queue have smaller slope than the atoms in the latter queue.
Otherwise, namely ib andby, are separated by the cusp, we setAwakeMin [R] < ¢
andAwakeMax{R] < Awake[R]. Hered denotes the empty queue. In either cpsées

on an arc, represented by an atom in the quawekeMaxR]. We similarly initialize

the splittable queueswakeMin [L] and AwakeMaxL].

Now the simultaneous walk alotdr ando L can be implemented ldequeuingtoms
from AwakeMax R] and AwakeMax[L], until the atoms (arcs) are found that contaih
andqg*, respectively. Obviously, this sequence of synchronous dequeue operations takes
time proportional to the number of dequeued atoms. So we conbtratthe cost of at
most one split odwake[R] and at most one split oAwake[L], followed by a number
of successive dequeue operations.

We finally adjust the first atoms in the queugwakeMaxR] and AwakeMax|L]
(namely the atoms containing andqg*, respectively) by replacing their terminal points
of smaller slope withp* andq*, respectively. After this final operation the splittable
gueuesAwakeMax R] and AwakeMax L] represent the segmenpdqgr of 9 R andg*q.
of aL, respectively. We use these queues in the construction of the gAaaés[R]
and Awake[L']. We summarize the preceding discussion in the following piece of
pseudocode.

Algorithm COMPUTING b*

1 if xg does not separats; andbj, then

2 Comment: case 1

3 search for arc ihwake[R], containinggg

4  splitAwake[R] at g, into AwakeMin [R] and AwakeMax(R]
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5 elseComment: cases 2 and 3
6 AwakeMin[R] < ¢
7 AwakeMaxR] < Awake[R]
8 endif CommentAwakeMax{R] represents|zdr (Case 1) oxr0r (case 2, 3)
9 ConstructAwakeMin [L] and AwakeMax|L] similarly
10 Find p* andg* by synchronous linear search AwakeMax{R] and
AwakeMax[L], meanwhile dequeuing atoms not containisigandq*,
respectively
11 Setinitial point of first atom ilwakeMaxR] to p*
12 CommentAwakeMaxR] represents subsegmepitqr of 9 R
13 Set initial point of first atom il\wakeMaxL] to g*
14  CommentAwakeMaxL] represents subsegmaetitg, of oL

3.4.4. Construction ofAwake[R] and Awake[L']. To facilitate efficient maintenance

of the collection of queueswake[T], for all pseudotriangle¥, we also maintain the set

of points ofdT between the second cugp and the third cusgr, that are not awake.
These points are callegsleep They form a convex chain, namely the segmgrit; or

grzr of aT, depending on whethey; lies betweenxr andyr or betweenyr andzr.

This convex chain is also represented by a splittable qéaleep [T], whose atoms
represent the arcs and bitangents of the chain in order of increasing slope. In other words,
we maintain, for each pseudotriandlethe following invariant:

Invariant 2.  Asleep [T] represents the following segment®¥ : yr z7, if or & yrzT,
andgrzr, if gr € yrzr.

We only describe how to establish Invariants 1 and 2 for pseudotridRigt&e in-
variants are established similarly fof. In particular we show that the construction of
the queueswake[R] andAsleep [R]from the queuegdwakeMin [R], AwakeMax[R],
Asleep [R], AwakeMin[L], AwakeMax[L] andAsleep [L], requires only a number of
dequeue an@t most four enqueueperations. Again we consider each of the cases,
introduced in Section 3.4.1, separately.

Casel: R' = Rtri(bg). Since in this caseleadb) is not a cusp oR, it is a cusp ofL.

Figure 16, case 1, illustrates this observation. More precisielgdb) = z, . Moreover,
the point ofdL whose tangent contains the basepdéieadb) of dL, coincides with
Headb), so we also have, = q, . In particular all points oL betweerx, andz_ are
awake inL. Furthermore, the basepoint Bf is Tail(by), so we haver = gi. Hence,
by definition, all points that are awake Ri lie betweerxg (= Xr) andgg. This justifies
line 2 in the following piece of pseudocode:

Algorithm CONSTRUCTION OFAwake[R] AND Asleep [R]: CASE 1
1 CommentAwake[L] = x.z_, Asleep [L] =@
2 Awake[R] < AwakeMin [R]
3 Comment: Invariant 1 holds fd®’
4 if zg = YL then
5 Asleep [R] < AwakeMaxL]



Topologically Sweeping Visibility Complexes via Pseudotriangulations 447

6 dequeue last atom froAsleep [R]
7 elseCommentzg = g*
8 Asleep [R] < 0
9 endif CommentAsleep [R]represents subsegmentgfzg C dR’ of points
asleep imR’
10 enqueue segmebt = p*q* at the head of\sleep [R]
11 CommentAsleep [R]representp*zg C IR
12 if yr = yr then
13 if Jr € XRYR then
14 enqueue argg p* at the head oAsleep [R]
15 elseCommentgr € YrZR
16 enqueue argr p* at the head oAsleep [R]
17  endif
18 elseCommentyr = p*
19  skip (do nothing)
20 endif Comment: Invariant 2 holds fdr’

To see howAsleep [R] is constructed in lines 3-20, first observe thatis asleepin
R, since it lies on the segmepk zr of dR’, beyond the poing (= dr).

Lines 4-9 initializeAsleep [R], so that it represents the chain of pointsaizg,
that are asleep iR'. To see this, recall from the end of Section 3.4.3 thaakeMaxL]
represents the segmeitz, of dL, sinceq. = z . Furthermore, Lemma 16, part (2),
tells us that the segmemnt z, is a single arc. Therefore this arc is the last atom in
AwakeMax[L]. So if zr = y_ (see Table 2), we initializAsleep [R] in line 5, after
which we dequeue the last atom from this queue in line Br 1= g* the segment*zg
is empty, justifying the assignment in line 8.

To complete the construction, observe thiais asleep irR'. Therefore we enqueue,
in line 10, an atom representiryf onto Asleep [R], after which this queue repre-
sents the chaip*zg. If yp = p*, this completes the construction Ableep [R].
This case is handled in lines 18 and 19. So according to Table 2, it remains to consider
the caseyr = yg. This is done in lines 12—-17. According to Lemma 16, the segment
YrP* C YrOR, is a single arc. g (= gi) lies betweerxg andyg, all points on the arc
Yrp* are asleep iR, so the first atom ofsleep [R]should represent this arc. Finally,
if 0 € YrZr, the first atom ofAsleep [R] should represent the agg p*. In either
case we enqueue an atom at the headwéke[R], which represents an arc with
terminal pointp*, and initial pointyr. This completes the construction Aleep [R]
in case 1.

Case2: R' = Ltri(bg) and b; = min Br. We distinguish two subcases.

Case2.1:Headb) = xg. In this situatiorzg = z,_. To determine the parr g 0f 3R’
that is awake, we consider two further subcases.

Case2.1.1:qr comes before pon 9 R'. We can determine i® (1) time whether this
case arises by comparing the positionpgf with respect to the tangent at'. In this
case, by Definition 17* is not awake ird R'. Note also that in this casgy = yr. Now
Lemma 16, part (2), tells us that the poinis (= Yr ), dr, P*, andgr lie on a single arc
(indR). Consequently, the points that are awak&iform asingle ar@r gr (= YrARr)-
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Therefore we restore Invariant 1 for pseudotriangley initializing Awake[R] as
the empty queue, after which we enqueue a single atom, representing ttieogron
dR'. See lines 2—4 of the pseudocode below.

Case2.1.2:qr comes after pondR'. In this casa)r lies on the segmemj*q. of IL.

As explained in Section 3.4.3 this segment is representéavakeMaxL]. So we start a
reversewalk alongdL, starting aty_, until we have foundjr . We know when to stop by
considering the position ¢ieadbj) with respect to the tangent line in the current point
of dL. This walk can be implemented by first settiAgrake[R] < AwakeMaxL],

and subsequentlgequeuingatoms from the tail ofAwake[R]; see lines 6-10 of the
pseudocode below. Whery is found, the queu@dwake[R] represents the segment
g*qr . The construction oAwake[R] is completed by enqueuing an atom representing
b* at the head, followed by enqueuing an atom representing thegapt at the head

in casexg # p*, see lines 14-19 of the pseudocode. (The fact that, in the latter case,
Xr p* is a single arc follows from Lemma 16, part (2), appliedRo

Case2.2:Headb) # xg. In this cas¢Headby) = xr. Furthermorepr = gr = Xg, SO:

e The partyrzr (= YrQr ) Of IR’ is a single arc; see again Lemma 16, part (2),
applied toR'.

e All points ondR’ betweernxg (= ygr Or p*) andzg (= Xgr ) are awake iHR'.
Consequently, no point is asleepdR’.

Since in this casq, = z, (= Headb)), we see thahwakeMax[L] represents the part
of 9 R betweerg* andz, ; see line 14 in the algorithm of Section 3.4.3. So after setting
Awake[R] to AwakeMaxL], and adjusting the endpoint of the last atom in this queue
fromq. (= z.) to Xg (= Zr = Qr), We establish thadwake[R] represents the part of
dR betweemy* andzg. See lines 6 and 11-13 of the pseudocode below.

As in case 2.1.2, we now enquéhbieat the head ofwake[R]. In casexg = p*, this
completes the construction Afvake[R]. In casexg # p* we complete the restoration
of Invariant 1 by enqueuing the single atg p* (= Yrp*).

We summarize the preceding discussion in the following piece of pseudocode:

Algorithm CONSTRUCTION OFAwake[R]: CASE 2

1 if Headb) = xg and gr comes beforg* ond R’ then Comment: Case 2.1.1
Awake[R] <« ¢
enqueue atom representing afegr onto Awake[R]
Comment: Invariant 1 holds fd®’
elseComment: case 2.1.2 or case 2.2
Awake[R] <« AwakeMaxL]
if Headb) = xg then Comment: case 2.1.2
while tail atom ofAwake[R] does not contaiigjr do
dequeue tail atom &fwake[R] endwhile
10 set terminal point of tail atom iAwake[R] to gr
11 elseComment: case 2.2
12 set terminal point of tail atom iAwake[R] to Xg (= gr’)
13 endif CommentAwake[R] represents|*qr

O©CoOoO~NOOOTPA~,WN
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14  enqueud* at the head oAwake[R]

15 if Xp # p* then Commentxg = yg; See Table 2
16 enqueue argg p* at head ofAwake[R’]

17 elseCommentxg = p*

18 skip (do nothing)

19 endif Comment: Invariant 1 holds fdr’

20 endif

It remains to describe the constructionfaieep [R], namely the sequence of points of
dR betweenyr andzg that are not awake.

As we have observed above, in case 2.2 none of the poirt®Rois asleep, so we
establish Invariant 2 foR’ by settingAsleep [R] to . So consider case 2.1, namely
Headb) = xg. Thenzg = z_, and all points that are asleep &R’ belong todL.

If g_ does not belong to the part 6L betweeny, andz , thenyrzgr = Yy, 2., and
Or € YLZL, SO We restore Invariant 2 fd®' by settingAsleep [R] < Asleep [L]. If,
on the other handy. € y, 7., thenq, is—by definition—the initial point of the first
atom ofAsleep [L]. In this case Lemma 16, part (2), applied to the pseudotriahgle
tells us thaty, q, is a single arc, so we can detectOr{1) time whetheggr lies between
yL andz_ (since, in that case, it lies on the arag. of L). If gr' € yLz., then the first
atom ofAsleep [R] is the union of the argrg. and the arc that is the first atom of
the queudsleep [L]. In other words, after settingsleep [R] < Asleep [L], we can
establish Invariant 2 foR’ in this case by replacing the initial point (namejy) of the
first atom inAsleep [R] with gr. See line 5 of the pseudocode belowg¥ € vy, z,
we replace the initial point of the first atom Aéleep [R] with yr, which is eithemg*
ory.. See lines 6-8 in the pseudocode.

The preceding discussion is summarized in the following code fragment.

Algorithm CONSTRUCTION OFAsleep [R]: CASE?2

1 if Headb) = xg then Comment: case 2.7 = 7.
Asleep [R] <« Asleep [L]
if gL € yLz_ then
if Or € YLZL then
set initial point of first atom isleep [R]to gr
elseifg* € y_z. then
set initial point of first atom iMsleep [R]to g*
elseset initial point of first atom irsleep [R]to y_
endif
10 elseskip (do nothing)
11  endif
12 elseComment: case 2.2r = Xg = Qr
13 Asleep [R] < 0
14 endif Comment: Invariant 2 holds fdr’

O©CoOoO~NOUITA,WN

Case3: R’ = Rtri(b*) and ¥ = min Bg. In this caseR’ is theright pseudotriangle of
b*, sop* is the basepoint dR’, andqr = p*. Again we refer to Fig. 16, case (3). Hence
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no point ofdR’ is asleep, so we sdtsleep [R] « @. The construction oAwake[R]
from Asleep [L] is similar to the construction dfsleep [R]from Asleep [L]in case
2.1. More precisely, ifj. € yLz., we havexgyr = YLz, Which is represented by
Asleep [L]. So setAwake[R] < Asleep [L]in this case.

If q. € yLz., we also sefAwake[R] <« Asleep [L], but we have to change the
initial point of the first arc fromg, into Xg, which is eitherg* (if g* € y_z.) or y_ (if
g* € yLz.), according to Table 2. In both cases we finally enqueue thg artt= yrgr
at the tail ofAwake[R].

3.4.5. Amortized Complexity As for the amortized time complexity, observe that the
initial collection of splittable queues—one for each pseudotriangle in the greedy pseudo-
triangulation we start out with—can be compute@itm log n) time (for instance, simply

by enqueuing the bitangents and arcs that are awake in the boundary of each pseudotrian-
gle). This amounts t@(n) enqueue operations. As we have justindicated, doing all flips
and maintaining the collection of queutawake[T] andAsleep [T], T € G(I (0)), cost

O(k) further enqueue, dequeue, and split operations. Note that, according to Lemma 3,
at any time the storage needed for all these queu€xig. Together with Lemma 18

this observation implies our main result, namely Theorem 1.

Although we have not checked all the details yet, we are convinced that this algorithm
also applies to the case of obstacles of nonconstant complexity. More precisely, consider
n convex objects consisting of a totalmfpieces of constant complexity. Then the algo-
rithm computes the visibility graph of this collection in tin@ak + mlogn) and space
O(m). In this case the number of enqueue operations in a single flip has an upper bound
proportional to the complexity of the face of the visibility complex whose minimal ver-
tex corresponds to the bitangent being flipped. Then the amortized complexity analysis
of the algorithm can be done conveniently in terms of the combinatorial complexity,
namelyO(k + m), of the visibility complex.

4, Conclusion

In this paper we have presented an optimal time and linear space algorithm for con-
structing the visibility graph of a set of pairwise disjoint convex obstacles of constant
complexity in the plane. Our algorithm realizes a topological sweep of the visibility com-
plex and is based on new combinatorial properties of visibility graphs/complexes. As
indicated in Section 3.4.5, we are convinced that the algorithm also works for obstacles
of nonconstant complexity.

This work raises two questions that we intend to study in the future. The first question
is whether our method can be extented to honconvex obstacles—it seems clear that the
method can be extented to the computation of the visibility graph of the collection of
relative convex hulls of nonconvex obstacles (mainly because, in that case, free space
remains decomposable into pseudotriangles); however, the general case remains elu-
sive. The second question is whether our algorithm can be turned into an algorithmic
characterization of (some abstraction of) visibility graphs—as, for example, the greedy
algorithm characterizes the independence set systems which are matroids (see [17]).
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Appendix A. Poset Terminology

In this section we review poset terminology, that we borrow from the book of Stanley [28,
Chapter 3] and the paper of McMullen [19].

A partially ordered set Ror poset for short) is a set, together with a partial order
relation denoted by. A subposebf P is a subset oP with the induced order. A special
type of subposet is thaterval [X,y] = {z € P | x < z < y}. A posetP is called a
locally finite poset if every interval oP is finite. If X, y € P, then we say thay covers
xif x < y(i.e.,x < yandx # y) and if no elementz € P satisfiesx < z < y. The
Hasse diagranof a poset is the graph whose vertices are the elemer®sanfd whose
edges are the cover relations.

A chainis a poset in which any two elements are comparable. A subsét poset
P is called achainif C is a chain when regarded as a subpose® oThe chainC of
P is saturated(or unrefinabl@ if there does not exist € P\C such thax < z < y for
somex, y € C and such tha€ U {z} is a chain. Anantichainis a subsefA of a poset
P such that any two distinct elements Afare incomparable. Ailter is a subset of
P such thatifx € | andx <y, theny € |. A properfilter of a poset(X, <) is a filter
which is a nonempty proper subsetXf

An abstrach-polytope is a posetP, <), with elements called faces, which satisfies
the following properties:

1. P has a uniqgue minimal fadé_; and a uniqgue maximal fadg,.

2. The flags (i.e., maximal chains) Bfall contain exacthyn + 2 faces. Therefor®
has a strictly monotone rank function with rangel, O, . . ., n}. The elements of
ranki are called thé-faces ofP, or vertices, edges, and facetspff i = 0, 1,
orn — 1, respectively.

3. P is strongly flag-connected, meaning that any two fl@&gand ¥ of P can be
joined by a sequence of flags= @, P, ..., x = ¥, which are such thab; _,
and®; are adjacent (differ by just one face), and such that¥ c @; for eachi.

4. Finally, if F andG are ani{ — 1)-face and ani (+ 1)-face withF < G, then there
are exactly twa-facesH such thatr < H < G. (Diamond Property.)

For a faceF the interval F, F,] is called thecofaceof P at F, or thevertex-figureat F,
if F is a vertex.

Appendix B. Splittable Queues
Here we sketch a proof of Lemma 18. It is well known that finger trees suit our purpose

(see, e.g., [13]), but even the much simpler red—black trees with father pointers will do. In
this way we avoid the use of level links, which are rather complicated to maintain. Note
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in passing that the randomized search trees of Aragon and Seidel [3] can also be used to
implement splittable queues, resulting in the same time bounds with high probability.

We augment a red—black tree with two special pointers, to the maximal and minimal
atoms in the tree. Atoms (arcs) are stored in a leaf-oriented fashion; they are represented
by their endpoints and the tangent lines at their endpoints. In general, the same repre-
sentation can be used to represent convex chains that are unions of atoms of the type just
described. So we store a chain in ared—black tree in the following way: (i) store the atoms
atthe leaf; (ii) atan internal node, store the convex chain thatis the union of allatomsin the
subtree rooted at this leaf. This information is sufficient to guide the search for the atom at
which we wantto splitthe queue (chain), since the basic operation is to determine whether
from a given point there is a tangent line to the convex chain. Furthermore, the informa-
tion at internal nodes can be maintained after 1 (1, and a constant number of rotations).

The amortizedD (1) cost of theenqueuanddequeumperation follows from a stan-
dard argument, since it is well known that the amortized rebalancing cost of an insert
operation on ared-black tree, i.e., the time spéet|ocating the father of the new node,
is O(1) (see, e.g., Chapter IIl of [20] or Chapter 3.3 of [21]). Since upon enqueueing
a new atom at the head or the tail of the list, the father of the new atom is either the
maximal or the minimal node, it can be found@x1) time. It is similarly shown that
dequeuing take® (1) amortized time.

A similar argument holds for the split operation. Suppose we search for anxabdbm
rankd. By synchronously walking upward along the left and right ridge of the red—black
tree, starting from the minimal and maximal node, we find the root of a subtree of height
O(log min(d, n — d)) containing the atom. Descending in this subtree, toward the leaf
representing the ator) takesO (log min(d, n—d)) time, after which we can do the actual
splitin O(log min(d, n—d)) time. The amortized time for 1 is al€d(log min(d, n—d)).

To prove that asequenc®f O(m) operations om initially empty splittable queues
can be performed i© (m) time, we provide each queue with- logr credits, where
is the size (number of atoms) of the queue (we consider logarithms in base 2); see [5] for
a similar analysis. Suppose that, due to a split operation, a queue ofisizplit into
two queues of size; andr,, wherer; > r,. To restore the credit invariant we deposit
one additional credit for this split operation. Then the credits logr; andr, — logr,
for the new queues are available, sincg 2 r implies that

r —logr +1> (r; —logry) + (r2 — logry) + logro.

Restoring the credit invariants for the collection of queues upon an enqueue or dequeue
operation is similar.
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