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Abstract. This paper describes a new algorithm for constructing the set of free bitangents
of a collection ofn disjoint convex obstacles of constant complexity. The algorithm runs
in time O(n logn + k), wherek is the output size, and usesO(n) space. While earlier
algorithms achieve the same optimal running time, this is the first optimal algorithm that
uses only linear space. The visibility graph or the visibility complex can be computed in
the same time and space. The only complicated data structure used by the algorithm is a
splittable queue, which can be implemented easily using red–black trees. The algorithm
is conceptually very simple, and should therefore be easy to implement and quite fast in
practice. The algorithm relies on greedy pseudotriangulations, which are subgraphs of the
visibility graph with many nice combinatorial properties. These properties, and thus the
correctness of the algorithm, are partially derived from properties of a certain partial order
on the faces of the visibility complex.

1. Introduction

Visibility graphs (for polygonal obstacles) were introduced by Lozano-P´erez and
Wesley [18] for planning collision-free paths among polyhedral obstacles; in the
plane a shortest euclidean path between two points runs via edges of the visibility graph
of the collection of obstacles, augmented with the source and target points. Since
then numerous papers have been devoted to the problem of their efficient construction

∗ A preliminary version of this work appeared in theProceedings of the11th Annual ACM Symposium on
Computational Geometry, Vancouver, June 1995, pages 248–257.
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Table 1. Optimal time visibility graph algorithms.

Space Time Source Obstacles Data structures

n n2 Edelsbrunner–Guibas [8]n points Simple
k k+ n logn Hershberger [12] Simple polygon Simple

(k+ n) with n vertices (Finger search trees +
O(n)-triangulation algorithm)

k k+ n logn Ghosh–Mount [10] n line segments Split-find data structure
of Gabow and Tarjan [9]

k k+ n logn Pocchiola–Vegter [24] n convex sets Split-find
n k+ n logn This paper n convex sets Splittable queues

[4], [8], [10]–[12], [14], [23]–[25], [27], [29], [30] as well as their characterization (see
[1], [2], [6], [22], [26], and the references cited therein).

This paper describes a new algorithm for constructing the (tangent) visibility graph
of a collectionO of n disjoint convex obstacles of constant complexity. Its running
time is O(n logn+ k), wherek is the output size, and its working space is linear. The
algorithm is extendible to the case where the objects are allowed to touch each other.
Therefore, our method can be adapted to compute the (classical) visibility graph of a set
of disjoint polygons in the plane (e.g., by triangulating the polygons and applying the
extended version of our algorithm to the collection of edges of the triangulation). While
earlier algorithms [10], [12], [14], [24] achieve the same optimal running time, under
various assumptions on the nature of the obstacles (see Table 1), this is the first optimal
algorithm that uses only linear space. The only complicated data structure used by the
algorithm is a splittable queue, which can be implemented easily using red–black trees.
The algorithm is conceptually very simple, and should therefore be easy to implement
and quite fast in practice. We are convinced that the algorithm also works for obstacles
of nonconstant complexity; see Section 3.4.5.

Recall that abitangentis a closed line segment whose supporting line is tangent to two
obstacles at its endpoints; it is calledfree if it lies in free space(i.e., the complement of
the union of the relative interiors of the obstacles). Anexterior(resp.interior) bitangent
is a bitangent lying on the boundary of (resp. in the interior of) the convex hull of the
collection of obstacles. We denote byB the set of free bitangents of the collection of
obstacles. The endpoints of these bitangents subdivide the boundaries of the obstacles
into a sequence of arcs; these arcs and the free bitangents are the edges of the visibility
graph of the collection of obstacles, as illustrated in Fig. 1. Our main result is the
following.

Theorem 1. Let B be the set of free bitangents of a collectionO of n pairwise disjoint
obstacles, and let k be the cardinality of B. There is an algorithm that computes the
set B in O(k + n logn) time and O(n) working space—under the assumption that
the bitangents between two obstacles are computable in constant time. Furthermore, if
desired, the algorithm can compute the visibility graph(or the visibility complex) of the
collection of obstacles in the same space and time bounds.
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Fig. 1. The visibility graph of a collection of four obstacles.

Our approach is to turnB into a poset (partially ordered set)(B,¹) and to compute a
linear extension of(B,¹), i.e., to embed¹ into a linear (total) order. In other words, we
solve the topological sorting problem [15], [16] for(B,¹).

To define this partial order, we first introduce some terminology. The set of unit
vectors in the plane is the 1-sphereS1. Let exp:R→ S1 be the universal covering map
of the 1-sphere, defined by exp(u) = (cosu, sinu). Furthermore, letBor be the oriented
version (double cover) ofB, obtained by associating with eachb ∈ B the twodirected
versions ofb. The subsetX0 of Bor×R is defined by

X0 = {(v, u) ∈ Bor×R | exp(u) is the unit vector alongv}.

A point b = (v, u) in X0 is called abitangentin X0; the unoriented version of the
bitangentv ∈ Bor is denoted by bit(b); u ∈ R is called theslopeof b, denoted by
Slope(b). We identify a bitangent inB with the corresponding bitangent inX0 with slope
in [0, π). Two bitangentsb andb′ in X0 arecrossing, disjoint, etc., if the corresponding
bitangents bit(b) and bit(b′) in B are crossing, disjoint, etc., as subsets of the plane.

The (partial) order¹ on X0 is defined as follows:b ¹ b′ if there is a counterclockwise
oriented curve joining (some point of) bit(b) to bit(b′), that runs along the edges (arcs
and bitangents) of the visibility graph of the obstacles, and that sweeps an angle of
Slope(b′)− Slope(b), as illustrated in Fig. 2. This order has several nice properties, on
which our algorithm is based. At this point we just mention that two crossing bitangents
are comparable with respect to¹ (see Lemma 7). Since¹ is compatible with the slope
order onX0, an obvious extension of¹ is the linear order obtained by sorting the elements
of X0 according to increasing slope. However, this is computationally too expensive. To
obtain the proper setting for dealing with the problem of extending¹ to a linear order on
X0, we use the notion of filter.1 A special type of filter ofX0 is the subset of bitangents

1 A filter I of a poset(P,¹) is a subset ofP such that ifx ∈ I andx ¹ y, theny ∈ I . The set of filters,
ordered by reverse inclusion, is a poset. Our main interest in the notion of filter is that, given two filtersI and
J with J ⊆ I andI \J finite, the sequencex1, x2, . . . , xk of elements ofI \J is a linear extension of(I \J,¹)
if and only if the sequence of setsI1, I2, . . . , Ik, defined byIi \J = {xi , xi+1, . . . , xk}, is an unrefinable chain
of filters in the interval [I , J]. We borrow poset terminology from Stanley [28, Chapter 3] and McMullen [19].
To keep the paper self-contained, we review this terminology in Appendix A.
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Fig. 2. A counterclockwise oriented curve with initial pointx, terminal pointy, and two cusp points. The two
cusp points subdivide the curve into three regular smooth counterclockwise subcurves, i.e., each of these three
subcurves can be described by a functionf : [0, 1]→ R2 with f ′(t) = | f ′(t)| exp(θ(t)) 6= 0, whereθ(t) is
a continuous nondecreasing function. By definition the angle swept by the regular subcurvef is θ(1)− θ(0),
and the angle swept by the curve is the sum of the angles swept by its regular subcurves. In the example the
angle swept between the two rays starting atx andy is slightly over 2π .

I (u), defined foru ∈ R, that consists of all bitangents inX0 whose slope is greater than
u. For each filterI of (X0,¹) we define a maximal subsetG(I ) = {b1, . . . ,bm} of I as
follows: (1) b1 is minimal in I , and(2) for 1 ≤ i < m, the bitangentbi+1 is minimal
in the set of bitangents inI , disjoint from b1, b2, . . . ,bi . Since crossing bitangents
are comparable it follows thatG(I ) is well defined (independent of the choice of the
bi ), and that min¹ I ⊆ G(I ). We prove that for each filterI the setG(I ) contains
3n − 3 bitangents, that subdivide free space into regions calledpseudotriangles. This
subdivision, also denoted byG(I ), is called a greedy pseudotriangulation. The regions
owe their name to their special shape, that is explained in more detail in Section 2.
We refer to Fig. 3 for an example of greedy pseudotriangulations associated with filters
of X0.

Our algorithm maintains the greedy pseudotriangulationG(I ) as I ranges over a
maximal chain of filters of the interval [I (0), I (π)], namely the set of filtersI with
I (0) ⊇ I ⊇ I (π). The basic operation that updates the pseudotriangulation is aflip of
a free bitangent, minimal in the filter. The key result is the following.

Theorem 2. Let I be a filter of(X0,¹) and let b∈ min¹ I . Then G(I \{b}) is obtained
from G(I ) by flipping b, i.e., by replacing b with the only minimal bitangent in I\{b}
disjoint from the other bitangents in G(I ) (see Fig. 3).

If the obstacles are points, our method—translated into dual space—is an alternative
for the topological sweep algorithm for arrangements of lines, of Edelsbrunner and
Guibas [8]. Our pseudotriangulations replace their (upper and lower) horizon trees.

The paper is organized as follows. In Section 2 we recall the definition of the visibility
complexY of the collection of obstacles, a cell complex on the spaceS2× S1 carrying
the view from points (inS2, the planeR2 together with the point at infinity) along a
direction (inS1).

The setX0, introduced in this section, is the set of vertices (0-faces) of the universal
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Fig. 3. (a) The greedy pseudotriangulation associated with the filterI (0) of bitangents with slope≥ 0. The
dashed bitangentsb1 andb2 are both minimal in the filterI (0). (b) The greedy pseudotriangulation associated
with the filter I (0)\{b1, b2} which is obtained fromG(I (0)) by flippingb1 andb2.

cover X of Y, which is a cell complex on the universal coverS2 × R of S2 × S1,
induced by the universal covering map exp:R → S1 on the second component. We
introduce the partial order¹ on the coverX and we prove that this order satisfies a
“minimum-element” property: the set of bitangents greater than a given bitangent and
crossing it has a minimum element. Then we prove Theorem 2 by interpreting the greedy
pseudotriangulations as maximal antichains of¹ on X\X0. In Section 3 we show how
the flip operation can be efficiently implemented, using splittable queues.

2. The Visibility Complex

2.1. Terminology: Pseudotriangles and Pseudotriangulations

LetO = {O1,O2, . . . ,On} be a collection ofn pairwise disjoint closed convex setsOi

(obstacles for short). We assume that the obstacles are (1)strictly convex (i.e., the open
line segment joining two points of an obstacle lies in its interior), (2)smooth(i.e., there
is a well-defined tangent line through each boundary point), and (3) ingeneral position
(i.e., no three obstacles share a common tangent line). In particular two bitangents in
B are disjoint or intersect transversally (i.e., not at their endpoints). These assumptions
are only for ease of exposition. The general case can be treated by standard perturbation
techniques; for example, to cover the case where obstacles are allowed to be points and
disjoint line segments the perturbation scheme may, e.g., consist of taking the Minkowski
sum with an infinitesimally small circle. Apseudotriangulationof a set of obstacles is
the subdivision of the plane induced by a maximal (with respect to inclusion) family of
pairwise noncrossing free bitangents. It is clear that a pseudotriangulation always exists
and that the bitangents of the boundary of the convex hull of the obstacles are edges of
any pseudotriangulation. Two pseudotriangulations of a collection of four obstacles are
depicted in Fig. 3. The subdivision owes its name to the special shape of its regions. A
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Fig. 4. (a) A pseudotriangle. (b) Two disjoint pseudotriangles share exactly one common tangent line.

pseudotriangleis a simply connected subsetT of the plane, such that (i) the boundary
∂T consists of three convex curves, that share a tangent at their common endpoint,
and (ii) T is contained in the triangle formed by the three endpoints of these convex
chains. See Fig. 4(a). These three endpoints are called thecuspsof T . At each boundary
point of a pseudotriangle there is a well-defined tangent line, and there is a unique
tangent line to the boundary of a pseudotriangle with a given unoriented direction (more
formally the support functionϕT : S1→ R of T is well defined, continuous, and satisfies
ϕT (u) = −ϕT (−u)).

Lemma 3. The bounded free regions of any pseudotriangulation are pseudotriangles.
Furthermore, the number of pseudotriangles(of a pseudotriangulation of a collection
of n obstacles) is 2n− 2, and the number of bitangents is3n− 3.

Proof. Let R be a family of noncrossing free bitangents containing the bitangents of
the boundary of the convex hull of the collection of obstacles. Assume that some free
bounded face of the subdivision is not a pseudotriangle; from this we derive thatR is not
maximal. This means that this face is not simply connected or that its exterior boundary
contains at least four cusp points. In both cases we add toR a bitangent as follows. Take
the minimal length closed curve, homotopy equivalent to the exterior boundary of the
face, and going through all cusp points of the exterior boundary but one. This closed
curve contains a free bitangent not inR; henceR is not maximal.

An extremal point is a point on the boundary of an obstacle at which the tangent line
to that obstacle is horizontal. Each pseudotriangle contains exactly one extremal point in
its boundary (namely the touch point of the horizontal tangent line to the pseudotriangle).
Since there are 2n− 2 extremal points in the interior of the convex hull of the obstacles
there are exactly 2n − 2 pseudotriangles. The last result is then an easy application of
the Euler relation for planar graphs. To see this, observe that the set of vertices consists
of all endpoints of bitangents. In particular every vertex has degree 3. Furthermore, the
number of edges, that lie on the boundary of some object, is equal to the number of
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Fig. 5. A pseudoquadrangle and its diagonals.

vertices. Finally, the total number of bounded regions is equal to the sum of the number
of pseudotriangles and the number (n) of obstacles.

Lemma 4. Let T and T′ be two disjoint pseudotriangles. Then T and T′ have exactly
one common tangent line. (See Fig. 4(b).)

Proof. For the existence part we apply the Intermediate Value Theorem to the con-
tinuous function defined as the difference between the support functions ofT andT ′.
For the uniqueness we observe that tangent lines to a pseudotriangle cross inside the
pseudotriangle.

We use this last lemma only in the case whereT andT ′ are adjacent pseudotriangles (in
a pseudotriangulation). In that case the union ofT andT ′ is called apseudoquadrangle,
andT andT ′ share two common bitangents called the diagonals of the pseudoquadrangle
(see Fig. 5).

2.2. Definition of the Visibility Complex Revisited

The visibility complex was defined in [24] as a partition of the set of free rays. Here
we define the visibility complex as a partition of the whole set of rays (free or not free)
augmented with rays at infinity. This slight modification simplifies the description of the
combinatorial structure of the visibility complex and, in particular, of its cross sections.

We identify the planeR2 with a 2-sphereS2 minus a point, called the point at infinity.
Given a real numberu ∈ R let Cu be an infinite strip, centered around a line through
the origin with slopeu + π/2, large enough to contain all the obstacles. We denote by
Lu andRu the two connected components ofR2\Cu, whereLu comes beforeRu along
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Fig. 6. The infinite stripCu.

lines with direction exp(u) (see Fig. 6). Theu-free spaceFu is the closure ofCu\
⋃
O.

A ray (p, u) is an element ofS2×R, consisting of a pointp and a real numberu. The
point p is called theorigin of the ray, and the real numberu is called itsslope. We denote
by γ+i (resp.γ−i ) the set of rays(p, u) emanating from and tangent to obstacleOi (i.e.,
p ∈ ∂Oi and the tangent vector atp to Oi is exp(u) ∈ S1), that containOi in their
left (resp. right) half-plane; obviouslyγ+i andγ−i are homeomorphic toR. Similarly,
we denote byγ+O (resp.γ−O) the set of rays(p, u) emanating from and tangent to the
convex hull of the set of obstacles.

Let Ci = Oi ×R, and letC− =
⋃

u∈R Lu × {u} andC+ =
⋃

u∈R Ru × {u}. For a
point p in R2 and a real numberu ∈ R we are interested in the object (possiblyLu or
Ru) that we can see fromp in the direction exp(u) ∈ S1. This object is called theview
from p alongu, or theforward viewfrom the ray(p, u) (thebackward viewfrom the ray
(p, u) is the forward view of theoppositeray, (p, u+ π)). By definition the backward
(resp. forward) view from the point at infinity alongu is Lu (resp.Ru). The view from
a point p inside an objectOi is this objectOi , irrespective of the direction.

We define a cell complexX, whose underlying space|X| is a quotient space of the
space of raysS2×R. More precisely, forp,q ∈ S2 andu ∈ R, with p 6= q, we declare
(p, u) equivalent to(q, u) iff (1) the slope of the directed line fromp to q is equal to
u, up to an integer multiple ofπ , and (2) the line segment [p,q] lies in u-free space
Fu. In this situation we write(p, u) ∼ (q, u). The space|X| is the quotient space of
S2×R under the reflexive, transitive closure of∼. By a slight abuse of terminology, an
equivalence class is called aray in |X|. If we fix u ∈ R the set of rays in|X| with slope
u is a two-dimensional set, homeomorphic toS2. We refer to this set as thecross section
of |X| atu.

If p is a point inu-free space, the equivalence class of(p, u) consists of all points
of the form(q, u), where the pointq ranges over the largest line segment with slopeu
in Fu, that containsp. One may think of the cross section of|X| at u as obtained from
S2 by contracting2 the latter line segment, for all pointsp in free space. The reader may
find it helpful to refer to the top half of Fig. 11. The rightmost part of that figure contains
a schematic picture of the cross section of|X| at u = 0 (provided we forget about the
direction of the labeled edges). The labeled edges can be seen to represent equivalence
classes under∼, defined for the set of obstacles in the leftmost part of the figure (the

2 We refer to the video segment [7] for an illustration of this contraction process.



Topologically Sweeping Visibility Complexes via Pseudotriangulations 427

setsL0 and R0 are not depicted here). The subsetF0 is subdivided into a number of
strip-shaped regions. Each point on a labeled edge of the cross section corresponds to a
maximal free horizontal line segment in the strip-shaped region having the same label.
Also note that points inside an object constitute an equivalence class by themselves,
giving rise to the two-dimensional regions in the cross section. It is not hard to see that
the cross section is homeomorphic toS2. In Fig. 11 the edge numbered 16 continues
directly into the edge numbered 1 via the point at infinity.

Theslopeof an equivalence classr , denoted by Slope(r ), is the common slope of its
rays, and we denote by seg(r ) the set of origins of the rays inr . Observe that seg(r ) is a
maximal (with respect to the inclusion relation) free line segment, unlessr = {(p, u)}
with p in the interior of someOi (or Lu or Ru). A ray r in |X| is said to be tangent to
obstacleOi if the line segment seg(r ) is tangent toOi . We stress that the rays(p, u+kπ),
k ∈ Z, are distinct points in|X|.

Observe that the canonical mapping fromS2×R onto|X|, restricted to the interiors
Inte(Ci ) of Ci , with i ∈ {1, . . . ,n,+,−}, is one-to-one. Then+ 2 canonical images of
the sets Inte(Ci ) and the 2n canonical images of the curvesγ±i in |X| induce a three-
dimensional cell (or face) decomposition of|X|, denotedX. The 3-faces correspond to
collections of rays with origins in the interior of the obstacles (includingLu and Ru),
i.e., the Inte(Ci ), with i ∈ {1, . . . ,n,+,−}. The 2-faces correspond to collections of
rays with the same forward and backward views. The 1-faces correspond to collections
of rays with the same forward and backward views and tangent to the same obstacle.
The 0-faces correspond to collections of rays which are tangent to two obstacles. A face
x is said to beboundedif Slope(x) is a bounded subset ofR, otherwise the face is said
to beunbounded. The only unbounded faces are the 3-faces, and the 2-face that contains
the rays whose origin is the point at infinity onS2. We denote the sets of 0-, 1-, 2-, and
3-faces ofX by X0, X1, X2, andX3, respectively, and the set of bounded 2-faces byX∗2.

Letπ be the mapping which associates the ray(p, u+π)with the ray(p, u). Clearly,
the (induced) mappingπ : |X| → |X| is an automorphism of the complexX. The quotient
complexY := X/π2 (whose underlying space is nowS2×S1) is thevisibility complexof
the collection of obstacles. (In [24] the visibility complex was defined as the 2-skeleton
of X/π2.)

Let P(X) be the poset of faces ofX, augmented with∅ and |X|, ordered by the
inclusion relation of their closures. Similarly, we defineP(Y) to be the poset of faces
of Y. The local combinatorial structure ofP(X) or P(Y) is described in the following
theorem. (See Fig. 7 and also [24]. We refer to Appendix A for the terminology on
abstract polytopes.)

Theorem 5. P(X) (P(Y)) is an abstract polytope of rank4. Furthermore, the vertex-
figure of a vertex is the face poset of a three-dimensional simplex.

Note that there is a canonical mappingarc from the setX1 of edges ofX onto the
set of arcs on the boundaries of the obstacles (these arcs correspond to edges of the
visibility graph ofO, see Section 1). More precisely, forx ∈ X1, the arc arc(x) consists
of the origins of the rays inx emanating from the object to which they are tangent. The
canonical mapping from the setX0 of vertices ofX onto the setB of free bitangents of
O is denoted bybit; see Fig. 7. In particular, the preimage under the mapping bit of the
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Fig. 7. (a) Two obstacles defining a vertexb of the visibility complex with slopeu. (b) (Local) cross sections
at slopesu− ε, u, andu+ ε. (c) Neighborhood of a vertex of the visibility complex. (d) The Hasse diagram
of the vertex-figure of a vertex ofP(X)

bitangent [p,q] with slopeu ∈ [0, π) is the set of rays(p, u+ kπ), k ∈ Z. An element
of X0 is called abitangentin X0.

A pseudotriangulationin X is a maximal (with respect to the inclusion relation) family
of pairwise disjoint bitangents inX0. Clearly, ifG is a pseudotriangulation inX, then(1)
bit(G) is a pseudotriangulation of the collection of obstacles, and (2) CardG = 3n−3.

Let x be a 1-face (namely an edge) or a bounded 2-face inX. We define supx (resp.
inf x) to be the ray with maximal (resp. minimal) slope in the closure ofx. The operator
sup (resp. inf) is a one-to-one correspondence between the set of bounded 2-faces inX2

and the set of vertices inX0. For a vertexx we denote by sup(x) the unique 2-facey
with inf(y) = x. Similarly, inf(x) is the unique 2-facey with sup(y) = x. In this way
inf and sup are defined for all vertices, edges, and bounded 2-faces ofX.

For a bounded 2-facex the vertices supx and infx subdivide the boundary ofx
into two curves, called the upper and lower boundary of the face. Observe also that the
boundary of the unbounded 2-face has two connected components that are the canonical
images of the curves of raysγ+O andγ−O.

Remark 6. The numbers of 0-, 1-, 2-, and 3-faces of the visibility complexY are
2k, 4k, 2k + 1, andn + 2, respectively; herek is the number of free bitangents. This
equality is a consequence of the previous discussion, namely on the bijection between
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the set of bounded 2-faces and the set of 1-faces, the shape of the vertex-figure, and
the number (n+ 2) of 3-faces. The number of flags ofP(Y) is 24 times the number of
vertices, i.e., 48k.

2.3. The Poset(X,¹) and the “Minimum-Element” Property

Now we turnX into a poset(X,¹) by taking the transitive and reflexive closure of the
relation¹, defined by

inf x ¹ x ¹ supx, ∀x ∈ X1 ∪ X∗2, (1)

i.e., for t, t ′ ∈ X0 we havet ¹ t ′ if there exists a finite sequence of edges and/or 2-faces
x1, . . . , xl in X such that (1)t = inf x1, (2) supxi = inf xi+1, for i = 1, . . . , l − 1,
and (3) supxl = t ′. Observe that we can replace each face that appears in the sequence
x1, . . . , xl by the sequence of edges of its upper (or lower) boundary. In other words,
t ¹ t ′ if there is a counterclockwise oriented curve in the plane from bit(t) to bit(t ′) that
runs along the edges (arcs and bitangents) of the visibility graph of the obstacles (namely
the arcs arc(xi ) and the bitangents bit(vi ) with vi = inf xi , where we assume thatxi are
edges), and which sweeps an angle of Slope(t ′) − Slope(t). Clearly,¹ is compatible
on X0 with the slope order. Observe that for allx ∈ X1 ∪ X∗2 the cell supx (resp.x)
covers the cellx (resp. infx). Finally note that the unbounded cells are isolated points
in (X,¹).

Observe that if two bitangents belong to the boundary of a pseudotriangle of some
pseudotriangulation, then they are comparable. The same conclusion holds if the two
bitangents are the diagonals of some pseudoquadrangle (namely the union of two adjacent
pseudotriangles) of some pseudotriangulation. From this observation we deduce a more
general condition of comparability.

Lemma 7. Let t and t′ be two bitangents in X0.

(1) If bit(t) andseg(t ′) are crossing, then t and t′ are comparable with respect to¹.
(2) If seg(t)\bit(t) andseg(t ′)\bit(t ′) are crossing, say in point p, and if there is no

free line segment emanating from p, tangent to an obstacle inO, and lying in the
wedge t+\t ′+ (here t+ is the open half-plane bounded by the supporting line of
bit(t), that contains the line segmentbit(t ′)), then t and t′ are comparable with
respect to¹.

(3) t ¹ πk(t ′), for all sufficiently large k.

Proof. Assume first that bit(t) and bit(t ′) are crossing. Clearly it suffices to prove that
bit(t) and bit(t ′) are the diagonals of a pseudoquadrangle of some pseudotriangulation.
To show the existence of a such pseudotriangulation we add four sufficiently small
obstacles near the crossing point of bit(t) and bit(t ′) as indicated in Fig. 8(a). Now we
consider a pseudotriangulation (of the set ofn+ 4 obstacles) that contains the bitangent
bit(t), and the 3× 4 = 12 bitangents shown dashed in Fig. 8(a). Up to some flip
operations we can assume that these 12 bitangents are the only bitangents that emanate
from the 4 new obstacles. Removing these 4 added obstacles and their 12 bitangents
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Fig. 8. (a) bit(t) and bit(t ′) are crossing. The 4 added obstacles and the 12 added bitangents are shown
dashed. (b) seg(t)\bit(t) and bit(t ′) are crossing. (c) seg(t)\bit(t) and seg(t ′)\bit(t ′) are crossing.

yields a pseudotriangulation (since the number of remaining bitangents is 3n− 3) with
the desired property. A similar construction yields the result in the case where bit(t)
and bit(t ′) are disjoint, either in the case where seg(t)\bit(t) and bit(t ′) are crossing
(see Fig. 8(b)), or in the case where seg(t)\bit(t) and seg(t ′)\bit(t ′) are crossing (see
Fig. 8(c)). In this latter case the condition given in the lemma ensures that up to some
flip operations the added obstacle contributes only to the three dashed bitangents. After
removing the added obstacles and their bitangents, bit(t) and bit(t ′) are edges of the
same pseudotriangle, and hence they are comparable.

Now we prove claim (3). We can assume that bit(t) and bit(t ′) are disjoint. Consider a
pseudotriangulationG that contains bit(t) and bit(t ′), and consider a curve in free space
that joins bit(t) and bit(t ′). This curve crosses a finite sequence of bitangents inG, say
b1, b2, . . . ,bl . Let tj ∈ X0 such that bit(tj ) = bj , with t0 = t andtl = t ′. Sincetj andtj+1

are bitangents in the boundary of a pseudotriangle (or both on the convex hull), they are
comparable. Thereforetj ¹ πkj (tj+1) for kj sufficiently large. It follows thatt ¹ πk(t ′)
for k sufficiently large (k =∑j kj ).

Now we come to the “minimum-element” property announced in the Introduction. We
denote byϕ the one-to-one mapping

t ∈ X0 7→ sup supt ∈ X0, (2)

i.e.,ϕ(t) is the ray with maximal slope in the (closure of the) face for whicht is the ray
with minimal slope. It can easily be checked thatϕ ◦ π = π ◦ ϕ.
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Fig. 9. Illustration of the proof of the “minimum-element” property.

Lemma 8 (“Minimum-Element” Property). Let t and t′ be two interior crossing bi-
tangents in X0 (i.e., bit(t) and bit(t ′) are crossing) with t ≺ t ′. Thenϕ(t) ¹ t ′ (and
t ¹ ϕ−1(t ′)). In other words, ϕ(t) is the minimum bitangent in the set of bitangents
crossing t and larger than t.

Proof. Let p be the intersection point of bit(t) and bit(ϕ(t)), and letu and u∗ be
the slopes oft andϕ(t), respectively. Lett (α) = (p, αu + (1− α)u∗), seg(t (α)) =
[a(α), b(α)], and

T =
⋃

α∈[0,1]

seg(t (α)).

Clearly,T is a subset of free space. Therefore the slope oft ′ is greater than the slope
of ϕ(t), and bit(ϕ(t)) and seg(t ′) are crossing (first case), or bit(t ′) is tangent to the
boundary ofT (second case). See Fig. 9 for an illustration. Hence it suffices to prove
that t ′ andϕ(t) are comparable with respect to¹ in order to conclude thatϕ(t) ¹ t ′.
The first case is covered by Lemma 7, claim (1). In the second case bit(t ′) is tangent to
the arc{b(α) | α ∈ (0, 1)}, or to the arc{a(α) | α ∈ (0, 1)}. Both cases are covered by
claim (2) of Lemma 7.

Remark 9. Note that ift is an exterior bitangent, then the set{π(t), π2(t), . . .} is the
set of bitangents greater thant and crossingt ; this set has a minimum element, namely
π(t).

2.4. Filters, Antichains, and Greedy Pseudotriangulations

For a finite subsetA of X we define the filterA+ of (X0,¹) by

A+ = { x ∈ X0 | y ¹ x for somey ∈ A }. (3)
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The complement ofA+ in X0 is denoted byA−. For a filterI of (X0,¹) we let Î be the
subset ofX\X0 defined by

Î = { x ∈ X1 ∪ X∗2 | supx ∈ I , inf x 6∈ I } ∪ {unbounded faces}. (4)

Note that, by definition, the set of unbounded faces is a subset ofÎ .
A properfilter of a poset(X,¹) is a filter which is a nonempty proper subset ofX.

Lemma 10. The mapping I7→ Î is a one-to-one correspondence between the set of
proper filters of(X0,¹) and the set of maximal antichains of(X \ X0,¹), whose inverse
is the map A7→ A+.

Proof. First we show that̂I is a maximal antichain of(X\X0,¹). Letx ∈ Î , y ∈ X\X0

with x ≺ y, or y ≺ x. Then y 6∈ Î . If x ≺ y we have supx ¹ inf y and, therefore,
inf y ∈ I , since supx ∈ I . This implies thaty 6∈ Î . A similar conclusion holds if we
assume thaty ≺ x. This proves that̂I is an antichain.

Now we prove that the antichain̂I is maximal. Letx ∈ X\X0 and consider the
unrefinable chain{. . . , inf2(x), inf(x), x, sup(x), sup2(x), sup3(x), . . .}. By Lemma 7,
part (3), this chain joinsX0\I and I . Consequently, this chain intersectsÎ , andx is
comparable with an element in̂I . Finally observe that( Î )+ = I , since (1) minI ⊂ ( Î )+
and (2)(min I )+ = I . Note that, in view of Lemma 7, part (3),I contains no infinite
decreasing chains.

Theorem 11. Let A be a maximal antichain in(X\X0,¹). Then:

(1) A depends only on its subset of1-faces. More precisely, A is the union of the
cofaces in P(X) of its1-faces. Furthermore, P(A), the subposet of P(X) induced
by A, is an abstract polytope of rank3.

(2) The numbers of1-, 2-, and3-faces in A are respectively2n, 3n, and n+ 2 (and
consequently P(A) is spherical).

Proof. Let x be an edge inA and lety be a 2-face incident tox. Clearly, infy ≺ x ≺
supy, so infy ∈ A− and supy ∈ A+. Thereforey ∈ A.

Conversely, lety be a 2-face inA. Clearly, its upper chain and lower chain are
unrefinable, and join infy ∈ A− to supy ∈ A+. Therefore these two chains intersectA.
This proves claim (1).

The curvesγi , i ∈ {±1, . . . ,±n}, are edge-disjoint maximal chains, that together
cover the set of edges ofX. Therefore there is exactly one edge of the maximal antichain
on each of these curves. Hence the number of edges in the antichain is 2n. According
to claim (1) and Theorem 5, the number of incidences between edges and 2-faces of
a maximal antichain is three times the number of edges, and twice the number of 2-
faces. Therefore the number of 2-faces is 3n. Planarity is proved by computing the Euler
characteristic.

Let I be a filter and letB1(I ), B2(I ), . . . be the sequence of subsets ofI defined by
(1) B1(I ) is the set of minimal bitangents inI , and (2)Bi+1(I ) is the set of minimal
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bitangents in the set of bitangents inI disjoint from the bitangents inB1(I ), . . . , Bi (I ).
Since the bitangents inBj (I ) are pairwise noncomparable they are pairwise disjoint, and
consequently

⋃
i≥1 Bi (I ) is a pseudotriangulation inX (in particularBi (I ) = ∅ for i

sufficiently large). This pseudotriangulation is denoted byG(I ) and is called thegreedy
pseudotriangulation associated with the filterI .3 Finally, for a filter I we define

S(I ) = {b ∈ I | ϕ−1(b) 6∈ I }. (5)

Now we come to the proof of Theorem 2, announced in the Introduction. We give
a slightly stronger form. ForY ⊂ X0 we denote byYint (resp.Yext) the subset ofY
consisting of interior (resp. exterior) bitangents.

Theorem 12.

(1) For all filters I , and all interior (resp. exterior) bitangents b∈ min I , the set
difference G(I \{b})\G(I ) is equal to{ϕ(b)} (resp. {π(b)}).

(2) For all filters I , all bitangents b∈ G(I ), and all t ∈ I crossing b, we have b¹ t .
(3) For all filters I we have Gint(I ) = Sint(I ).

Proof. Claims (1) and (2) are obvious in the case whereb is an exterior bitangent (see
Remark 2); therefore we assume now thatb is an interior bitangent. We prove the theorem
by showing that claim (3) implies (1), and subsequently that (1) implies (2), after which
we establish the truth of claim (3).

First observe thatϕ(b) is disjoint from anyb′ ∈ G(I )\{b}, otherwiseϕ(b) andb′

are comparable, withb′ ≺ ϕ(b) (indeed ifϕ(b) ≺ b′, then, according to Lemma 8,
ϕ(b) ¹ ϕ−1(b′); consequentlyϕ−1(b′) ∈ I , i.e.,b′ 6∈ G(I )). According to Lemma 8 this
implies thatb′ ¹ b, a contradiction withb ∈ min I . Therefore, it is sufficient to prove
thatϕ(b) is a bitangent inG(I \{b}). Suppose the contrary holds. Thenϕ(b) intersects
someb′ ∈ G(I \{b}), with b′ ≺ ϕ(b). However, according to Lemma 8, this implies that
b′ ¹ b, a contradiction. Thus, claim (3) implies claim (1).

Now we prove that claim (1) implies claim (2). To this end letI be a filter, letb be a
bitangent inG(I ) and lett be a bitangent inI which crossesb. We define the sequence of
filters I1, I2, . . . by I1 = I andIk+1 = Ik\B1(Ik). Observe that ifb ∈ G(Ik)\B1(Ik) and
t ∈ Ik, thenb ∈ G(Ik+1) andt ∈ Ik+1. Therefore, there exists ak such thatb ∈ B1(Ik).
From this we deduce thatb ¹ t , sinceb is minimal in Ik. Thus, claim (1) implies
claim (2).

Finally we prove claim (3) by proving successively that:

(i) Sint(I ) ⊆ Gint(I ) (in particular the bitangents inSint(I ) are pairwise disjoint).
(ii) Gext(I ) ⊂ Sext(I ) and CardSext(I ) = Card Gext(I )+ 2.

(iii) Card S(I ) = 3n− 1.

These three properties imply thatGint(I ) = Sint(I ), since CardG(I ) = 3n− 3.

3 Observe that if¹1 is a total order onI , compatible with¹ on I , then the elements of the setG(I ) can
be enumerated as the sequenceb1, b2, . . . ,b3n−3, where (1)b1 is the minimum bitangent in(I ,¹1), and (2)
bi+1 is the minimum bitangent in(I ,¹1) disjoint fromb1, b2, . . . ,bi .



434 M. Pocchiola and G. Vegter

Let b be an interior bitangent. Then (first case) there is ab′ ∈ G(I ) crossingb, with
b′ ≺ b, or (second case) for all b′ ∈ G(I ) crossingb we haveb ¹ b′. In the first case
Lemma 8 implies thatb′ ¹ ϕ−1(b), and consequently thatb 6∈ S(I ). In the second case
b is smaller than any bitangent inG(I ) crossing it, thereforeb ∈ G(I ). This proves
claim (i).

For an exterior bitangentt lying onγ+O (resp.γ−O) we denote bysucc(t) the minimal
exterior bitangent greater thant lying on γ+O (resp.γ−O). Observe thatsucc(π(t)) =
π(succ(t)) = ϕ(t) whenevert is an exterior bitangent inX0, and that the numberh
of exterior bitangents inB is defined bysucch = π2. Let t be the minimal element in
I lying on γ+O. Sincesucc−1(t) 6∈ I it follows thatϕ−1(t) andϕ−1(π(t)), which are
respectively equal toπ−1(succ−1(t)) andsucc−1(t), are not inI ; thust andπ(t) are both
in S(I ). A similar result holds for the minimal element inI , sayt ′, lying onγ−O. Now
we consider the sequence

t, succ(t), succ2(t), . . . .

Clearly, if succj+1(t) ∈ S(I ), thensuccj ∈ S(I ). Therefore, there is ak such that
succj (t) ∈ S(I ) for j = 0, 1, . . . , k andsuccj (t) 6∈ S(I ) for j > k. Now observe
thatπ(t ′) lies onγ+O. Hence,succk(t) = π(t ′), sinceπ(t ′) ∈ S(I ) andsucc(π(t ′)) =
ϕ(t ′) 6∈ S(I ). Similarly, succk

′
(t ′) = π(t), wherek′ is the greatest index such that

succk
′
(t ′) ∈ S(I ). It follows thatsucck+k′(t) = π2(t) and, consequently, thatk+k′ = h.

Now observe thatGext(I ) is a subset of

{t, t ′, succ(t), succ(t ′), succ2(t), succ2(t ′), . . . , },
and thatsuccj+1(t) 6∈ G(I ) if succj (t) 6∈ G(I ). Therefore,Gext(I ) ⊆ Sext(I ), sinceπ(t)
andπ(t ′) are not inGext(I ). Furthermore, a cardinality argument shows thatSext(I ) =
Gext(I ) ∪ {π(t), π(t ′)}. This proves claim (ii).

Finally note thatS(I ) = supÎ = supÎ \X1, and consequently CardS(I ) = 3n− 1,
according to Theorem 11. This proves claim (iii), and therefore completes the proof of
the theorem.

3. The Greedy Flip Algorithm and Its Analysis

3.1. The Algorithm

Foru ∈ Rwe denote byI (u) the filter of bitangents inX0 with slope at leastu. Theorem 2
suggests a very simple algorithm: maintain the greedy pseudotriangulationG(I ), while
I ranges over a maximal chain of filters in the interval [I (0), I (π)].

Algorithm GREEDY FLIP ALGORITHM

1 compute the greedy pseudotriangulationG := G(I (0));
2 repeat
3 select a minimal bitangentb in G with slope less thanπ ;
4 flip b; (i.e., replaceb by ϕ(b) (resp.π(b)) if b is an interior (resp. exterior)

bitangent)
5 until there are no more bitangents of slope less thanπ .
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Theorem 2 proves the correctness of this algorithm. Of course, we still have to explain
how to implement the flip operation (namely line 4) and how to select a minimal bitangent
with slope less thanπ (namely line 3), so that the total cost of these operations isO(k)
time. Figure 10 illustrates the greedy flip algorithm. In this example the flipped bitangent
has minimal slope, and is therefore a minimal element with respect to the partial order¹.

In Section 3.2 the construction of the initial pseudotriangulationG(I (0)) is described
in detail. Section 3.3 describes how to select a minimal bitangent. Section 3.4 describes
an efficient implementation of the flip operation, whose amortized cost is analyzed in
Section 3.4.5.

3.2. Construction of the Initial Greedy Pseudotriangulation G(I (0))

Lemma 13. The greedy pseudotriangulation G(I (0)) of a collection of n disjoint con-
vex obstacles in the plane can be computed in O(n logn) time.

Proof. The construction is based on a standard rotational sweep `a la Bentley–Ottmann,
from direction 0 to directionπ , during which we maintain the visibility map associated
to the current direction. For simplicity assume that no free bitangent has slope 0. A useful
aid in the construction ofG := G(I (0)) is thegreedy visibility map M(u), associated
with a slopeu ∈ [0, π ]. Let B(u) be the bitangents inG with slope less thanu. Note
that B(0) = ∅, andB(π) is the set of bitangents inG.

Every objectO contains two points having a tangent line with slopeu. These points
are said to be of typeleft andright depending on whether the tangent line contains the
object in its left or right half-plane. The points are denoted byO(u, left) andO(u, right).
The collection of all these points is denoted byV(u).

Two distinct objectsO and O′ have exactly eight common directed tangent lines.
They form four pairs, denoted by(O,O′, τ, τ ′), whereτ andτ ′ are eitherleft or right.
For instance,(O,O′, left, right) is the tangent line going fromO to O′, containingO
in its left half-plane andO′ in its right half-plane.

From each point ofV(u) we shoot two rays, one with slopeu, the other one with
slopeu+π . We extend these rays until they hit an object, or a bitangent in the collection
B(u). In this way we partition free space into a number of regions that contain either
one or two points ofV(u) in their boundary. These regions are called triangular and
quadrangular, respectively. For convenience the two unbounded regions, in which we
can walk in directionu+π/2 andu−π/2, respectively, are called quadrangular as well,
even though they contain one point ofV(u) in their boundary.

If two triangular regions contain the same pointp of V(u) in their boundary, they
are incident along one of the rays emerging from this point. We then merge these two
regions by removing this ray. The pointp is still the only point ofV(u) in the boundary
of the merged region, which therefore is still triangular. The subdivision of free space
that remains after removing all rays shared by triangular regions is called thegreedy
visibility mapwith respect tou. It is denoted byM(u). Figure 11 depictsM(u) for the
initial directionu = 0, and the directionu = π/2.

The greedy visibility mapM(0) coincides with what is usually called the horizontal
visibility map of the collectionO. It can be constructed inO(n logn) time using a
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Fig. 10. The greedy flip algorithm. At each step the internal bitangent of minimal slope in the current
pseudotriangulation is flipped.
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Fig. 11. (a) The labeled regions in the upper left part form the faces of the initial visibility mapM(0). The
graph0(0) is depicted in the upper right part. (b) The labeled regions in the lower left part, together with the
lightly shaded regions, are the regions of the visibility mapM(π/2). The lower right part represents the graph
0(π/2).

standard sweep line algorithm. Furthermore, the subdivisionM(π) is just the greedy
pseudotriangulationG (if we forget about the four unbounded faces that partition the
complement of the convex hull). So we try to maintainM(u) asu ranges over [0, π ].

We describe the construction of the sequenceB(π) of bitangents belonging to the
pseudotriangulation. This method can be extended in a straightforward way to maintain
M(u) as well. The appearance of a free bitangent corresponds to the disappearance of
a quadrangular region. For example, in the situation depicted in the lower left part of
Fig. 11 the topology ofM(u)will not change asu rotates beyondπ/2, untilu passes the
slope of the bitangent contained in the quadrangular region labeled “6.” We represent
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Fig. 12. death(e) is the critical direction associated with regione.

the subdivision corresponding to thequadrangularregions ofM(u) by a directed graph
0(u), defined as follows.

Each quadrangular region ofM(u) contains two points ofV(u) in its boundary; We
connect these points by drawing a path in this region that is increasing with respect to
the directionu + π/2. In this way we obtain a directed plane graph0(u), whose set
of edges is in one-to-one correspondence with the set of quadrangular faces ofM(u),
and whose vertices are the points ofV(u) in the boundary of the quadrangular faces;
see Fig. 11. There are two infinite edges, corresponding to the quadrangular faces that
contain only one point ofV(u) in their boundary. The graph0(0) contains 3n+1 edges,
and0(π) contains four edges. We shall see that there are 3n− 3 events corresponding
to the disappearance of an edge, and therefore to the appearance of a bitangent. This is
of course related to Lemma 3.

Consider now an edgee of the graph0(u). Its terminal points areO′(u, τ ′) and
O′′(u, τ ′′). There are at most two tangent lines of type(O′,O′′, τ ′, τ ′′), whose slopes
lies between 0 andu. Let death(e) be the direction of these lines that is minimal, if this
minimal element exists, orπ otherwise; see Fig. 12.

LetD(u) be the set of directions defined by

D(u) = {death(e) | e is an edge of0(u) anddeath(e) < π}.
The following obvious result is crucial for the correctness of the algorithm constructing
the initial pseudotriangulation.

Lemma 14. Let the unit vectors u′ and u′′ be the directions of two consecutive elements
of B(π).

1. The setD(u) does not change when u ranges over the open interval(u′, u′′).
2. The critical direction u′′ is the minimal element ofD(u), for u between u′ and u′′.

We now describe the transition at the next critical direction, namely (i) updating the
graph0(u) whenu passes this critical direction, and (ii) updating the setD(u). It is not
hard to see that (i) takesO(1) time, and (ii) takesO(logn) time, due to the maintenance
of a priority queue. Figure 13 depicts a few cases.

We also describe the birth of pseudotriangles: the number of vertices of degree 3, plus
the number of triangular regions, is invariant. This is obvious in the situations depicted
in Fig. 13. It also holds in the case where at least one of the regionsa, b, c, andd
is triangular, as illustrated in Fig. 14. Note that the triangular regionsgrow during the
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Fig. 13. Transitions during the construction of the pseudotriangulation.

sweep, so not all combinations of triangular and quadrangular regions are possible. For
instance, in the upper left part of Fig. 13 it is not possible that regiona is triangular whilst
at the same timed is quadrangular, since in that case triangular regiona does not grow:
it shrinks near the edge along which it is incident withd. Finally the pseudotriangulation
G(I (0)) can easily be computed from the set of bitangentsB(π).

3.3. Minimal Bitangents

Consider a filterI , a bitangentb in the greedy pseudotriangulationG(I ), and a pseudo-
triangleT of G(I ). We denote byBT the set of bitangentst ∈ G(I ) such that bit(t)
appears in the boundary ofT . The partial order≺ restricted toBT is a linear order.
The minimal element ofBT is denoted bybT . We denote byLtri(b) (resp.Rtri(b)) the
pseudotriangle ofG(I ) incident upon bit(b) and—locally—to the left (resp. right) of
bit(b), oriented along the direction ofb. The initial point of a directed line segmentb
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Fig. 14. Transitions during the construction of the pseudotriangulation: at least one of the regionsa, b, c,
andd is triangular, and hence not represented by an edge in the graph0(u).

is denoted byTail(b), the terminal point byHead(b); sob is directed from its tail to its
head. Thebasepointof T , denoted bypT , is the tail ofbT , if T = Rtri(bT ), or the head
of bT , if T = Ltri(bT ).

The direction of the tangent line in a pointp of ∂T is uniquely determined by the
requirement that its slope lies in the interval [Slope(bT ),Slope(bT ) + π). This slope
is also called theslopeof p. Note that the slope is continuous on∂T , except at the
basepoint ofT . A directed subsegment of∂T is called awalk (resp.reverse walk) along
∂T if, going from the initial to the terminal point of the subsegment, we pass the points
of the subsegment in order of increasing (resp. decreasing) slope. A walk (resp. reverse
walk) goes aroundT clockwise (resp. counterclockwise) when viewed from insideT .
In particular, the walk starting at the basepoint ofT defines a linear order on the set of
bitangents in bit(BT ), called theslope order, which coincides, via the mapping bit, with
the linear order≺ on BT . We denote byb+ (resp.b−) the minimal bitangent inG(I )
lying onγ+O (resp.γ−O), if it exists.

Lemma 15. Let I be a filter. Then an interior(resp. exterior) bitangent b is minimal
in I if and only if b= bRtri(b) = bLtri(b) (resp. b = bRtri(b) = b−, or b = bLtri(b) = b+).

Proof. Assumeb is an interior bitangent. Lete ande′ ∈ X1 be such that sup(e) =
sup(e′) = b, and such that arc(e) and arc(e′) are on the boundaries ofRtri(b) and
Ltri(b), respectively. Clearly,b = bRtri(b) (resp.b = bLtri(b)) iff e ∈ Î (resp.e′ ∈ Î ).
Sinceb is minimal in I iff e, e′ ∈ Î , the result follows. A similar argument applies ifb
is an exterior bitangent.

The successive cusps we pass during a walk starting at the basepoint ofT , are denoted
by xT , yT andzT . If the basepoint is a cusp, then by definition it iszT . Theforward and
backward T-views of pointp in ∂T are thepointsof intersection of∂T with the tangent
line at p, lying ahead of and behindp, respectively. The point, whose forward (resp.
backward)T-view is pT , if T = Rtri(bT ) (resp.T = Ltri(bT )), is denoted byqT . See
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Fig. 15. Forward and backwardT-views p0 and p1 of t cannot both have smaller slope thant .

also Fig. 18. To avoid confusion, we stress that the forward (resp. backward) view from
a point along a directed line is defined with respect to the set ofobstacles(and not with
respect to the set of pseudotriangles); see Section 2.2, where this view is defined as an
obstacle.

For later use we isolate a simple, but crucial, feature of pseudotriangles of greedy
pseudotriangulations.

Lemma 16. Let T be a pseudotriangle of a greedy pseudotriangulation.

1. If zT 6= pT , then the part of∂T between zT and pT is an arc.
2. If yT lies between xT and qT , then the part of∂T between yT and qT is an arc

(i.e., it contains no bitangents).

Proof. We prove that no bitangentt ∈ BT has forward and backwardT-views of
smaller slope. This will prove part (1), since all points on the segmentzT pT have both
forward and backwardT-view of smaller slope. A similar argument proves part (2).

To prove the claim, suppose that both the backward and forwardT-view, p0 and p1

say, oft have smaller slopes thant . We only consider the case in whichp0 has smaller
slope thanp1. See Fig. 15. ThenT = Ltri(t), and the part of∂T betweenp0 and p1

lies completely to the left of the line supportingt . Let t ′ be the other bitangent (different
from t) betweenT = Ltri(t) andRtri(t). We give t ′ the direction that is compatible
with the slope of its head and tail. The bitangentt ′ intersectst and its tailp′ is a point
on ∂T betweenp0 and p1, therefore its slope is less than the slope oft . However,t
andt ′ are crossing; and consequentlyt ′ ≺ t in contradiction with the greediness of the
pseudotriangulation (claim (2) of Theorem 12). This proves the lemma.

3.4. Flipping Minimal Bitangents

3.4.1. The New Pseudotriangles R′ and L′. Consider a minimal bitangentb (with
respect to some filterI ), with R = Rtri(b) and L = Ltri(b). Let b∗ = ϕ(b) be the
bitangent obtained by flippingb. Its tail and head are denoted byp∗ andq∗, respectively.
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Fig. 16. The pseudotriangleR′ = Rtri(b∗) (shaded) is obtained by flipping bitangentb. Furthermore,R′ is
the left or right pseudotriangle ofb′R (cases 1 and 2, respectively), or∂R′ does not containb′R (case 3).

The right and left pseudotriangles ofb∗ (with respect to the filterI \{b}) are denoted
by R′ andL ′, respectively. We denote byG andG′ the pseudotriangulationsG(I ) and
G(I \{b}), respectively. We consider the bitangentbT for T = R′, L ′. We only consider
the pseudotriangleR′ (the story forL ′ is completely similar). Letb′R be the successor of
b in BR. The minimal element ofBR′ is one of the bitangentsb′R andb∗, namely the one
with smaller slope. Sob∗ = min BR′ , if p∗ lies betweenb andb′R, andb′R = min BR′ ,
otherwise. Hence there are three basic cases, that return throughout this section. They
are illustrated in Fig. 16.

Case1: b and b′R are not separated by a cusp of R. ThenR′ = Rtri(b′R), and p∗ does
not lie on the arc betweenb andb′R. Therefore minBR′ = b′R.

Case2: b and b′R are separated by a cusp of R, and p∗ does not lie on the arc between b
and b′R. ThenR′ = Ltri(b′R) and minBR′ = b′R. (Note: in this casexR = Head(b′R), as
in Fig. 16, orxR = Head(b).)

Case3: b and b′R are separated by a cusp of R, and p∗ lies on the arc between b and b′R.
Then minBR′ = b∗.

The bitangent minBL ′ is defined similarly.
We now consider the pseudotriangleR′ in more detail, in particular its cuspsxR′ , yR′ ,

andzR′ .

Case1: R′ = Rtri(b′R). In this situationb and b′R are not separated by a cusp, so
xR′ = xR. Furthermore, ifp∗ lies betweenxR andyR, then the second cuspyR′ is equal
to p∗, otherwise it is equal toyR; see Fig. 17(a). Similarly, the third cuspzR′ is equal to
yL , if q∗ lies betweenxL andyL , otherwise it is equal toq∗, as illustrated in Fig. 17(b).

Case2: R′ = Ltri(b′R) and b′R = min BR′ . In this case the basepoint ofR′ is Head(b′R),
which lies betweenxR and yR. Therefore the first cuspxR′ is equal top∗, if p∗ lies
betweenxR and yR, otherwise it is equal toyR; again see Fig. 17(a). Similarly, the
second cuspyR′ is equal toyL , if q∗ lies betweenxL andyL , otherwise it is equal toq∗;
see Fig. 17(b). Finally, the third cuspzR′ is equal tozL , if Head(b) = xR, otherwise it is
equal toxR, as illustrated in Fig. 17(c).

Case3: R′ = Rtri(b∗) and b∗ = min BR′ . In this caseHead(b) = xR, and the tailp∗ of
b∗ lies on the arc of∂R separatingb andb′R. Therefore the basepoint ofR′ is p∗, which
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Fig. 17. The cusps ofR′.

is also equal to the third cuspzR′ ; see the left part of Fig. 17(a) for this situation. Since
in this casexR is a cusp ofR, the second cuspyR′ is equal tozL , as depicted in the left
part of Fig. 17(c). Finally Fig. 17(b) shows that the first cuspxR′ is equal toyL or q∗,
depending on whetherq∗ lies betweenyL andzL , or betweenxL andyL .

Table 2 summarizes the previous discussion.

3.4.2. The Splittable QueueAwake[T]. Conceptually the flipping can be done by
walking—in the positive direction, starting at the basepoint—along the boundaries of
the pseudotrianglesL (left) and R (right) incident upon the flipped bitangentb, with
one leg in every pseudotriangle, such that at any moment the tangent lines at the points
underneath our left and right legs are parallel. We keep walking until these tangent lines
coincide. At that point we have foundb∗. This is too expensive, since some bitangents
may be passed during many walks involved in the flip operations. To cut the budget, we
need an auxiliary data structure, that enables us to start the walk at a more favorable point.

Observe that the tailp∗ of b∗ lies between the first cuspxR and the pointqR, whose
tangent contains the basepointTail(b) of R. Similarly,q∗ lies betweenxL andqL .

Definition 17. For a pseudotriangleT, a point in∂T is calledawakeif it lies between
xT andqT .

Table 2. The cusps ofR′.

xR′ yR′ zR′

Case 1 xR yR or p∗ yL or q∗
Case 2 yR or p∗ yL or q∗ zL or xR

Case 3 yL or q∗ zL p∗
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Fig. 18. The set of points that areawakein T is the segmentxT qT , for T = L , R. When the algorithm flips
b = bR = bL , the walk on∂T starts inq′T (case 1) or in the cuspxT (cases 2 and 3).

Note that the points of∂R that are awake have forwardR-view of smaller slope,
whereas the points awake in∂L have backwardL-view of smaller slope; see Fig. 18.
Lemma 16 tells us that the set of points that are awake is a sequence of arcs and bitangents
on a convex chain, possibly followed by a single arc betweenyT andqT (in caseqT does
not lie betweenxT andyT ).

If b and its successorb′R in BR are not separated by the cuspxR, corresponding to
case 1 in Section 3.4.1, the pointp∗ lies even betweenq′R andqR, whereq′R is the point
whose tangent containsTail(b′R), as shown in Fig. 18.

So the walk along∂R starts atq′R in case 1, and inxR, otherwise. Similarly, the walk
along∂L starts inq′L or in xL , whereq′L is the point on∂L ′ whose tangent contains
Head(b′L). Now xT can be determined inO(1) time, but how do we determineq′T
efficiently, for T = L , R? To this end we consider the segmentxTqT of points in∂T ,
that are awake, as an alternating sequence of bitangents and arcs, or atoms for short, where
the atoms are in slope order. This sequence is represented by asplittable queue, denoted
by Awake[T], a data structure for ordered lists that allows for the following operations:

1. Enqueuean atom, either at the head or at the tail of the list.
2. Dequeuethe head or the tail of the list.
3. Split the sequence at an atomx; this split is preceded by asearchfor the atomx.

A few comments on the split operation are in order. We assume that the initial search
for the atomx is guided by a real-valued function,f say, defined for atoms in the se-
quence, that is monotonous with respect to the order of the atoms in the sequence. Now a
split amounts to determining the atomx for which f (x) = 0, and successively splitting
the sequence (destructively) into the subsequences of atoms with negativef -values and
those with positivef -values. More specifically, to find the pointq′T (in case 1) we do a
split operation inAwake[T], where the search forq′T is guided by the position ofTail(b′T )
with respect to the tangent lines at the terminal points of an atom. See Section 3.4.3 for
more details on this split operation.

Lemma 18. There is a data structure, implementing a splittable queue, such that an
enqueue or dequeue operation takes O(1) amortized time, and a split operation at an
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atom x on a queue of n atoms takes O(log min(d, n−d)) amortized time, where d is the
rank of x in the sequence represented by the queue. Moreover, a sequence of m enqueue,
dequeue and split operations on a collection of n initially empty splittable queues is
performed in O(m) time.

For more details and a sketch of the proof see Appendix B. For our current purposes
we stress that we maintain, for each pseudotriangleT , a splittable queueAwake[T],
satisfying the following invariant:

Invariant 1. Awake[T] represents the segmentxTqT of ∂T (the atom containingxT

being the head of the queue).

We now describe in more detail (i) how to computeb∗, usingAwake[R] andAwake[L],
and (ii) how to restore Invariant 1 for the new pseudotrianglesR′ andL ′. Subsequently
we prove that the total cost of (i) and (ii) amortizes toO(k).

3.4.3. Construction of b∗. If b and its successorb′R in BR are not separated by the
cuspxR of R (case 1), then during the construction ofb∗ the walk along∂R starts in
q′R. In this case wesplit Awake[R] at q′R into AwakeMin [R] andAwakeMax[R], where
the atoms in the former queue have smaller slope than the atoms in the latter queue.
Otherwise, namely ifb andb′R are separated by the cuspxR, we setAwakeMin [R] ← ∅
andAwakeMax[R] ← Awake[R]. Here∅ denotes the empty queue. In either casep∗ lies
on an arc, represented by an atom in the queueAwakeMax[R]. We similarly initialize
the splittable queuesAwakeMin [L] andAwakeMax[L].

Now the simultaneous walk along∂Rand∂L can be implemented bydequeuingatoms
from AwakeMax[R] andAwakeMax[L], until the atoms (arcs) are found that containp∗

andq∗, respectively. Obviously, this sequence of synchronous dequeue operations takes
time proportional to the number of dequeued atoms. So we constructb∗ at the cost of at
most one split onAwake[R] and at most one split onAwake[L], followed by a number
of successive dequeue operations.

We finally adjust the first atoms in the queuesAwakeMax[R] and AwakeMax[L]
(namely the atoms containingp∗ andq∗, respectively) by replacing their terminal points
of smaller slope withp∗ andq∗, respectively. After this final operation the splittable
queuesAwakeMax[R] andAwakeMax[L] represent the segmentsp∗qR of ∂R andq∗qL

of ∂L, respectively. We use these queues in the construction of the queuesAwake[R′]
and Awake[L′]. We summarize the preceding discussion in the following piece of
pseudocode.

Algorithm COMPUTING b∗

1 if xR does not separatebR andb′R then
2 Comment: case 1
3 search for arc inAwake[R], containingq′R
4 split Awake[R] at q′R, into AwakeMin [R] andAwakeMax[R]
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5 elseComment: cases 2 and 3
6 AwakeMin [R] ← ∅
7 AwakeMax[R] ← Awake[R]
8 endif Comment:AwakeMax[R] representsq′RqR (case 1) orxRqR (case 2, 3)
9 ConstructAwakeMin [L] andAwakeMax[L] similarly

10 Find p∗ andq∗ by synchronous linear search onAwakeMax[R] and
AwakeMax[L], meanwhile dequeuing atoms not containingp∗ andq∗,
respectively

11 Set initial point of first atom inAwakeMax[R] to p∗

12 Comment:AwakeMax[R] represents subsegmentp∗qR of ∂R
13 Set initial point of first atom inAwakeMax[L] to q∗

14 Comment:AwakeMax[L] represents subsegmentq∗qL of ∂L

3.4.4. Construction ofAwake[R′] andAwake[L′]. To facilitate efficient maintenance
of the collection of queuesAwake[T], for all pseudotrianglesT , we also maintain the set
of points of∂T between the second cuspyT and the third cuspzT , that are not awake.
These points are calledasleep. They form a convex chain, namely the segmentyT zT or
qT zT of ∂T , depending on whetherqT lies betweenxT andyT or betweenyT andzT .
This convex chain is also represented by a splittable queueAsleep [T], whose atoms
represent the arcs and bitangents of the chain in order of increasing slope. In other words,
we maintain, for each pseudotriangleT , the following invariant:

Invariant 2. Asleep [T] represents the following segment of∂T : yT zT , if qT 6∈ yT zT ,
andqT zT , if qT ∈ yT zT .

We only describe how to establish Invariants 1 and 2 for pseudotriangleR′; the in-
variants are established similarly forL ′. In particular we show that the construction of
the queuesAwake[R′] andAsleep [R′] from the queuesAwakeMin [R], AwakeMax[R],
Asleep [R], AwakeMin [L], AwakeMax[L] andAsleep [L], requires only a number of
dequeue andat most four enqueueoperations. Again we consider each of the cases,
introduced in Section 3.4.1, separately.

Case1: R′ = Rtri(b′R). Since in this caseHead(b) is not a cusp ofR, it is a cusp ofL.
Figure 16, case 1, illustrates this observation. More precisely,Head(b) = zL . Moreover,
the point of∂L whose tangent contains the basepointHead(b) of ∂L, coincides with
Head(b), so we also havezL = qL . In particular all points of∂L betweenxL andzL are
awake inL. Furthermore, the basepoint ofR′ is Tail(b′R), so we haveqR′ = q′R. Hence,
by definition, all points that are awake inR′ lie betweenxR (= xR′ ) andq′R. This justifies
line 2 in the following piece of pseudocode:

Algorithm CONSTRUCTION OFAwake[R′] AND Asleep [R′]: CASE 1

1 Comment:Awake[L] = xL zL , Asleep [L] = ∅
2 Awake[R′] ← AwakeMin [R]
3 Comment: Invariant 1 holds forR′

4 if zR′ = yL then
5 Asleep [R′] ← AwakeMax[L]
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6 dequeue last atom fromAsleep [R′]
7 elseComment:zR′ = q∗

8 Asleep [R′] ← ∅
9 endif Comment:Asleep [R′] represents subsegment ofq∗zR′ ⊂ ∂R′ of points

asleep in∂R′

10 enqueue segmentb∗ = p∗q∗ at the head ofAsleep [R′]
11 Comment:Asleep [R′] representsp∗zR′ ⊂ ∂R′

12 if yR′ = yR then
13 if qR′ ∈ xRyR then
14 enqueue arcyR p∗ at the head ofAsleep [R′]
15 elseComment:qR′ ∈ yRzR

16 enqueue arcqR′ p∗ at the head ofAsleep [R′]
17 endif
18 elseComment:yR′ = p∗

19 skip (do nothing)
20 endif Comment: Invariant 2 holds forR′

To see howAsleep [R′] is constructed in lines 3–20, first observe thatb∗ is asleepin
R′, since it lies on the segmentyR′zR′ of ∂R′, beyond the pointq′R (= qR′ ).

Lines 4–9 initializeAsleep [R′], so that it represents the chain of points onq∗zR′ ,
that are asleep inR′. To see this, recall from the end of Section 3.4.3 thatAwakeMax[L]
represents the segmentq∗zL of ∂L, sinceqL = zL . Furthermore, Lemma 16, part (2),
tells us that the segmentyL zL is a single arc. Therefore this arc is the last atom in
AwakeMax[L]. So if zR′ = yL (see Table 2), we initializeAsleep [R′] in line 5, after
which we dequeue the last atom from this queue in line 6. IfzR′ = q∗ the segmentq∗zR′

is empty, justifying the assignment in line 8.
To complete the construction, observe thatb∗ is asleep inR′. Therefore we enqueue,

in line 10, an atom representingb∗ onto Asleep [R′], after which this queue repre-
sents the chainp∗zR′ . If yR′ = p∗, this completes the construction ofAsleep [R′].
This case is handled in lines 18 and 19. So according to Table 2, it remains to consider
the caseyR′ = yR. This is done in lines 12–17. According to Lemma 16, the segment
yR p∗ ⊂ yRqR, is a single arc. IfqR′ (= q′R) lies betweenxR andyR, all points on the arc
yR p∗ are asleep inR′, so the first atom ofAsleep [R′] should represent this arc. Finally,
if q′R ∈ yRzR, the first atom ofAsleep [R′] should represent the arcq′R p∗. In either
case we enqueue an atom at the head ofAwake[R′], which represents an arc with
terminal pointp∗, and initial pointyR′ . This completes the construction ofAsleep [R′]
in case 1.

Case2: R′ = Ltri(b′R) and b′R = min BR′ . We distinguish two subcases.

Case2.1:Head(b) = xR. In this situationzR′ = zL . To determine the partxR′qR′ of ∂R′

that is awake, we consider two further subcases.

Case2.1.1:qR′ comes before p∗ on ∂R′. We can determine inO(1) time whether this
case arises by comparing the position ofpR′ with respect to the tangent atp∗. In this
case, by Definition 17,b∗ is not awake in∂R′. Note also that in this casexR′ = yR. Now
Lemma 16, part (2), tells us that the pointsxR′ (= yR ), qR′ , p∗, andqR lie on a single arc
(in ∂R). Consequently, the points that are awake in∂R′ form a single arcxR′qR′ (= yRqR′ ).
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Therefore we restore Invariant 1 for pseudotriangleR′ by initializing Awake[R′] as
the empty queue, after which we enqueue a single atom, representing the arcxR′qR′ on
∂R′. See lines 2–4 of the pseudocode below.

Case2.1.2:qR′ comes after p∗ on ∂R′. In this caseqR′ lies on the segmentq∗qL of ∂L.
As explained in Section 3.4.3 this segment is represented byAwakeMax[L]. So we start a
reversewalk along∂L, starting atqL , until we have foundqR′ . We know when to stop by
considering the position ofHead(b′R)with respect to the tangent line in the current point
of ∂L. This walk can be implemented by first settingAwake[R′] ← AwakeMax[L],
and subsequentlydequeuingatoms from the tail ofAwake[R′]; see lines 6–10 of the
pseudocode below. WhenqR′ is found, the queueAwake[R′] represents the segment
q∗qR′ . The construction ofAwake[R′] is completed by enqueuing an atom representing
b∗ at the head, followed by enqueuing an atom representing the arcxR′ p∗ at the head
in casexR′ 6= p∗, see lines 14–19 of the pseudocode. (The fact that, in the latter case,
xR′ p∗ is a single arc follows from Lemma 16, part (2), applied toR′.)

Case2.2:Head(b) 6= xR. In this caseHead(b′R) = xR. FurthermorepR′ = qR′ = xR, so:

• The partyR′zR′ ( = yR′qR′ ) of ∂R′ is a single arc; see again Lemma 16, part (2),
applied toR′.
• All points on∂R′ betweenxR′ ( = yR or p∗) andzR′ ( = xR ) are awake in∂R′.

Consequently, no point is asleep in∂R′.

Since in this caseqL = zL (= Head(b)), we see thatAwakeMax[L] represents the part
of ∂R′ betweenq∗ andzL ; see line 14 in the algorithm of Section 3.4.3. So after setting
Awake[R′] to AwakeMax[L], and adjusting the endpoint of the last atom in this queue
from qL (= zL ) to xR (= zR′ = qR′ ), we establish thatAwake[R′] represents the part of
∂R′ betweenq∗ andzR′ . See lines 6 and 11–13 of the pseudocode below.

As in case 2.1.2, we now enqueueb∗ at the head ofAwake[R′]. In casexR′ = p∗, this
completes the construction ofAwake[R′]. In casexR′ 6= p∗ we complete the restoration
of Invariant 1 by enqueuing the single arcxR′ p∗ (= yR p∗).

We summarize the preceding discussion in the following piece of pseudocode:

Algorithm CONSTRUCTION OFAwake[R′]: CASE 2

1 if Head(b) = xR and qR′ comes beforep∗ on ∂R′ then Comment: Case 2.1.1
2 Awake[R′] ← ∅
3 enqueue atom representing arcxR′qR′ ontoAwake[R′]
4 Comment: Invariant 1 holds forR′

5 elseComment: case 2.1.2 or case 2.2
6 Awake[R′] ← AwakeMax[L]
7 if Head(b) = xR then Comment: case 2.1.2
8 while tail atom ofAwake[R′] does not containqR′ do
9 dequeue tail atom ofAwake[R′] endwhile

10 set terminal point of tail atom inAwake[R′] to qR′

11 elseComment: case 2.2
12 set terminal point of tail atom inAwake[R′] to xR (= qR′ )
13 endif Comment:Awake[R′] representsq∗qR′
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14 enqueueb∗ at the head ofAwake[R′]
15 if xR′ 6= p∗ then Comment:xR′ = yR; see Table 2
16 enqueue arcxR′ p∗ at head ofAwake[R′]
17 elseComment:xR′ = p∗

18 skip (do nothing)
19 endif Comment: Invariant 1 holds forR′

20 endif

It remains to describe the construction ofAsleep [R′], namely the sequence of points of
∂R′ betweenyR′ andzR′ that are not awake.

As we have observed above, in case 2.2 none of the points of∂R′ is asleep, so we
establish Invariant 2 forR′ by settingAsleep [R′] to ∅. So consider case 2.1, namely
Head(b) = xR. ThenzR′ = zL , and all points that are asleep in∂R′ belong to∂L.
If qL does not belong to the part of∂L betweenyL andzL , thenyR′zR′ = yL zL , and
qR′ 6∈ yL zL , so we restore Invariant 2 forR′ by settingAsleep [R′] ← Asleep [L]. If,
on the other hand,qL ∈ yL zL , thenqL is—by definition—the initial point of the first
atom ofAsleep [L]. In this case Lemma 16, part (2), applied to the pseudotriangleL,
tells us thatyLqL is a single arc, so we can detect inO(1) time whetherqR′ lies between
yL andzL (since, in that case, it lies on the arcyLqL of ∂L). If qR′ ∈ yL zL , then the first
atom ofAsleep [R′] is the union of the arcqR′qL and the arc that is the first atom of
the queueAsleep [L]. In other words, after settingAsleep [R′] ← Asleep [L], we can
establish Invariant 2 forR′ in this case by replacing the initial point (namelyqL ) of the
first atom inAsleep [R′] with qR′ . See line 5 of the pseudocode below. IfqR′ 6∈ yL zL ,
we replace the initial point of the first atom ofAsleep [R′] with yR′ , which is eitherq∗

or yL . See lines 6–8 in the pseudocode.
The preceding discussion is summarized in the following code fragment.

Algorithm CONSTRUCTION OFAsleep [R′]: CASE 2

1 if Head(b) = xR then Comment: case 2.1,zR′ = zL

2 Asleep [R′] ← Asleep [L]
3 if qL ∈ yL zL then
4 if qR′ ∈ yL zL then
5 set initial point of first atom inAsleep [R′] to qR′

6 elseifq∗ ∈ yL zL then
7 set initial point of first atom inAsleep [R′] to q∗

8 elseset initial point of first atom inAsleep [R′] to yL

9 endif
10 elseskip (do nothing)
11 endif
12 elseComment: case 2.2,zR′ = xR = qR′

13 Asleep [R′] ← ∅
14 endif Comment: Invariant 2 holds forR′

Case3: R′ = Rtri(b∗) and b∗ = min BR′ . In this caseR′ is theright pseudotriangle of
b∗, sop∗ is the basepoint ofR′, andqR′ = p∗. Again we refer to Fig. 16, case (3). Hence
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no point of∂R′ is asleep, so we setAsleep [R′] ← ∅. The construction ofAwake[R′]
from Asleep [L] is similar to the construction ofAsleep [R′] from Asleep [L] in case
2.1. More precisely, ifqL 6∈ yL zL , we havexR′ yR′ = yL zL , which is represented by
Asleep [L]. So setAwake[R′] ← Asleep [L] in this case.

If qL ∈ yL zL , we also setAwake[R′] ← Asleep [L], but we have to change the
initial point of the first arc fromqL into xR′ , which is eitherq∗ (if q∗ ∈ yL zL ) or yL (if
q∗ 6∈ yL zL ), according to Table 2. In both cases we finally enqueue the arczL p∗ = yR′qR′

at the tail ofAwake[R′].

3.4.5. Amortized Complexity. As for the amortized time complexity, observe that the
initial collection of splittable queues—one for each pseudotriangle in the greedy pseudo-
triangulation we start out with—can be computed inO(n logn) time (for instance, simply
by enqueuing the bitangents and arcs that are awake in the boundary of each pseudotrian-
gle). This amounts toO(n) enqueue operations. As we have just indicated, doing all flips
and maintaining the collection of queuesAwake[T] andAsleep [T], T ∈ G(I (0)), cost
O(k) further enqueue, dequeue, and split operations. Note that, according to Lemma 3,
at any time the storage needed for all these queues isO(n). Together with Lemma 18
this observation implies our main result, namely Theorem 1.

Although we have not checked all the details yet, we are convinced that this algorithm
also applies to the case of obstacles of nonconstant complexity. More precisely, consider
n convex objects consisting of a total ofm pieces of constant complexity. Then the algo-
rithm computes the visibility graph of this collection in timeO(k+m logn) and space
O(m). In this case the number of enqueue operations in a single flip has an upper bound
proportional to the complexity of the face of the visibility complex whose minimal ver-
tex corresponds to the bitangent being flipped. Then the amortized complexity analysis
of the algorithm can be done conveniently in terms of the combinatorial complexity,
namelyO(k+m), of the visibility complex.

4. Conclusion

In this paper we have presented an optimal time and linear space algorithm for con-
structing the visibility graph of a set of pairwise disjoint convex obstacles of constant
complexity in the plane. Our algorithm realizes a topological sweep of the visibility com-
plex and is based on new combinatorial properties of visibility graphs/complexes. As
indicated in Section 3.4.5, we are convinced that the algorithm also works for obstacles
of nonconstant complexity.

This work raises two questions that we intend to study in the future. The first question
is whether our method can be extented to nonconvex obstacles—it seems clear that the
method can be extented to the computation of the visibility graph of the collection of
relative convex hulls of nonconvex obstacles (mainly because, in that case, free space
remains decomposable into pseudotriangles); however, the general case remains elu-
sive. The second question is whether our algorithm can be turned into an algorithmic
characterization of (some abstraction of) visibility graphs—as, for example, the greedy
algorithm characterizes the independence set systems which are matroids (see [17]).
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Appendix A. Poset Terminology

In this section we review poset terminology, that we borrow from the book of Stanley [28,
Chapter 3] and the paper of McMullen [19].

A partially ordered set P(or poset, for short) is a set, together with a partial order
relation denoted by¹. A subposetof P is a subset ofP with the induced order. A special
type of subposet is theinterval [x, y] = {z ∈ P | x ¹ z ¹ y}. A posetP is called a
locally finiteposet if every interval ofP is finite. If x, y ∈ P, then we say thaty covers
x if x ≺ y (i.e., x ¹ y andx 6= y) and if no elementz ∈ P satisfiesx ≺ z ≺ y. The
Hasse diagramof a poset is the graph whose vertices are the elements ofP and whose
edges are the cover relations.

A chain is a poset in which any two elements are comparable. A subsetC of a poset
P is called achain if C is a chain when regarded as a subposet ofP. The chainC of
P is saturated(or unrefinable) if there does not existz ∈ P\C such thatx ≺ z≺ y for
somex, y ∈ C and such thatC ∪ {z} is a chain. Anantichainis a subsetA of a poset
P such that any two distinct elements ofA are incomparable. Afilter is a subsetI of
P such that ifx ∈ I andx ¹ y, theny ∈ I . A properfilter of a poset(X,¹) is a filter
which is a nonempty proper subset ofX.

An abstractn-polytope is a poset(P,¹), with elements called faces, which satisfies
the following properties:

1. P has a unique minimal faceF−1 and a unique maximal faceFn.
2. The flags (i.e., maximal chains) ofP all contain exactlyn+ 2 faces. ThereforeP

has a strictly monotone rank function with range{−1, 0, . . . ,n}. The elements of
rank i are called thei -faces ofP, or vertices, edges, and facets ofP if i = 0, 1,
or n− 1, respectively.

3. P is strongly flag-connected, meaning that any two flags8 and9 of P can be
joined by a sequence of flags8 = 80,81, . . . , 8k = 9, which are such that8i−1

and8i are adjacent (differ by just one face), and such that8∩9 ⊂ 8i for eachi .
4. Finally, if F andG are an (i − 1)-face and an (i + 1)-face withF ≺ G, then there

are exactly twoi -facesH such thatF ≺ H ≺ G. (Diamond Property.)

For a faceF the interval [F, Fn] is called thecofaceof P at F , or thevertex-figureat F ,
if F is a vertex.

Appendix B. Splittable Queues

Here we sketch a proof of Lemma 18. It is well known that finger trees suit our purpose
(see, e.g., [13]), but even the much simpler red–black trees with father pointers will do. In
this way we avoid the use of level links, which are rather complicated to maintain. Note
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in passing that the randomized search trees of Aragon and Seidel [3] can also be used to
implement splittable queues, resulting in the same time bounds with high probability.

We augment a red–black tree with two special pointers, to the maximal and minimal
atoms in the tree. Atoms (arcs) are stored in a leaf-oriented fashion; they are represented
by their endpoints and the tangent lines at their endpoints. In general, the same repre-
sentation can be used to represent convex chains that are unions of atoms of the type just
described. So we store a chain in a red–black tree in the following way: (i) store the atoms
at the leaf; (ii) at an internal node, store the convex chain that is the union of all atoms in the
subtree rooted at this leaf. This information is sufficient to guide the search for the atom at
which we want to split the queue (chain), since the basic operation is to determine whether
from a given point there is a tangent line to the convex chain. Furthermore, the informa-
tion at internal nodes can be maintained after 1 (1, and a constant number of rotations).

The amortizedO(1) cost of theenqueueanddequeueoperation follows from a stan-
dard argument, since it is well known that the amortized rebalancing cost of an insert
operation on a red–black tree, i.e., the time spentafter locating the father of the new node,
is O(1) (see, e.g., Chapter III of [20] or Chapter 3.3 of [21]). Since upon enqueueing
a new atom at the head or the tail of the list, the father of the new atom is either the
maximal or the minimal node, it can be found inO(1) time. It is similarly shown that
dequeuing takesO(1) amortized time.

A similar argument holds for the split operation. Suppose we search for an atomx of
rankd. By synchronously walking upward along the left and right ridge of the red–black
tree, starting from the minimal and maximal node, we find the root of a subtree of height
O(log min(d, n−d)) containing the atomx. Descending in this subtree, toward the leaf
representing the atomx, takesO(log min(d, n−d)) time, after which we can do the actual
split in O(log min(d, n−d)) time. The amortized time for 1 is alsoO(log min(d, n−d)).

To prove that asequenceof O(m) operations onn initially empty splittable queues
can be performed inO(m) time, we provide each queue withr − logr credits, wherer
is the size (number of atoms) of the queue (we consider logarithms in base 2); see [5] for
a similar analysis. Suppose that, due to a split operation, a queue of sizer is split into
two queues of sizer1 andr2, wherer1 ≥ r2. To restore the credit invariant we deposit
one additional credit for this split operation. Then the creditsr1− logr1 andr2− logr2

for the new queues are available, since 2r1 ≥ r implies that

r − logr + 1≥ (r1− logr1)+ (r2− logr2)+ logr2.

Restoring the credit invariants for the collection of queues upon an enqueue or dequeue
operation is similar.
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