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Abstract

When someone designs a new data structure, they w an t to kno w ho w w ell it p er-

forms. Previously , the only w a y to do this in v olv es �nding, co ding and testing

some applications to act as b enc hmarks. This can b e tedious and time-consuming.

W orse, ho w a b enc hmark uses a data structure ma y considerably a�ect the e�-

ciency of the data structure. Th us, the c hoice of b enc hmarks ma y bias the results.

F or these reasons, new data structures dev elop ed for functional languages often

pa y little atten tion to empirical p erformance.

W e solv e these problems b y dev eloping a b enc hmarking to ol, A uburn , that can

generate b enc hmarks across a fair distribution of uses. W e precisely de�ne \the

use of a data structure", up on whic h w e build the core algorithms of Auburn:

ho w to generate a b enc hmark from a description of use, and ho w to extract

a description of use from an application. W e consider ho w b est to use these

algorithms to b enc hmark comp eting data structures.

Finally , w e test Auburn b y b enc hmarking sev eral implemen tations of three

common data structures: queues, random-access lists, and heaps. These and

other results sho w Auburn to b e a useful and accurate to ol. They also rev eal

areas requiring impro v emen t, whic h w e list as future w ork.
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Chapter 1

In tro duction

The imp ortance of e�cien t data structures is re
ected through literature span-

ning man y y ears [3, 11 , 51]. Recen tly , this has included data structures and

complexit y mo dels dev elop ed sp eci�cally for functional languages [14, 38 , 40 ].

But, in practice, what distinguishes a go o d data structure from a bad data struc-

ture? What is the main reason whether a data structure is useful? Empirical

p erformance! Y et most literature has paid little atten tion to this asp ect of data

structures. W e tac kle this de�ciency b y dev eloping the theory and practice of

b enc hmarking functional data structures.

1.1 F unctional Languages

Wh y use functional languages? Giv en the amoun t of literature on data structures

for imp erativ e languages, wh y do w e need to b other with functional data struc-

tures? There are strong argumen ts for the functional st yle of programming [5, 22 ].

� Suc cinctness. A functional program is t ypically shorter than its imp erativ e

equiv alen t. This helps reduce dev elopmen t and main tenance costs.

� Clarity. The meaning of a functional program is arguably more immediate,

b y b eing shorter and b y using features lik e algebraic datat yp es and higher

order functions.

� R e asoning. The lac k of state allo ws referen tial transparency , whic h in turn

allo ws the meaning of a program to b e indep enden t of its surroundings.

1
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This simpli�es an y mathematical reasoning on a program, including for

example, a pro of of its correctness. This also simpli�es the programmer's

task, b y aiding their o wn men tal reasoning ab out a program.

� Be auty. A functional program feels \cleaner" and more aesthetically pleas-

ing. Through aesthetics, this a�ects the state of the programmer, their

en th usiasm to w ork, and th us the qualit y of their results.

As a small example, Figure 1.1 and Figure 1.2 sho w C and Hask ell v ersions

resp ectiv ely of a program to insert and lo okup a no de in an ordered, un balanced

tree. The most ob vious di�erence b et w een these programs is the di�erence in

size. Figure 1.3 sho ws a more compact C program, but it is still larger than the

Hask ell program, and less understandable than the larger C program. The Hask ell

program is far clearer than either C program. Because of this size di�erence, and

b ecause of the lac k of p oin ters, programming the Hask ell v ersion is far less error-

prone. The Hask ell programmer is free to think ab out the tree itself, rather than

ho w the tree is represen ted.

1.2 F unctional Data Structures

Giv en w e w an t to use a functional language, wh y do w e need data structures

sp eci�cally designed for a functional setting? Will not the v ast arra y of imp erativ e

data structures su�ce? Unfortunately not, b ecause of the greater demands a

functional language places on its data structures: A functional data structure

c annot b e destructively up date d . No information can b e lost un til the program

using the data structure no longer requires it. In particular, when a data structure

is up dated, b oth the new and the old v ersions of the data structure m ust b e

a v ailable for further use.

Some imp erativ e data structures c an b e brough t across to the functional w orld

with little c hange. In most cases the design actually b ecomes cle ar er in a func-

tional setting. Figures 1.1 and 1.2 illustrate this w ell. Ok asaki giv es another

example b y implemen ting red-blac k trees in a functional setting [39 ] and further

writes in the conclusions section:
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#include <stdio.h>

#include <stdlib.h>

typedef struct node {

int value;

struct node *left, *right;

} node;

typedef node *tree;

int member (int x, tree t) {

while (t != NULL && t->value != x)

t = (x < t->value) ? t->left : t->right;

return (t != NULL);

}

tree mknode (int x) {

tree t = malloc (sizeof (node));

t->value = x;

t->left = t->right = NULL;

return t;

}

void insert (int x, tree *result) {

tree t = *result , *tptr = result;

if (t == NULL) {

*result = mknode(x);

} else {

while (t != NULL && t->value != x) {

tptr = (x < t->value) ? &t->left : &t->right;

t = *tptr;

}

if (t == NULL) *tptr = mknode(x);

}

}

Figure 1.1: C program to insert and lo okup a no de in an ordered, un balanced

tree.



4 CHAPTER 1. INTR ODUCTION

data Tree a = Empty | Node (Tree a) a (Tree a)

member x Empty = False

member x (Node l y r)

| x < y = member x l

| x > y = member x r

| otherwise = True

insert x Empty = Node Empty x Empty

insert x (Node l y r)

| x < y = Node (insert x l) y r

| x > y = Node l y (insert x r)

| otherwise = Node l x r

Figure 1.2: Hask ell program to insert and lo okup a no de in an ordered, un bal-

anced tree.

#include <stdio.h>

#include <stdlib.h>

typedef struct node {

int value;

struct node *left, *right;

} node;

typedef node *tree;

tree* find (int x, tree *tp) {

if (*tp != NULL)

while (*tp != NULL && (*tp)->value != x)

tp = (x < (*tp)->value) ? &(*tp)->left : &(*tp)->right;

return tp;

}

int member (int x, tree t) {return (*find(x,&t) != NULL);}

void insert (int x, tree *tp) {

if ((tp = find(x,tp)) != NULL) {

*tp = malloc(sizeof (node));

(*tp)->value = x; (*tp)->left = (*tp)->right = NULL;

}

}

Figure 1.3: Compact C program to insert and lo okup a no de in an ordered

un balanced tree.
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When existing imp erativ e algorithms can b e implemen ted in func-

tional languages, the results are often m uc h prettier than the original

v ersion. This has b een amply demonstrated in the past for v arious

kinds of balanced binary searc h trees, including 2-3 trees [47], BB-

trees [2], and A VL trees [31 ].

Ov er the past six or sev en y ears, man y pap ers ha v e giv en details of new

functional data structures [7 , 10, 14 , 32, 33 , 34, 40 ]. Ho w ev er, these pap ers

only giv e limited atten tion to empirical p erformance. Ok asaki writes in an op en

problems section of his thesis Pur ely F unctional Data Structur es [36], \The theory

and practice of b enc hmarking [functional] data structures is still in its infancy ."

This thesis dev elops the theory and practice of b enc hmarking functional data

structures.

1.3 Benc hmarking F unctional Data Structures

Supp ose w e w an t to measure the e�ciencies of some comp eting data structures.

The standard approac h is to �nd a few applications to act as b enc hmarks, allo wing

us to measure the e�ciency of eac h data structure when used b y eac h b enc hmark.

Wh y not do this? Firstly , creating an ything but a v ery arti�cial b enc hmark is a

substan tial task. Secondly , using the results of just a few b enc hmarks, esp ecially

arti�cial ones, can b e v ery misleading. The e�ciency of a data structure ma y

v ary hea vily according to ho w it is used, and hence the c hoice of b enc hmarks ma y

determine whic h data structure app ears to b e the b est|see Section 7.2.1 for an

example of this. W orse, w e will not kno w if our c hoice of b enc hmarks is \fair" or

not.

W e solv e b oth of these problems b y dev eloping a b enc hmarking to ol, A uburn ,

that cr e ates a b enchmark ac c or ding to a description of use . By generating a fair

distribution of b enc hmarks o v er a wide v ariet y of di�eren t uses, w e not only �nd

whic h data structure is b est over al l , but also which data structur e is b est for a

p articular use .

Supp ose that w e ha v e a single application in mind, and w e wish to c ho ose one

of man y comp eting data structures to use in our application. Wh y not simply
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measure the p erformance of our application using eac h data structure in turn?

Unfortunately , this approac h do es not rev eal why the data structures p erform as

they do. If our application c hanges ho w it uses the data structures, a di�eren t

one ma y no w b e the most e�cien t, without us kno wing wh y .

By measuring ho w our application uses the data structures, and ho w the data

structures' e�ciency v aries according to this use, w e can kno w wh y the b est data

structure is b est. Therefore, Auburn also cr e ates a description of use fr om an

applic ation .

1.4 T erminology

In order to understand the follo wing c hapters, it is necessary to de�ne a few k ey

terms.

� Benchmark. A b enchmark is an application that can use an y one of a

family of comp eting data structures. A b enc hmark is used to measure the

p erformance of suc h data structures.

� A bstr act Datatyp e. An abstr act data typ e ( adt ) is a t yp e with asso ciated

op erations manipulating v alues of that t yp e. A more detailed de�nition is

giv en in Section 3.1.

� Implementation. A data structure that giv es a concrete realisation of the

t yp e and op erations of an adt is called an implementation .

� V ersion. When an application uses a data structure, at an y one p oin t in the

computation, there exist man y di�eren t instances of the data structure|for

example, a particular list, or a particular queue. Eac h particular instance

of a data structure is called a version of the data structure.

� Persistenc e. Persistenc e is the prop ert y of allo wing the use of an y v ersion

of a data structure in its original form after it has b een up dated. A data

structure that supp orts p ersistence is called p ersistent . A data structure

that is not p ersisten t is called ephemer al .

� Single-Thr e ade d. An application is single-thr e ade d in the use of a data

structure if it do es not use an y p ersistence supp orted b y the data structure.
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� A mortisation. When applied to the complexit y of an op eration, amortisa-

tion implies that the cost of an op eration is considered in the con text of

a gr oup of op erations, rather than in isolation. This allo ws the cost of an

exp ensiv e op eration to b e spread o v er man y surrounding inexp ensiv e op er-

ations. Note that all complexities are arguably amortised in a lazy language

lik e Hask ell.

1.5 Ov erview

Chapter 2 reviews some implemen tations of three di�eren t adt s: queues, random-

access sequences, and heaps. The details of the implemen tations pro vide an ex-

ample of the di�eren t w a ys of implemen ting an adt . They also add meaning to

the results of b enc hmarking the implemen tations in Chapter 7.

Chapter 3 dev elops the theory of datat yp e usage up on whic h Auburn is based.

It de�nes a datatyp e usage gr aph ( dug ) recording ho w a data structure is used

b y an application, and a pr o�le summarising the most imp ortan t asp ects of a

dug . This c hapter also outlines ho w w e can create a b enc hmark from a pro�le,

and extract a pro�le from an application.

Chapter 4 describ es the implemen tation of the core algorithms of Auburn, as

outlined in theory in Chapter 3. These in v olv e the creation of b enc hmarks from

pro�les through the generation and ev aluation of dug s, and the extraction of

pro�les from applications through the extraction and pro�ling of dug s.

Chapter 5 in v estigates ho w w e should use Auburn. There are man y w a ys w e

could use the algorithms of Chapter 4, but w e need an y metho d to b e e�cien t,

to b e accurate, and to pro duce concise, clear results. This c hapter presen ts a few

metho ds, summarising their adv an tages and disadv an tages, and then recommends

one of them.

Chapter 6 outlines the design and use of Auburn. Chapter 4 giv es the core

algorithms of Auburn, but there are man y other design decisions in ho w to im-

plemen t and com bine these in to one pac k age. Most of the decisions relate to the

language in whic h w e implemen t Auburn: Hask ell.

Chapter 7 rep orts the results of using Auburn on the data structures of Chap-

ter 2. W e examine the accuracy of these results, and the accuracy of Auburn as
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a whole. W e also in v estigate the source of an y inaccuracy in Auburn.

Chapter 8 concludes and lists future w ork.

App endix A giv es the co de for the implemen tations of the data structures

detailed in Chapter 2 and used in the �nal round of b enc hmarking in Chapter 7.

App endix B giv es the mo di�cations of the implemen tations of App endix A

used in the �ne-tuning section of Chapter 7.

App endix C details the executables that mak e up Auburn.



Chapter 2

Implemen tations of Three ADT s

In Chapter 7, w e shall b enc hmark sev eral implemen tations of queues, random-

access sequences, and heaps. This c hapter deliv ers the k ey idea b ehind eac h

implemen tation. W e ma y then in terpret the results of the b enc hmarking in the

ligh t of this review. Without suc h a review, the results hold little v alue except

to w ards c ho osing one o v er another; with this review, the practical results of design

c hoices b ecome visible and pro vide insigh t in to their e�ectiv eness.

Eac h section of this c hapter b egins with a brief description and formal sp ec-

i�cation of the adt . The follo wing subsections review eac h implemen tation.

W e giv e references to pap ers describing the implemen tations in greater detail.

As w e organise the review b y data structure, w e can easily compare di�eren t

implemen tations of the same data structure. App endix A giv es co de for eac h

implemen tation.

2.1 Queues

Queues are among the simplest of adt s. They are sequences supp orting insertion

at the rear, and remo v al from the fron t. Figure 2.1 giv es the sp eci�cation of

queues. T able 2.1 lists the queue implemen tations and the complexities of their

op erations.

9
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typ e Queue a = [ a ]

empty :: Queue a

empty = [ ]

sno c :: Queue a ! a ! Queue a

sno c [ x

0

; : : : ; x

n � 1

] x = [ x

0

; : : : ; x

n � 1

; x ]

he ad :: Queue a ! a

he ad [ x

0

; : : : ; x

n � 1

] = x

0

( n � 1)

tail :: Queue a ! Queue a

tail [ x

0

; : : : ; x

n � 1

] = [ x

1

; : : : ; x

n � 1

] ( n � 1)

Figure 2.1: Queue sp eci�cation. F or the purp oses of sp eci�cation, w e treat a

queue as a list.

Queues

Name Lazy Complexities of Op erations Reference

Na • �v e - he ad/tail : O (1), sno c : O ( n ) n/a

Simple - sno c/he ad/tail : O (1)

z

[20 ]

Multihead - sno c/he ad/tail : O (1) [20 ]

Bank er's X sno c/he ad/tail : O (1)

y

[37 ]

Ph ysicist's X sno c/he ad/tail : O (1)

y

[38 ]

Real-time X sno c/he ad/tail : O (1) [34 ]

Bo otstrapp ed X sno c/he ad/tail : O (1)

y

[38 ]

Implicit X sno c/he ad/tail : O (1)

y

[38 ]

T able 2.1: Complexities of implemen tations of queues, including whether lazy

ev aluation is required. Complexities mark ed with y are amortized. Complexities

mark ed with z also are amortized, but only under single-threaded use. All other

complexities are w orst-case.
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2.1.1 Na • �v e Queues

W e can represen t a queue directly as a list. The normal head and tail op erations

of lists implemen t he ad and tail . List catenation of a singleton list implemen ts

sno c .

2.1.2 Batc hed Queues

Ho o d and Melville [20 ] represen t a queue as a pair of lists ( f ; r )| f giving the

fron t p ortion of the queue and r giving the r everse of the rear p ortion of the

queue. The queue of elemen ts a

1

; a

2

; : : : ; a

n

is therefore represen ted b y the lists

f = [ a

1

; : : : ; a

m

] and r = [ a

n

; : : : ; a

m +1

], 0 � m � n with f empt y only when

the queue itself is empt y . T o insert an elemen t on to the queue, simply add an

elemen t to the fron t of r . T o remo v e an elemen t from the queue, tak e the �rst

elemen t of f ; if this lea v es f empt y , then let the queue b ecome ( r everse r ; [ ]).

Ev ery op eration except tail tak es O (1) time. If an application of tail causes a

rev ersal of r , it tak es O ( n ) time; otherwise, it also tak es O (1) time. F or an y single-

threaded sequence of op erations, a rev ersal of r happ ens at most once ev ery A ( n )

op erations, where A ( n ) is O ( n ). Therefore w e can conclude that A ( n ) single-

threaded queue op erations tak e O ( n ) time|an amortized complexit y of O (1).

Ho w ev er, p ersistence destro ys this result. Consider an application of tail that

rev erses the rear list. P ersistence allo ws us to rep eat this application inde�nitely ,

eac h application taking O ( n ) time. Therefore, in a p ersisten t setting, the b est

complexit y w e can giv e to tail is O ( n ).

W e tak e the name of this implemen tation from [38].

2.1.3 Multihead Queues

Ho o d and Melville [20] impro v e on the batc hed implemen tation of a queue b y

distributing the rev ersal of the rear list o v er a n um b er of op erations. This giv es

real-time queues, that is, the op erations run in O (1) w orst-case complexit y .

In order to con tin ue p erforming op erations whilst rev ersing the rear list, the

rev ersal b egins when the rear list r b ecomes larger than the fron t list f . The

rev ersal is spread o v er the follo wing n op erations, where n is the length of the
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fron t list. These n op erations create new fron t and rear lists f

op

and r

op

b y

remo ving elemen ts from f and b y adding elemen ts to the empt y list resp ectiv ely .

A t the same time, r is rev ersed on to the end of f to create a new fron t list f

new

,

taking care to use only elemen ts in f

op

. The lists f

new

and r

op

form the new

queue. It is simple to pro v e that r

op

is no longer than f

new

.

T o create the list f

new

o v er n op erations, rev erse f to mak e f

r ev

, and at the

same time rev erse r to mak e r

r ev

. Then mo v e elemen ts from the fron t of f

r ev

on to

the fron t of r

r ev

till an elemen t not in f

op

is reac hed, or when all elemen ts ha v e

b een mo v ed. It is su�cien t to mo v e only t w o elemen ts p er op eration from f to

f

r ev

, from r to r

r ev

, or from f

r ev

to r

r ev

. Hence eac h op eration tak es O (1) time.

The name multihe ad deriv es from the similarit y of the solution to ho w m ulti-

head T uring mac hines can b e sim ulated. F ull details are giv en in [20]. Note that

there are t w o mistak es in the co de giv en in [20].

� The call cons[v,T] on line 4 should read cons[v,T'] .

� The v alue lendiff-1 on line 9 should read lendiff .

App endix A giv es the corrected implemen tation.

2.1.4 Bank er's Queues

Ok asaki [37] presen ts an implemen tation of queues with O (1) amortized com-

plexit y . He is able to giv e an amortized complexit y in a p ersisten t setting b y

app ealing to the pro of tec hniques that he dev elops in [32, 37 ], and presen ts in

[38]. Represen ting a queue as a pair of lists is once again the basis of the im-

plemen tation. Ho o d and Melville remo v e the problem of the O ( n ) p ersisten t

complexit y of the batc hed implemen tation b y explicitly sc heduling a distribution

of the w ork in v olv ed in p erforming the rev ersal of the rear list. Ok asaki giv es a

m uc h simpler solution that uses lazy ev aluation to implicitly sc hedule and share

this distribution of w ork.

The k ey idea is not to dela y more w ork than a subsequen t sequence of op er-

ations can pa y o�. Under single-threaded use, traditional amortization allo ws us

to spread the cost of the rev ersal of the rear list r of length j r j o v er the previous

j r j applications of sno c that built r . With non-single-threaded use ho w ev er, w e
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ma y ha v e sev eral queues sharing the result of a sno c . This application of sno c

can only b ear a constan t additional cost b efore losing its O (1) complexit y . As

an arbitr ary n um b er of queues ma y share the result of the sno c , the batc hed

implemen tation of queues cannot ha v e O (1) complexit y in a p ersisten t setting.

Ok asaki shifts the burden of the rev ersal from the pr e c e ding sequence of op-

erations to the suc c e e ding sequences of op erations|remem b er that there ma y b e

more than one suc h sequence b ecause of p ersistence. This is done b y insisting

that a queue m ust nev er engage in a rev erse whose cost cannot b e spread o v er

op erations that o ccur after the rev erse is formed but b efor e its result is required.

The cost of the rev erse can then b e shared b y the op erations that o ccur b et w een

susp ending an application of the rev erse and executing this susp ension. The cost

of the rev erse is considered to b e a debt, w aiting to b e paid o�. Lazy ev alua-

tion pla ys a k ey role here in t w o resp ects: a function application can b e dela y ed,

and the result of the dela y ed application can b e shared. F or further details on

p ersisten t amortization, see [38].

So when can w e dela y a rev erse and still b e in a p osition to pa y o� its debt

b efore its result is needed? Supp ose w e only rev erse the rear list r and app end it

to the end of the fron t list f when j r j b ecomes larger than a constan t k times j f j .

As w e apply tail to the resulting queue, the new fron t list will shorten. Un til w e

ha v e remo v ed all of f , the result of the rev erse is not required. The n um b er of

applications of tail required to do this is equal to j f j . As j r j is at most a constan t

k times j f j , w e can share the cost of the rev erse o v er the j f j applications of tail

b y adding a constan t additional cost to eac h. The op erations therefore k eep their

O (1) complexit y .

F or a more formal argumen t using the bank er's metho d of p ersisten t amorti-

zation pro of tec hniques, see either [37 ] or [38]. The name of this implemen tation

is deriv ed from the pro of tec hnique used to giv e it its complexit y .

2.1.5 Ph ysicist's Queues

In the same w a y that Ok asaki uses the bank er's metho d to giv e O (1) amortized

b ounds to bank er's queues, he uses the ph ysicist's metho d to giv e O (1) amortized

b ounds to physicist's queues [38 ].
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The ma jor di�erence b et w een the bank er's and ph ysicist's metho ds is that the

bank er's metho d allo ws the debt of particular susp ensions of w ork to b e paid o�

individually whereas the ph ysicist's metho d considers the debt of the whole data

structure. The idea b ehind ph ysicist's queues is to mak e few er susp ensions. F or

a strict language suc h as Standard ML where susp ensions are explicit and costly ,

this ma y reap some rew ards. F or a lazy language suc h as Hask ell where ev erything

is susp ended, the ph ysicist's queues are unlik ely to b e an y more e�cien t than the

bank er's queues.

2.1.6 Real-Time Queues

A real-time data structure supp orts all op erations in O (1) w orst-case time.

Ok asaki giv es a r e al-time implemen tation of queues in [34]. W e ma y deriv e this

implemen tation from the bank er's queues b y splitting up an y monolithic c h unks

of w ork in to p ortions taking O (1) time. These p ortions are spread ev enly o v er

ev ery op eration. This allo ws eac h op eration to run in O (1) time.

The only monolithic w ork susp ended b y the bank er's queues not of O (1)

complexit y is the rev ersal of the rear list. This is replaced b y the function r otate

that incremen tally rev erses the rear list on to the bac k of the fron t list. A constan t

p ortion of the rotation is done eac h time the queue is up dated.

2.1.7 Bo otstrapp ed Queues

Ok asaki [38] o�ers y et another v ariation on the bank er's queues, this time using

the principle of data-structur al b o otstr apping giv en b y Buc hsbaum [8 ]. The basic

idea b ehind b o otstrapping is to extend the design of an incomplete or ine�cien t

data structure to use smaller instances of the same data structure.

Recall that bank er's queues rev erse the rear list on to the end of the fron t list

ev ery time the rear list b ecomes to o large. After a series of suc h rev ersals, the

fron t list will lo ok something lik e this:

( � � � (( f + + r everse r

1

) + + r everse r

2

) � � � + + r everse r

k

)

As app end is linear in its left argumen t, suc h a series of app ends is rather ex-

p ensiv e since some elemen ts are tra v ersed more than once, eg. ev ery elemen t of
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r

1

will b e tra v ersed k times. Bo otstrapp ed queues remo v e this ine�ciency b y

storing the collection f r everse r

1

; : : : ; r everse r

k

g of rev ersed rear lists separately ,

and using them to replace the fron t list as necessary . This do es not then require

an y applications of app end. But ho w should w e store this collection? Noting the

�rst-in �rst-out order in whic h they are inserted and remo v ed, w e shall represen t

this collection as a queue of lists. This is where b o otstrapping is used: A queue

of lists represen ts p art of a queue. The t yp e of a queue b ecomes:

data Queue a = Empty

| Queue [a] (Queue [a]) Int [a] Int

where Queue f m fm

len

r r

len

is a queue with fron t list f , queue m of rev ersed rear

lists, and rear list r ; fm

len

giv es the com bined length of f and the lists in m ; and

r

len

giv es the length of r . The recursiv e t yp e requires a base case for termination,

so an Empty constructor is in tro duced.

The op erations of this implemen tation run in O (log

�

n ) time

1

, but a simple

alteration impro v es this complexit y to O (1). In practice ho w ev er, this mak es

little di�erence.

2.1.8 Implicit Queues

Ok asaki [38] describ es another implemen tation of queues, this time based on the

principle of r e cursive slowdown . Kaplan and T arjan �rst in tro duced recursiv e

slo wdo wn in [24]. The k ey observ ation underlying the tec hnique arises from

considering a b o otstrapp ed data structure (for an example of b o otstrapping, see

Section 2.1.7).

Supp ose an op eration on a b o otstrapp ed data structure of size n in v olv es a

constan t amoun t of w ork plus that of calling the same op er ation a constan t c

times on nested data structures of com bined size f ( n ). Let T ( n ) measure the

time tak en b y this op eration. W e ha v e:

T ( n ) = O (1) + c T ( f ( n ))

If w e solv e this recurrence relation for c = 1 and f ( n ) = log n , w e �nd that

T = O (log

�

n ). This giv es the complexit y of the b o otstrapp ed queues of Sec-

1

log

(1)

k = log

2

k ; log

( i )

= log log

( i � 1)

k ( i > 1) ; log

�

k = min f i j log

( i )

k � 1 g



16 CHAPTER 2. IMPLEMENT A TIONS OF THREE ADT S

tion 2.1.7. If ho w ev er, w e solv e the relation for c = 1 = 2 and f ( n ) = log n , w e

�nd that T ( n ) = O (1). Indeed, for c < 1 and f ( n ) = n � 1, w e still �nd that

T ( n ) = O (1). But what do es p erforming, sa y , half an op eration mean? Supp ose

w e made sure that only one op eration w as p erformed on a nested data structure

for ev ery two op erations on the enclosing data structure. This could b e seen as

p erforming half an op eration on the nested data structure for ev ery one op eration

on the enclosing data structure. This is recursiv e slo wdo wn.

T o apply recursiv e slo wdo wn to queues, w e shall represen t a queue using a

smaller inner queue on whic h w e p erform one op eration for ev ery two op erations

p erformed on the enclosing queue. If the inner queue is a queue of pairs, w e need

only insert or remo v e a pair ev ery t w o insertions or remo v als resp ectiv ely on the

enclosing queue. W e will k eep at least one elemen t at the fron t of the enclosing

queue. This ensures that the enclosing queue is ready to p erform an op eration

and that the inner queue is distinctly smaller. This is Ok asaki's implemen tation,

and the t yp e of queues is giv en b y

data Queue a = Shallow (ZeroOrOne a)

| Deep (OneOrTwo a) (Queue (a,a)) (ZeroOrOne a)

data ZeroOrOne a = ZeroInOne | OneInOne a

data OneOrTwo a = OneInTwo a | TwoInTwo a a

Whereas Kaplan and T arjan explicitly sc hedule the w ork in v olv ed in recursiv e

calls to inner data structures, Ok asaki uses lazy ev aluation to implicitly sc hedule

this w ork, hence the name of this implemen tation. Data structures using implicit

recursiv e slo wdo wn are t ypically a lot simpler than their explicit coun terparts,

but are amortized rather than w orst-case.

2.2 Random-Access Sequences

Figure 2.2 sp eci�es sequences that supp ort access to an y elemen t. T able 2.2 lists

some implemen tations.
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typ e RASe q a = [ a ]

empty :: RASe q a

empty = [ ]

c ons :: a ! RASe q a ! RASe q a

c ons x [ x

0

; : : : ; x

n � 1

] = [ x; x

0

; : : : ; x

n � 1

]

he ad :: RASe q a ! a

he ad [ x

0

; : : : ; x

n � 1

] = x

0

( n � 1)

tail :: RASe q a ! RASe q a

tail [ x

0

; : : : ; x

n � 1

] = [ x

1

; : : : ; x

n � 1

] ( n � 1)

sno c :: RASe q a ! a ! RASe q a

sno c [ x

0

; : : : ; x

n � 1

] x = [ x

0

; : : : ; x

n � 1

; x ]

last :: RASe q a ! a

last [ x

0

; : : : ; x

n � 1

] = x

n � 1

( n � 1)

init :: RASe q a ! RASe q a

init [ x

0

; : : : ; x

n � 1

] = [ x

0

; : : : ; x

n � 2

] ( n � 1)

lo okup :: RASe q a ! Int ! RASe q a

lo okup [ x

0

; : : : ; x

n � 1

] i = x

i

(0 � i � n � 1)

up date :: RASe q a ! Int ! a ! RASe q a

up date [ x

0

; : : : ; x

n � 1

] i x = [ x

0

; : : : ; x

i � 1

; x; x

i +1

; : : : ; x

n � 1

] (0 � i � n � 1)

Figure 2.2: Sp eci�cation of a sequence supp orting random-access. F or the pur-

p oses of sp eci�cation, w e treat a random-access sequence as a list.
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Random-Access Sequences

Name Lazy Complexities of Op erations Reference

Na • �v e Lists - c ons/he ad/tail : O (1),

lo okup/up date : O ( i ),

sno c/last/init : O ( n )

n/a

Threaded

Sk ew Binary

Lists

- c ons/he ad/tail : O (1),

lo okup : O (min ( i; log n )),

up date : O ( i )

[29]

Balanced

T rees

- c ons/he ad/tail : O (log n ),

lo okup/up date : O (log n ),

sno c/last/init : O (log n )

[2, 31]

Braun T rees - he ad : O (1), c ons/tail : O (log n ),

lo okup/up date : O (log i ),

sno c/last/init : O (log n )

[21]

Slo wdo wn

Deques

- c ons/he ad/tail : O (1),

lo okup/up date : O (log d ),

sno c/last/init : O (1)

[24]

Sk ew Binary

Lists

- c ons/he ad/tail : O (1),

lo okup/up date : O (min ( i; log n ))

[33]

Elev ator

Lists

- c ons/he ad/tail : O (1),

lo okup/up date : O ( i )

n/a

T able 2.2: Complexities of implemen tations of sequences supp orting random-

access, where n is the length of the sequence, i is the index b eing accessed b y a

lo okup or up date op eration, and d is the distance from the index to the nearest end

of the sequence. All complexities are w orst-case. None of the implemen tations

require lazy ev aluation.
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2.2.1 Na • �v e Lists

An ordinary list pro vides O (1) access to the fron t and O ( i ) access to the i

th

elemen t.

2.2.2 Threaded Sk ew Binary Lists

My ers [29 ] extends the ordinary list implemen tation with an e�cien t lo okup op-

eration, whilst preserving the complexities of the other op erations.

My ers uses a n um b er system called skew binary that pro v es v ery useful in

man y data structures [7, 32 , 38]. The adv an tage of this system of represen ting

n um b ers is that no more than a single carry is caused b y an addition or subtrac-

tion of one. Eac h digit is either 0 or 1, except the least-signi�can t non-zero digit,

whic h is either 1 or 2. The i

th

digit has w eigh t 2

( i +1)

� 1 as opp osed to the usual

2

i

of ordinary binary n um b ers. F or example,

(120)

2

s

= (1 � 7 + 2 � 3 + 0 � 1)

10

= (13)

10

(11111)

2

s

= (31 + 15 + 7 + 3 + 1)

10

= (57)

10

where ( x )

b

is the n um b er giv en b y x under base notation b , with 2

s

standing for

sk ew binary , 2 for binary and 10 for decimal. With sk ew binary , addition of one

pro duces at most one carry , for example,

(120 + 1)

2

s

= (200)

2

s

whereas with binary w e could ha v e a cascade of carries,

(111 + 1)

2

= (1000)

2

Remo ving the p ossibilit y of suc h a cascade allo ws us to p erform an addition or

subtraction of one b y c hanging at most t w o digits, irresp ectiv e of the size of the

n um b er.

My ers uses the sk ew binary n um b er system to add auxiliary p oin ters to ordi-

nary lists. These pro vide access to elemen ts further do wn the list. A list of sev en

elemen ts [ v

7

; : : : ; v

1

], with v

7

at the fron t is sho wn in Figure 2.3. Along with

the v alue v

i

of eac h elemen t in the list, w e store the p osition pos of v

i

from the

end of the list, a p oin ter next to the next elemen t do wn from v

i

, and a p oin ter
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[ ]
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jump

v

i

( pos )

2

s

Figure 2.3: An example of a threaded sk ew binary list. The empt y list is repre-

sen ted b y [ ].

jump to an elemen t further do wn the list with pos equal to j . The v alue of j is

determined as follo ws: tak e the pos of v

i

in sk ew binary , and reduce the least-

signi�can t non-zero digit b y one. F or example, elemen t v

6

has pos = (20)

2

s

and

hence its jump should p oin t to the elemen t with pos = (10)

2

s

, namely v

3

. Using

the jump p oin ters where p ossible, lo okup no w runs in O (min ( i; log n )) time.

As with ordinary lists, ho w ev er, up date still runs in O ( i ) time. There is a series

of p oin ters to the up dated elemen t from ev ery preceding elemen t. Therefore eac h

of these elemen ts m ust ha v e their p oin ters up dated.

Main taining the jump p oin ters can b e done in O (1) time as follo ws. Consider

a list with head elemen t s . Let the jump of s p oin t to t . Let the jump of t p oin t

to u . T o c ons an elemen t on to the list, compare the distance b et w een s and t ,

with the distance b et w een t and u . If the t w o distances are equal, analogous to

the least signi�can t non-zero digit of a sk ew binary n um b er b eing t w o, w e p oin t

jump to u , analogous to carrying one in sk ew binary . If the t w o distances are not

equal then w e p oin t jump to s .

F or example, consider ho w the jump of v

7

w as calculated. A t the time v

7

w as

added to the list, the head elemen t w as v

6

. The jump of v

6

p oin ts to v

3

, and

the jump of v

3

p oin ts to [ ]. The distance b et w een v

6

and v

3

is the same as the

distance b et w een v

3

and [ ]. Hence the jump of v

7

should p oin t to [ ].

My ers uses p oin ters to describ e and implemen t his data structures, taking

explicit care to ensure that the structures are p ersisten t. With algebraic data-

t yp es, the p ersisten t prop ert y is enforced and no p oin ters are men tioned. The

t yp e of My ers' list w ould b e giv en in Hask ell b y:
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data RASeq a = Empty

| Node a (RASeq a) (RASeq a) Int

The list with head elemen t v , next p oin ting to the list next , jump p oin ting to

the list jump , and pos equal to pos w ould b e giv en b y Elem v next jump pos .

F or example, l

7

= Elem v

7

Empty l

6

7 (with a suitable de�nition of l

6

, etc.) giv es

the list l

7

in Figure 2.3.

Ok asaki [32, 38] giv es an implemen tation of random-access lists that is essen-

tially an un threaded v ersion of My ers' implemen tation. See Section 2.2.6 for a

comparison of these t w o data structures. Ok asaki constructs his lists with alge-

braic data-t yp es. Comparing Ok asaki's implemen tation with My ers' illustrates

w ell ho w algebraic data-t yp es can pro vide clarit y and insigh t.

Ok asaki [32 ] b enc hmarks My ers' implemen tation, impro ving the co de sligh tly

b y main taining the di�erence b et w een the pos of an elemen t and the pos of the

elemen t to whic h jump p oin ts. This v alue is called the r ank of an elemen t. The

pos of eac h elemen t is no longer main tained and the calculation of the jump

in v olv ed in an application of c ons is no w simpler and more e�cien t. App endix A

giv es this impro v ed implemen tation.

2.2.3 Balanced T rees

V arious forms of balanced tree ma y b e used to implemen t a random-access se-

quence. Most of these implemen tations o�er O (log n ) access to an y elemen t.

Braun trees are a notable exception and o�er impro v ed access to the fron t of

the sequence whilst main taining logarithmic access to an y elemen t as an upp er

b ound. They are therefore treated separately in Section 2.2.4.

A VL trees [3, 31 ] are straigh tforw ard but tedious to implemen t. Ok asaki

uses an implemen tation adapted sp eci�cally for random-access lists in [33]. Ap-

p endix A giv es this implemen tation.

Adams [2] pro vides an alternativ e in the form of BB-tr e es . Adams' implemen-

tation seems to b e quite widely used, so w e shall lo ok at it b elo w. Other forms of

balanced trees are do cumen ted w ell in imp erativ e literature and most translate

across easily to the purely functional or p ersisten t w orlds.
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Adams giv es an implemen tation of sets using BB-trees, whic h w e describ e

b elo w. The mo di�cations required for implemen ting random-access sequences

are minor (see the co de in App endix A).

BB-T rees

Adams represen ts a BB-tree as follo ws:

data Set a = Empty

| Branch Int (Set a) a (Set a)

F or a non-empt y tree Branch n l x r , w e ha v e:

� A no de con taining an elemen t x and the n um b er n of elemen ts in the tree

� The left subtree l

� The righ t subtree r

The elemen ts are stored in symmetric order; that is, giv en an y non-empt y subtree

Branch n l x r , ev ery elemen t in the tree l is less than or equal to x , and x

is less than or equal to ev ery elemen t in the tree r . The follo wing balancing

in v arian t is main tained:

Giv en a subtree Branch n l x r con taining more than t w o elemen ts,

neither l nor r has more than � times the n um b er of elemen ts of the

other.

T o restore the balance of a tree after adding or remo ving an elemen t, whilst

main taining the order of elemen ts, w e need to p erform r otations . Figure 2.4

sho ws the four forms of rotation required and Figure 2.5 sho ws the corresp onding

co de. Note that the trees are constructed using the function branch , not the

data constructor Branch , and that branc h do es not tak e size as an argumen t.

The function branch calculates the size of the tree from the sizes of the left and

righ t subtrees. This a v oids unnecessarily v erb ose co de pro duced b y calculating

the size separately eac h time a tree is constructed (as w ould b e necessary if

Branch w as used directly). Adams calls these functions smart c onstructors . Tw o

further smart constructors are giv en:
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Figure 2.4: Rotations of a binary tree.

� balBranch , whic h constructs a balanced tree from a previously balanced

tree that has had at most one elemen t deleted or added to one of its subtrees,

b oth of whic h are assumed to b e no w balanced

� concat3 , whic h constructs a balanced tree from a no de and t w o subtrees

of arbitrary size

Adding or remo ving a single elemen t to or from a subtree ma y require a

rotation to restore the balancing in v arian t. An un balanced tree with a large left

or righ t subtree requires a righ t or left rotation resp ectiv ely . Let's supp ose that

the righ t subtree r is to o large.
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branch :: Set a -> a -> Set a -> Set a

branch l x r = Branch (1 + size l + size r) l x r

size Empty = 0

size (Branch n l x r) = n

singleL l x (Branch _ rl y rr) = branch (branch l x rl) y rr

singleR (Branch _ l x rl) y rr = branch l x (branch rl y rr)

doubleL l x (Branch _ (Branch _ rll y rlr) z rr) =

branch (branch l x rll) y (branch rlr z rr)

doubleR (Branch _ ll x (Branch _ lrl y lrr)) z r =

branch (branch ll x lrl) y (branch lrr z r)

Figure 2.5: Rotating binary trees.

� If the left subtree r l of r is smaller than some constan t � times the righ t

subtree r r , then w e mo v e r l across to the left subtree l of the main tree to

try to restore the balancing in v arian t whilst preserving the order. This is

a single left rotation|see Figure 2.4. The rotation also shifts elemen ts x

and y round to preserv e order.

� If the righ t subtree r l of r is larger than � times the righ t subtree r r , then

w e mo v e only part of r l to restore the balancing in v arian t. W e mo v e the

left subtree r l l of r l across to the main left subtree l whilst preserving the

order of elemen ts|this is what a double left rotation do es, see Figure 2.4.

The case of the left subtree l b eing to o large is treated symmetrically . The

ab o v e algorithm can b e seen in the co de for balBranch in Figure 2.6. The

function concat3 simply tra v erses the tree, restoring balance as necessary b y

calling balBranch .

In a tec hnical rep ort [1], Adams in v estigates what v alues of � and � are suf-

�cien t for the algorithm ab o v e to main tain the balancing in v arian t. He pro duces

a graph of suitable com binations of � and � . As used in Figure 2.6, � = 5 and

� = 2 is one suc h suitable com bination. Ho w ev er, in [2 ] Adams giv es co de with
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sigma :: Int

sigma = 5

alpha :: Int

alpha = 2

balBranch :: Set a -> a -> Set a -> Set a

balBranch l x r

| sizeL + sizeR < 2 = branch l x r

| sizeR > sigma * sizeL =

let (Branch _ rl _ rr) = r

in if size rl < (size rr) * alpha

then singleL l x r

else doubleL l x r

| sizeL > sigma * sizeR =

let (Branch _ ll _ lr) = l

in if size lr < (size ll) * alpha

then singleR l x r

else doubleR l x r

| otherwise = branch l x r

where sizeL = size l

sizeR = size r

concat3 :: Ord a => Set a -> a -> Set a -> Set a

concat3 Empty x r = add x r

concat3 l x Empty = add x l

concat3 l@(Branch nl ll x lr) y r@(Branch nr rl z rr)

| sizeRatio * nl < nr = balBranch (concat3 l y rl) z rr

| sizeRatio * nr < nl = balBranch ll x (concat3 lr y r)

| otherwise = branch l y r

Figure 2.6: Smart constructors of balanced trees.
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� = 5 and � = 1, whic h is not suitable. One susp ects that the prop ortion of

un balanced trees is lo w and the cost of ensuring al l trees are balanced is greater

than the cost tak en to na vigate the o ccasional un balanced tree. Ho w ev er, Adams

do es not men tion this.

Consider the op eration add that adds an elemen t to a set. The op eration add

descends the tree b y recursiv ely calling itself to add the elemen t at the correct

p osition (or returning the tree if the elemen t is presen t already). As it do es so,

it ma y un balance the tree at eac h of the no des lying on its path to the added

elemen t's �nal p osition. The balancing smart constructor balBranch is designed

sp eci�cally to handle this case b y assuming that only a single elemen t has b een

added or remo v ed since the tree w as last in a balanced state and that all subtrees

of the t w o trees it joins are balanced.

add :: Ord a => a -> Set a -> Set a

add x Empty = singleton x

add x t@(Branch _ l y r) | x < y = balBranch (add x l) y r

| y < x = balBranch l y (add x r)

| otherwise = t

Other set op erations are de�ned similarly .

2.2.4 Braun T rees

Ho ogerw o ord [21 ] uses Braun trees [6] to implemen t 
exible arra ys. Braun trees

ha v e the follo wing prop erties:

� F or an y no de of a Braun tree with left subtree l and righ t subtree r ,

j r j � j l j � j r j + 1.

� The size of a Braun tree determines its structure exactly .

� Ev ery Braun tree is of minim um heigh t.

Consider the in�nite tree of Figure 2.7. No w consider the subtree formed b y

remo ving all no des bar those lab elled with n um b ers in the range [0 ::n � 1] inclusiv e.

This is the Braun tree of size n . F or examples of Braun trees, see Figure 2.8. The

pattern of ho w the no des are lab elled is b est illustrated b y the lo okup op eration.
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0

1 2

3 45 6

7 89 1011 1213 14

Figure 2.7: The in�nite Braun tree.

Figure 2.8: The Braun trees of size four, nine and sev en.

T o lo okup the n

th

elemen t of Braun tree T with left subtree l and righ t subtree

r , use the follo wing rules:

� If n = 0, then return the ro ot elemen t of T .

� If n is ev en, then return the (( n= 2) � 1)

th

elemen t of r .

� Otherwise, n is o dd, so return the (( n � 1) = 2)

th

elemen t of l .

The up date op eration is de�ned similarly . As ev ery Braun tree is of minim um

heigh t, these op erations run in O (log n ) time. T reating the trees as lists, it is

p ossible to de�ne c ons and tail to run in O (log n ) time, and he ad in O (1) time.

Ho ogerw o ord implemen ts 
exible arra ys, whereas w e w an t random-access

lists|w e shall no w explain the di�erence. When an elemen t is added or re-

mo v ed from the fron t of a random-access list, the p ositions of the other ele-

men ts in the list shift. If instead p ositions remain �xed, w e ha v e a 
exible

arra y . F or example, consider applying c ons to the list l

1

= [0 ; : : : ; n ] to giv e

the list l

2

= [ � 1 ; 0 ; : : : ; n ]. Both a random-access list and a 
exible arra y giv e

l ook up l

1

i = i . Ho w ev er, a random-access list giv es l ook up l

2

i = i � 1, whereas

a 
exible arra y giv es l ook up l

2

i = i . It is simple to extend an implemen tation
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of a random-access list to giv e 
exible arra y b eha viour, and vice v ersa. The al-

gorithm w e ha v e describ ed ab o v e, and the co de in App endix A, b oth implemen t

random-access lists.

2.2.5 Slo wdo wn Deques

Kaplan and T arjan [24 ] in tro duce the tec hnique of r e cursive slowdown and use

it to implemen t man y data structures, including double-ended queues ( de ques ).

Section 2.1.8 giv es a brief explanation of recursiv e slo wdo wn. The deques can

also b e made to supp ort random access.

A deque is represen ted b y a pre�x of up to �v e elemen ts, an inner cen tral

deque of pairs of elemen ts, and a su�x of up to �v e elemen ts. A large deque

is therefore made up of man y deques nested within eac h other. The outermost

lev el con tains simple elemen ts in its pre�x and su�x, the second lev el pairs of

elemen ts, the third lev el pairs of pairs of elemen ts, etc. As with the implicit

queues of Section 2.1.8, w e mak e sure that an op eration on the inner deque tak es

place ev ery t w o op erations on the outer deque. T o do this, w e need to mak e

sure that the pre�x and su�x are k ept close to b eing half full to a v oid cascades

of op erations on nested deques. Kaplan and T arjan in tro duce a colour sc heme

to iden tify pre�xes and su�xes with dangerously few or man y elemen ts: red for

zero or �v e elemen ts, y ello w for one or four elemen ts, and green for t w o or three

elemen ts. A deque is coloured according to the most dangerous colour of its pre�x

or su�x. The follo wing in v arian t is then main tained:

There is a green deque outside of the outermost red deque. There is

also a green deque b et w een an y t w o red deques.

This ensures that the outermost deque is alw a ys in a state ready to accept a new

elemen t or to giv e up a curren t elemen t. The details of ho w to juggle the pre�xes

and su�xes to main tain this in v arian t are complex and not giv en here. Main-

taining the in v arian t ma y require p erforming an op eration on the inner deque.

Ho w ev er, an op eration on the inner deque is only necessary if the outer deque is

red. The in v arian t ensures that when the outer deque is red, the inner deque is

not red, hence prev en ting a cascade of op erations on nested inner deques. The

in v arian t can b e main tained with a constan t amoun t of w ork p er op eration. As
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the in v arian t guaran tees that the deque is ready to p erform an op eration in O (1)

time, this pro v es that the deque allo ws op erations on either end to run in O (1)

w orst-case time.

The op erations lo okup and up date are implemen ted b y descending the series

of nested deques till w e reac h the pre�x or su�x in whic h the elemen t is stored.

If the elemen t is at most d p ositions from the nearest end of the deque, then the

elemen t is at O (log d ) depth since the n um b er of elemen ts stored in eac h lev el

gro ws exp onen tially . As the second lev el con tains pairs of elemen ts, the third lev el

pairs of pairs of elemen ts, and so on, w e ha v e to descend this tree-lik e structure

to reac h the elemen t. As this tree is also O (log d ) deep, the complexit y of lo okup

and up date is O (log d ).

2.2.6 Sk ew Binary Lists

Ok asaki [32] notes that complete binary trees are a go o d structure to use for

random-access, allo wing access and up date to an y no de in O (log n ) time. Ho w-

ev er, these trees are only found in sizes of the form 2

k

� 1 so the problem remains

of ho w to store lists of arbitrary size. The skew binary n um b er system of Sec-

tion 2.2.2 once more comes to our aid. Recalling that the i

th

digit represen ts

2

i

� 1, this n um b er system is ideal for implemen ting a list of n elemen ts as a

collection of complete binary trees according to the represen tation of n in sk ew

binary (see Figure 2.9). Imp ortan tly , the addition or remo v al of an elemen t in-

v olv ed in the c ons and tail op erations is also dealt with in O (1) time thanks

to the main prop ert y of sk ew binary n um b ers: addition or subtraction of one

pro duces at most one carry .

The imp ortance of c heap access to the fron t of the list for c ons , he ad and tail

suggests w e order the trees b y size, smallest �rst, and order the elemen ts with

left-to-righ t pre-order.

By analogy with sk ew binary addition and subtraction, c ons and tail are

implemen ted as follo ws:

� T o c ons an elemen t on to a list, c hec k if the t w o smallest trees are the same

size. If not, add the new elemen t as a singleton tree. Otherwise, create a

larger complete binary tree with the new elemen t as ro ot and the t w o trees
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Figure 2.9: A list [ v

1

; : : : ; v

13

] represen ted as a collection of complete binary trees.

Num b er of no des = (13)

10

= 1 � (2

3

� 1) + 2 � (2

2

� 1) + 0 � (2

1

� 1) = (120)

2

s

,

therefore w e ha v e one complete binary tree of depth three, t w o of depth t w o and

none of depth one.

as c hildren|this preserv es the ordering and the sk ew binary form.

� T o tak e the tail of a list, simply remo v e the leading singleton tree if one

exists. If not, remo v e the ro ot of the smallest tree and return b oth its

c hildren to the collection.

These op erations are illustrated in Figure 2.10.

The op eration he ad is easy to implemen t in O (1) time. Similarly , lo okup and

up date are reasonably simple to implemen t if the size of the tree ro oted at eac h

no de is stored in the no de.

The string represen ting the n um b er n in the sk ew binary n um b er system is

O (log n ) long. A list of length n is therefore represen ted b y a collection of O (log n )

trees. The largest tree in a list of length n is also O (log n ) deep. The op erations

lo okup and up date tra v erse the list till the tree con taining the desired elemen t

is found. This tree is then descended to reac h the elemen t. Hence up date and

lo okup eac h tak e O (log n ) time. Up on further examination, w e can impro v e this

complexit y to O (min f i; log n g ) in the w orst case and O (log i ) in the exp ected

case, when indexing the i

th

elemen t.

P arallels can b e dra wn b et w een Ok asaki's lists and My ers' lists (see Sec-

tion 2.2.2). There are man y redundan t p oin ters in My ers' represen tation, causing

up date to b e less e�cien t, running in O ( i ) time. The shortest path from the head

of the list to an y elemen t nev er uses an y of these p oin ters. By remo ving them, one
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Figure 2.10: The e�ect of c ons and tail acting on a list represen ted b y a collection

of complete binary trees with the smallest t w o b eing T

1

and T

2

.

obtains a structure isomorphic to the same list represen ted with Ok asaki's struc-

ture (see Figure 2.11). One can therefore view Ok asaki's w ork as an impro v emen t

of My ers' w ork to gain a more e�cien t up date .

Alternativ ely , one ma y view My ers' lists as thr e ade d v ersions of Ok asaki's

lists. A tree is thr e ade d when ev ery no de con tains a p oin ter to the next elemen t

with resp ect to some tra v ersal order|left-to-righ t pre-order in this case. This

can b e seen in Figure 2.11. F or example, no de v

3

con tains a p oin ter to no de v

6

.

Ho w ev er, for ev ery case where searc hing through a My ers' list w ould follo w suc h

a p oin ter, the searc h in the equiv alen t list of Ok asaki w ould ha v e follo w ed at least

one few er p oin ter. F or example, the searc h for v

6

in Ok asaki's list mo v es from v

2

directly to v

6

; the searc h for v

6

in My ers' list mo v es from v

2

to v

6

via v

3

.

2.2.7 Elev ator Lists

Preliminary b enc hmarking results of the implemen tations of random-access se-

quences sho w that the na • �v e implemen tation often wins for small lists, and some

form of tree wins for large lists. W e design an implemen tation of random-access

sequences that is a h ybrid of the simple list and the structured tree.

An elev ator list is a simple list of 
o ors . Eac h 
o or is itself a simple list.

data List a = Floor Int [a] (List a)
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Figure 2.11: A list [ v

1

; : : : ; v

8

] represen ted (a) b y My ers' random-access list, (b)

b y Ok asaki's random-access list, and (c) b y My ers' list with redundan t p oin ters

remo v ed. Note the similarit y b et w een (b) and (c).

W e lab el eac h 
o or with its size. There is a �xed \separation" b et w een 
o ors:

When the top 
o or b ecomes larger than a �xed size, a new 
o or is built on top.

Ordinary list op erations act directly on the top 
o or. Random-access op er-

ations �rst descend to the correct 
o or, b y subtracting the 
o or sizes from the

index, till the index is less than the 
o or size, and then use ordinary list lo okup

and up date on this 
o or.

W e represen t an empt y list b y a circular list of empt y 
o ors.

empty = Floor 0 [] empty

F or further details, see the co de in App endix A.

2.3 Heaps

Priorit y queues, or heaps, supp ort an ordered collection of elemen ts. A sp ec-

i�cation is giv en in Figure 2.12. A table of implemen tations can b e found at

T able 2.3.
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typ e Or d a ) He ap a = � a �

empty :: Or d a ) He ap a

empty = ��

insert :: Or d a ) a ! He ap a ! He ap a

insert x h = � x � [ h

mer ge :: Or d a ) He ap a ! He ap a ! He ap a

mer ge h

1

h

2

= h

1

[ h

2

�ndMin :: Or d a ) He ap a ! a

�ndMin h = x ^ x 2 h ^ 8 y 2 h � x � y ( h 6= �� )

deleteMin :: Or d a ) He ap a ! He ap a

deleteMin h = h � � �ndMin h � ( h 6= �� )

Figure 2.12: Heap sp eci�cation. A bag is delimited with �� , [ is bag union,

and � is bag di�erence.
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Heaps

Name Lazy Complexities of Op erations Reference

Na • �v e - insert/mer ge : O ( n )

�ndMin/deleteMin : O (1)

n/a

Binomial - insert/mer ge : O (log n )

�ndMin/deleteMin : O (log n )

[38]

Sk ew Binomial - insert : O (1), mer ge : O (log n )

�ndMin/deleteMin : O (log n )

[7]

Bo otstrapp ed

Sk ew Binomial

- insert/mer ge : O (1)

�ndMin : O (1), deleteMin : O (log n )

[7]

P airing - insert/mer ge : O (1)

�ndMin : O (1), deleteMin : O (log n )

[35]

Leftist - insert/mer ge : O (log n )

�ndMin : O (1), deleteMin : O (log n )

[31]

Spla y - insert : O (log n )

z

, mer ge : O ( n )

z

�ndMin/deleteMin : O (log n )

z

[38]

T able 2.3: Complexities of implemen tations of heaps (priorit y queues), where

n is the size of the heap (the resulting heap in the case of mer ge ). Complexi-

ties mark ed with z are amortized under single-threaded use. The complexit y of

deleteMin for pairing heaps is only a conjecture for single-threaded amortized

use; this b ound has also b een conjectured for a p ersisten t v ersion of pairing

heaps under amortized p ersisten t use. If lazy ev aluation is used, the complexit y

of insert for binomial heaps b ecomes O (1) amortized. All other complexities are

w orst-case and none of the implemen tations require lazy ev aluation.
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Figure 2.13: The �rst four binomial trees.

2.3.1 Na • �v e Heaps

An ordered list implemen ts a heap with �ndMin and deleteMin running in O (1)

time, and insert and mer ge running in O ( n ) time.

2.3.2 Binomial Heaps

V uillemin presen ts binomial queues in [51] with ev ery op eration running in

O (log n ) time. Ok asaki [38 ] preserv es this complexit y in a purely functional set-

ting. T o a v oid confusion with ordinary queues, w e shall refer to binomial queues

as binomial he aps .

Binomial T rees

The size of a binomial tree determines its shap e exactly: the �rst four are sho wn

in Figure 2.13. Figure 2.14 sho ws t w o equiv alen t de�nitions of the binomial tree

B

n

. The binomial tree B

i

has 2

i

no des,

i

C

j

of whic h are at depth j , where

i

C

j

= i !( i � j )! =j ! giv es the n um b er of w a ys of c ho osing j items from a collection

of i items, disregarding order of c hoice. The name binomial deriv es from the

co-e�cien t of the i

th

term of a binomial expansion ( x + y )

n

b eing giv en b y

n � i

C

i

.

Giv en an ordering of elemen ts, a tree is he ap-or der e d if for ev ery no de n with

paren t m , the elemen t stored at n is no smaller than the elemen t stored at m .
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Figure 2.14: Equiv alen t forms of the binomial tree B
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Figure 2.15: An example of a binomial heap: [ B

2

; B

0

]. There is no B

1

tree and

its absence is indicated b y a v ertical dash.

A binomial heap is a list of heap-ordered binomial trees: [ B

i

0

; B

i

1

; : : : ; B

i

n

] with

i

0

< i

1

< � � � < i

n

. The size of a binomial heap determines its structure exactly .

The binomial tree B

i

app ears in a binomial heap either once or not at all. An

example of a binomial heap can b e seen in Figure 2.15.

A useful prop ert y of binomial heaps is that the binary represen tation of the

n um b er of no des within the heap corresp onds exactly with the heap represen ta-

tion. F or example, the heap in Figure 2.15 has �v e no des and its binary equiv alen t

is indeed the n um b er �v e: \1 B

2

, 0 B

1

and 1 B

0

" giving \101". The length of

the binary represen tation of the n um b er n is O (log n ). Hence a binomial heap of

n elemen ts is a list of length O (log n ).

Op erations on Binomial Heaps

An example of a mer ge can b e seen in Figure 2.16. Merging binomial heaps is

strongly analogous to binary addition. T rees or digits of equal w eigh t are added
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Figure 2.16: A mer ge of t w o binomial heaps and the corresp onding binary addi-

tion.

together to pro duce a tree or digit of the next hea viest w eigh t. Tw o binomial

trees of equal w eigh t are added together b y making the tree with the larger ro ot

the leftmost c hild of the other tree.

The op eration �ndMin simply scans the ro ots of the binomial trees to b e

added. The other op erations are de�ned in terms of merge: deleteMin q scans

for the minim um ro ot, remo v es it, and merges its c hildren with the remainder of

q (the c hildren of the ro ot of a binomial tree alw a ys form a binomial heap, as

can b e seen in Figure 2.14); insert i q simply merges q with the singleton queue

con taining i . As there are O (log n ) binomial trees in a binomial heap of size n ,

eac h op eration tak es O (log n ) time.

2.3.3 Sk ew Binomial Heaps

Bro dal and Ok asaki [7] adapt the binomial heap implemen tation to use skew bi-

nary arithmetic (see Section 2.2.2) in place of ordinary binary arithmetic. Recall

that the addition or subtraction of one tak es O (1) time using the sk ew binary

n um b er system. In the case of heaps, this allo ws insert to run in O (1) time. The
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other op erations main tain their O (log n ) complexit y .

A skew binomial heap is a list of skew binomial trees. Unfortunately , sk ew

binomial trees are not as neat as their binomial coun terparts. This is b ecause

w e m ust use some form of addition to implemen t mer ge . Sk ew binary addition

is rather a wkw ard in general and so w e c ho ose to use ordinary binary addition.

The con
ict b et w een using sk ew binary addition to implemen t insert and ordinary

binary addition to implemen t mer ge reduces the elegance of the implemen tation.

Ho w ev er, making insert run in O (1) time allo ws heaps of optimal complexit y to

b e built|see Section 2.3.4.

2.3.4 Bo otstrapp ed Sk ew Binomial Heaps

Bro dal and Ok asaki [7], after adding the sk ew binary n um b er system to binomial

heaps, add y et another feature: b o otstrapping (see Section 2.1.7). This giv es

heaps of optimal complexit y: deleteMin runs in O (log n ) time and �ndMin , insert

and mer ge run in O (1) time. It is easy to sho w these b ounds are optimal using

the 
( n log n ) b ound on sorting n items.

Recall that b o otstrapping extends the design of an incomplete or ine�cien t

data structure b y using smaller instances of the same data structure. W e shall

let heaps con tain other heaps as elemen ts. This allo ws mer ge to b e implemen ted

b y the more e�cien t insert .

Supp ose w e imp ort a heap implemen tation that runs insert in O (1) time.

In the Hask ell notation, let the t yp e of these heaps b e giv en b y Old.Heap a .

W e wish to create b o otstrapp ed heaps that can con tain other heaps. W e migh t

consider the t yp e:

data Heap a = Heap (Old.Heap (Old.Heap a))

Here w e ha v e applied a single lev el of b o otstrapping. But the top-lev el heap

con tains elemen ts of t yp e Old.Heap a . These old heaps con tain simple elemen ts

of t yp e a , and so w e cannot insert heaps in to them; w e need to b e able to insert

heaps at an arbitrary depth of nesting. W e need a recursiv e de�nition:

data Heap a = Heap (Old.Heap (Heap a))
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Ho w ev er, w e do not ha v e an ywhere to store the simple elemen ts of t yp e a with

this de�nition. So instead w e store the minim um elemen t at the ro ot as follo ws:

data Heap a = Empty

| Root a (Old.Heap (Heap a))

The old heap implemen tation will require an ordering of its elemen ts: b o ot-

strapp ed heaps in this case. This is giv en b y an ordering of the ro ots.

As b o otstrapp ed heaps are old heaps of b o otstrapp ed heaps, w e can mer ge

t w o b o otstrapp ed heaps b y using Old.insert to insert one in to the other. As

Old.insert is O (1), mer ge is O (1). W e can de�ne insert in terms of mer ge as

usual, and so insert is still O (1). The op eration �ndMin simply lo oks at the

ro ot. The op eration deleteMin is implemen ted in terms of Old.mer ge , Old.�ndMin

and Old.deleteMin and therefore remains O (log n ) (assuming that the old heaps

implemen t these op erations in O (log n ) time).

2.3.5 P airing Heaps

Ok asaki [35] presen ts a functional translation of p airing he aps whic h w ere �rst

describ ed b y F redman, Sedgewic k, Sleator, and T arjan [15 ]. A heap is represen ted

b y a heap-ordered m ulti-w a y tree:

data Heap a = Empty

| Node a [Heap a]

The op eration �ndMin simply lo oks at the ro ot. Tw o heaps are merged b y making

the heap with the largest ro ot the leftmost c hild of the other heap. An elemen t

is inserted b y merging with a heap con taining the single elemen t. P airing heaps

deriv e their name from the implemen tation of deleteMin : the ro ot is remo v ed

and the c hildren are com bined in t w o passes. The �rst pass w orking left-to-righ t

merges successiv e pairs of c hildren together. The second pass w orking righ t-to-left

merges the results of the �rst pass in to one heap.

Although pairing heaps are quite w ell-kno wn, no one has established tigh t

b ounds on their complexit y . It is clear that all op erations b eside deleteMin run

in O (1) time. In an ephemeral setting, it has b een conjectured that deleteMin

runs in O (log n ) amortized time. In a p ersisten t setting ho w ev er, the ab o v e
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implemen tation certainly do es not meet these b ounds. Consider successiv ely

inserting the elemen ts 0 ; 1 ; : : : ; n in to an empt y heap. The result will b e a heap

with ro ot 0 and c hildren [ n; : : : ; 1]. No w p erform deleteMin on the same heap m

times. Eac h deleteMin will rep eat the same w ork taking O ( n ) time eac h. The

amortized cost of deleteMin is therefore O ( n ) in a p ersisten t setting.

Ok asaki [35 ] also presen ts a p ersisten t v ersion of pairing heaps using lazy ev al-

uation, whic h should not b e sub ject to a similar refutation of O (log n ) amortized

complexit y . Ho w ev er, as with their ephemeral coun terparts, a pro of is not kno wn.

App endix A giv es the ephemeral v ersion.

2.3.6 Leftist Heaps

A leftist he ap [25 ] is a heap-ordered binary tree satisfying the leftist pr op erty :

The r-heigh t of ev ery left c hild is greater than or equal to the r-heigh t

of its righ t sibling.

The r-height of a binary tree is the n um b er of in ternal no des on the path from the

ro ot to the righ tmost external no de|this path is called the right spine . One ma y

pro v e b y induction that the r-heigh t of an y leftist heap of size n > 0 is b ounded

ab o v e b y log

2

n + 1.

Leftist heaps are an example of a data structure that translates across easily

from the imp erativ e to the p ersisten t or functional w orld. N � u ~ nez et al. presen t a

functional implemen tation in [31].

T o mer ge t w o leftist heaps, view their righ t spines as ordered lists. Merging

these ordered lists ensures the resulting tree is heap-ordered. This constructs

the righ t-spine from top to b ottom. On the w a y bac k up, the leftist prop ert y

is preserv ed b y making the c hild with the largest r-heigh t the left c hild. As

eac h pass runs in time prop ortional to the com bined length of the righ t spines

of the argumen ts of mer ge , the op eration runs in O (log n ) time. The remaining

op erations are straigh tforw ard.
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2.3.7 Spla y Heaps

Ok asaki [38 ] presen ts an implemen tation of heaps using splay tr e es [49]. A spla y

tree is a binary tree that do es not main tain an y balance information but con-

sisten tly re-structures itself in a manner that tends to balance the tree. F or

example, as the elemen ts are stored in symmetric order, the deleteMin op eration

m ust remo v e the leftmost no de. After this no de is remo v ed, the leftmost path is

ascended, re-structuring the tree as it do es so b y shifting elemen ts from left sub-

trees o v er to righ t subtrees. This tends to shorten the leftmost path, impro ving

the time tak en for subsequen t applications of deleteMin .

T o insert a no de x , the tree is split in to no des smaller than x , and no des larger

than x . These subtrees then form the left and righ t c hildren of x resp ectiv ely .

As the tree is split, it is once again re-structured: if x splits the tree somewhere

in the left subtree of the ro ot, then elemen ts are mo v ed o v er to the righ t subtree

and vice v ersa. This tends to balance the tree.

The op eration �ndMin simply �nds the leftmost no de. This tak es O (log n )

time. If ev ery application of deleteMin is accompanied b y at most one application

of �ndMin , as is often the case, w e ma y amortize the cost of �ndMin to O (1).

Otherwise, w e ma y store the minim um elemen t separately from the tree. This

ma y b e done without increasing the complexit y of the other op erations. As this

causes more w ork, this is only advisable when �ndMin is called often.

2.4 Summary

This c hapter sho ws there are man y w a ys to implemen t the same adt . But whic h

implemen tation is b est? Do es it dep end on ho w w e use the data structure?

Calculating the complexities of the op erations giv es us a theoretical answ er, but

empirical p erformance ma y giv e a di�eren t picture.

Therefore, after dev eloping the b enc hmarking pro cedures motiv ated in Sec-

tion 1.3, w e b enc hmark all of the implemen tations of this c hapter in Chapter 7.
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Chapter 3

Datat yp e Usage Graphs

In Section 1.3 w e iden ti�ed a need to qualify the p erformance of a data structure

b y ho w it is used. W e can do this b y creating b enc hmarks whose use of the data

structure is w ell-de�ned. This information is useless unless w e can �nd out ho w an

application uses a data structure. This c hapter outlines a theoretical framew ork

for (a) creating a b enc hmark from a description of use, and for (b) creating a

description of use from an application. Chapter 6 builds on this framew ork to

pro vide a practical to ol to do b oth (a) and (b).

The adt framew ork has a solid basis of literature [52] and is v ery con v enien t

for abstracting o v er man y data structures|an adt abstracts o v er man y data

structures implemen ting the same op erations. W e shall therefore insist on ev ery

data structure w e deal with b eing an implemen tation of some adt .

The am biguit y of the phrase \ho w an adt is used" presen ts an obstacle. With-

out an exact de�nition of this prop ert y , w e w ould �nd it hard to talk ab out the

e�ciency of an implemen tation of an adt according to ho w it is used, or indeed

ab out ho w a particular application uses an adt . Consider the t w o applications

of queues in Figure 3.1 (see Section 2.1 for a de�nition of queues). Insp ecting the

co de for eac h application allo ws us to see what op erations are b eing p erformed,

in what order, and ho w the result of one op eration ma y rely on the result of

another. But the task is b y no means straigh tforw ard. With more complicated

applications, the task w ould b ecome extremely di�cult. W e need a simple record

of ho w an adt is used b y an application.

W e use a lab elled directed graph. See Figure 3.2 for examples that describ e

43
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apply :: Int -> (a -> a) -> a -> a

apply n f q = (iterate f q) !! n

snocTrue :: Queue Bool -> Queue Bool

snocTrue q = snoc q True

app1 :: Int -> Bool

app1 n = (head . apply (n-1) tail . apply n snocTrue) empty

app2 :: Int -> Bool

app2 n = (and . map (head . tail) . take n . repeat) nSnocs

where nSnocs = apply n snocTrue empty

Figure 3.1: Tw o arti�cial simple applications of queues: app1 and app2 . Note

that app2 uses a where clause to share the v alue of nSnocs .

ho w the queue adt is used b y the t w o applications of Figure 3.1. The no des

are lab elled with partially applied op erations of the adt , with the remaining

argumen ts supplied b y the arcs. There is an arc from u to v if the result of the

op eration at u is tak en as an argumen t b y the op eration at v . The no des are

n um b ered according to the order of ev aluation. Suc h a graph is a datatyp e usage

gr aph ( dug ). W e shall mak e the de�nition of a dug precise in the follo wing

section.

A dug is closely related to b oth an exe cution tr ac e [38 ] and a version gr aph

[13]. An execution trace without cycles and with ev ery op eration returning a

single result is a dug . A dug with ev ery op eration returning an adt v alue is a

v ersion graph. Execution traces ha v e b een used as a mo del on whic h to explain

p ersisten t amortized complexit y via lazy ev aluation [38]. V ersion graphs ha v e

b een used to explain the design of p ersisten t data structures [12 , 13, 40].

During the run of an application, man y di�eren t instances of an adt will

exist. F or example, whilst running queue application app1 there will exist at

some time an empt y queue, a queue con taining just True , a queue con taining t w o
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app1 : 0 1 � � � n

n +1 � � � 2 n -1

2 n

No de Op eration

0 empty

1 : : : n � l � sno c l T rue

n + 1 : : : 2 n � 1 � l � tail l

2 n � l � he ad l

app2 : 0 1 � � � n n +1

n +2

3 n -1

3 n

.

.

.

No de Op eration

0 empty

1 : : : n � l � sno c l T rue

n + 1 � l � tail l

n + 2 � l � he ad l

.

.

.

.

.

.

3 n � 1 � l � tail l

3 n � l � he ad l

Figure 3.2: Graphs sho wing ho w the queue adt is used b y the di�eren t appli-

cations giv en in Figure 3.1. Note that no de n of app2 corresp onds to the v alue

nSnocs shared b y n applications of tail .
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copies of True , and so on. Eac h of these particular instances of the adt is called

a version [38] (as de�ned in Section 1.4). A no de of a dug is called a version

no de if it is lab elled with an op eration that results in a v ersion. The subgraph

of a dug con taining just the v ersion no des is called the version gr aph . This is

consisten t with the de�nition of a v ersion graph giv en b y Driscoll et al. [13 ].

The rest of this c hapter is organised as follo ws. Section 3.1 de�nes a dug

precisely . Section 3.2 de�nes the evaluation of a dug , e�ectiv ely creating a

b enc hmark. Section 3.3 de�nes a pr o�le of a dug , summarising the main c har-

acteristics. Section 3.4 de�nes a shadow data structur e , useful for creating a dug

that matc hes a giv en pro�le, and for adding information to a pro�le.

3.1 De�nition

W e should �rst de�ne what w e mean b y an adt . An adt pro vides op erations

to create, manipulate, and observ e v alues of some new t yp e. The only w a y to

in teract with v alues of this t yp e is through the adt op erations. This allo ws the

implementation of the adt to b e remo v ed from its use |w e ma y exc hange imple-

men tations without c hanging ho w w e use the adt . W e ha v e therefore abstracted

a w a y from the implemen tation.

W e shall restrict ourselv es to c ontainer typ es , that is, adt s that con tain ele-

men ts of some other t yp e. F or example, a list adt allo ws lists of in tegers, lists

of c haracters, etc. F or an y suc h adt , w e ma y consider the adt as de�ning a

t yp e constructor T . F or example, a list adt ma y b e tak en as de�ning a t yp e

constructor List taking a t yp e t to the t yp e List t . A list of in tegers w ould then

ha v e the t yp e List Int . W e shall restrict T to b e unary . Most common adt s

satisfy these restrictions.

De�nition 3.1 ( adt )

F or an y t yp e constructor T , and an y set of functions F , the pair ( T ; F ) is

an adt if the follo wing are satis�ed:

� T is unary .

� Eac h function in F tak es at least one argumen t of t yp e T a , or returns

a result of t yp e T a , where a is a t yp e v ariable.
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F or the sak e of simplicit y w e shall further restrict the adt s considered b y giving

the follo wing de�nitions.

De�nition 3.2 (Simple T yp e)

F or an y t yp e constructor T of arit y one, w e sa y that the t yp e t is simple

over T if t

� Can b e formed as typ e b y the grammar

typ e ::= ar gument typ e ! typ e j r esult typ e

ar gument typ e ::= T a j a j Int

r esult typ e ::= T a j a j Int j Bo ol

where a is a t yp e v ariable

� Con tains at least one o ccurrence of T a

W e shall abbreviate this to sa ying that t is simple where the con text mak es

it unam biguous o v er whic h t yp e constructor t is simple.

Example 3.2

The follo wing t yp es are simple o v er the t yp e constructors Queue , List and

Set resp ectiv ely:

� Queue a ! a ! Queue a

� List a ! Int ! a

� Set a

The follo wing are not simple o v er any t yp e constructor:

� List a ! Queue a

� ( a ! a ) ! List a ! List a

� a

De�nition 3.3 (Simple adt )

W e de�ne the adt A = ( T ; f f

1

; : : : ; f

n

g ) to b e simple if the t yp e of eac h

op eration f

i

is simple.
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module List (List,empty,catenate,con s,ta il,h ead ,loo kup, isEm pty)

where

empty :: List a

catenate :: List a -> List a -> List a

cons :: a -> List a -> List a

tail :: List a -> List a

head :: List a -> a

lookup :: List a -> Int -> a

isEmpty :: List a -> Bool

Figure 3.3: Hask ell co de giving the signature of a simple list adt A

List

pro viding

normal list op erations, catenation and indexing. The exp orted t yp e constructor

is List . The t yp e of eac h op eration is simple o v er List .

Example 3.3

The signature of a simple adt A

List

is giv en in Figure 3.3.

Man y adt s are simple: queues, deques, lists, random-access sequences, heaps,

sets, in teger �nite maps, etc. Ho w ev er, an y higher-order op erations suc h as map ,

or an y op erations con v erting from one data structure to another suc h as fr omList ,

need to b e excluded.

When talking ab out dug s w e shall �nd it useful to classify the op erations

according to the di�eren t roles they pla y . W e therefore mak e the follo wing de�-

nition.

De�nition 3.4 (Generator, Mutator, Observ er, Role, V ersion Arit y)

F or an y op eration f of t yp e t , where t is of the form

t = t

1

! t

2

! � � � ! t

m

and is simple o v er the t yp e constructor T , f is classi�ed as follo ws:

Gener ator If t

m

= T a and ( 8 j; 1 � j < m ) t

j

6= T a

Mutator If t

m

= T a and ( 9 j; 1 � j < m ) t

j

= T a

Observer If t

m

6= T a and ( 9 j; 1 � j < m ) t

j

= T a
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Note that the categorisation is complete and an y op eration of simple t yp e

is exactly one of: generator, m utator or observ er. This is called the r ole

of the op eration. W e de�ne the version arity of an op eration to b e the

n um b er of v ersion argumen ts tak en b y that op eration. Therefore, ev ery

generator has v ersion arit y 0, and ev ery m utator and observ er has v ersion

arit y greater than or equal to 1.

Example 3.4

Lo oking at the signature of the simple adt A

List

in Figure 3.3, empty is

a generator; catenate , cons and tail are m utators; head , lookup and

isEmpty are observ ers. Ev ery m utator and observ er has v ersion arit y 1,

apart from catenate , whic h has v ersion arit y 2.

Lo ok at the dug s in Figure 3.2. The lab el attac hed to a dug no de is a partial

application of an adt op eration. F or simplicit y , the argumen ts used to partially

apply the op eration are restricted to atomic v alues|nested function applications

are not allo w ed. The remaining argumen ts are supplied b y the arcs. W e shall

no w de�ne the functions that lab el dug no des.

De�nition 3.5 (P artial Application, Pap ( A ) )

Giv en a simple adt A = ( T ; f f

1

; : : : ; f

n

g ), a p artial applic ation of f

i

is an y

function of the follo wing form:

�x

1

� �x

2

� : : : � �x

k

� f

i

a

1

a

2

: : : a

m

; 0 � k � m

Here, m is the arit y of f

i

, eac h x

j

o ccurs exactly once in the sequence

[ a

1

; : : : ; a

m

], and ev ery other elemen t of this sequence is an atomic v alue.

T o a v oid duplication, w e further insist that x

1

, . . . , x

k

o ccur in order in

the sequence [ a

1

; : : : ; a

m

], that is, x

j

1

o ccurs b efore x

j

2

for j

1

< j

2

. The set

of all partial applications of an y function of a simple adt A is denoted b y

Pap ( A ).

Example 3.5

F or the list adt A

List

, whose signature is giv en in Figure 3.3, the follo wing

functions are in Pap ( A

List

):
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� �l � c ons 'a' l

� empty

� �l

1

� �l

2

� c atenate l

1

l

2

Whereas, the follo wing functions are not:

� �l � c atenate l l

� �l

1

� �l

2

� c atenate l

2

l

1

� �l

1

� �l

2

� c ons ( lo okup l

1

2) l

2

W e ma y use a partial application to assign a role to a no de: F or a no de v lab elled

with a partial application of the op eration f , the role of v is de�ned to b e the

role of f . F or example, lo oking at the dug for app1 in Figure 3.2, no de 0 is a

generator, no des 1 to 2 n � 1 are m utators, and no de 2 n is an observ er.

W e are no w in a p osition to giv e a de�nition of a dug . F or no des with more

than one incoming arc, w e need to iden tify whic h arc corresp onds to whic h argu-

men t. W e therefore lab el ev ery arc to suc h a no de with an argumen t p osition.

De�nition 3.6 ( dug )

Giv en a directed graph G = ( V ; E ), a simple adt A = ( T ; f f

1

; : : : ; f

n

g ),

a total mapping � : V ! Pap ( A ), and a bijection � : V ! f 1 :: jV jg , let

E

P

� E b e those arcs inciden t to a no de with more than one incoming arc,

and let � : E

P

! N b e a total mapping. The 4-tuple ( G ; � ; � ; � ) is a dug

for A , if for ev ery v 2 V the follo wing prop erties are satis�ed:

1. The arit y of � ( v ) equals the in-degree of v .

2. If v has more than one incoming arc, � restricted to the incoming arcs

is a bijection with the set f 1 :: inde gr e e ( v ) g .

3. The application of � ( v ) to the argumen ts giv en b y E and � is t yp e

consisten t.

4. If v has successor w 2 V , � ( v ) < � ( w ).

5. The t yp e of ev ery argumen t of � ( v ) is T a .
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Prop erties 1{3 ensure the dug is w ell-de�ned. Prop erties 4{5 imp ose re-

strictions on dug s to mak e generating dug s easier: Prop ert y 4 orders

the argumen ts of an op eration b efore the op eration itself|note that this

forces the graph to b e acyclic|see the problem Cho osing the op er ation

b efor e the ar guments of Section 4.1.1 for justi�cation of this restriction;

Prop ert y 5 ensures only v ersion argumen ts are tak en from the results of

other op erations|see the problem Cho osing non-version ar guments fr om

the gr aph of Section 4.1.1 for justi�cation.

Example 3.6

Once again using the adt A

List

, whose signature is giv en in Figure 3.3, an

example of a dug is sho wn in Figure 3.4. A table de�nes � . The ordering

� of the ev aluation of the no des is giv en b y: � ( v

i

) = i . Lab els assigned

b y � are written b eside the relev an t arcs: v

5

catenates v

1

on to the fron t of

v

3

, and v

7

catenates v

1

on to the fron t of v

6

. The t yp e v ariable a can b e

substituted b y the t yp e Char to obtain t yp e consistency for ev ery function

application.

As eac h op eration returns only a single v alue, w e ma y asso ciate eac h no de with

the v alue it pro duces. The no des of the v ersion graph are asso ciated with v ersions

formed b y either generating a fresh v ersion or b y m utating one or more previous

v ersions. The arcs within the v ersion graph represen t the 
o w of data within

the priv acy of the adt framew ork. The arcs going out from the v ersion graph

represen t the 
o w of data out of the priv acy of the adt framew ork.

3.2 Ev aluation

W e ha v e so far presen ted a dug as a record of ho w an application uses an imple-

men tation of an adt . W e can rev erse this pro cess. By creating an evaluator of

dug s, w e create an application that uses an adt implemen tation in the manner

giv en b y the dug it ev aluates. W e can then use this application as a b enc hmark

with a kno wn pattern of use.

F or example, ev aluating the dug for app1 of Figure 3.2 should create an empty

queue, then sno c the v alue T rue on to the queue n times, then tak e the tail of the
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v

0

v

1

v

5

1

v

3

2

v

2

v

4

v

6

v

7

1 2

v

8

v

9

v

10

�

v

0

empty

v

1

� l � c ons 'c' l

v

2

empty

v

3

� l � c ons 'h' l

v

4

� l � he ad l

v

5

� l

1

� � l

2

� c atenate l

1

l

2

v

6

� l � tail l

v

7

� l

1

� � l

2

� c atenate l

1

l

2

v

8

� l � tail l

v

9

� l � lo okup l 1

v

10

� l � isEmpty l

Figure 3.4: A dug for the list adt A

List

(see Figure 3.3).

queue ( n � 1) times, and �nally apply he ad . W e will de�ne ev aluation b y �rst

de�ning ho w w e ma y asso ciate eac h no de with a function application.

De�nition 3.7 (In terpretation of P artial Applications)

Let A b e an y simple adt . Let f b e an op eration of A . Let g 2 Pap ( A )

b e an y partial application of f . Let I b e an implemen tation of A . The

in terpretation of g under I , denoted b y [ [ g ] ]

I

, is the v alue of g using the

implemen tation of f in I .

Example 3.7

Let L b e the ordinary Hask ell implemen tation of lists, then

� [ [ � l � c ons T rue l ] ]

L

= \l -> (True:l)

� [ [ � l � he ad l ] ]

L

= \(x:xs) -> x

� [ [ empty ] ]

L

= [ ]

De�nition 3.8 (In terpretation of No des)

Let ( G ; � ; � ; � ) b e an y dug for the adt A , let v b e an y no de of G , and let
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I b e an implemen tation of A . Let e

1

; : : : ; e

k

, k � 0, b e the arcs inciden t to

v , ordered b y � , from the no des v

1

; : : : ; v

k

resp ectiv ely . The in terpretation

of v under I , denoted b y [ [ v ] ]

I

, is the follo wing expression:

[ [ v ] ]

I

= [ [ � ( v )] ]

I

[ [ v

1

] ]

I

: : : [ [ v

k

] ]

I

where the righ t-hand side is an application of the function [ [ � ( v )] ]

I

. Note

that as G is acyclic, this recursiv e de�nition is sound.

Example 3.8

Using the dug sho wn in Figure 3.4, and the ordinary Hask ell implemen-

tation L of lists,

� [ [ v

1

] ]

L

= (\l -> ('c':l)) [ ]

� [ [ v

4

] ]

L

= (\(x:xs) -> x) ((\l -> ('h':l)) [ ])

3.2.1 Order of Ev aluation

The order of ev aluating the in terpretations of the dug no des can signi�can tly

a�ect e�ciency . Within functional languages there are t w o main sc hemes for

deciding the order of ev aluation of an expression: lazy and eager. W e shall

accomo date b oth sc hemes b y using the no de ordering of a dug ( G ; � ; � ; � ) giv en

b y � in t w o separate w a ys.

Lazy Ev aluation

If w e consider ho w a function is applied under lazy ev aluation, w e see that a

closure represen ting the application is �rst formed, then its v alue is p erhaps

demanded one or more times, and then it is garbage collected. The formation of

the closure can b e a separate inciden t to its v alue b eing demanded. The order

of the formation of the closures can also a�ect e�ciency . Hence w e shall order

the forming of the closures of the expressions giv en b y the in terpretations of eac h

dug no de.

Under lazy ev aluation, only the w ork required to form the demanded result

is p erformed. W e m ust demand a result or no w ork will b e done. Within the

adt framew ork, w e cannot lo ok within an adt v alue, so w e instead demand the
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v alues that are of some other t yp e. Lo oking at a dug , only the v alues giv en b y

the observ er no des ha v e suc h a t yp e. The order in whic h w e demand these v alues

will a�ect e�ciency .

Within the curren t framew ork w e shall insist that the order in whic h w e

demand the ev aluation of the observ er no des coincides with the order of the

formation of the closures asso ciated with observ er no des, ie. as so on as w e form

a closure for an observ er no de, w e demand it. There is the p ossibilit y for an

extension here to allo w for these to o ccur at di�eren t times.

De�nition 3.9 (Lazy Ev aluation of a dug )

Giv en a dug ( G ; � ; � ; � ) for an adt A , and an implemen tation I of A , the

lazy evaluation of the dug with resp ect to I is the pro cess of p erforming

the follo wing steps on eac h no de � ( i ) in order:

� F orm the closure giv en b y [ [ � ( i )] ]

I

.

� If the no de is an observ er, demand the v alue of this closure.

Example 3.9

The lazy ev aluation of the dug of Figure 3.4 w ould form the closures [ [ v

i

] ]

for 0 � i � 10 in order. When the closures for the observ er no des are

formed, namely [ [ v

4

] ], [ [ v

9

] ], and [ [ v

10

] ], their v alue is demanded at the same

time.

Eager Ev aluation

Whereas with lazy ev aluation man y applications of functions ma y remain unev al-

uated closures, under eager ev aluation they will alw a ys b e reduced. Hence the

eager ev aluation of a dug will ev aluate ev ery no de and there is no distinction

b et w een forming a function application and ev aluating it.

De�nition 3.10 (Eager Ev aluation of a dug )

Giv en an ordered dug ( D ; � ), and an implemen tation I of A , the ev alua-

tion of the dug with resp ect to I is the pro cess of taking eac h no de � ( i )

in order and ev aluating the application giv en b y [ [ � ( i )] ]

I

.
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Example 3.10

The eager ev aluation of the dug of Figure 3.4 w ould simply ev aluate eac h

[ [ v

i

] ] for 0 � i � 10 in order.

3.2.2 Abstract Ev aluation

The most abstract implemen tation of an adt is the adt itself. W e use the

abstract op erations to create, manipulate, and observ e abstract v alues. These

abstract v alues only exist within the abstract w orld of mathematics, not within

an y mac hine.

De�nition 3.11 (Abstract Ev aluation)

The abstr act evaluation of a dug for the adt A is a mapping � that tak es

a no de v to the result of ev aluating [ [ v ] ]

A

.

Example 3.11

The abstract ev aluation � of the dug of Figure 3.4 is giv en b y the follo wing

table, using [ x

0

; : : : ; x

n

] to denote a list of elemen ts x

0

, . . . , x

n

:

v

i

v

0

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

v

10

� ( v

i

) [ ] ['c'] [ ] ['h'] 'h' ['c' ; 'h'] ['h'] ['c' ; 'h'] ['h' ] 'h' F alse

3.3 Pro�le

Recall from the in tro duction of this c hapter that w e w an t to create a b enc hmark

from a dug , and that w e w an t to extract a dug from an application. Ho w ev er,

a dug ma y b e v ery large, and hence di�cult to giv e or insp ect, so w e shall

no w de�ne the pr o�le of a dug . The pro�le will condense the most relev an t

c haracteristics of a dug in to a few n um b ers. W e can use pseudo-random n um b ers

to generate a family of dug s that on aver age ha v e a giv en pro�le. The initial seed

giv en to the pseudo-random n um b er generator determines whic h one is c hosen.

W e can no w create a b enc hmark from a pro�le, and extract a pro�le from an

application.

W e should �rst giv e some justi�cation of using pseudo-random n um b ers. Wh y

do w e need a random elemen t to our dug generation? This is b ecause there are

man y dug s that matc h a single pro�le, and without an elemen t of randomness w e



56 CHAPTER 3. D A T A TYPE USA GE GRAPHS

will alw a ys pic k the same one. But wh y cannot w e just generate this one dug ?

Because �xing ourselv es to just one of these in vites bias in to our results. Suc h

a bias ma y fa v our one adt implemen tation o v er another, unfairly represen ting

their p erformance. Pic king sev eral of these dug s at random com bats this bias.

So what c haracteristics do w e c ho ose to record in a pro�le? One ob vious

c hoice is the fraction of p ersistent applications of op erations. An application

of an op eration is p ersisten t if one of the v ersion argumen ts has already b een

m utated|that is, a m utator has already b een applied to this argumen t. Ho w ev er,

considering the application of an op eration as a whole causes problems with the

generation of dug s. Sp eci�cally , w e will �nd that it is easier to c ho ose the

argumen ts indep enden tly of eac h other b efore applying the op eration|see the

problem Cho osing the op er ation b efor e the ar guments of Section 4.1.1.

T o solv e this problem, w e split an application in to the parts represen ted b y

the ar cs : One arc iden ti�es one application. This allo ws us to iden tify whether

an application is p ersisten t according to whether the source of the arc has b een

previously m utated. With this de�nition of p ersistence w e can iden tify whic h

applications of op erations to an argumen t are p ersisten t indep enden tly of the

other argumen ts. Note that the order asso ciated with the targets of the arcs

indicates the order of the applications.

De�nition 3.12 (Mutation, Observ ation)

F or an y no de v of the v ersion graph of a dug , a mutation of v is an arc from

v to a m utator no de. Note that an n -ary m utator creates n m utations. An

observ ation is de�ned similarly . Mutations and observ ations inherit the

ordering giv en to the no des to whic h they p oin t.

Example 3.12

Lo oking at the dug in Figure 3.4, the arc from v

7

to v

8

is a m utation,

and the arc from v

7

to v

9

is an observ ation. As v

9

is ordered after v

8

, the

observ ation v

7

! v

9

is ordered after the m utation v

7

! v

8

.

De�nition 3.13 (P ersisten t, Ephemeral)

F or an y no de v of the v ersion graph of a dug with no de ordering � , a

m utation or observ ation of v is p ersistent if it is ordered b y � after the
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e arliest mutation of v . This captures the notion of p ersistence: m utating

or observing the previous v alue of a m utated data structure. A m utation

or observ ation that is not p ersisten t is called ephemer al .

Example 3.13

As in Example 3.12, lo oking at the dug in Figure 3.4, w e see that the

observ ation v

7

! v

9

o ccurs after the m utation v

7

! v

8

. As this m utation

is the only m utation of v

7

, it is also the earliest. Th us the observ ation

o ccurs after the earliest m utation, and so is p ersisten t. The m utation

v

1

! v

7

is also p ersisten t. The observ ation v

3

! v

4

is ephemeral.

Another ob vious c haracteristic of dug s is the ratio of ho w man y times w e apply

one op eration relativ e to another.

De�nition 3.14 (W eigh t)

F or an y dug D , the weight of a m utator f in D is the n um b er of m uta-

tions that apply f to no des in D . The w eigh t of an observ er is de�ned

similarly . The w eigh t of a generator f is simply the n um b er of no des that

are generated b y f . T o unify these t w o de�nitions, one migh t imagine a

single v oid no de with arcs to eac h generator no de.

Example 3.14

The w eigh ts of the op erations in the dug in Figure 3.4 are giv en b elo w.

Role Generator Mutator Observ er

Op eration empty c atenate c ons tail he ad lo okup isEmpty

W eigh t 2 4 2 2 1 1 1

W e can lo calise the w eigh t of a m utator or of an observ er to just a sub gr aph .

This allo ws us to see ho w this ratio migh t c hange from one region of the dug to

another.

De�nition 3.15 (W eigh t in H )

F or an y subgraph H of a v ersion graph, the weight of a m utator f in H

is the n um b er of m utations that apply f to no des in H . The w eigh t of an

observ er is de�ned similarly .
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Example 3.15

Lo oking at the dug in Figure 3.4, let the subgraph H include just the

no des v

0

, v

1

, v

2

and v

3

. The w eigh ts of the m utators and observ ers in H

are giv en b elo w.

Role Mutator Observ er

Op eration c atenate c ons tail he ad lo okup isEmpty

W eigh t in H 3 2 0 1 0 0

Information suc h as the a v erage n um b er of m utations of a no de is not only useful

for summarising dug s, it also pro vides a v ery con v enien t w a y to generate a dug

with a giv en pro�le (see ahead to Section 4.1.1).

F rom the fraction of m utations that are p ersisten t, w e can calculate the a v er-

age n um b er of m utations of previously m utated no des as follo ws. Let p

m

b e the

fraction of m utations that are p ersisten t. T ak e an y no de v

i

that is m utated at

least once. The �rst m utation of v

i

is ephemeral, and the remaining n

i

m utations

are p ersisten t. Av eraging o v er all j m utated no des, w e ha v e

p

m

=

P

j

i =1

n

i

P

j

i =1

( n

i

+ 1)

; n =

P

j

i =1

n

i

j

) n =

p

m

1 � p

m

If w e kno w the fraction m of no des that are not m utated at all, w e can calculate

the a v erage n um b er � of m utations of a no de:

� = 0 m +

�

1 +

p

m

1 � p

m

�

(1 � m ) =

1 � m

1 � p

m

W e call p

m

the p ersistent mutation factor ( pmf ), and m the mortality .

If w e calculate the ratio r of m utations to observ ations, w e can also estimate

the a v erage n um b er of observ ations of a no de. Making the assumption that a

no de w as made b y a m utator, then the a v erage n um b er of observ ations of a no de

is 1 =r . As w e ha v e excluded no des made b y generators, this is only an estimate.

F rom the fraction p

o

of observ ations that are p ersisten t, w e can calculate the

a v erage n um b er of observ ations made b efore the �rst m utation at (1 � p

o

) =r , and

the a v erage n um b er of observ ations made after the �rst m utation at p

o

=r . W e

call p

o

the p ersistent observation factor ( pof ).

Later w e shall wish to calculate the pro�le of a subgraph of a dug . As

the w eigh t of a generator cannot b e lo calised to a subgraph, w e separate out
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gener ation weights from the w eigh ts of m utators and observ ers. T o allo w the

calculation of the ratio r of m utations to observ ations, w e group the m utation

and observ ation w eigh ts together to form the mutation-observation weights .

De�nition 3.16 ( dug Pro�le)

The pro�le of a dug D with v ersion graph G

V

is giv en b y the follo wing:

� Gener ation weights : The ratio of the w eigh ts of eac h generator.

� Mutation-observation weights : The ratio of the w eigh ts of eac h m u-

tator and observ er in G

V

.

� Mortality : The fraction of no des in G

V

that are not m utated.

� pmf : The fraction of m utations of no des in G

V

that are p ersisten t.

� pof : The fraction of observ ations of no des in G

V

that are p ersisten t.

Example 3.16

The dug sho wn in Figure 3.4 has the follo wing pro�le:

� Gener ation weights : As there is only one generator, empty , this prop-

ert y is redundan t at: empty = 1.

� Mutation{observation weights : W e ha v e

c atenate : c ons : tail : he ad : lo okup : isEmpty = 4 : 2 : 2 : 1 : 1 : 1

Note that eac h application of c atenate carries double the w eigh t of an

application of one of the other op erations b ecause eac h application of

c atenate creates t w o m utations.

� Mortality : Of the eigh t v ersion no des, only one ( v

8

) is not m utated,

so the mortalit y is 1 = 8.

� pmf : There are eigh t m utations, one of whic h ( v

1

! v

7

) is p ersisten t,

so the pmf is 1 = 8.

� pof : There are three observ ations, one of whic h ( v

7

! v

9

) is p ersis-

ten t, so the pof is 1 = 3.

If the pmf and pof of a dug are b oth zero, then w e kno w that there are no

p ersisten t applications of an op eration. Therefore, w e mak e the follo wing de�ni-

tion.
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De�nition 3.17 (Single-Threaded)

An application using an implemen tation of a simple adt A in a manner

recorded b y the dug D is single-thr e ade d for A if the pmf and pof of D

are b oth zero. A single-threaded application do es not require a p ersisten t

implemen tation of the adt .

Example 3.17

The dug of application app1 sho wn in Figure 3.2 has pmf and pof b oth

zero and is therefore single-threaded.

3.4 Shado w Data Structure

T o aid the generation of dug s, and to add information to pro�les, w e use a shadow

data structur e . A shado w data structure main tains a shadow of ev ery v ersion.

This shado w con tains information ab out the v ersion. A shado w data structure

do es not dep end on an y implemen tation of the adt , but is instead abstract and

applicable to any implemen tation of the same adt .

As a running example, for the adt A

List

, whose signature is giv en in Fig-

ure 3.3, and for whic h eac h v ersion is a list, let the shado w of a v ersion con tain

the length of the list. Belo w w e giv e an o v erview of the uses of a shado w data

structure.

Guarding Against Unde�ned F unction Applications

When generating a dug from a pro�le, if w e blindly c ho ose to lab el a no de with

an y op eration, w e ma y create an application that is unde�ned: for example,

most list adt s w ould not de�ne the v alue of he ad empty . Suc h applications of

p artial op er ations need to b e excluded from a dug generated at random. W e

need to ha v e a guar d around the partial op eration telling us whic h applications

of the op eration w e can form. W e can use the shado w of a v ersion to store

enough information to allo w decisions ab out whether a particular op eration ma y

b e applied to that v ersion. F or example, for A

List

, if w e main tain the length of a

list in the shado w, w e can prev en t the application he ad empty b y only allo wing

he ad to b e applied to lists of length 1 or more.
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Phasing Pro�les

W e can also use the shado w data structure to split a pro�le in to phases . The

shado w of a v ersion no de will determine whic h phase the no de is in. This is useful

for giving a more sp eci�c pro�le. F or example, w e migh t wish to mak e a dug

for A

List

where the a v erage length of the list is n elemen ts. W e can do this if w e

mak e c ons more lik ely than tail on lists shorter than n elemen ts, and vice v ersa

for lists longer than n elemen ts. This is p ossible if w e main tain the length of the

list in the shado w, and giv e a di�eren t pro�le for eac h of the t w o phases: lists no

longer than n elemen ts, and lists longer than n elemen ts.

Shado w Pro�ling

The shado w could also store an y other useful information ab out what op erations

w ere p erformed. This shadow pr o�le information w ould allo w pro�le information

sp eci�c to an adt to b e collected, along with the general pro�le information

already describ ed in this c hapter. F or example, b y main taining the length of a

list, w e can calculate the a v erage length of a list p er m utation or observ ation.

Note that a shado w data structure is only used for the generation or analysis of

dug s, and need not b e in v olv ed in applications using an adt implemen tation.

W e shall later use a further restriction on dug s to aid b oth dug generation

and dug extraction: V ersions ma y only con tain in teger elemen ts. In tro ducing

this restriction here also simpli�es the de�nition of a shado w data structure. See

Section 4.1.1 for a discussion of this restriction. This restriction implies that the

t yp e v ariable a in the t yp e of an op eration b ecomes instan tiated to Int .

W e shall no w de�ne a shado w data structure precisely .

3.4.1 Shado wing

W e should �rst de�ne the shado ws themselv es. The shado ws are main tained b y

the shado w op erations.

De�nition 3.18 (Shado w Op eration)

F or an y simple adt ( T ; F ), and for an y generator or m utator f 2 F , let t
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b e the t yp e of f with t yp e v ariable a instan tiated to Int . F or an y t yp e s ,

the function g is an s - shadow of f if g has the t yp e shadow

s

( t ) giv en b y

shadow

s

( t

1

! t

2

) = shadow

s

( t

1

) ! shadow

s

( t

2

)

shadow

s

( T Int ) = s

shadow

s

( Int ) = Int

The shado ws main tained b y this shado w op eration ha v e t yp e s . There are

no shado ws of observ ers as they do not return v ersions.

Example 3.18

F or an y t yp e s , an s -shado w of the lo okup op eration of A

List

(see Figure 3.3)

has the follo wing t yp e:

shadow

s

( T Int ! Int ! Int ! T Int ) = s ! Int ! Int ! s

De�nition 3.19 (Shado wing)

Let A = ( T ; f f

1

; : : : ; f

n

g ) b e an y simple adt . Let f f

i

1

; : : : ; f

i

m

g b e the

generators and m utators of A . F or an y set F

0

= f f

0

i

1

; : : : ; f

0

i

m

g of op era-

tions, and an y t yp e s , the pair ( s; F

0

) is a shadowing of A if the follo wing

hold:

� Eac h f

0

i

j

is an s -shado w of f

i

j

.

� There exists a homomorphism � :: T I nt ! s ; that is,

for all f

i

j

; x

1

; : : : ; x

k

, where k � 0 is the arit y of f

i

j

,

if f

i

j

x

1

: : : x

k

is w ell-de�ned, then the follo wing holds:

� ( f

i

j

x

1

: : : x

k

) = f

0

i

j

( �

0

x

1

) : : : ( �

0

x

k

)

where for all x ,

�

0

x =

8

<

:

� x; if x has typ e T Int

x; otherwise

Example 3.19

The Hask ell co de of Figure 3.5 is a shado wing S

List

of the adt A

List

(see

Figure 3.3). In this case, the t yp e s shado wing List Int is of t yp e Int , and

the homomorphism � :: List Int ! Int is the function that returns the

length of a list.
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type Shadow = Int

empty_Shadow :: Shadow

empty_Shadow = 0

catenate_Shadow :: Shadow -> Shadow -> Shadow

catenate_Shadow s0 s1 = s0 + s1

cons_Shadow :: Int -> Shadow -> Shadow

cons_Shadow i0 s0 = s0 + 1

tail_Shadow :: Shadow -> Shadow

tail_Shadow s0 = s0 - 1

Figure 3.5: A shado wing of adt A

List

(see Figure 3.3).

De�nition 3.11 assigns an abstract adt v alue to ev ery v ersion no de of a dug ; the

follo wing de�nition assigns the shado w of the adt v alue.

De�nition 3.20 (Shado w Ev aluation)

Let D b e an y dug for adt A , and S = ( s; F ) b e an y shado wing of A . The

shadow evaluation of D is a mapping � that tak es a v ersion no de v to the

result of ev aluating [ [ v ] ]

S

, where an op eration is in terpreted b y its shado w.

Example 3.20

T aking the dug of Figure 3.4 with the shado wing S

List

of Figure 3.5, the

shado w ev aluation � of the dug is giv en b elo w:

v

i

v

0

v

1

v

2

v

3

v

5

v

6

v

7

v

8

� ( v

i

) 0 1 0 1 2 1 2 1

Note from Examples 3.11 and 3.20 that the ev aluation of eac h v ersion no de under

S

List

equals the length of the list pro duced b y the ev aluation under A

List

. This

results from the condition that a shado wing de�nes a homomorphism from the

adt v alues to the shado w v alues. This is no w pro v ed.
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Lemma 3.1 F or any dug D for adt A , any version no de v in D , and any

shadowing S de�ning a homomorphism � , if [ [ v ] ]

A

is wel l-de�ne d, then � [ [ v ] ]

A

=

[ [ v ] ]

S

.

Pro of: W e shall pro ceed b y induction on n , the n um b er of no des of in the v ersion

graph.

� F or n = 0 the lemma is satis�ed trivially .

� W e shall assume that the lemma is true for all dug s with no greater than n

v ersion no des. W e claim the lemma is true for an y dug with n + 1 v ersion

no des. T ak e suc h a dug D . T ak e an y v ersion no de v with zero out-degree

within the v ersion graph. There m ust b e at least one suc h no de as the graph

is acyclic. As v has no successors within the v ersion graph, w e ma y remo v e

v and an y successors outside of the v ersion graph from D to obtain another

dug D

0

. As D

0

has n v ersion no des, the inductiv e h yp othesis states that

for an y v ersion no de v

0

in D

0

, � [ [ v

0

] ]

A

= [ [ v

0

] ]

S

. Therefore w e need only pro v e

that the lemma is true for v . Let e

1

; : : : ; e

k

, k � 0, b e the arcs inciden t to v ,

ordered b y � , from the no des v

1

; : : : ; v

k

resp ectiv ely . Let f b e the op eration

from whic h � ( v ) is deriv ed, and let f

0

b e the shado w of f giv en b y S .

[ [ v ] ]

S

= [ [ � ( v )] ]

S

[ [ v

1

] ]

S

: : : [ [ v

k

] ]

S

= ( �x

1

� : : : � �x

k

� f

0

a

1

: : : a

m

) ( � [ [ v

1

] ]

A

) : : : ( � [ [ v

k

] ]

A

)

Without loss of generalit y , w e shall assume that for 1 � i � k , a

i

= x

i

.

[ [ v ] ]

S

= f

0

( � [ [ v

1

] ]

A

) : : : ( � [ [ v

k

] ]

A

) a

k +1

: : : a

m

= � ( f [ [ v

1

] ]

A

: : : [ [ v

k

] ]

A

a

k +1

: : : a

m

)

= � (( �x

1

� : : : � �x

k

� f a

1

: : : a

m

) [ [ v

1

] ]

A

: : : [ [ v

k

] ]

A

)

= � ( � ( v ) [ [ v

1

] ]

A

: : : [ [ v

k

] ]

A

)

= � [ [ v ] ]

A

2

This lemma sho ws that w e can ha v e access to the shado w of a v ersion, as de�ned

b y the homomorphism of the shado wing, b y using just the shado w op erations.

W e do not need a v ersion to create a shado w, w e need only kno w whic h op erations

created the v ersion. This abstracts us a w a y from an y concrete represen tation of

the v ersion.
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F or example, the shado wing of Figure 3.5 de�nes a homomorphism from a

v ersion, whic h is a list, to its length. Lemma 3.1 sho ws w e can calculate the

shado w of a v ersion v , namely its length, without ha ving access to v itself. All

w e need to kno w is whic h op erations created v . T o construct the length of v , w e

use shado ws of the same op erations, with the same argumen ts.

3.4.2 Guarding

Using the information stored in the shado ws, w e wish to de�ne a guard of an

op eration f that indicates whic h applications of f are allo w ed. W e could mak e a

guard tak e the same argumen ts as f and return true or false, according to whether

the application is allo w ed or not. Ho w ev er, when generating an application at

random, this w ould force ev ery argumen t of an op eration to b e c hosen b efor e

passing these argumen ts to the relev an t guard. With an application suc h as lo okup

l i , this means guessing whic h indices are a v ailable for lo okup b efore testing the

v alidit y of the application. This w ould b e v ery ine�cien t.

The de�nition of a dug already restricts argumen ts supplied b y the result of

another op eration to just v ersion argumen ts. This allo ws non-v ersion argumen ts

to b e c hosen indep enden tly of the results of other op erations. Supp ose w e pass

the guard only the version ar guments of an op eration. The v alid ranges of re-

maining argumen ts could b e returned as the result. One argumen t could then b e

c hosen from eac h range with the resulting application guaran teed to b e v alid. F or

example, the guard for lo okup could return a range of indices up to the length of

the list.

This w orks only if w e mak e the further restriction that the guard returns

indep enden t ranges of non-v ersion argumen ts. Where the ranges of v alid non-

v ersion argumen ts are dep enden t, the guard m ust return some indep enden t subset

of ranges. As w e ha v e ensured that ev ery non-v ersion argumen t is of t yp e Int , a

guard ma y return a range using the t yp e IntSubset .
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De�nition 3.21 (In tSubset, mem b er)

The t yp e IntSubset is giv en b y

data IntSubset = A l l

j Po ol

j Int :..: Int

j FiniteSet ( Set Int )

j None

and represen ts subsets of in tegers in the sense made precise b y the follo wing

de�nition of the mem b ership op eration:

memb er :: Int ! IntSubset ! Bo ol

memb er i A l l = T rue

memb er i Po ol = ( 1 � i � p o olSize )

memb er i ( l :..: u ) = ( l � i � u )

memb er i ( FiniteSet s ) = memb er

FS

i s

memb er i None = F alse

where memb er

FS

is the mem b ership op eration on the t yp e Set Int , and

p o olSize is some constan t. W e assume the a v ailabilit y of a suitable adt to

manipulate v alues of t yp e Set Int .

The de�nition of IntSubset allo ws the same set to b e giv en in more than one w a y;

in fact, only the FiniteSet constructor is needed. Ho w ev er, the other constructors

pro vide dynamic, more e�cien t, or shorter alternativ es:

� The set of all p ossible in tegers is more e�cien tly giv en as A l l than as

FiniteSet ( foldr add empty [ minBound :: maxBound ]) .

� The constan t p o olSize can b e giv en at run-time of the generation of a

dug . The constructor Po ol therefore giv es a set of dynamic size. This

is useful in assessing the e�ect of equal elemen ts on e�ciency of adt

implemen tations|see the problem Cho osing non-version ar guments fr om

the gr aph of Section 4.1.1 for further details.

� The set f 1 ; : : : ; n g is more easily and more e�cien tly giv en as 1 : :: : n than

as FiniteSet ( foldr add empty [ 1 :: n ]).
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� The None is included to complemen t A l l and as a shorter alternativ e to

FiniteSet empty .

Using IntSubset , w e can no w giv e the t yp e of a guard.

De�nition 3.22 (Guard T yp e)

Let T b e an y t yp e constructor of arit y one. Let t b e an y simple t yp e o v er T

with t yp e v ariable a instan tiated to Int . Let n b e the n um b er of argumen ts

of an op eration of t yp e t , v of whic h are v ersion argumen ts. F or an y t yp e

s , the t yp e guar d

s

( t ) is giv en b y

guar d

s

( t ) =

v times

z }| {

s ! � � � ! s !

8

<

:

[ IntSubset ]

n � v

if v < n

Bo ol if v = n

where [ a ]

n

is the t yp e of lists of n elemen ts of t yp e a , and where s represen ts

the t yp e of shado ws. This replaces ev ery v ersion argumen t with a shado w,

and mo v es ev ery non-v ersion argumen t o v er to the result t yp e. There are

n � v non-v ersion argumen ts; if n � v = 0, then the result t yp e is Bo ol ,

otherwise it is a list of length n � v of elemen ts of t yp e IntSubset .

Example 3.22

Consider the adt A

List

, whose signature is in Figure 3.3. F or an y t yp e s ,

an y guard of the op eration he ad using shado ws of t yp e s m ust b e of t yp e

guar d

s

( T Int ! Int ) = s ! Bo ol

If w e add the op eration up date of t yp e

up date :: List a ! Int ! a ! List a

to A

List

, then an y guard of up date m ust b e of t yp e

guar d

s

( T Int ! Int ! Int ! T Int ) = s ! [ IntSubset ]

2

As the t yp e [ a ]

n

cannot b e written in Hask ell, one migh t ask wh y w e ha v e c hosen

it o v er an i -tuple. Unfortunately , Hask ell do es not supp ort functions o v er tuples

of arbitrary size. W e m ust w ork with the result of an y guard in general, and

th us w e are forced to use lists. Ho w ev er, the t yp e of lists do es not express their
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length. Hence lists with t yp es that do sp ecify length w ere c hosen as a compromise

b et w een expressibilit y and practicalit y .

W e can no w de�ne a guard itself. W e ensure the guard is of the correct t yp e,

and that it correctly indicates when a function application is w ell-de�ned.

De�nition 3.23 (Guard)

Let S = ( s; F

0

) b e a shado wing of the adt A = ( T ; F ) de�ning a homo-

morphism � :: T Int ! s . F or an y op eration f 2 F of t yp e t , the function

g is an S - guar d of f if the follo wing hold:

� The t yp e of g is guar d

s

( t ).

� F or all x

1

; : : : ; x

n

, where x

i

1

; : : : ; x

i

k

are eac h of t yp e T Int and

x

j

1

; : : : ; x

j

l

are the rest, w e ha v e:

{ If l = 0, f x

1

: : : x

n

is w ell-de�ned if

g ( � x

i

1

) : : : ( � x

i

k

) = T rue

{ If l � 1, f x

1

: : : x

n

is w ell-de�ned if

g ( � x

i

1

) : : : ( � x

i

k

) = [ s

1

; : : : ; s

l

]

and for all 1 � t � l ,

memb er x

j

t

s

t

= T rue

Example 3.23

The Hask ell co de of Figure 3.6 de�nes S

List

-guards of ev ery op eration of

A

List

. Recall that the homomorphism giv en b y S

List

is the length function.

The guards of empty , c atenate , and isEmpty , are trivial as these op erations

are total. The guard of c ons allo ws an y elemen t to b e added to the fron t

of a list. The guard of tail will return T rue when and only when the list

whose shado w it is b eing applied to is non-empt y , ie. exactly when it is

safe to apply tail to the list. The guard of he ad is iden tical. The guard

of lo okup will return the range of indices o v er whic h lo okup is w ell-de�ned:

an y index from �rst to last elemen t inclusiv e.
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empty_Guard :: Bool

empty_Guard = True

catenate_Guard :: Shadow -> Shadow -> Bool

catenate_Guard s0 s1 = True

cons_Guard :: Shadow -> [IntSubset]

cons_Guard s0 = [All]

tail_Guard :: Shadow -> Bool

tail_Guard s0 = s0>0

head_Guard :: Shadow -> Bool

head_Guard s0 = s0>0

lookup_Guard :: Shadow -> [IntSubset]

lookup_Guard s0 = [0:..:(s0-1)]

isEmpty_Guard :: Shadow -> Bool

isEmpty_Guard s0 = True

Figure 3.6: Hask ell co de for S

List

-guards of the op erations of A

List

(see Figure 3.5).

Note that as Hask ell do es not ha v e a t yp e for lists of a giv en length, and as tuples

are a wkw ard to manipulate in the general case, lists of arbitrary length are used.
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W e shall generate a dug b y adding one no de at a time. W e shall c ho ose an

op eration and predecessors for a new no de, and then decide using the guards

whic h in teger argumen ts, if an y , will pro duce a new dug with a v alid ev aluation.

W e no w wish to pro v e that the guards do allo w us to mak e this decision.

Lemma 3.2 Supp ose we have a dug D = ( G ; � ; � ; � ) for adt A , a shadowing

S of A , and an S -guar d for every op er ation of A , with every no de of D having a

wel l-de�ne d evaluation under A . Now pr op ose an extension of D by one no de v

using op er ation f and pr e de c essors v

1

; : : : ; v

k

. The guar ds c an use just the infor-

mation pr ovide d by the shadow evaluation of D to give sets of inte ger ar guments.

Cho osing any inte ger fr om e ach wil l pr ovide a wel l-de�ne d evaluation of v under

A .

Pro of: Let g b e the S -guard of f . If v alid, the ev aluation of v under A is giv en

b y the result of ev aluating the follo wing:

[ [ v ] ]

A

= � ( v ) [ [ v

1

] ]

A

: : : [ [ v

k

] ]

A

= f x

1

: : : x

n

where x

i

m

= [ [ v

m

] ]

A

, f x

i

m

g

k

m =1

[ f x

j

m

g

l

m =1

= f x

m

g

n

m =1

and k + l = n . As eac h v

m

is

in D , [ [ v

m

] ]

A

is w ell-de�ned. By Lemma 3.1, � x

i

m

= � [ [ v

m

] ]

A

= [ [ v

m

] ]

S

. Therefore,

giv en the shado w ev aluation of D , w e can determine the v alue of eac h � x

i

m

,

and hence the in teger sets giv en b y g ( � x

i

1

) : : : ( � x

i

k

). F rom De�nition 3.23,

c ho osing an y x

j

1

; : : : ; x

j

l

from these sets giv es a w ell-de�ned ev aluation of v under

A . 2

Note that, in general, it ma y not b e p ossible to de�ne a guard that giv es every

w ell-de�ned application|for example, where the in teger argumen ts cannot b e

indep enden tly c hosen. Ho w ev er, for all of the adt s in this thesis, it is p ossible

to de�ne guards whic h do giv e ev ery w ell-de�ned application.

3.4.3 Phasing

It is useful to b e able to iden tify di�eren t phases of an application. The pro�le

of eac h phase ma y b e giv en separately . F or example, an application could ha v e

a gro wth phase where the data structures are b eing built, and a deca y phase
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where the data structures are b eing examined and tak en apart. The pro�le of

the gro wth phase w ould sho w more applications of building op erations than of

deconstructing op erations, and vice v ersa for the deca y phase.

Th us a pro�le split in to phases rev eals more ab out an application's use of the

adt than just the whole pro�le. Additionally , when generating a dug according

to pro�les for eac h phase, there is more con trol o v er the generation pro cess.

W e assign eac h adt v ersion to a phase. Note, ho w ev er, that at an y one p oin t

in the computation, there ma y b e man y v ersions in di�eren t phases. F or example,

using the gro wth and deca y phase example ab o v e, there ma y b e some v ersions

b eing built in the gro wth phase, whilst some are b eing tak en apart in the deca y

phase.

Information stored in the shado w determines whic h phase a v ersion is in. The

phases p artition the v ersion graph; that is, eac h v ersion no de will b elong to a

single phase. The non-v ersion no des are not shado w ed and will not b elong to

an y phase. W e will iden tify a phase b y a v alue of the t yp e PhaseId whic h w e

will de�ne as a t yp e synon ym with Int . The �rst phase is phase 1. Letting s b e

the t yp e of a shado w, w e ma y supp ose that the follo wing simple function w ould

su�ce:

phaser :: s ! PhaseId

In general ho w ev er, the function phaser needs more information than this.

Supp ose w e are generating dug s o v er the list adt A

List

. Supp ose further that

w e w an t to split the lists in to t w o phases: those b elo w a giv en length, and those

ab o v e. W e wish to parameterise the phasing o v er this length. This is the phase

ar gument . A function phaseA r gR e ad is required to read in the argumen t from a

string. A v alue phaseA r gDefault is required to sp ecify the phase argumen t to use

if none is giv en.

De�nition 3.24 (Phasing)

Let S = ( s; F

0

) b e a shado wing of some adt . The 4-tuple

P = ( r ; phaseA r gR e ad ; phaseA r gDefault ; phaser )
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data PhaseArg = MeanSize Int | NoMeanSize

phaseArgRead :: String -> PhaseArg

phaseArgRead s = MeanSize (read s)

phaseArgDefault :: PhaseArg

phaseArgDefault = NoMeanSize

phaser :: Shadow -> PhaseArg -> PhaseId

phaser _ NoMeanSize = 1

phaser s (MeanSize m)

| s <= m = 1

| otherwise = 2

Figure 3.7: F unctions implemen ting an S

List

-phasing assigning lists no longer than

the phase argumen t to phase 1, and those longer to phase 2. See Example 3.19

for the de�nition of S

List

. If no phase argumen t is giv en, all no des are placed in

phase 1.

pro vides an S - phasing when the follo wing t yp e signatures are correct:

phaseA r gR e ad :: String ! r

phaseA r gDefault :: r

phaser :: s ! r ! PhaseId

Note that the t yp e PhaseId is a t yp e synon ym for Int .

Example 3.24

The Hask ell co de of Figure 3.7 de�nes an S

List

-phasing. This phasing

places lists of length less than or equal to the phase argumen t (an in teger)

in to phase 1, and the rest in to phase 2.

Eac h part of the dug pro�le de�ned in Section 3.3 can b e parameterised o v er the

phase of a v ersion no de, except for generation w eigh ts.
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De�nition 3.25 (Phased dug Pro�le)

Let D b e a dug for adt A with v ersion graph G

V

. Let S b e a shado wing of

A . Let H

1

; : : : ; H

p

b e the subgraphs of G

V

partitioned b y the S -phasing P .

The P - phase d dug pr o�le of D can b e calculated b y replacing G

V

with H

i

in De�nition 3.16 for ev ery prop ert y bar generation w eigh ts. The phased

pro�le of a dug is therefore:

� A generation w eigh ts ratio

� A set of the follo wing prop erties, one for eac h phase of the dug :

m utation-observ ation w eigh ts, mortalit y , pmf , and pof .

Example 3.25

Using the S

List

-phasing P

List

of Example 3.24 with a phase argumen t of 1,

partition the dug sho wn in Figure 3.4 in to t w o phases: (1) lists of length

zero or one, and (2) lists of length t w o or more. Example 3.20 giv es the

length of eac h list. Let H

1

con tain no des in phase (1), namely v

0

, v

1

, v

2

,

v

3

, v

6

, and v

8

. Let H

2

con tain no des in phase (2), namely v

5

and v

7

. The

P

List

-phased pro�le of this dug is giv en b elo w:

� Generation w eigh ts|as there is only one generator, empty , this prop-

ert y is redundan t at: empty = 1.

� Set of pro�les of eac h phase.

{ F or H

1

, the lists of length zero or one, w e ha v e the follo wing

pro�le:

� Mutation-observ ation w eigh ts:

c atenate : c ons : tail : he ad : lo okup : isEmpty =

4 : 2 : 0 : 1 : 0 : 1

� Mortalit y|of the six v ersion no des in H

1

, only one ( v

8

) is

not m utated, so the mortalit y is 1 = 6.

� pmf |there are six m utations of no des in H

1

, one of whic h

( v

1

! v

7

) is p ersisten t, giving a pmf of 1 = 6.

� pof |there are t w o observ ations of no des in H

1

, neither of

whic h is p ersisten t, giving a pof of 0.
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{ F or H

2

, the lists of length t w o or more, w e ha v e the follo wing

pro�le:

� Mutation-observ ation w eigh ts:

c atenate : c ons : tail : he ad : lo okup : isEmpty =

0 : 0 : 2 : 0 : 1 : 0

� Mortalit y|all v ersion no des are m utated, so the mortalit y is

0.

� pmf |there are three m utations of no des in H

2

, none of whic h

are p ersisten t, giving a pmf of 0.

� pof |there is one observ ation of a no de in H

2

( v

7

! v

9

),

whic h is p ersisten t, giving a pof of 1.

3.4.4 Shado w Pro�ling

Shado w pro�ling allo ws information to b e collected ab out ev ery op eration applied

to a v ersion, namely m utations and observ ations. The shado w of an y v ersion

that is m utated or observ ed is the source of this information. F or example, if the

shado w of a list con tained its length, w e could sum the lengths of lists in v olv ed

in m utations and observ ations and return the a v erage. Note that this is not

the same as summing the lengths of ev ery m utated or observ ed list: if a list is

m utated or observ ed more than once, its shado w is used more than once.

W e will need to main tain a shadow pr o�le . The initial v alue will b e giv en b y

shadowPr o�leZer o . Information will b e collected using the function shadowPr o-

�ler . The �nal v alue will b e sho wn using the function shadowPr o�leShow .

De�nition 3.26 (Shado w Pro�ling)

Let S = ( s; F

0

) b e a shado wing of some adt . The 4-tuple

( p; shadowPr o�leZer o ; shadowPr o�ler ; shadowPr o�leShow )

pro vides an S - pr o�ling when the follo wing t yp e signatures are correct:

shadowPr o�leZer o :: p

shadowPr o�ler :: p ! s ! p

shadowPr o�leShow :: p ! S tr ing
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data ShadowProfile = ShadowProfile Int Int

shadowProfileZero :: ShadowProfile

shadowProfileZero = ShadowProfile 0 0

shadowProfiler :: ShadowProfile -> Shadow -> ShadowProfile

shadowProfiler (ShadowProfile sum count) s =

ShadowProfile (sum+s) (count+1)

shadowProfileShow :: ShadowProfile -> String

shadowProfileShow (ShadowProfile sum count) =

"Average size = " ++ show (sum/count)

Figure 3.8: F unctions implemen ting an S

List

-pro�ling. The a v erage length o v er

ev ery m utation and observ ation of a list is calculated. See Figure 3.5 for the

de�nition of S

List

.

Example 3.26

The Hask ell co de of Figure 3.8 de�nes an S

List

-pro�ling. This shado w

pro�ling calculates the a v erage length of a list o v er all m utations and ob-

serv ations. F or the dug of Figure 3.4, this rep orts an a v erage length of

12 = 11. T o v erify this, here is a table of ev ery m utation and observ ation,

and the corresp onding length of the m utated or observ ed list:

Mutation/Observ ation v

0

! v

1

v

2

! v

3

v

3

! v

4

v

1

! v

5

v

3

! v

5

V ersion Op erated On v

0

v

2

v

3

v

1

v

3

Length 0 0 1 1 1

v

5

! v

6

v

1

! v

7

v

6

! v

7

v

7

! v

8

v

7

! v

9

v

8

! v

10

v

5

v

1

v

6

v

7

v

7

v

8

2 1 1 2 2 1

Giv en a list l of shado ws of v ersions that are m utated or observ ed, one migh t

view the shado w pro�le with:
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shadowPr o�leShow ( fold l shadowPr o�ler shadowPr o�leZer o l )

3.4.5 De�nition

W e are no w in a p osition to giv e a formal de�nition of a shado w data structure,

whic h includes shado wing, guarding, phasing, and shado w pro�ling.

De�nition 3.27 (Shado w Data Structure)

F or an y simple adt A = ( T ; F ), an y shado wing S of A , an y set W con-

taining a single S -guard of ev ery op eration in F , an y S -phasing P , and

an y S -pro�ling O , the 4-tuple ( S ; W ; P ; O ) is a shadow data structur e for

A .

Example 3.27

T ak e S

List

from Figure 3.5, W

List

con taining the S

List

-guards of Figure 3.6,

P

List

from Figure 3.7, and O

List

from Figure 3.8. The 4-tuple

( S

List

; W

List

; P

List

; O

List

)

is a shado w data structure for the adt A

List

, whose signature is giv en in

Figure 3.3.

3.5 Summary

W e no w ha v e a formal mo del capturing ho w an application uses a data structure:

a dug . W e also ha v e a summary of the most imp ortan t asp ects of this use: a

pro�le. By generating a dug from a pro�le, and b y de�ning the ev aluation of a

dug , w e can no w create a b enc hmark from a pro�le. The shado w data structure

pla ys an imp ortan t role in the generation of dug s b y allo wing us to a v oid unde-

�ned applications of op erations. By extracting a dug from an application and

b y calculating its pro�le, w e can also create a pro�le from an application. The

shado w data structure helps here b y adding useful information to the extracted

pro�le.

Ho w ev er, all of this is de�ned only in theory . In the follo wing c hapter w e shall

turn this theory in to practice b y giving algorithms for the generation, ev aluation,

extraction, and pro�ling of dug s.



Chapter 4

Implemen ting Datat yp e Usage

Graphs

As stated at the start of Chapter 3, w e w an t to b e able (a) to create a b enc h-

mark from a description of use, and (b) to create a description of use from an

application. In Chapter 3, w e de�ned a dug , describing ho w a data structure

is used b y an application. W e then outlined in theory ho w w e can (a) create a

b enc hmark from a pro�le of a dug , and (b) create a pro�le of a dug from an

application. In this c hapter, Sections 4.1 and 4.2 sho w ho w these ideas can b e

implemen ted. Section 4.3 describ es the tec hnical details in v olv ed in these con-

crete implemen tations. Section 4.4 ev aluates the accuracy and e�ciency of these

implemen tations.

4.1 F rom Pro�le to Benc hmark

Recall from Section 3.3 that w e create a b enc hmark from a pro�le as follo ws:

(1) Use a pseudo-random n um b er generator to create a dug that probabilisti-

cally has the giv en pro�le|that is, the exp e cte d pro�le is the one giv en.

(2) Use a dug ev aluator to ev aluate this dug using a giv en implemen tation of

the adt .

Section 4.1.1 describ es (1), and Section 4.1.2 describ es (2).

77
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T o generate a dug :

while the dug is to o small do

cho ose an op eration

cho ose version a rguments fo r the op eration

cho ose non-version a rguments fo r the op eration

add a no de to the dug

add a rcs from the no des used as a rguments to the new no de

lab el the no de with the op eration and the remaining a rguments

Figure 4.1: Ov erview of the dug generation algorithm.

4.1.1 dug Generation

Ho w shall w e build a dug ? Figure 4.1 giv es a reasonable starting p oin t for an

algorithm.

Problems with dug Generation

Unfortunately , the simple algorithm of Figure 4.1 encoun ters some problems.

These are listed b elo w, together with the solutions w e c ho ose.

� Cr e ating unde�ne d applic ations. Some applications of op erations ma y not

b e w ell de�ned. F or example, the application he ad empty is usually not

de�ned. W e need to a v oid these applications. W e do this b y main taining

extra information|a shadow |ab out eac h p ossible argumen t of an applica-

tion. A guar d protects us from creating an unde�ned application, b y using

the shado w of ev ery argumen t. Shado ws and guards mak e up part of a

shadow data structur e |see Section 3.4.

� A l lowing unde�ne d ar guments. Lazy ev aluation ev aluates the op eration

b efore the argumen ts. Therefore, adding a no de with (as y et) unde�ned ar-

gumen ts seems reasonable. Ho w ev er, without kno wing the argumen ts, w e

cannot a v oid unde�ned applications using a shado w data structure. There-

fore w e nev er add a no de without kno wing all the argumen ts.
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� Cho osing the ar guments fr om the whole gr aph. W e could pic k the argumen ts

from an y part of the dug already formed. Ho w ev er, in practice, b ecause

w e m ust main tain a shado w of ev ery p ossible argumen t, this can cost to o

m uc h memory . Therefore w e restrict c hoice of argumen ts to a subgraph,

the fr ontier . W e need only main tain shado ws of no des in the fron tier. If

the fron tier b ecomes to o large, w e remo v e a no de (though it sta ys in the

dug ).

� Cho osing non-version ar guments fr om the gr aph. W e could c ho ose non-

v ersion argumen ts from the results of observ ers. Ho w ev er, this pro v es to o

restrictiv e|for example, whilst generating a dug for the adt of Figure 4.2,

from where do es the argumen t of t yp e a for the �rst application of c ons

come? There can b e no applications of he ad in the graph y et. But ho w else

can w e generate an argumen t of t yp e a ? As the role pla y ed b y non-v ersion

argumen ts is a relativ ely minor one (for example, no pro�le prop erties de-

p end on them), w e restrict them to b eing in tegers|that is, w e instan tiate

the t yp e v ariable a to Int . F or simplicit y , no w that ev ery non-v ersion argu-

men t has t yp e Int , w e then c ho ose all non-v ersion argumen ts indep enden tly

of the graph.

But what e�ect do argumen ts of t yp e a ha v e on the e�ciency of adt

implemen tations? F or those adt s that do not examine the elemen ts they

carry (that is, argumen ts of t yp e a ), the only a�ect these elemen ts can ha v e

is through their size|the larger the elemen t and the more elemen ts held

on to b y the adt implemen tation, the larger the heap size whic h in turn

a�ects e�ciency . By restricting ourselv es to elemen ts of t yp e Int , w e ha v e

no means of measuring this e�ect.

F or those adt s that do examine the elemen ts they carry , for example, b y

comparing them under equalit y , or b y ordering them, the v alues of these

elemen ts c an a�ect e�ciency . F or the data structures considered in this

thesis, only equalit y and ordering is used on elemen ts. Under this use of

elemen ts, one of the main e�ects on e�ciency is through the n um b er of

equal elemen ts. This is con trolled through the p o ol size .
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The range of in teger argumen ts giv en b y the Po ol data constructor of

IntSubset (see De�nition 3.21) are dra wn from f 1 ; : : : ; p g , where p is called

the p o ol size. The smaller the p o ol size, the more equal elemen ts will b e

inserted. Changing the p o ol size ma y e�ect the e�ciency of adt imple-

men tations. F or example, one implemen tation of a set adt ma y b e more

e�cien t than another at handling man y insertions of equal elemen ts.

Apart from this rather crude means of con trolling the range of elemen ts,

w e curren tly ha v e no other con trol of the e�ect of elemen ts on e�ciency .

� Cho osing the op er ation b efor e the ar guments. W e could c ho ose an op eration

for the new no de b efore c ho osing its argumen ts. Ho w ev er, this pro v es rather

a wkw ard for generating a dug to �t some of the pro�le prop erties. F or

example, p ersistence and mortalit y dep end on whether the argumen ts ha v e

b een previously m utated or not. Before c ho osing argumen ts, w e w ould need

to kno w whic h ha v e b een m utated and whic h ha v e not, if w e are to attempt

to matc h these prop erties. Additionally , phasing the pro�les increases our

dep endence on prior kno wledge of the argumen ts. It is easier if w e c ho ose

an argumen t �rst, and the op eration second. Therefore, for eac h new no de,

w e plan whic h op erations eac h no de should b e in v olv ed in as an argumen t,

and in whic h order. See Section 3.3 for a discussion of ho w the pro�le

prop erties are used to plan a no de's future.

W e c ho ose an argumen t �rst, and let the �rst op eration in its future deter-

mine the op eration of the new no de. Ho w ev er, w e m ust cater for op erations

that tak e more than one no de as an argumen t. Therefore, w e place argu-

men ts in a bu�er according to op eration, and w ait till it con tains as man y

no des as the op eration tak es argumen ts, b efore creating a new no de with

this op eration. Unfortunately , this has the dra wbac k that it is imp ossible

to create an application where the same no de app ears as more than one

argumen t, for example, c atenate v v . Ho w ev er, there do es not app ear to b e

a simple solution to this problem.

� Diver ging. If w e allo w the same op eration and argumen ts to b e c hosen

rep eatedly , and if this application is rejected b y the guard, w e could div erge.
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module List (List,empty,catenate,cons,t ail ,hea d,lo okup ,isE mpt y)

where

empty :: List a

catenate :: List a -> List a -> List a

cons :: a -> List a -> List a

tail :: List a -> List a

head :: List a -> a

lookup :: List a -> Int -> a

isEmpty :: List a -> Bool

Figure 4.2: Hask ell co de giving the signature of a simple list adt pro viding

normal list op erations, catenation and indexing.

Therefore, once a guard rejects an application, w e remo v e this op eration

from the no de's future.

The dug Generation Algorithm

W e build a dug one no de at a time. Eac h no de has a futur e and a p ast . The future

records whic h op erations w e ha v e planned to apply to the no de, in order. The

past records whic h op erations w e ha v e already applied to the no de. The no des

with a non-empt y future together mak e up the fr ontier . The �rst op eration in a

future is called the he ad op er ation .

As w e add a no de to the dug , w e tak e argumen ts from the fron tier. The

fron tier therefore is the subgraph on whic h w e are building. W e shall b ound the

size of the fron tier ab o v e and b elo w:

� Bounding ab o v e prev en ts the fron tier from getting to o large. If the pmf

is non-zero, w e shall need to m utate no des more than once. This leads to

exp onen tial gro wth of the fron tier, whic h ma y need to b e capp ed to prev en t

running out of memory . When the fron tier exceeds a giv en limit, w e remo v e

an arbitrary no de from the fron tier. This will a�ect the �nal pro�le, and
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so should only b e used when there is no alternativ e.

� Bounding b elo w ensures there is at least one no de to build on, and encour-

ages div ersit y , esp ecially in the presence of op erations with large v ersion

arities.

When a new no de is made, w e record this as a birth . A list of births, in order,

describ es a dug completely . When a no de no longer has a future, w e record

its past as a de ath . A list of deaths also describ e a dug completely

1

. A list of

births describ es a dug from a global p ersp ectiv e (ho w w as a no de added to the

graph) whereas a list of deaths describ es a dug from a lo cal p ersp ectiv e (what

w as applied to a no de). A list of births is more con v enien t for ev aluating a dug .

A list of deaths is more con v enien t for pro�ling a dug . Hence, w e shall pro duce

b oth as w e generate the dug .

Our de�nition of a dug restricts non-v ersion no des from b eing re-used, and

so eac h non-v ersion no de alw a ys has an empt y future and an empt y past. T o sa v e

time and space, w e do not record the death of a non-v ersion no de|the no de is

assumed to die immediately after birth.

An o v erview of the algorithm is giv en in Figures 4.3 and 4.4. F uller details of

the algorithms are giv en b elo w.

Generating the dug . The main function generateDug tak es an in teger and

returns a dug with this man y no des, in the form of a list of births and deaths.

generateDug :: Int ! [BirthOrDeath]

A birth records the iden tit y of the no de b orn, the op eration used, the v ersion

argumen ts (iden tities of other no des), and the non-v ersion argumen ts (in tegers).

A death records the iden tit y of the dead no de, the arcs from the dead no de, and

the shado w of the dead no de.

data BirthOrDeath = Birth No deId Op eration [No deId] [Int]

j Death No deId [Arc] Shado w

1

This is only true if w e consider a generator as taking an imaginary v oid no de as an argumen t

(see De�nition 3.14) and include the death of this no de. Ho w ev er, in practice, it is easier to

just use the birth of the generator, whic h is what w e do for dug pro�ling.
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T o generate a dug :

while the dug is to o small do

if the frontier is to o small then

try to mak e a new no de using a generato r (see pa rt I I)

else-if the frontier is to o la rge then

remove a no de from the frontier

reco rd the death of this no de

else

remove a no de from the frontier to act as a version a rgument

place the no de in the bu�er co rresp onding to the no de's head op eration

if this bu�er is full then

try to mak e a new no de with the bu�er's contents acting as the version

a rguments fo r their common head op eration (see pa rt I I)

�

�

o d

reco rd the death of every no de in the frontier and bu�ers

Figure 4.3: Ov erview of the dug generation algorithm (part I).
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T o try to mak e a new no de from an op eration and some version a rguments:

apply the gua rd of the op eration to the shado w of every version a rgument

if the gua rd fails then

remove the head op eration of each version a rgument

else

cho ose some non-version a rguments from the result of the gua rd

mak e a new no de b y applying the op eration to the a rguments

reco rd the birth of this no de

add the new no de to the dug

if the op eration is not an observer then

plan the future of the new no de

else

leave the future of the new no de empt y

�

if the new no de has a non-empt y future then

add the new no de to the frontier

else

reco rd the death of this no de

�

remove the head op eration of each version a rgument

�

reco rd the death of every version a rgument with an empt y future

add every other version a rgument to the frontier

Figure 4.4: Ov erview of the dug generation algorithm (part I I).
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The shado w of a no de is needed for dug pro�ling but not for dug ev aluating,

and so w e only include it in a death. Recall that an arc from a no de u to a no de

v represen ts the application of an op eration at v to the result of the op eration

at u . The t yp e Arc records the op eration at v , the argumen t p osition of u , the

non-v ersion argumen ts, and the iden tit y of v .

data Arc = Arc f ta rgetNo deOp :: Op eration, sourceNo deArgP osn :: Int,

intArgs :: [Int], ta rgetNo deId :: No deId g

The function generateDug is de�ned using an auxiliary function|a function that

p erforms the same task but main tains auxiliary argumen ts|called generateNo des ,

taking the follo wing auxiliary argumen ts: the curren t fron tier, the curren t bu�ers,

the iden tit y of the next no de to b e created, and the n um b er of no des left to create.

generateNo des :: f No de g ! Bu�ers ! No deId ! Int ! [BirthOrDeath]

A no de is iden ti�ed b y a v alue of t yp e No deId . The no de also stores: the no de's

future, the no de's past, and the no de's shado w.

data No de = No de f no deId :: No deId, future :: [Op eration],

past :: [Arc], shado w :: Shado w g

Eac h bu�er holds the argumen ts w aiting to b e in v olv ed in the application of a

particular op eration. Therefore the t yp e Bu�ers is a function taking an op eration

f to the bu�er for f . A bu�er is a list of argumen ts, in the order they w ere

added.

t yp e Bu�ers = Op eration ! [No de]

Initially , the fron tier is empt y , the bu�ers are empt y , the next no de is the �rst

no de, and ev ery no de still has to b e made.

generateDug noOfNo des = generateNo des fg ( � f � [ ]) initialNo deId noOfNo des

Generating a no de. A t the core of the algorithm lies a lo op. Eac h iteration of

the lo op is a call to generateNo des , and eac h call attempts to add a new no de to

the curren t dug . If w e ha v e no more no des to mak e, w e record the deaths of the

no des left in the fron tier and bu�ers. All other no des had their deaths recorded

as they left the fron tier without en tering in to a bu�er.
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generateNo des frontier bu�ers newNo deId 0 =

[Death (no deId no de) (past no de) (shado w no de) j

no de  frontier [ range bu�ers]

If the fron tier is to o small, w e attempt to mak e a new no de using a generator

c hosen according to the generation w eigh ts of the pro�le.

generateNo des frontier bu�ers newNo deId no desLeft

j size frontier < frontierMin =

tryApplication (cho oseOp eration

y

generationW eights) [ ]

frontier bu�ers newNo deId no desLeft

The function tryApplication attempts to mak e a no de from an op eration and a

list of v ersion argumen ts. It also carries through the argumen ts giv en to gener-

ateNo des .

tryApplication :: Op eration ! [No de] ! f No de g ! Bu�ers ! No deId ! Int !

[BirthOrDeath]

The function cho oseOp eration tak es some op eration w eigh ts and returns an op er-

ation pseudo-randomly , biased according to the w eigh ts. This requires a random

seed, but w e omit that argumen t here, for the threading of seeds clutters the co de.

Therefore, for the purp oses of this presen tation of co de, consider the function as

using hidden state and hence b eing impure. All suc h functions are indicated

b y a y sup erscript. F or details on the implemen tation of these functions, see

Section 4.3.1.

cho oseOp eration

y

:: f (Op eration,W eight) g ! Op eration

If the fron tier is to o large, a no de is remo v ed from the fron tier. The death of this

no de is recorded, and w e rep eat the main lo op with a call to generateNo des .

generateNo des frontier bu�ers newNo deId no desLeft

j size frontier > frontierMax =

let (no de, frontier') = removeNo de

y

frontier

in Death (no deId no de) (past no de) (shado w no de) :

generateNo des frontier' bu�ers newNo deId no desLeft
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The function removeNo de y remo v es a no de at random from the fron tier, and

returns this no de and the new fron tier.

removeNo de

y

:: No de ! (No de, f No de g )

Otherwise, w e c ho ose a no de v from the fron tier as an argumen t for a new no de.

generateNo des frontier bu�ers newNo deId no desLeft

j otherwise =

let (v, frontier') = removeNo de

y

frontier

in useArgument v frontier' bu�ers newNo deId no desLeft

F or eac h op eration f , w e k eep a bu�er of v ersion no des whose head op eration is

f . W e add v to the appropriate bu�er.

useArgument :: No de ! f No de g ! Bu�ers ! No deId ! Int ! [BirthOrDeath]

useArgument v frontier bu�ers newNo deId no desLeft =

let (f : rest) = future v

bu�ers' g j g == f = v : bu�ers g

j otherwise = bu�ers g

in checkBu�er op eration frontier bu�ers' newNo deId no desLeft

If the bu�er of f con tains the same n um b er of no des as the v ersion arit y of f , w e

remo v e these no des vs . W e then try to mak e a new no de from op eration f and

v ersion argumen ts vs .

checkBu�er :: Op eration ! f No de g ! Bu�ers ! No deId ! Int !

[BirthOrDeath]

checkBu�er f frontier bu�ers newNo deId no desLeft

j length (bu�ers f ) == numb erOfV ersionArguments f =

let vs = bu�ers f

bu�ers' g j g == f = [ ]

j otherwise = bu�ers g

in tryApplication f vs frontier bu�ers' newNo deId no desLeft

j otherwise = generateNo des frontier bu�ers newNo deId no desLeft
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T rying an application. Recall that the function tryApplication attempts to

mak e a new no de using an op eration f and v ersion argumen ts vs . W e apply the

guard of f to the shado w of ev ery no de in vs to �nd the ranges of p ossible non-

v ersion argumen ts. If these ranges are empt y , w e abandon this application using

the function cleanUpF ailure . Otherwise, w e mak e a new no de using mak eNewNo de .

tryApplication f vs frontier bu�ers newNo deId no desLeft =

case applyGua rd f (map shado w vs) of

F ailure ! cleanUpF ailure vs frontier bu�ers newNo deId no desLeft

IntSubsets iss ! mak eNewNo de f vs iss frontier bu�ers newNo deId no desLeft

The function applyGua rd applies the guard of an op eration to a list of shado ws,

and returns the ranges of p ossible non-v ersion argumen ts.

applyGua rd :: Op eration ! [Shado w] ! NonV ersionArgs

If an y of the ranges is empt y , applyGua rd returns F ailure .

data NonV ersionArgs = IntSubsets [IntSubset] j F ailure

The t yp e IntSubset is de�ned in Section 3.21.

Cleaning up after a failed application. If an application of the guard of

an op eration f to the shado ws of the no des vs fails, w e c hange the no des vs to

re
ect this using the function chronicleF ail . W e record the death of an y no de

without a future, return the rest to the fron tier, and rep eat the main lo op b y

calling generateNo des .

cleanUpF ailure :: [No de] ! f No de g ! Bu�ers ! No deId ! Int ! [BirthOrDeath]

cleanUpF ailure vs frontier bu�ers newNo deId no desLeft =

let (deadNo des,liveNo des) = splitWith (null � future) (map chronicleF ail vs)

obitua ry = [Death (no deId no de) (past no de) (shado w no de) j

no de  deadNo des]

in obitua ry + +

generateNo des (frontier [ liveNo des) bu�er newNo deId no desLeft

The function chronicleF ail remo v es the head op eration of eac h no de.

chronicleF ail :: No de ! No de

chronicleF ail no de = no de f future = tail (future no de) g
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Making a new no de from a successful application. If an application of

the guard of an op eration f to the shado ws of the no des vs succeeds with ranges

of p ossible non-v ersion argumen ts iss , w e c ho ose non-v ersion argumen ts is , one

from eac h set in iss using cho oseInt . W e c hange vs to re
ect this successful

application using chronicleSuccess , record the death of an y no de without a future,

and return the rest to the fron tier, as in cleanUpF ailure . The birth of the new

no de is recorded. If the op eration is not an observ er, the new no de is giv en a

future using the op eration b ea r , and placed in the fron tier (if its future is not

empt y). Otherwise, it dies at birth (but w e do not explicitly record the death).

W e rep eat the lo op, obtaining a new no de iden tit y , and decreasing the n um b er

of no des left to generate b y 1.

mak eNewNo de :: Op eration ! [No de] ! [IntSubset] ! f No de g ! Bu�ers !

No deId ! Int ! [BirthOrDeath]

mak eNewNo de f vs iss frontier bu�ers newNo deId no desLeft =

let is = map (cho oseInt

y

p o olSize) iss

newNo de = if role f == Observer then [ ] else [b ea r f vs is]

vs' = zipWith (chronicleSuccess f is newNo deId) vs (versionArgs f )

(deadNo des,liveNo des) = splitWith (null � future) (vs' + + newNo de)

obitua ry = [Death (no deId no de) (past no de) (shado w no de) j

no de  deadNo des]

in Birth newNo deId f (map no deId vs) is : obitua ry + +

generateNo des (frontier [ liveNo des) bu�er

(nextNo deId newNo deId) (no desLeft{1)

The function cho oseInt c ho oses an in teger from an IntSubset using the giv en p o ol

size.

cho oseInt

y

:: Int ! IntSubset ! Int

T o re
ect the successful application of an op eration f to a no de v at argumen t

p osition p os with non-v ersion argumen ts is to create a new no de with iden tit y

newNo deId , w e remo v e the head op eration, and record the application as an Arc

in the no de's past.

chronicleSuccess :: Op eration ! [Int] ! No deId ! No de ! Int ! No de
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chronicleSuccess f is newNo deId v p os =

v f future = tail (future v), past = Arc f p os is newNo deId : past v g

The new no de is giv en an iden tit y tag, a future calculated b y the function plan

using information con tained in the shado w of the new no de, an empt y past, and

a shado w.

b ea r :: Op eration ! [No de] ! [Int] ! No de

b ea r f vs is newNo deId = let newShado w = applyShado w f (map shado w vs) is

in No de newNo deId (plan newShado w) [ ] newShado w

The function applyShado w applies the shado w of an op eration to the shado ws of

the v ersion argumen ts and to the non-v ersion argumen ts.

applyShado w :: Op eration ! [Shado w] ! [Int] ! Shado w

The function versionArgs returns the p ositions of the v ersion argumen ts of a giv en

op eration.

versionArgs :: Op eration ! [Int]

Planning the future of a new no de. The function plan decides the future

of a new no de v using information con tained in the shado w of v .

plan :: Shado w ! [Op eration]

The phase of v is giv en b y the shado w of v and the phase argumen ts.

phase = phaser shado w phaseArgument

The pro�le of this phase determines the no de's future. See Section 3.4.3 for

further details.

phaser :: Shado w ! PhaseArg ! PhaseId

mutationObservationW eights :: PhaseId ! f (Op eration,W eight) g

mo rtalit y , pmf, p of :: PhaseId ! Double

W e �rst decide if w e shall m utate v or not, using the mortalit y . If w e are to

m utate v , recall from Section 3.3 that the a v erage n um b er of extra m utations of

m utated no des is p

m

= (1 � p

m

), where p

m

is the pmf . W e use a P oisson distribution

with this mean to determine ho w man y extra m utations w e shall apply to v .
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noOfMutns j chance

y

(mo rtalit y phase) = 0

j otherwise = 1 + p oisson

y

(pmf phase / (1 { pmf phase))

The function chance mak es a decision based on the giv en probabilit y .

chance

y

:: Probabilit y ! Bo ol

The P oisson distribution w as c hosen b ecause it is w ell-kno wn, b ecause it ranges

o v er non-negativ e in tegers, and b ecause it is simple. Another similar distribution

w ould also b e appropriate.

p oisson

y

:: Mean ! Int

The pro�le giv es the m utation and observ ation w eigh ts together, to relate fre-

quency of m utators to frequency of observ ers. W e use the ratio of m utators to

observ ers to calculate the n um b er of observ ations w e shall apply to v . Section 3.3

details ho w w e reac h the appro ximation giv en in the co de b elo w.

mutnObtnWgts = mutationObservationW eights phase

mutnWgts = [(f,w) j (f,w)  mutnObtnWgts, role f == Mutato r]

obtnWgts = [(f,w) j (f,w)  mutnObtnWgts, role f == Observer]

noOfObtns = sum [w j (f,w)  obtnWgts] /

sum [w j (f,w)  mutnWgts]

The n um b er of ephemeral observ ations and the n um b er of p ersisten t observ ations

are calculated directly from the pof .

noOfEphmObtns = p oisson

y

(noOfObtns * (1 { p of phase))

noOfP ersObtns = p oisson

y

(noOfObtns * p of phase)

W e use the m utation-observ ation w eigh ts to determine whic h op erations to use for

the planned m utations and observ ations. Note that these op erations are not all

the same, despite the use of replicate , b ecause w e ha v e hidden the pseudo-random

c hoice within the impurit y of cho oseOp eration .

mutns = replicate noOfMutns (cho oseOp eration

y

mutnWgts)

ephmObtns = replicate noOfEphmObtns (cho oseOp eration

y

obtnWgts)

p ersObtns = replicate noOfP ersObtns (cho oseOp eration

y

obtnWgts)
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The future of v is therefore the ephemeral observ ations, follo w ed b y the �rst m u-

tation (ephemeral, if it exists), follo w ed b y a mixture of the remaining m utations

(p ersisten t) and the p ersisten t observ ations, mixed using the function mix

y

.

plan shado w = let mixP ersOps [ ] os = os

mixP ersOps (m:ms) os = m : mix

y

ms os

. . . de�nitions of phase through p ersObtns. . .

in ephmObtns + + mixP ersOps ms p ostMutnObtns

Biased c hoices ensure that the function mix

y

com bines the lists ev enly (see Sec-

tion 4.3.1).

mix

y

:: [a] ! [a] ! [a]

4.1.2 dug Ev aluation

The pro cess of dug ev aluation is quite straigh tforw ard. Unlik e dug generation,

w e encoun ter no theoretical problems. In practice ho w ev er, e�ciency is a problem.

The dug ev aluator sometimes tak es more time o v er input-output and main taining

a lo okup table than it do es o v er p erforming the adt op erations. Times tak en for

dug ev aluation therefore v ary little b et w een adt implemen tations, prev en ting us

from accurately measuring their relativ e e�ciencies. In suc h cases, w e can solv e

this problem b y using a C program to p erform the input-output and lo okup table

main tenance. This requires an in terface to C that allo ws C to call Hask ell. W e

use an extension to the Gr e en Car d pac k age [43]. See Section 4.3.2 for further

tec hnical details.

De�nition 3.9 de�nes ho w a dug should b e ev aluated lazily . When a non-

v ersion no de is b orn, its result m ust b e demanded immediately . As the result of an

observ er is either of t yp e Int or of t yp e Bo ol , w e demand this v alue b y con v erting

it to an in teger, and adding it to the che cksum . This c hec ksum is the result of the

dug ev aluation. Di�eren t implemen tations of the same observational ly-e quivalent

adt ev aluating the same dug should return the same c hec ksum. This ma y b e

used to c hec k the correctness of one implemen tation against the correctness of

another. An adt that is not observ ationally equiv alen t allo ws man y v alues for

a single ev aluation of an observ ation. F or example, a bag adt ma y supp ort an

op eration that returns an unsp eci�ed elemen t in the bag.
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while not at the end of the dug �le do

read the next birth o r death

if w e read a birth then

apply an op eration to integers and no des in the frontier, as given b y the birth

if the op eration is an observer then

convert the result to an integer and add it to the checksum

else

add the resulting no de to the frontier

�

else

w e read a death, so remove the dead no de from the frontier

�

o d

rep o rt the checksum

Figure 4.5: Ov erview of the dug ev aluation algorithm.

An o v erview of the algorithm is giv en in Figure 4.5. F uller details follo w,

using the t yp es de�ned in Section 4.1.1.

The main function tak es a list of births and deaths, and returns the c hec ksum

made from ev aluating the observ ations.

evaluateDug :: [BirthOrDeath] ! Int

W e shall read one birth or death at a time. As with dug generation, w e shall

main tain a fr ontier , con taining the no des a w aiting further applications. T o de�ne

evaluateDug , w e use an auxiliary function evaluateNo des , taking the curren t fron-

tier and the curren t c hec ksum as auxiliary argumen ts. Eac h no de is iden ti�ed b y

a No deId and con tains just a v ersion of t yp e T Int , where T is the t yp e constructor

exp orted b y the adt implemen tation used to ev aluate the dug .

evaluateNo des :: (No deId ! T Int) ! Int ! [BirthOrDeath] ! Int

Initially , the fron tier is empt y , and the c hec ksum is 0.
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evaluateDug dug = evaluateNo des ( � n � unde�ned) 0 dug

If there are no more births or deaths to read, w e return the c hec ksum.

evaluateNo des frontier checksum [ ] = checksum

A birth of an observ er no de creates a v alue either of t yp e Int or of t yp e Bo ol .

W e con v ert this v alue to an in teger using resultT oInt and add it to the c hec ksum.

As w e m ust demand this v alue immediately , w e m ust explicitly demand its v alue

using seq , whic h ev aluates its �rst argumen t b efore returning its second argumen t.

evaluateNo des frontier checksum (Birth no deId f vs is : dug)

j role f == Observer =

let result = resultT oInt (applyOp eration f (map frontier vs) is)

in seq result (evaluateNo des frontier (checksum + result) dug)

If a v ersion no de is b orn, w e add the no de to the fron tier.

evaluateNo des frontier checksum (Birth no deId f vs is : dug)

j otherwise =

let frontier' n

j n == no deId = resultT oNo de (applyOp eration f (map frontier vs) is)

j otherwise = frontier n

in evaluateNo des frontier' checksum dug

A death of a v ersion no de remo v es the no de from the fron tier. Recall that w e do

not record the death of a non-v ersion no de.

evaluateNo des frontier checksum (Death no deId a rcs shado w : dug) =

let frontier' n j n == no deId = unde�ned

j otherwise = frontier n

in evaluateNo des frontier' checksum dug

The follo wing functions allo w the result of an application of an y op eration to b e

manipulated, whether of t yp e T Int , Int , or Bo ol .

applyOp eration :: Op eration ! [T Int] ! [Int] ! Result
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data Result = No de (T Int) j Int Int j Bo ol Bo ol

resultT oInt :: Result ! Int

resultT oInt (Int i) = i

resultT oInt (Bo ol b) = fromEnum b

resultT oNo de :: Result ! T Int

resultT oNo de (No de v) = v

4.2 F rom Application to Pro�le

W e create a pro�le of a dug from a run of an application as follo ws:

(1) Extract the dug describing ho w the run of the application uses an imple-

men tation of the adt .

(2) Calculate the pro�le of this dug .

Section 4.2.1 describ es (1), and Section 4.2.2 describ es (2).

4.2.1 dug Extraction

The task of extracting a dug from the run of an application is quite tric ky in a

lazy language lik e Hask ell. One approac h is to mo dify the compiler. Ho w ev er,

as this solution dep ends on the details of a sp eci�c compiler, it w ould not b e

p ortable. An alternativ e approac h is to transform the original program in to one

that giv es the same result, but also pro duces a dug . W e adopt this metho d.

Problems of dug Extraction

Here are t w o k ey goals w e m ust ac hiev e b y transforming the original program,

the problems they p ose, and the solutions w e c ho ose:

� L azy Evaluation. Whilst recording the op erations applied, w e m ust b e care-

ful not to ev aluate an ything that w as not ev aluated b y the original program,

and to ev aluate ev erything in the same order as the original program. Oth-

erwise w e ma y get a di�eren t dug , or the resulting program ma y fail to
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terminate. W e only examine something w e kno w has b een ev aluated to at

least the same degree that w e will force.

It is p ossible that some argumen ts ma y not b e ev aluated at all. In suc h

circumstances, after the program has �nished, w e record an y suc h unev al-

uated argumen ts explicitly in the dug . The dug ev aluation and pro�ling

algorithms m ust accommo date these sp ecial no des. See Section 4.3.2 and

Section 4.3.4.

� R e c or ding the dug . W e m ust record the dug somewhere. Ho w ev er, side-

e�ects are only allo w ed within the IO monad in Hask ell. It w ould b e highly

undesirable to transform ev ery function to w ork within the IO monad. Nei-

ther do w e wish to pass information ab out the dug as a result from ev ery

function that calls an adt op eration, all the w a y up to the main function.

This w ould in v olv e c hanging a lot of co de. W e a v oid this problem b y c heat-

ing. W e in terface to a side-e�ecting C function that records the dug in a

�le.

W e cannot ho w ev er, record argumen ts of t yp e a , as w e do not kno w in

general ho w to store these. The user could supply a function to con v ert

an y v alue of t yp e a to, sa y an in teger. Ho w ev er, extracting this v alue could

ev aluate the argumen t more than previously . Therefore w e decide not to

record suc h argumen ts.

The dug Extraction Algorithm

W e mo dify the application and adt implemen tation to p erform the same task,

but pro duce a dug as a side-e�ect. W e do this b y wr apping the main function and

ev ery adt op eration. The wrapp ed main function p erforms some initialization,

calls the old main function, and then tidies up the results. Eac h wrapp ed adt

op eration w orks with wrapp ed v ersions. A v ersion is wrapp ed with an identity

tag . A wrapp ed op eration uses the iden tit y tags to record whic h no des w ere used

in the creation of the new no de using whic h op eration. A wrapp ed op eration also

calls the old op eration, and wraps the result in to a no de with a new iden tit y tag.

F or example, the list adt of Figure 4.2 pro vides the t yp e constructor List .

The wrapp ed v ersion datat yp e for this adt is giv en b y:
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data W rapp edList a = No de Int (List a)

The wrapp ed implemen tation of cons is giv en b y:

wrapp edCons :: a ! W rapp edList a ! W rapp edList a

wrapp edCons i v = let no deId = new no de Cons

in seq no deId (No de no deId (cons i (a rc v no deId 1)))

where new no de is a C function that returns a new iden tit y tag for a no de, after

recording whic h op eration lab els this new no de. The function a rc un wraps and

returns the v ersion argumen t, after recording the arc from this v ersion no de to

the newly created no de:

a rc :: W rapp edList a ! No deId ! Int ! List a

a rc (No de from v) to p osition = seq from (seq (new a rc from to p osition) v)

where new a rc is a C function that returns only unit, after recording the arc,

including argumen t no de iden tit y , result no de iden tit y , and the p osition of the

argumen t no de.

The function wrapp edCons is only ev aluated when cons w ould ha v e b een ev al-

uated in the original program. It forces the ev aluation of the iden tit y of the new

no de, and then returns the wrapp ed result.

Ho w ev er, w e do not record an y of the argumen ts y et, as w e do not kno w that

they will b e ev aluated. W e wrap the v ersion argumen t with a call to a rc . When

the v ersion argumen t w ould ha v e b een ev aluated b y the original program, w e

can examine the iden tit y of the argumen t. The function a rc do es this, and then

records the arc.

W e do not wrap the argumen t to cons of t yp e a for reasons giv en in the

problems of dug extraction ab o v e, but w e can wrap argumen ts of t yp e Int . The

wrapp ed implemen tation of lo okup is giv en b y:

wrapp edLo okup :: W rapp edList a ! Int ! a

wrapp edLo okup v i = let no deId = new no de Lo okup

in seq no deId (lo okup (a rc v no deId 0) (intArg i no deId 1))

The function intArg records the in teger argumen t in the lab el of this no de at the

giv en argumen t p osition, and returns the in teger argumen t:
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intArg :: Int ! No deId ! Int ! Int

intArg int no de p osition = seq int (seq (int a rg int no de p osition) int)

where int a rg is a C function that returns only unit, after recording the relev an t

details.

A general de�nition of a wrapp ed adt is giv en in Figure 4.6. F urther details

are somewhat tec hnical. F or example, in terfacing to the C functions requires use

of a pac k age called Gr e en Car d [43]. W e lea v e these details to Section 4.3.3.

4.2.2 dug Pro�ling

As with dug ev aluation, w e read one birth or death at a time. The algorithm is

quite straigh tforw ard.

The t yp e of a pro�le is consisten t with Section 4.1.1, except that there w as

an implicit pro�le in Section 4.1.1, whereas here it is an explicit argumen t. F or

example, the co de mo rtalit y phase in Section 4.1.1 b ecomes mo rtalit y (phases p ro�le

phase) in this section, and similarly with the other pro�le prop erties.

data Pro�le = Pro�le f generationW eights :: f (Op eration,W eight) g ,

phases :: (PhaseId ! Phase) g

data Phase = Phase f mutationObservationW eights :: f (Op eration,W eight) g ,

mo rtalit y :: Double, pmf :: Double, p of :: Double g

T o calculate the generation w eigh ts and the m utation-observ ation w eigh ts, w e

k eep a note of the n um b er of no des made b y eac h op eration (quali�ed b y phase

in the case of m utations and observ ations). T o calculate the mortalit y , w e need

to k eep b oth the n um b er of no des not m utated, and the total n um b er of no des.

F rom this w e can calculate the prop ortion of no des not m utated: that is, the

mortalit y . Similarly , w e need to k eep a n umerator and denominator for the pmf

and the pof . All this information is k ept in a v alue of t yp e Pro�leData .

data Pro�leData =

Pro�leData f gWgts :: f (Op eration,W eight) g ,

phaseDatas :: (PhaseId ! PhaseData) g

data PhaseData =
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.
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PhaseData f moWgts :: f (Op eration,W eight) g , unmutated :: Int, total :: Int,

p ersMus :: Int, mus :: Int, p ersObs :: Int, obs :: Int g

Initially , the generation w eigh ts and m utation-observ ation w eigh ts are all zero,

as are the remaining �elds.

p ro�le :: [BirthOrDeath] ! Pro�le

p ro�le = let empt yPro�leData =

Pro�leData f (f,0) j f  op erations, role f == Generato r g

( � p � empt yPhaseData)

empt yPhaseData =

PhaseData f (f,0) j f  op erations, role f /= Generato r g

0 0 0 0 0 0

in calculatePro�le � foldl gatherPro�le empt yPro�leData

The function gatherPro�le is folded o v er the list of births and deaths to calculate

the �nal pro�le data.

gatherPro�le :: Pro�leData ! BirthOrDeath ! Pro�leData

The function calculatePro�le con v erts the �nal pro�le data in to a pro�le.

calculatePro�le :: Pro�leData ! Pro�le

calculatePro�le (Pro�leData gWgts phaseDatas) =

Pro�le gWgts (calculatePhase � phaseDatas)

calculatePhase :: PhaseData ! Phase

calculatePhase (PhaseData moWgts unmutated total p ersMus mus p ersObs obs) =

Phase moWgts (fromIntegral unmutated/fromIntegral total)

(fromIntegral p ersMus/fromIntegral mus)

(fromIntegral p ersObs/fromIntegral obs)

Births of generators are used to calculate the generation w eigh ts. The other

births are ignored, as the deaths are su�cien t to calculate the rest of the pro�le.

gatherPro�le (Pro�leData gWgts phaseDatas) (Birth n op vs is)

j role op == Generato r = Pro�leData (addWgt gWgts op) phaseDatas

j otherwise = Pro�leData gWgts phaseDatas
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The function addWgt increases the w eigh t of an op eration b y one.

addWgt :: f (Op eration,W eight) g ! Op eration ! f (Op eration,W eight) g

addWgt wgts op = f if f == op then (f,w+1) else (f,w) j (f,w)  wgts g

The death of a no de v a�ects the pro�le of the phase to whic h v is assigned.

gatherPro�le (Pro�leData gWgts phaseDatas) (Death n past shado w) =

let phase = phaser shado w phaseArgument

oldPhaseData = phaseDatas phase

newPhaseDatas p j p == phase = gatherPhase oldPhaseData past

j otherwise = phaseDatas p

in Pro�leData gWgts newPhaseDatas

The function gatherPhase returns a new phase data using the past of the dead

no de v .

gatherPhase :: PhaseData ! [Arc] ! PhaseData

gatherPhase (PhaseData moWgts unmutated total p ersMus mus p ersObs obs)

past =

let ops = map ta rgetNo deOp past

ms = length [op j op  ops, role op == Mutato r]

os = length [op j op  ops, role op == Observer]

p ostMutnObs = length [op j op  dropWhile ((/= Mutato r) � role) ops,

role op == Observer]

newMoWgts = foldl addWgt moWgts ops

newUnmutated = if ms == 0 then unmutated + 1 else unmutated

newT otal = total + 1

newP ersMus = p ersMus + max (ms{1) 0

newMus = mus + ms

newP ersObs = p ersObs + p ostMutnObs

newObs = obs + os

in PhaseData newMoWgts newUnmutated newT otal newP ersMus newMus

newP ersObs newObs

The calculation of the phase is quite straigh tforw ard: ops is the list of op erations

applied to v , ms is the n um b er of m utations of v , os is the n um b er of observ ations
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of v , and p ostMutnObs is the n um b er of observ ations o ccurring after the �rst m u-

tation (ie. the p ersisten t observ ations). The new m utation-observ ation w eigh ts

ratio is calculated b y adding ev ery op eration in ops . If the n um b er of m utations

is zero, then v is not m utated. The n um b er of p ersisten t m utations is one less

than the n um b er of m utations, if an y . The n um b er of p ersisten t observ ations has

already b een calculated.

4.3 T ec hnical Details

The algorithms presen ted in this c hapter are implemen ted in Hask ell to create

the to ol of Chapter 6. Ho w ev er, for b oth e�ciency and practical reasons, some

re�nemen ts of this co de w ere necessary . That is, some of the co de is to o slo w, and

some is not primitiv e to Hask ell (eg. sets). W e shall no w detail the k ey p oin ts of

these re�nemen ts.

4.3.1 dug Generation

F ron tier

The fron tier is presen ted as a set in Section 4.1.1, but sets are not primitiv e to

Hask ell. As w e also need to remo v e a no de pseudo-randomly (using removeNo de ),

w e need a set adt with random retriev al. As w e will nev er try to add the same

no de t wice to the fron tier, a bag adt with random retriev al will su�ce. A bag

with random retriev al do es not require an y examination of the elemen ts, and is

therefore easier to implemen t than a set with random retriev al.

The implemen tation of this adt is based on the random-access lists of Ok asaki

[33]. An elemen t is added using c ons . An elemen t is randomly retriev ed b y

randomly c ho osing a v alid index in to the list. The elemen t at this index is then

remo v ed b y up dating it with the he ad of the list, and then taking the tail of the

result.

Bu�ers

Section 4.1.1 represen ts the bu�ers as a function from op erations to lists of no des.

In practice it is easier to implemen t the bu�ers as a list of lists of no des. As the
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n um b er of op erations is quite small, this is e�cien t.

Argumen t P osition in Death

Section 4.1.1 uses a function versionArgs to allo cate the correct argumen t p osition

to the v ersion argumen ts of an application, recorded in the past of eac h argumen t,

and subsequen tly in their deaths. As w e restrict ev ery no de argumen t to v ersion

no des, w e actually just record the p osition of the v ersion argumen t with resp ect

to other v ersion argumen ts. So, for example, for the application f i

0

v

0

i

1

i

2

v

1

,

w e record the argumen t p osition of v

i

as i . This allo ws us to de�ne versionArgs

b y:

versionArgs :: Op eration ! [Int]

versionArgs f = [1..]

and let the application of zipWith truncate this to the appropriate length.

Choice F unctions

As indicated in Section 4.1.1, the pseudo-random functions m ust eac h tak e a seed

as an additional argumen t, whic h w as left out of the presen tation of the algorithm

for the sak e of clarit y . These seeds are threaded through ev ery function calling a

pseudo-random function. The pseudo-random n um b er generator w as tak en from

[9]: the \minimal standard random n um b er generator", tak en in turn from [42].

On recommendations of [41 ], the m ultiplier is c hanged as follo ws:

a = 48271, q = 44488, r = 3399

This random-n um b er generator requires a Hask ell implemen tation supp orting

in tegers in the range [ � 2

31

.. 2

31

� 1]. All of the functions implemen ting some

c hoice are based on a function rndRng that returns an in teger b et w een 0 and a

giv en ceiling, inclusiv e of 0 and exclusiv e of the ceiling.

rndRng :: Int ! Int ! Int

rndRng ceiling seed = seed `mo d` ceiling

A seed is simply an in teger ranging o v er [1 .. 2

31

� 2]. An in teger b et w een m and

n inclusiv e can b e c hosen b y m + rndRng (n{m+1) .
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The function cho oseInt ma y c ho ose an in teger from: All , whic h resolv es to

c ho osing an in teger b et w een minBound and maxBound ; a P o ol , whic h resolv es to

c ho osing an in teger b et w een 1 and the p o ol size; a range m:..:n , whic h resolv es to

c ho osing an in teger b et w een m and n ; or a set, whic h is implemen ted using a set

adt with random-retriev al, implemen ted simply as an ordered list.

The function mix is implemen ted b y c ho osing one elemen t from eac h list, with

probabilit y biased according to the length of eac h list, ensuring an ev en mixing|

to mix a list xs of m elemen ts with a list ys of n elemen ts, elemen ts are tak en

with m= ( m + n ) probabilit y from xs , and with n= ( m + n ) probabilit y from ys .

The functions p oisson , chance , and cho oseOp eration use a discrete random

v ariable with a particular distribution. The functions chance and p oisson are

com bined in the c hoice of noOfMutns inside the de�nition of plan to create one

random v ariable. The function cho oseOp eration is a random v ariable ranging o v er

the op erations, biased according to the giv en w eigh ts.

Suc h a random v ariable is implemen ted b y creating a cum ulativ e distribution,

represen ted as a list of in tegers ranging b et w een 0 and some large �xed upp er

limit scale . An in teger n is c hosen b et w een 0 and scale , and the index i of the

�rst in teger in the list greater than n is the v alue of the discrete random v ariable.

If the random v ariable has a range of v alues of some other t yp e than in teger, for

example op eration, then an en umeration of the range will allo w i to index in to

this en umeration.

The c hoice of scale m ust re
ect three p oin ts:

� The larger the v alue of scale , the more accurate the random v ariables are.

The smallest c hange in probabilit y that a scale of n can capture is 1 = n .

� The larger the v alue of scale , the more c hance of bias in v alues c hosen

b et w een 0 and scale using rndRng scale seed . Recall that rndRng is imple-

men ted using mo d . If a scale of 15 � 10

8

(appro ximately 2 = 3 of the largest

p ossible seed) is used, w e w ould exp ect more lo w v alues than usual, b e-

cause v alues from 0 to appro ximately 7 � 10

8

can eac h b e pro duced b y t w o

di�eren t seeds whereas v alues ab o v e this can eac h only b e pro duced b y one

seed. In practice w e observ e this bias as pro ducing v alues with an a v erage

of around 0.4 times the largest v alue. Ho w ev er, with a scale of 2

30

(half the
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largest p ossible seed), w e should ha v e no bias, and in practice this pro duces

v alues with an a v erage of 0.5 times the largest v alue, con�rming a lac k of

bias.

� Ideally , the b est v alue of scale w ould b e the ceiling of the range of seeds,

where rndRng scale seed b ecomes id . Unfortunately , w e exp erience rounding

problems with Int using this v alue of scale (as it is the largest p ossible v alue

of t yp e Int ).

Therefore, a scale of 2

30

w as used.

W eigh ts

A collection of w eigh ts is giv en in Section 4.1.1 as a set of pairs (Op eration,W eight) ,

but in practice is implemen ted as a list [W eight] with the op eration giv en b y the

index, when op erations are ordered �rst according to role and then alphab etically .

F ormat of dug Files

Section 4.1.1 represen ts a dug b y a list of births and deaths. Within the Hask ell

w orld, this is indeed the represen tation of a dug . Ho w ev er, if w e wish to store a

dug in a �le, without the use of a sp ecial library , w e need to store the dug as

a sequence of c haracters. W e also compress the dug represen tation to minimise

the input-output o v erhead of dug ev aluation.

A birth is represen ted as a sequence of in tegers: the op eration iden tit y tag, the

iden tit y tags of the no des used as v ersion argumen ts, and the in teger argumen ts.

The births are ordered in the �le according to iden tit y tag. Therefore, the iden tit y

tag of a new b orn no de is giv en b y its p osition in the �le. A death is also

represen ted as a sequence of in tegers: a zero, and the iden tit y tag of the dead

no de. Op eration iden tit y tags start at 1 to distinguish a birth from a death. The

n um b er of in tegers making up a birth or death is determined b y the �rst in teger:

for a birth it is the n um b er of argumen ts of the op eration plus one, and for a

death it is t w o. The other �elds of a death giv en in Section 4.1.1 (outgoing arcs

and shado w) are not required for dug ev aluation, and can b e reconstructed from

the births for dug pro�ling.
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An in teger i is stored as a sequence of c haracters: s , x

s � 1

, x

s � 2

, . . . , x

0

; where

0 � s � 4, and i =

P

s � 1

n =0

x

n

2

8 n

; that is, the non-zero 8-bit b ytes represen ting i

with most-signi�can t b yte �rst, preceded b y the n um b er of these b ytes. Note that

0 is represen ted simply b y 0. If a c haracter is larger than 8 bits, this represen tation

could b e impro v ed.

As the iden tit y tags of the no des start from 1, w e use 0 to represen t an

unde�ned v ersion argumen t, whose creation is p ossible through dug extraction.

4.3.2 dug Ev aluation

Tw o v ersions of dug ev aluation w ere implemen ted: one wholly in Hask ell, and

one partly in C and partly in Hask ell. The former su�ers from a v ery large

o v erhead of input-output and b o okk eeping, lea ving the w ork done b y the adt

op erations sw amp ed, sometimes yielding unsatisfactory results. The latter cuts

do wn the o v erhead to a consisten tly satisfactory lev el b y implemen ting ev erything

bar the adt op erations in C. This requires a v ersion of the Green Card foreign

language in terface [43] that allo ws C to call Hask ell. As suc h an in terface is only

curren tly a v ailable for one compiler (Y ork nhc13 [53 ]), the pure Hask ell v ersion

w as k ept. See Section 6.1.2 for an estimate of the o v erhead of dug ev aluation

for eac h v ersion.

T ypically , a dug ev aluator made with Green Card, ev aluating a reasonably

large dug �le (around 100Kb), is around 20 times faster than the same dug

ev aluator made without Green Card ev aluating the same dug �le.

Without Green Card

The Hask ell v ersion requires t w o c hanges from the algorithm presen ted in Sec-

tion 4.1.2.

F ron tier. Section 4.1.2 represen ts the fron tier as a function. W e replace this

with a �nite map adt , implemen ted b y a data structure v ery similar to the

Elev ator implemen tation of random-access lists|see Section 2.2.7.

Inlining. The op eration applyOp eration is fused with eac h op eration of the adt

implemen tation to remo v e a la y er of in terpretation. This creates one righ t-hand
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side of evaluateNo des p er op eration. F or example, for the op eration lo okup of

Figure 4.2, the follo wing co de is used:

evaluateNo des frontier checksum (Birth no deId Lo okup [v] [i] : dug) =

let result = fromEnum (lo okup (frontier v) i)

in seq result (evaluateNo des frontier (checksum + result) dug)

Note that resultT oInt and resultT oNo de are no w redundan t, as is the test for the

op eration b eing an observ er. Note also that the argumen ts for lo okup are pattern

matc hed out of the lists stored in a birth. The format of a dug �le is more lik e

a list of in tegers (see Section 4.3.1) and so the pattern matc hing is more e�cien t

than as presen ted here (the pattern matc hing is closer to (4:v:i:dug) ).

Strictness. The strictness of di�eren t implemen tations of the same adt v ary in

general. This could mean that some op erations are forced b y one implemen tation

but not b y another. In order to ensure that the dug ev aluator for eac h adt

implemen tation p erforms the same amoun t of b o okk eeping, regardless of whic h

op erations are forced, the b o okk eeping is made strict.

This means demanding the lo okup of a v ersion argumen t in the fron tier, with-

out demanding the argumen t v alue, and demanding the v alue of a non-v ersion

argumen t. This is ac hiev ed b y wrapping up the v ersion argumen ts in the fron tier:

data No de = No de (T Int)

and b y adding un wrapping of no des and calls to seq in the de�nition of evalu-

ateNo des . F or example, the de�nition ab o v e b ecomes:

evaluateNo des frontier checksum (Birth no deId Lo okup [v] [i] : dug) =

let v' = frontier v

No de v" = v'

result = fromEnum (lo okup v" i)

in seq v' (seq i (seq result (evaluateNo des frontier (checksum + result) dug)))

Unde�ned Argumen ts. dug extraction mak es unde�ned argumen ts a p ossi-

bilit y . dug ev aluation giv es the v alue unde�ned to suc h argumen ts.
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With Green Card

The dug ev aluator built using Green Card is a small Hask ell program con taining

information sp eci�c to the adt implemen tation used. This Hask ell program calls

a larger, more general C library . Essen tially the same algorithm is used in C

to read in and ev aluate the dug op erations, except that the C program m ust

someho w call Hask ell functions to p erform the op erations. Before the Hask ell

program calls the C program, it registers eac h Hask ell adt op eration as a stable

p ointer with the C program. During ev aluation, the C program uses these Hask ell

references to call the adt op erations. The fron tier is implemen ted as a hash table,

and input-output is bu�ered. Note that as the b o okk eeping is no w in C, it is strict

(see the Strictness heading ab o v e).

4.3.3 dug Extraction

Whilst the dug extracting v ersion of an application is running, a hash table

of ev ery no de is main tained. The function new no de adds a no de to the hash

table, and the functions new a rc and int a rg up date the relev an t argumen ts of the

target no de. After the application has �nished, w e tra v erse the hash table for

ev ery observ er no de in the order they w ere created. F or eac h observ er no de, w e

tra v erse the graph of its predecessors un til w e reac h a previously written no de.

On the w a y bac k to the observ er no de, w e write the birth of ev ery no de to the

dug �le, in depth-�rst order to ensure all argumen t no des are written b efore

their op eration no des.

By main taining a coun t of ho w man y arcs exist from eac h no de to curren tly

un written no des, when a no de is no longer an argumen t of an un written no de, w e

write the death of this no de, as this no de has left the implicit fron tier. This c hec k

is made ev ery time a no de v is reac hed b y a graph tra v ersal from an observ er

no de, whether v is previously written or not.

The order in whic h the no des are written is main tained, as this de�nes the

no de iden tit y tags used b y an ything reading the dug �le. These no de iden tit y

tags m ust b e used when writing v ersion argumen t iden tit y tags. The order in

whic h the no des w ere actually ev aluated is lost (except for preserving the order of

ev aluation of observ ers). This is a direct result of the restriction of De�nition 3.6
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constraining the order of ev aluation. The actual order of ev aluation could b e

rep orted, as it ma y b e of in terest, but this is not curren tly implemen ted.

When a no de is added to the hash table, ev ery argumen t is recorded as unde-

�ned. If a v ersion argumen t is still unde�ned after the application has �nished,

w e write the argumen t to the dug �le as b eing unde�ned. Curren tly , w e mak e

no pro vision for recording unde�ned non-v ersion argumen ts: to do so w ould b e

costly , without m uc h b ene�t; unde�ned non-v ersion argumen ts are giv en the v alue

0. Note that this includes the non-v ersion argumen ts of t yp e a , whic h w e cannot

record for reasons giv en in Section 4.2.1.

4.3.4 dug Pro�ling

The only di�erence b et w een Section 4.2.2 and the actual implemen tation of dug

pro�ling is the format of the pro�le. As already indicated in Section 4.3.1, a

collection of w eigh ts is implemen ted as a list. Phases are giv en b y a function of

t yp e PhaseId ! Phase in Section 4.3.1, whereas in practice they are giv en b y a

list, as PhaseId is an in teger, letting the index of the Phase giv e the PhaseId .

dug extraction mak es unev aluated argumen ts a p ossibilit y . The dug pro�l-

ing algorithm m ust assign a shado w to an unev aluated v ersion argumen t, in order

to record the e�ect of an y op erations on the argumen t in the correct phase. The

shado w data structure is therefore extended to supply the shado w of an y unev al-

uated v ersion argumen t. Nothing more is kno wn ab out the v ersion argumen t,

for example what other no des op erate on it, y et its e�ect on the pro�le m ust b e

de�ned someho w. W e de�ne its e�ect separately as follo ws. The m utations and

observ ations are coun ted (in w eigh ts, and in the denominators of pmf and pof ),

b ecause these re
ect the ev aluation of the op eration applied to the unev aluated

argumen ts. None of the m utations and observ ations are considered p ersisten t, on

the grounds that p ersistence re
ects reuse of a data structure, whereas an un-

ev aluated argumen t is not ev en used once. The v ersion argumen t is not coun ted

as a no de, on the grounds that it w as nev er ev aluated, and therefore in a sense,

it nev er existed.
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4.4 T esting

Ho w accurate are the implemen tations of the dug algorithms? Ho w e�cien t are

they? F rom the p oin t of view of implemen tation, w e address these questions for

eac h algorithm individually in this section. More general questions concerning

the accuracy or usefulness of the b enc hmarking pro cess as a whole are tac kled in

Chapter 7.

As the p erformance of the algorithms can v ary b et w een adt s, w e conduct

tests across a few v ery di�eren t adt s:

� Queue

� Random-Access Sequence

� Set with Random Retriev al

The queue adt is the simplest of the three. The random-access sequence adt

adds the complexit y of op erations taking in tegers as argumen ts. The set adt

includes op erations taking more than one v ersion argumen t, and quite a complex

shado w data structure (based on a set itself ). W e use the Y ork nhc13 compiler

[53] (release v0.9.4), running executables in a heap of 80Mb, on an SGI Indy

running IRIX 5.3.

4.4.1 dug Generation

Accuracy

The accuracy of dug generation is imp ortan t, though the b enc hmarking tec h-

niques in tro duced in Section 5.4 reduce this imp ortance. T o measure the accu-

racy , w e compare the target pro�le with the actual pro�le of the dug generated.

W e do this for 100 dug s from eac h of the three adt s listed ab o v e. T able 4.1 lists

the mean and maxim um di�erence for eac h pro�le attribute. Some inaccuracy is

due to the probabilistic means of generating a dug . F or example, if w e w an t half

of the 100 m utations to b elong to an op eration f , w e c ho ose f with probabilit y

0 : 5 for eac h m utation. W e will not alw a ys get 50 m utations b elonging to f , but

this will b e the mean.
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Pro�le Mean Maxim um

A ttribute Di�erence (%) Di�erence (%)

W eigh t 1.4 31.3

Mortalit y 4.4 70.4

pmf 0.3 7.5

pof 2.4 35.9

T able 4.1: The mean and maxim um di�erences b et w een target and actual pro�les

of 100 dug s for eac h of three adt s. Eac h dug has 1000 no des. W e group the

generation and m utation-observ ation w eigh ts together. Eac h di�erence is giv en

as a p ercen tage of the p ossible range. By normalising the w eigh ts ratios, the

range of eac h w eigh t is [0 :: 1], as it is for the other three pro�le attributes.

A larger degree of inaccuracy results from the rejection of planned applications

of op erations b y the shado w data structure. T o tak e an extreme example, if w e

w an t a dug for lists with no cons op erations, then w e will not get an y tail

op erations either, regardless of the target pro�le. T o tak e another example, the

largest di�erence sho wn in T able 4.1|70.4% di�erence in mortalit y|is for the

random-access sequence adt . The target pmf for this dug is 0, and so all no des

will ha v e at most a single m utation planned in their future. The target m utation

w eigh ts ratio is

cons : tail : update = 1 : 1 : 20

and so 91% of m utations will b e applications of update . A list can only b e

generated b y empty . Ho w ev er, update cannot b e applied to empty . Therefore,

91% of the lists generated b y empty will not b e m utated, and therefore con tribute

to the mortalit y . This increases the actual mortalit y to a v alue m uc h larger than

the target mortalit y .

Mortalit y is also increased b y the death of all no des in the fron tier when the

dug generation algorithm �nishes. This will b e high for large pmf v alues.

E�ciency

The e�ciency of dug generation is not crucial to the b enc hmarking pro cess. By

examining the heap pro�le of dug generation, w e �nd that ev aluating the future



112 CHAPTER 4. IMPLEMENTING D A T A TYPE USA GE GRAPHS

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800 900 1000

M
ax

 L
iv

e 
H

ea
p 

(K
b)

Max Frontier (number of versions)

Figure 4.7: A plot of maxim um liv e heap against maxim um fron tier for dug

generation on 50 randomly c hosen pro�les for eac h of three adt s. Eac h dug has

1000 no des.

of a new no de at the time of creation considerably impro v es space usage. The

heap size is linear in the size of the fron tier. T o demonstrate this, Figure 4.7 plots

the maxim um fron tier size against the maxim um liv e heap size for the generation

of sev eral dug s across three adt s listed ab o v e. The plot con�rms a general trend

of linearit y , though there are some surprisingly large heaps, esp ecially for large

fron tiers. On closer examination w e �nd that ev ery p oin t lying w a y ab o v e the

in terp olated line comes from the generation of a dug with a target pmf of 0 : 95.

The target pmf of ev ery dug w as c hosen from [0 ; 0 : 05 ; : : : ; 0 : 95]. The dug s with

target pmf of 0 : 9 ha v e p oin ts that lie a little ab o v e the in terp olated line, but still

w a y b elo w those with target pmf of 0 : 95.

W e can explain this b y considering the amoun t of space allo cated to a no de in

the fron tier. The futur e of the no de accoun ts for the ma jorit y of this space, that

is, the list of future op erations to apply to the no de. This list con tains m utators

and observ ers. The n um b er of m utators has mean pmf = (1 � pmf ). F or a pmf of
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0 : 9, this is 9; for a pmf of 0 : 95 ho w ev er, this is 19, more than t wice as man y . So,

in mo ving from a pmf of 0 : 9 to a pmf of 0 : 95, w e double the amoun t of space

allo cated to eac h no de in the fron tier, and hence double the maxim um liv e heap.

This accoun ts for the sudden leap from p oin ts with a pmf of 0 : 9 to those with a

pmf of 0 : 95.

4.4.2 dug Ev aluation

Accuracy

The only form of inaccuracy in dug ev aluation is that strictness issues ma y lead

to only part of the dug actually b eing ev aluated|see Section 7.3.3.

E�ciency

The e�ciency of dug ev aluation is v ery imp ortan t in obtaining go o d b enc h-

marking results. If the o v erhead of dug ev aluation is to o great, the accuracy of

estimating the ratio of w ork done b y di�eren t adt implemen tations is reduced.

See Section 6.1.2 for a detailed discussion of this issue.

4.4.3 dug Extraction

Accuracy

The dug extraction algorithm accurately captures the dug of an application,

except for ev aluation order, argumen ts of t yp e a and the sharing of op erations

taking no argumen ts. The actual ev aluation order has to b e c hanged to suit the

restriction giv en in the de�nition of a dug , namely that an argumen t m ust b e

ordered b efore its op eration. Ho w ev er, this c hange do es preserv e the order of

ev aluation of observ er no des, and only a�ects the pof attribute of the pro�le.

Argumen ts of t yp e a cannot b e extracted for reasons giv en in Section 4.2.1.

Ev ery result of an op eration that tak es no argumen ts and whose t yp e do es

not ha v e a class con text will b e shared. The application will only ev aluate suc h

an op eration once, and will share the result. If ho w ev er, the op eration tak es no

argumen ts but has a t yp e with a class con text, lik e the empty of the heap adt
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Figure 4.8: Ov erhead incurred b y mo difying an application for dug extraction,

plotted against size of the extracted dug |12 di�eren t applications running on

4 di�eren t data sets eac h, o v er 3 di�eren t adt s, making 48 p oin ts in all.

(see T able 2.3), then the application ma y re-ev aluate the op eration, as it restricts

the op eration to a particular instance of the class.

E�ciency

Mo difying an application to extract a dug as it runs in tro duces an o v erhead. T o

estimate this o v erhead, w e time sev eral applications b oth with and without the

extraction mo di�cation. Figure 4.8 sho ws the o v erhead incurred b y mo difying

an application for extraction. Ov er the 48 dug s extracted, the a v erage added

o v erhead is 75%. The p ercen tage o v erhead v aries signi�can tly according to ho w

m uc h w ork the application do es that is not related to the adt |most of the

applications w e examine use the adt in tensiv ely , so the �gure should b e less for

other applications.
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4.4.4 dug Pro�ling

Accuracy

There is no inaccuracy in dug pro�ling, b ey ond the inaccuracy in v olv ed with

using 
oating p oin t n um b ers.

E�ciency

As with dug generation, the e�ciency of dug pro�ling is not crucial to the

b enc hmarking pro cess. As the pro�le is only demanded at the end of analysing

the dug , care m ust again b e tak en to ev aluate the information gathered as it

arriv es. A lazier approac h w ould accum ulate man y susp ended computations in

the heap. The heap size is linear in the size of the fron tier, as it is with dug

generation. T o demonstrate this, Figure 4.9 plots the maxim um fron tier size

against the maxim um liv e heap size for the pro�ling of sev eral dug s across three

adt s listed ab o v e. As with dug generation, the plot con�rms a general trend of

linearit y .

4.5 Summary

W e ha v e de�ned algorithms for creating a b enc hmark from a pro�le, and calcu-

lating a pro�le of an application. The former comprises dug generation and dug

ev aluation, and the latter comprises dug extraction and dug pro�ling. These

algorithms are bundled together to form the core of the b enc hmarking to ol pre-

sen ted in Chapter 6.

As w ell as presen ting the algorithms in an abstract manner, w e ha v e also

tac kled the issues surrounding a concrete implemen tation in Hask ell. W e ha v e also

tested the algorithms for accuracy and e�ciency . W e shall test the e�ectiv eness

of the b enc hmarking pro cess as a whole in Chapter 7.
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Figure 4.9: A plot of maxim um liv e heap against maxim um fron tier for dug

pro�ling of 50 randomly generated dug s for eac h of three adt s. Eac h dug has

1000 no des.



Chapter 5

Exploring Datat yp e Usage Space

Chapter 1 motiv ated the need for b enc hmarking results quali�ed b y the pattern

of datat yp e usage. W e prop osed to pro vide these results b y constructing a con-

v enien t means of obtaining b enc hmarks with kno wn patterns of use. Chapter 3

sho w ed (a) ho w to create a b enc hmark from a description of use, and (b) ho w to

create a description of use from an application. Chapter 4 ga v e algorithms for

(a) and (b). But ho w can w e use (a) and (b) to generate and presen t b enc hmark-

ing results quali�ed b y use? The results m ust not tak e to o long to gather and

m ust b e simple enough to b e understo o d b y the user. This c hapter explores this

problem b y lo oking at sev eral p ossible approac hes to a solution.

5.1 Exhaustiv e Exploration

The most naiv e solution to pro viding b enc hmarking results is to create a b enc h-

mark with ev ery p ossible pattern of use, and pro vide a lo okup table of times

of eac h implemen tation running eac h b enc hmark. The user simply obtains the

pattern of use of their application, and lo oks up the quic k est implemen tation in

the appropriate ro w of the table.

W e shall assume that a pattern of use consists of a list of n attributes . The

pro�le w e de�ned in Section 3.3 that captures the pattern of use has c ontinu-

ous attributes. Therefore the space co v ered b y the pro�les is con tin uous and

hence con tains an in�nite n um b er of p oin ts. Therefore w e m ust divide eac h at-

tribute using a suitable gran ularit y , for example, b y rounding the mortalit y to

117
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Figure 5.1: Mapping datat yp e usage space with t w o attributes, X and Y . X and

Y eac h capture some asp ect of datat yp e usage (not giv en here). In general w e

ma y ha v e man y more dimensions to the co ordinate system. The table lists p oin ts

in the space against the b est data structure for that use. In general w e ma y list

more ab out the e�ciencies of data structures than whic h is b est. An application

ma y ha v e datat yp e usage A , whic h is nearest to the co ordinate (2,1). The table

lists A VL as the b est data structure for this datat yp e usage.

the nearest 0.01. Figure 5.1 sho ws an example of suc h a table of results, for pat-

terns of use con taining just t w o attributes X and Y , and listing just the quic k est

implemen tation.

Unfortunately , this approac h is not practical. Suc h a table w ould co v er a h uge

n um b er of p oin ts, and the total time to collect the results for eac h p oin t w ould b e

far to o large. F or example, consider an adt with just 5 op erations (1 generator, 2

m utators, and 2 observ ers). Using the pro�le de�ned in Section 3.3, the pattern of

use consists of 8 attributes, t w o of whic h are redundan t (the generation w eigh t,

and one of the m utation-observ ation w eigh ts), lea ving just 6. Rounding eac h

attribute v ery coarsely to giv e just three p ossible v alues giv es a total of 3

6

=

729 distinct pro�les. Running ev en just one b enc hmark for eac h pro�le and

eac h implemen tation w ould tak e a long time. The table w ould also b e h uge,

and hence rather unreadable, esp ecially if the user w an ts an o v erview of whic h

implemen tation to use when.

This approac h also relies on the accuracy of b enc hmark generation|that is,

ho w w ell the pro�le of the generated b enc hmark matc hes the desired pro�le.
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Although b enc hmark generation is reasonably accurate (see Section 4.4.1), it

w ould b e b etter to remo v e this dep endency .

Summary . Exhaustiv e exploration is simple and straigh tforw ard, but not prac-

tical; it tak es far to o m uc h time to run, generates v erb ose results, and relies on

b enc hmark generation accuracy .

5.2 Selectiv e Exploration

Exhaustiv e exploration is not practical primarily b ecause the n um b er of patterns

of use is exp onen tial in the n um b er of attributes. Ev en just 6 attributes taking

only 3 p ossible v alues eac h results in 3

6

= 729 distinct patterns of use.

One w a y to reduce the n um b er of attributes is to remo v e insigni�c ant

attributes|those attributes that ha v e little or no e�ect on the p erformance of

the adt implemen tations. Remo ving suc h attributes should ha v e little e�ect on

the accuracy of the resulting sele ctive explor ation when considered as a summary

of the entir e space.

But ho w do w e measure the e�ect of an attribute on the p erformance of adt

implemen tations? Supp ose w e measure their p erformance at a particular p oin t

p in the datat yp e usage space. No w let p

0

b e another p oin t obtained from p b y

altering the v alue of a single attribute A . Supp ose w e no w measure the p erfor-

mance of the adt implemen tations at p

0

. If the p erformance has not c hanged

signi�can tly from p to p

0

, then w e can conclude, for p and p

0

at least, that A has

little e�ect on p erformance. By taking a sample of suc h p oin ts, w e can conjecture

whic h attributes are insigni�can t.

But ho w do w e de�ne a signi�can t c hange in p erformance? W e need some

means of measuring the correlation b et w een the t w o sets of p erformances. The

standard statistical prop ert y c orr elation c o e�cient is de�ned o v er n pairs of v al-

ues for x and y b y:

r =
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and measures ho w w ell the t w o sets of data, if plotted, matc h a straigh t line.
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What happ ens if w e use the correlation co e�cien t o v er the t w o sets of p erfor-

mance times? Unfortunately , this measure can b e hea vily in
uenced b y a v ery

slo w adt implemen tation. F or example, supp ose the times (in seconds) for one

pattern of use w ere [1 ; 2 ; 4 ; 64], and for another pattern of use, [4 ; 2 ; 1 ; 64] (listing

the times in the same order for eac h). The correlation co e�cien t for these sets

of times is 0.997, greater than the correlation b et w een [1 ; 2 ; 4 ; 7] and [1 ; 2 ; 4 ; 9].

W e are more in terested in a small c hange in the p erformance of the b est imple-

men tations than a large c hange in the p erformance of the w orst implemen tations.

Therefore it is reasonable to consider using the correlation of the recipro cals of

the times:

Times Correlation of

Recipro cals

[1,2,4,64] [4,2,1,64] -0.055

[1,2,3,4] [2,1,3,4] 0.262

[1,2,3,4] [1,2,3,64] 0.971

[1,1.1,2,3] [1.1,1,2,4] 0.972

This means of measuring a signi�can t c hange in p erformance seems more reason-

able. Those attributes with an a v erage correlation ab o v e a giv en v alue could b e

remo v ed.

Ho w ev er, b oth selectiv e and exhaustiv e exploration assume that the pattern

of use is captured en tirely b y the attributes of a pro�le. Unfortunately , one

imp ortan t pattern of use has pro v ed v ery hard to capture adequately within a

pro�le: size. The shado w pro�le c an capture size, but selectiv e and exhaustiv e

exploration assume that a b enc hmark can b e created with the giv en attributes.

Ho w ev er, it is not p ossible in general to create a b enc hmark with a giv en shado w

pro�le, only to calculate the shado w pro�le of a giv en b enc hmark.

The size of a data structure can signi�can tly a�ect the e�ciency of an op era-

tion applied to it. F or example, p erforming the op eration sno c on a na • �v e queue

tak es time prop ortional to the size of the queue (see Section 2.1.1).

Summary . Selectiv e exploration impro v es on the impracticalit y of exhaustiv e

exploration when there are su�cien tly man y insigni�can t attributes. Ho w ev er, in
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common with exhaustiv e exploration, it do es not explore the imp ortan t attribute

of size explicitly .

5.3 Capturing Size

Since neither selectiv e nor exhaustiv e exploration capture the imp ortan t attribute

of size, w e lo ok at w a ys to remo v e or reduce this insu�ciency .

The size of a data structure is determined b y the quan tit y and order of appli-

cations of m utators (and b y the c hoice of generator(s)). F or example, the more

applications of c ons , the larger the list; and the more applications of c ons in suc-

cession, the larger the list. The quan tit y asp ect is captured b y the w eigh ts ratio

of a pro�le, but the order asp ect is lost. F or example, a sequence of n applications

of c ons follo w ed b y n applications of tail has the same pro�le as the applications

c ons then tail rep eated n times. Ho w ev er, the former sequence of applications

has a v erage size of list n= 2, whereas the latter has a v erage size 3 = 2.

W e need to capture the order of m utations, but ho w? W e presen t three

attempts, with their adv an tages and disadv an tages.

5.3.1 Gro wth and Deca y

A simple w a y to capture order of m utations is to split the pro�le in to phases (see

Section 3.4.3). Phases partition a dug , and the pro�le of eac h phase is recorded

separately . The partitioning of the dug is based on auxiliary shadow information

stored ab out eac h v ersion no de (see Section 3.4.1). The shado w information is

based on the history of the v ersion no de's creation|that is, whic h op erations

created it.

In particular, w e could store the age of a data structure at eac h v ersion no de|

the age of a v ersion no de b eing the n um b er of m utators used to create it. W e

could partition the dug in to no des of age A or less, and no des of age greater

than A , for some constan t A . By setting the ratio of size-increasing op erations

higher in the former phase than in the latter, w e can create a dug with a gr owth

phase and a de c ay phase. The size of data structures tends to increase more in

the gro wth phase than in the deca y phase.
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Figure 5.2: An example of gro wth and deca y phasing on lists. The ratio of

c ons : tail is 2 : 1 for no des aged under 30, and 1 : 2 for no des aged 30 to 60.

Assuming lists are generated b y empty , and hence start at size 0, no des aged

30 are on a v erage lists of size 10. No des aged 60 are on a v erage lists of size 0.

Assuming an equal distribution of no des o v er age, the a v erage size of a list is 5.

F or example, consider phasing a dug o v er list op erations in to no des aged 30

or less, and those older. No w set the pro�le of the former phase (the gro wth

phase) to ha v e a w eigh ts ratio of c ons : tail = 2 : 1, and the latter phase to ha v e

c ons : tail = 1 : 2. Also mak e sure that an y no des aged o v er 60 are not m utated

(this can b e done b y adding a �nal phase for no des aged o v er 60 with mortalit y

1). Generating a b enc hmark with these phased pro�les will mak e the a v erage size

of a list ab out 5|see Figure 5.2.

Hence, for con trolling the a v erage size of a data structure when generating

a b enc hmark from a pro�le, gro wth and deca y is useful. Unfortunately , this is

complicated b y the p ossibilit y of the n um b er of no des v arying o v er age. Both pmf

and the w eigh ts of m utators taking more than one v ersion argumen t a�ect the

increase or decrease of the n um b er of no des o v er age. More imp ortan tly , imp osing

the structure of gro wth and deca y phases is rather arti�cial: real applications ma y

not �t this pattern at all.

Summary . Gro wth and deca y phasing do es con trol size b etter than exhaustiv e

or selectiv e exploration. Ho w ev er it is rather arti�cial, appro ximate, and do es

not apply v ery w ell to real applications.
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Figure 5.3: Tw o linear functions giving w eigh t ratios for lists. Eac h pro duce an

equal n um b er of applications of c ons and tail , but the left one pro duces applica-

tions on larger lists.

5.3.2 Linear W eigh ts

The gro wth and deca y metho d su�ers from b eing rather arti�cial. Wh y two

phases? Wh y split at a p articular age? W e can generalise a w a y from these

c hoices b y appro ximating eac h m utator elemen t of the w eigh ts ratio b y a linear

function o v er age. F or example, consider making the c ons comp onen t start high

and decrease as age increases, whilst making the tail comp onen t start lo w and

increase as age increases. Also consider making the c ons and tail comp onen ts

equal and not v ary o v er age. Eac h of these pro�les will pro duce the same n um b er

of applications of c ons as tail o v erall, assuming the n um b er of no des do es not

v ary m uc h o v er age, but the former will pro duce larger data structures. See

Figure 5.3.

The pro�le of an application is amenable to this metho d to o. By p erforming

a linear regression (line of b est �t) on the n um b er of times a particular m utator is

applied to a no de against the age of that no de, for eac h m utator, w e will estimate

the trend in the v ariance of m utator w eigh ts o v er age.

Unfortunately , this metho d has other disadv an tages. What ab out a line of

b est �t that cuts the age axis? The p ortion of the line b elo w the age axis indicates

a negativ e w eigh t ratio comp onen t. What do es this mean? This metho d w ould

need more formalisation and more examination.

Summary . The linear w eigh ts metho d lo oks promising, but needs further w ork.
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T able 5.1: The e�ect of v arying the lik eliho o d of the next op eration b eing the

same as the last (o dds of n : 1) for c ons and tail on lists, whilst k eeping the

o v erall ratio of c ons : tail = 1 : 1.

n 2

� 10

2

� 9

2

� 8

2

� 7

2

� 6

2

� 5

2

� 4

2

� 3

2

� 2

2

� 1

2

0

Avg. Size 1 : 9 3 : 4 4 : 2 5 : 7 11 : 8 21 : 4 37 : 5 81 : 8 122 : 5 142 : 4 190 : 6

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

2

10

279 : 2 424 : 9 530 : 8 523 : 1 540 : 9 657 : 7 778 : 4 844 : 7 1074 : 2 1221 : 5

5.3.3 Mark o v Chains

The ideas of gro wth and deca y , and of linear w eigh ts, are b oth rather ad-ho c.

A Markov chain [30] is a w ell-studied metho d for capturing patterns within se-

quences of states. The probabilit y of what the next state in the sequence migh t b e

dep ends only on what the last state w as. W e use a Mark o v c hain to parameterise

the m utation w eigh ts ratio o v er the last op eration used to create a no de.

F or example, instead of sp ecifying c ons : tail = 1 : 1 for a list pro�le, w e

migh t sp ecify that

c ons ! c ons : c ons ! tail = n : 1

tail ! tail : tail ! c ons = n : 1

for some n . That is, the n um b er of times a c ons is follo w ed b y another c ons is n

times more than the n um b er of times a c ons is follo w ed b y a tail , etc. One can

sho w that this ultimately yields an o v erall w eigh ts ratio of c ons : tail = 1 : 1.

V arying n a�ects the a v erage size of a list. The larger n is, the more lik ely

a c ons is follo w ed b y a c ons , and hence the larger the list b ecomes. Generating

dug s with v arious v alues for n pro duces the results sho wn in T able 5.1.

W e could replace the w eigh ts ratio b y a list of w eigh ts ratios parameterised

o v er the last op eration, whic h w e shall call the Mark o v w eigh ts ratios. Ho w ev er,

the in
uence of size on the e�ciency of a data structure is often separate from the

in
uence of ho w often one op eration is p erformed. Hence it w ould b e useful to

separate the Mark o v w eigh ts ratios in to the o v erall w eigh ts ratio and other factors

suc h as n in the example ab o v e. But ho w do w e de�ne these other factors in
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general? Giv en that the Mark o v w eigh ts ratios are used to create the b enc hmarks,

and are the result of pro�ling an application, w e also need a w a y to con v ert

b et w een the Mark o v w eigh ts ratios, and the o v erall w eigh ts ratio with other

factors lik e n , and bac k again.

W e also need to decide whether to parameterise the w eigh ts ratio of m utators

giv en the last op eration w as a generator. Without this w e ma y lose some infor-

mation, and p erhaps ev en distort a pro�le, but with it w e add more attributes,

and w e wish to k eep the n um b er of attributes do wn to a minim um.

A Mark o v c hain is often represen ted b y a transition matrix P . The probabilit y

of mo ving from state i to state j is giv en b y the probabilit y at ro w i , column j

of P . The Mark o v w eigh ts ratios form the ro ws of P . If P is b oth irr e ducible

and r e curr ent (see [30 ]), the a v erage probabilit y p

i

of b eing in state i at an y time

is obtained b y solving p P = p , where p is the ro w v ector with p

i

at column i .

The v ector p giv es the o v erall w eigh ts ratio. Ho w ev er, in general, P ma y not b e

irreducible. This metho d w ould need more examination.

Summary . Using Mark o v c hains is more theoretically sound than either gro wth

and deca y or linear w eigh ts, but it increases the n um b er of attributes, whic h

brings us bac k to the problems of exhaustiv e exploration. It also requires further

w ork on translating b et w een or unifying Mark o v w eigh ts ratios and ordinary

w eigh ts ratios.

5.4 Inducing Decision T rees

Recall that w e wish to deriv e, from a set of b enc hmarking trials, rules for de-

termining the b est data structure according to the datat yp e usage attributes. A

common w a y to deriv e rules ab out a set of data is to induc e a de cision tr e e [44].

F or our purp oses, a decision tree is a binary tree with the follo wing prop erties:

� Eac h branc h no de is lab elled with a test of the form A � v , where A is a

datat yp e usage attribute, and v is some constan t.

� Eac h leaf no de is lab elled with the name of an adt implemen tation.

An example of a decision tree is sho wn in Figure 5.4. T o �nd the recommended
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<= 20size

True

True

True

False

Folder

Stack <= 0.2

<= 0.2insert

lookup

File

File

False

False

Figure 5.4: Decision tree for an (imaginary) adt storing a collection of pap ers.

Branc h no des are lab elled with tests o v er datat yp e usage prop erties: size , lo okup ,

and insert . Leaf no des are lab elled with adt implemen tations: Stack , F older ,

and File .

implemen tation for a particular datat yp e usage, start at the ro ot and follo w the

appropriate branc hes till y ou reac h a leaf. The implemen tation giv en b y this leaf

is the one recommended b y this decision tree.

A decision tree is induced from a tr aining set of the data it is to c haracterise.

In our case, this training set is a sample of b enc hmarks. The sample is generated

from a random selection of attribute v alues, but it is the attributes of the resulting

b enc hmarks that are used, thereb y including the attributes of b oth the pro�le

and the shado w pro�le. Eac h b enc hmark in the sample is run, and the winning

implemen tation is recorded. F rom these results, w e induce a decision tree T .

Giv en an y b enc hmark B from the sample, using only the attributes of B , T will

decide up on the winning implemen tation. T able 5.2 giv es an example of results

from whic h the decision tree of Figure 5.4 can b e induced.

Giv en a su�cien tly large and broad sample, the decision tree induced should

b e able to predict the winning implemen tation of an y b enc hmark with go o d

accuracy .

Summary . Inducing a decision tree solv es all of the problems of exhaustiv e and

selectiv e exploration: size is captured in the shado w pro�le of the b enc hmark; the

accuracy of b enc hmark generation has m uc h less signi�cance, since w e use the

actual pro�le rather than the desired pro�le; and ev ery single b enc hmark is used
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Datat yp e Usage A ttributes Best

insert lo okup size Implemen tation

0.3 0.5 10.0 Stack

0.1 0.1 40.0 F older

0.4 0.1 45.0 File

0.3 0.1 36.0 File

0.3 0.3 30.0 File

0.1 0.4 42.0 File

0.1 0.5 33.0 File

T able 5.2: A training sample of results from whic h the decision tree of Figure 5.4

can b e induced.

to in
uence the resulting decision tree, giving maxim um use of the user's time.

The only p ossible dra wbac k concerns the accuracy of the resulting tree on unseen

b enc hmarks. W e c ho ose to use this metho d, as it is b y far the most promising

one.

5.4.1 The Algorithm

W e tak e an existing algorithm from the literature for constructing a decision tree

from a sample. W e use the algorithm c4.5 [46], whic h is a descendan t of id3

[44]. Both algorithms are widely kno wn and resp ected in the mac hine learning

comm unit y .

The basic idea underlying c4.5 is a simple divide and conquer algorithm

due to Hun t [23]. Let S b e the results of running a sample of b enc hmarks.

Let I

1

; : : : ; I

k

b e the comp eting adt implemen tations. There are t w o cases to

consider:

� S con tains only results rep orting a single implemen tation I

j

as the winner.

The decision tree for S is a single leaf lab elled with I

j

.

� S con tains results rep orting a mixture of winners. By dividing S in to S

1

and S

2

according to some test, w e can recursiv ely construct trees T

1

and T

2

from S

1

and S

2

resp ectiv ely .



128 CHAPTER 5. EXPLORING D A T A TYPE USA GE SP A CE

The k ey to a go o d implemen tation of Hun t's algorithm is the c hoice of test with

whic h to split S .

The set of p ossible tests is limited b y the range of attribute v alues for b enc h-

marks in S . Let [ v

1

; : : : ; v

n

] b e the distinct v alues, in order, of an attribute A

for b enc hmarks in S . Consider t w o consecutiv e v alues, v

i

and v

i +1

. F or an y v

satisfying v

i

� v < v

i +1

, splitting S with the test A � v results in the same

split. Therefore, there are at most n � 1 distinct w a ys of splitting S using A . W e

consider only the tests A � ( v

i

+ v

i +1

) = 2.

F or example, T able 5.2 giv es a sample S whic h con tains results rep orting a

mixture of winners. W e could c ho ose to split S with the test size � 20, as in

the decision tree of Figure 5.4. Note that 20 is halfw a y b et w een the next lo w est

and the next highest v alue of size in S . This test splits S in to t w o samples, S

1

and S

2

, from whic h w e induce t w o decision trees T

1

and T

2

in the same manner.

The sample S

1

con tains just a single result rep orting Stack as the winner. The

decision tree for S

1

is a single leaf lab elled with Stack . The sample S

2

con tains

results rep orting a mixture of winners, and so w e c ho ose another test to split S

2

,

and so on.

But ho w do w e c ho ose whic h test to use at eac h stage? id3 uses the gain cri-

terion to measure the qualit y of a test, whereas c4.5 uses the gain r atio criterion .

The latter is a mo di�cation of the former, so w e shall describ e b oth.

Gain Criterion

The gain criterion is based on the follo wing principle of information theory: F or

a message that happ ens with probabilit y p , the information con v ey ed b y that

message is � log

2

p bits. F or example, the information con v ey ed b y making an y

one of eigh t equally probable messages is � log

2

(1 = 8) or 3 bits.

Supp ose w e c ho ose a b enc hmark from a sample S and announce, correctly ,

that the winning implemen tation for that b enc hmark is I . The probabilit y of this

announcemen t is j S

I

j = j S j , where S

I

is the subset of S con taining the b enc hmarks

that giv e I as the winner. The information con v ey ed b y that announcemen t is

therefore � log

2

( j S

I

j = j S j ) bits.

The exp ected v alue of a function f applied to a discrete random v ariable X
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is

E ( f ( X )) =

X

f ( x ) P ( X = x )

Let X b e the winning implemen tation of a b enc hmark c hosen from S . Let f ( I )

b e the information con v ey ed b y an announcemen t of the v alue of I . F or an y

implemen tation I

f ( I ) = � log

2

j S

I

j

j S j

and P ( X = I ) =

j S

I

j

j S j

The exp ected information of an announcemen t of the winning implemen tation of

a b enc hmark in S is therefore

info ( S ) = E ( f ( X )) = �

k

X

j =1

�

log

2

j S

I

j

j

j S j

�

�

j S

I

j

j

j S j

This expresses the a v erage amoun t of information needed to iden tify the winner

of a b enc hmark in S .

Supp ose w e split S in to S

1

and S

2

using some test Z . Let X = i if a b enc hmark

c hosen from S lies in S

i

. Let f ( i ) b e the a v erage amoun t of information needed

to iden tify the winner of a b enc hmark in S

i

. F or i = 1 ; 2

f ( i ) = info ( S

i

) and P ( X = i ) =

j S

i

j

j S j

Therefore the exp ected information required to iden tify the winner of a b enc h-

mark in S split b y Z in to S

1

and S

2

is

info

Z

( S ) = E ( f ( i )) =

2

X

i =1

info ( S

i

) �

j S

i

j

j S j

The di�erence b et w een the exp ected information required b efore and after ap-

plying the test Z is therefore

gain ( Z ) = info ( S ) � info

Z

( S )

Hence gain ( Z ) measures the information gained b y p erforming the test Z . The

gain criterion c ho oses the test with the maxim um gain.

F or example, consider the sample S of T able 5.2, whic h con tains one result

rep orting Stack as the winner, one result rep orting F older as the winner, and �v e

results rep orting File as the winner.

info ( S ) = �

�

1

7

� log

2

1

7

+

1

7

� log

2

1

7

+

5

7

� log

2

5

7

�

= 1 : 149 bits
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The test Y , lo okup � 0 : 2, splits S in to a sample S

Y

1

con taining one F older result

and t w o File results, and a sample S

Y

2

con taining one Stack result and three File

results.

info

Y

( S ) =

3

7

info ( S

Y

1

) +

4

7

info ( S

Y

2

)

= �

3

7

�

1

3

log

2

1

3

+

2

3

log

2

2

3

�

�

4

7

�

1

4

log

2

1

4

+

3

4

log

2

3

4

�

= 0 : 857 bits

gain ( Y ) = info ( S ) � info

Y

( S )

= 0 : 292 bits

The test Z , size � 20, splits S in to a sample S

Z

1

con taining just one Stack result,

and a sample S

Z

2

con taining one F older result and �v e File results.

info

Z

( S ) =

1

7

info ( S

Z

1

) +

6

7

info ( S

Z

2

)

= �

1

7

�

1

1

log

2

1

1

�

6

7

�

1

6

log

2

1

6

+

5

6

log

2

5

6

�

= 0 : 557 bits

gain ( Z ) = info ( S ) � info

Z

( S )

= 0 : 592 bits

Therefore, as the gain from using Z is larger than the gain from using Y , the

gain criterion w ould prefer the test Z o v er the test Y .

Gain Ratio Criterion

The algorithm id3 uses the gain criterion, giving quite go o d results. Ho w ev er,

the gain criterion has a strong bias to w ards tests with man y p ossible outcomes.

The algorithm c4.5 attempts to remo v e this bias b y mo difying the gain crite-

rion to pro duce the gain r atio criterion . Ev en though w e only consider tests

with t w o outcomes, Quinlan advises that the gain ratio criterion \ev en app ears

adv an tageous when all tests are binary" [46 ].

Consider the information con ten t of an announcemen t of the result of a test

Z applied to a b enc hmark in S . Let Z split S in to the subsets S

1

; : : : ; S

n

. Let

S

X

b e the subset in to whic h Z places a b enc hmark c hosen from S . Let f ( X ) b e

the information con v ey ed b y an announcemen t of the v alue of X . F or 1 � j � n

f ( j ) = � log

2

j S

j

j

j S j

and P ( X = j ) =

j S

j

j

j S j
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The exp ected information of suc h an announcemen t is therefore

splitInfo ( Z ) = E ( f ( X )) = �

n

X

j =1

�

log

2

j S

j

j

j S j

�

�

j S

j

j

j S j

This expresses the amoun t of information gained from dividing S in to S

1

; : : : ; S

n

,

irresp ectiv e of the winning implemen tations. Therefore the gain ratio de�ned b y

gainR atio ( Z ) =

gain ( Z )

splitInfo ( Z )

expresses what prop ortion of the information gained b y splitting S using Z is

relev an t to the iden ti�cation of a winning implemen tation. Ho w ev er, if the split

is near-trivial|that is, some S

i

is almost as large as S |the split information will

b e small, and the gain ratio unstable. Therefore, the gain r atio criterion c ho oses

the test with the maxim um gain ratio, sub ject to the constrain t that the gain is

large|at least as great as the a v erage gain o v er all tests examined.

F or example, consider again the sample S of T able 5.2. The test Y , lo okup �

0 : 2, splits S in to a sample con taining three results and a sample con taining four

results.

splitInfo ( Y ) = �

�

3

7

log

2

3

7

+

4

7

log

2

4

7

�

= 0 : 985 bits

F rom the previous section w e kno w that

gain ( Y ) = 0 : 292 bits

So

gainR atio ( Y ) =

gain ( Y )

splitInfo ( Y )

= 0 : 296

The test Z , size � 20, splits S in to a sample con taining one result and a sample

con taining six results.

splitInfo ( Z ) = �

�

1

7

log

2

1

7

+

6

7

log

2

6

7

�

= 0 : 592 bits

F rom the previous section w e kno w that

gain ( Z ) = 0 : 592 bits

So

gainR atio ( Z ) =

gain ( Z )

splitInfo ( Z )

= 1
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Therefore, assuming b oth tests ha v e gain at least as large as the a v erage gain

o v er all tests examined, as the gain ratio from using Z is larger than the gain

ratio from using Y , the gain ratio criterion w ould also prefer the test Z o v er the

test Y .

5.4.2 Simplifying Decision T rees

The decision tree induced b y the algorithm of Section 5.4.1 classi�es the results

of a sample p erfe ctly . Unfortunately , this tree is not an ideal basis for c ho osing

an implemen tation for the follo wing reasons:

� The tree ma y b e v ery large and complex.

� The tree is based on the c hosen sample and ma y b e o v er-sp eci�c.

Therefore w e prune the induced tree to obtain a smaller and more accurate tree.

There are sev eral w a ys to prune a tree. W e examine t w o, tak en from existing

literature, eac h based on the pruning sc heme giv en in Figure 5.5. This sc heme

considers all subtrees b ottom-up. If replacing a subtree with either one of its

c hildren or with a single leaf do es not increase the pr e dicte d err or of the subtree,

it is pruned to this smaller tree. The t w o pruning tec hniques w e consider di�er

in ho w they predict the error of a tree.

Reduced Error Pruning

Quinlan describ es r e duc e d err or pruning in [45]. Tw o separate samples are re-

quired to p erform reduced error pruning: a tr aining sample , from whic h the

original tree is induced; and a test sample , used to assess the accuracy of the

induced tree.

Referring to the pruning sc heme of Figure 5.5, w e prune the induced tree using

the test sample. The predicted error of a subtree on a subset of the test sample

is simply the n um b er of misclassi�cations made b y the subtree when applied to

the test sample subset.

If in addition to recording the winning implemen tation for a particular b enc h-

mark w e also record the r atio of the time of every implemen tation to the time

of the winning implemen tation, w e ma y instead de�ne the predicted error of a
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T o p rune a tree T using the sample S :

if T is a b ranch no de with children L and R , and lab elled with test Z then

let Z split S into S

L

and S

R

p rune L using the sample S

L

to give L

P

p rune R using the sample S

R

to give R

P

p redict the erro rs of the follo wing trees on the sample S :

a b ranch no de with L

P

and R

P

as children, and lab elled with test Z

L

P

R

P

every p ossible leaf

tak e the trees with the lo w est p redicted erro r

return the smallest such tree

else

T is a leaf, so return T untouched

Figure 5.5: Generic pruning sc heme based on error prediction.
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(a)

Datat yp e Usage A ttributes Best

insert lo okup size Implemen tation

0.3 0.5 10.0 Stack

0.1 0.1 40.0 F older

0.4 0.1 45.0 File

(b)

Datat yp e Usage A ttributes Best

insert lo okup size Implemen tation

0.3 0.1 36.0 File

0.3 0.3 30.0 File

0.1 0.4 42.0 File

0.1 0.5 33.0 File

T able 5.3: T o illustrate reduced error pruning, a split of the sample of T able 5.2

in to (a) a training sample, and (b) a test sample.

subtree to b e the a v erage ratio of the implemen tation giv en b y the subtree as the

winner.

F or example, consider the sample S of T able 5.2. W e need t w o samples to

p erform reduced error pruning, so w e split the sample in to a training sample

consisting of the �rst three results, and a test sample consisting of the remaining

four results. T ables 5.3(a) and 5.3(b) giv e these samples. Figure 5.6 sho ws the

tree w e induce from the training sample, using either the gain criterion or the

gain ratio criterion.

Folder

True

True

False

File

Stack> 0.25

<= 0.3

insert

lookup
False

Figure 5.6: Decision tree induced from the training sample of T able 5.3(a).
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T o prune this tree, w e �rst prune the left branc h L , lab elled with the test

insert > 0 : 25. F ollo wing the pruning sc heme of Figure 5.5, w e then consider

the predicted error of L and of eac h of the three p ossible lea v es. Reduced error

pruning calculates the predicted error of a replacemen t for a subtree b y applying

the replacemen t tree to the subset of the test sample co v ered b y the original

subtree. In the absence of an y ratio information in the sample S , w e use the

n um b er of misclassi�cations to measure the error of a tree in application.

The subset of the test sample co v ered b y L con tains the �rst and second

results of T able 5.3(b), whic h are b oth File results. The subtree L misclassi�es

b oth of these results as F older . The lea v es F older and Stack also misclassify b oth

results. The leaf File ho w ev er classi�es b oth correctly . As this tree has the lo w est

predicted error, it replaces L .

No w w e consider the predicted error of the original tree with L replaced b y the

leaf File (call this tree T

0

), and eac h of the three lea v es, when applied to the whole

test sample. The tree T

0

correctly classi�es t w o results as File , but misclassi�es

the other t w o results as Stack . The lea v es F older and Stack misclassify ev ery

result of the test sample. The leaf File classi�es ev ery result in the test sample

correctly , and so this replaces the original tree. Therefore, reduced error pruning

simpli�es the original tree to the leaf File .

V ery P essimistic Pruning

Quinlan describ es p essimistic pruning in [45 ]. He also describ es a \far more p es-

simistic" pruning tec hnique in [46]. The latter tec hnique w e call very p essimistic

pruning , in the absence of an y name giv en b y Quinlan. Whereas reduced error

pruning predicts the error of a tree induced from a training sample b y ev aluating

the tree on an additional test sample, v ery p essimistic pruning uses only a single

training sample. This is useful when the data for a sample is scarce or exp ensiv e

to collect.

V ery p essimistic pruning estimates the error of a tree based on statistical

reasoning that \should b e tak en with a large grain of salt" [46]. Consider the

N cases classi�ed b y a leaf, E of whic h are classi�ed incorrectly . W e predict the

error rate with con�dence lev el CF to b e U

CF

( E ; N ), the upp er con�dence limit
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for the binomial distribution, de�ned for X � B ( N ; p ) b y

U

CF

( E ; N ) = p , P ( X � E ) = CF

See [46] for justi�cation of this prediction.

W e predict the n um b er of errors pro duced b y a leaf co v ering N cases to b e

N � U

CF

( E ; N ). W e predict the n um b er of errors pro duced b y a tree to b e the

sum of the errors pro duced b y its c hildren.

F or example, consider the sample S of T able 5.2. Using either the gain crite-

rion or the gain ratio criterion, w e induce the tree of Figure 5.4. T o apply v ery

p essimistic pruning to this tree, w e follo w the pruning sc heme of Figure 5.5 b y

�rst pruning the righ t branc h R , lab elled with the test lo okup � 0 : 2. T o prune R ,

w e m ust �rst prune its left c hild, R

L

. Ho w ev er, using the default con�dence lev el

of 25%, v ery p essimistic pruning lea v es R

L

un touc hed. W e shall not giv e details

here, but instead w e will giv e details of the more in teresting case of pruning R .

The subtree R co v ers all bar the �rst result of the sample S , con taining

one F older result, and �v e File results|call this subset S

0

. T o prune R , w e

consider the predicted error of R , of R

L

, and of eac h of the three p ossible lea v es,

when applied to the sample S

0

. The leaf File misclassi�es one result out of six.

Therefore, v ery p essimistic pruning predicts the error of this leaf as 6 � U

0 : 25

(1 ; 6) =

6 � 0 : 389 = 2 : 337. The leaf F older misclassi�es �v e results out of six, so the

predicted error of this leaf is 6 � U

0 : 25

(5 ; 6) = 5 : 719. The leaf Stack is ev en

w orse. The tree R

L

misclassi�es t w o out of three results on its left branc h,

and classi�es correctly all three results on its righ t branc h, so the predicted

error of this tree is 3 � U

0 : 25

(1 ; 3) + 3 � U

0 : 25

(0 ; 3) = 3 : 131. The tree R do es

not misclassify an y of the results, and con tains a leaf co v ering one result, a leaf

co v ering t w o results, and a leaf co v ering three results, so the predicted error is

U

0 : 25

(0 ; 1) + 2 � U

0 : 25

(0 ; 2) + 3 � U

0 : 25

(0 ; 3) = 2 : 860. Therefore, v ery p essimistic

pruning replaces R with the leaf File , as this has the lo w est predicted error.

W e next consider pruning the original tree with R replaced with the leaf File .

W e omit the details here, but v ery p essimistic pruning do es not c hange this tree.

Therefore, it is the �nal result of pruning.
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5.5 Summary

In this c hapter w e ha v e explored w a ys of using the dug algorithms of Chap-

ter 4. Exhaustiv e exploration is the most na • �v e solution, but tak es to o long to

run. Selectiv e exploration reduces this time, but do es not capture the imp ortan t

attribute of size w ell enough. The gro wth and deca y , linear w eigh ts, and Mark o v

c hains metho ds eac h capture size b etter, but in tro duce problems of their o wn.

Finally , the induction of decision trees solv es the problems of the previous meth-

o ds, and lo oks promising. W e ev aluate the e�ectiv eness of decision tree induction

in Chapter 7. The implemen tation of decision tree induction is straigh tforw ard,

and detailed in [46].
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Chapter 6

Auburn: Benc hmarking T o ol

Chapter 4 ga v e algorithms for (a) creating a b enc hmark from a description of use,

and (b) creating a description of use from an application. Chapter 5 illustrated

ho w to use these algorithms to b enc hmark implemen tations of an adt . This

c hapter describ es the design decisions for a b enc hmarking kit called Auburn,

built on the algorithms of Chapter 4, and the principles of Chapter 5. This

c hapter also details ho w to use Auburn.

Section 6.1 discusses the o v erall design of Auburn. Section 6.2 giv es an

o v erview of ho w the di�eren t parts of Auburn �t together. Sections 6.3{6.8

describ e eac h part of Auburn, b oth the design decisions and the instructions for

use b y hand. Section 6.9 sho ws ho w Auburn can almost completely automate

b enc hmarking.

App endix C giv es a reference for the Auburn executables.

6.1 Design Rationale

Auburn should pro vide the follo wing functionalit y:

� dug generation

� dug ev aluation

� dug pro�ling

� dug extraction

139
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6.1.1 Dynamic Linking

Can w e bundle eac h task ab o v e in to one executable for all adt s? Unfortunately

not, for the follo wing reasons. A dug ev aluator m ust link with the v arious im-

plemen tations for the di�eren t adt s Auburn encoun ters. Without some form of

dynamic linking, whic h curren t Hask ell implemen tations do not pro vide, w e m ust

re-compile a dug ev aluator for eac h new adt and its implemen tations.

Can w e bundle the remaining tasks in to one executable for all adt s? Unfortu-

nately not, since dug generation and dug pro�ling m ust link with a user-de�ned

shado w data structure, sp eci�c to an adt . The pro cess of dug extraction, ho w-

ev er, do es not require an y linking with co de sp eci�c to an adt , and can b e

compiled once for all adt s.

Decision: Generate an executable sp e ci�c to eac h adt for the generation, ev al-

uation, and pro�ling of dug s, and de�ne one executable for all adt s for dug

extraction.

6.1.2 Ov erhead of dug Ev aluation

When an implemen tation of an adt ev aluates a dug , there is some o v erhead:

general b o okk eeping, input, and output. The larger the o v erhead, the smaller

the prop ortion of the whole time tak en b y the adt op erations, and hence the less

accurate the estimation of the w ork done b y them. Therefore w e w an t to k eep

the o v erhead of dug ev aluation as small as p ossible.

W e consider three alternativ e metho ds for dug ev aluation.

1. Generate the dug , and translate eac h no de directly in to a Hask ell call to

an adt op eration. Output and compile the Hask ell program. T o ev aluate

the dug , run the program. The only o v erhead of dug ev aluation comes

from the mec hanism for demanding the results of the observ ations.

2. Generate and ev aluate the dug within the same executable. The generation

of the dug forms most of the o v erhead of dug ev aluation.

3. Read the dug from a previously generated �le. Reading the �le and general

b o okk eeping form most of the o v erhead of dug ev aluation.
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Figure 6.1: Times tak en to compile di�eren t dug s (as Hask ell programs) of v ar-

ious sizes o v er three di�eren t adt s.

In order to compare these three metho ds, w e measure the o v erheads for a random

selection of dug s for three adt s: queue, random-access sequence, and set with

random retriev al (as in Section 4.4). W e use the Y ork nhc13 compiler [53] (release

v0.9.4) running executables in a heap of 80Mb on an SGI Indy running IRIX 5.3.

Metho d 1 generates Hask ell programs that tak e to o m uc h space and time to

compile. Figure 6.1 sho ws the compilation times of dug s of v arious sizes. The

relationship is roughly linear. The largest dug w e can compile in a heap of

80Mb tak es o v er 15 min utes to compile and has 800 no des. This compares with

taking ab out 1 second to generate the same dug in a heap of 4Mb. The more

dug s w e ev aluate, the b etter conclusions w e can form ab out the e�ciency of the

implemen tations. Since compiling a dug is so slo w, w e reject Metho d 1.

F or Metho d 2, the o v erhead of dug ev aluation is the cost of dug generation.

W e cannot measure the cost of dug generation directly , b ecause w e m ust pro-

cess the dug in some w a y in order for lazy ev aluation to force its generation.

Therefore, w e mak e three di�eren t timings:
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1. The time tak en to generate and output the dug as a binary �le

2. The time tak en to generate and output the dug as a Hask ell program

3. The time tak en to generate and output the dug as a binary �le and also

as a Hask ell program

W e can estimate the time tak en to generate the dug b y adding Time 1 and Time

2 and then subtracting Time 3.

T o estimate the cost of dug ev aluation, w e read the dug from a binary �le,

and ev aluate the dug with eac h implemen tation, including the nul l implemen-

tation . The n ull implemen tation p erforms v ery little w ork (see Section 6.7). By

measuring the time tak en to ev aluate with the n ull implemen tation, w e obtain an

estimate of the o v erhead in v olv ed in ev aluating with some real implemen tation.

By subtracting this estimate of the o v erhead, w e obtain an estimate of the actual

cost of ev aluating with some real implemen tation.

F or some dug D and some implemen tation I , let g b e the time tak en to

generate D , let e

N

b e the time tak en to ev aluate D with the n ull implemen tation,

and let e

I

b e the time tak en to ev aluate D with implemen tation I . F or Metho d 2,

the o v erhead of dug ev aluation is the time tak en to generate the dug divided

b y the total time to generate and ev aluate the dug , that is g = ( g + e

I

� e

N

).

Note that w e subtract the n ull implemen tation time, since this includes all of the

o v erhead of reading the dug from a �le, whic h w ould not b e done in Metho d 2.

F or Metho d 3, the o v erhead of dug ev aluation is e

N

=e

I

.

Additionally , for Metho d 3, w e also time dug ev aluation using the C-Hask ell

h ybrid describ ed in Section 4.1.2.

Note that w e are only estimating the o v erhead, as for instance, the o v erhead

of the mec hanism for extracting the results of the observ ations is presen t in b oth

Metho d 2 and Metho d 3, but subtracting the n ull implemen tation time remo v es

this o v erhead from our estimate of the o v erhead of Metho d 2. Ho w ev er, making

a closer estimate is v ery hard, as lazy ev aluation mak es it v ery hard to separate

tasks and measure them individually .

T able 6.1 giv es the results. An o v erhead as large as 98% w ould mak e the

b enc hmarking results rather inaccurate. Similarly , ev en 87% ma y b e unaccept-

able. W e therefore c ho ose to ev aluate dug s b y reading them from �les, using the
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adt Metho d 2 Metho d 3 Metho d 3

(Hask ell) (C/Hask ell)

Queue 98.1 87.4 40.3

RASeq 96.5 82.4 25.6

Heap 99.0 90.3 29.0

Av erage 97.9 86.7 31.6

T able 6.1: Av erage p ercen tage o v erhead for eac h metho d of dug ev aluation o v er

ev ery com bination of 10 dug s and 7 implemen tations for eac h of the three adt s.

C-Hask ell h ybrid where p ossible (some compilers do not supp ort the necessary

language extension).

Decision: Separate dug generation and dug pro�ling from dug ev aluation. A

dug is generated, written to a �le, and then read and ev aluated.

6.1.3 Describing dug s

Since w e ha v e decided to store dug s in a compressed format in a �le, w e need

another format for dug s whic h the user can understand. Both a textual and a

visual description serv e this purp ose w ell. Since w e are compiling dug generation

and dug pro�ling for eac h adt , w e decide to bundle these functions and the

textual and visual description functions in to one executable.

Decision: Generate a dug manager for eac h adt whic h p erforms the follo wing

tasks: dug generation, dug pro�ling, and dug description (b oth textual and

visual).

6.1.4 Re-compilation

dug Manager

Generating and compiling a dug manager for eac h adt re-compiles a lot of

similar functions. These common functions should b e compiled just once, so w e

place them in a library .
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Decision: Create a library of the functions common to ev ery dug manager. A

dug manager con tains only the de�nitions of functions sp eci�c to the adt |it

imp orts the rest from the library .

dug Ev aluator

W e could generate one dug ev aluator for all implemen tations of an adt , using

either Hask ell's class system, or generate one cop y of the dug ev aluating function

for eac h implemen tation. Ho w ev er, this w ould ha v e to b e re-compiled if a new

implemen tation w ere in tro duced, or if an implemen tation w as c hanged. It is

simpler to generate one dug ev aluator for eac h implemen tation.

Decision: Generate a dug ev aluator sp eci�c to eac h implemen tation of eac h

adt .

6.2 Ov erview of Auburn

Auburn uses a signatur e (Section 6.3) to iden tify an adt . F rom the signature of

an adt , Auburn can pro vide a dug manager (Section 6.4) sp eci�c to that adt .

The dug manager can generate a dug from a pro�le (Section 6.4.1), calculate

a pro�le from a dug (Section 6.4.2), and create a visual or textual description

of a dug (Section 6.4.3). In order to generate a dug from a pro�le, the dug

manager requires a shadow data structur e (Section 6.5) for the same adt . F rom

a signature, Auburn can pro vide a trivial shado w data structure (Section 6.5.1),

or guess at a size-b ase d shado w data structure (Section 6.5.2).

F rom the signature of an adt and the name of an implemen tation of the

adt , Auburn can also pro vide a dug evaluator (Section 6.6) sp eci�c to the adt

and the implemen tation. F rom the same signature, Auburn can pro vide a nul l

implementation of the adt (Section 6.7), p erforming as little w ork as p ossible.

This is useful for estimating the o v erhead of dug ev aluation.

F rom the signature of an adt , the name of an implemen tation of the adt

and the name of an application using that implemen tation, Auburn can pro vide

a dug extr acting v ersion of the application (Section 6.8). The application w orks
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2455 lines

1577 lines 1327 lines 62 lines
Auburn_EvalFMap

Creates

Imports

Auburn_Man

auburn

Auburn_Bmark

_NullSig_ Shadow SigSig Imp_Eval_Sig _Bmark

Sig _Man

Figure 6.2: Structure of Auburn.

exactly as b efore, but also pro duces a dug of ho w it uses the implemen tation of

the adt .

Auburn also pro vides automation to ols (Section 6.9) for generating and using

all of the ab o v e, sa ving a lot of user e�ort.

The Auburn pac k age con tains a main executable auburn (Sections 6.3{6.8)

and other executables to automate the use of auburn (Section 6.9). Figure 6.2

sho ws the comp onen ts of Auburn, and ho w they relate to eac h other. The �gure

giv es the size of an y comp onen t that is not generated; the size is the n um b er of

lines of Hask ell.

App endix C giv es the help information pro vided with eac h Auburn executable.

6.3 adt Signature

The whole pro cess of b enc hmarking describ ed in Chapters 3{5 is based on com-

paring di�eren t implemen tations of the same adt . The de�nition and implemen-

tation of dug s in Chapters 3 and 4 refers primarily to the adt , and secondly to

the implemen tations. Therefore, Auburn needs a description of the adt to w ork

with.

An adt is iden ti�ed b y giving its signatur e . An adt signature lo oks just lik e

an implemen tation but con tains no co de|just an exp ort declaration, and one

t yp e signature for eac h exp orted op eration. Figure 6.3 giv es an example of a

signature. The adt m ust b e simple, as giv en b y De�nition 3.3.
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module List (List,empty,catenate,con s,ta il,h ead ,loo kup, isEm pty)

where

empty :: List a

catenate :: List a -> List a -> List a

cons :: a -> List a -> List a

tail :: List a -> List a

head :: List a -> a

lookup :: List a -> Int -> a

isEmpty :: List a -> Bool

Figure 6.3: Hask ell co de giving the signature of a simple list adt pro viding

normal list op erations, catenation and indexing.

Auburn can generate a signature of the simple op erations common to an y set

of implemen tations with:

auburn -c f Implementation Files g f Signature File g

F or example,

auburn -c NaiveList AVLList List

creates a signature �le List.sig from the simple op erations common to the

implemen tations stored in the �les NaiveList.hs and AVLList.hs . Op erations

that are not simple, or not exp orted b y ev ery implemen tation, are not included.

If an implemen tation exp orts ev ery op eration in a signature, but also exp orts

an op eration that is not included in the signature, the implemen tation can still

ev aluate a dug made for that signature, though of course only the op erations

included in the signature will b e used. An application imp orting the imple-

men tation ma y ha v e its dug extracted, so long as the application only imp orts

op erations found in the signature.

The signature �le of an adt is used b y Auburn to p erform ev ery task sp eci�c

to that adt : dug generation, dug ev aluation, dug pro�ling, dug extraction,

and dug description.
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6.4 dug Manager

A dug manager pro cesses dug s; generating, pro�ling, and describing them.

Auburn can generate a dug manager sp eci�c to an adt from the signature of

the adt :

auburn -m f Signature File g

F or example,

auburn -m List

mak es a dug manager List Man.hs from the signature �le List.sig .

As discussed in Section 6.1.4, the generated �le con tains all of the co de relev an t

to the adt . The remaining co de is imp orted from a library . The generation of

a dug manager is straigh tforw ard. The dug manager ma y b e compiled (linking

with a shado w data structure, see Section 6.5) to pro duce an executable.

6.4.1 dug Generating

The dug manager can generate a dug from a pro�le with:

Sig Man -g f Profile g f Seed g -o f dug File g

where the seed is used for pseudo-random n um b er generation. The dug is written

to a �le; using the 
ag -oP pip es the dug to standard output. The pro�le is giv en

using a Hask ell data structure as follo ws:

Profile f Gen. Wgt. Ratio g f Phases g

where f Phases g is a list of phased pro�les, starting from phase 1 in order, eac h

giv en using the follo wing Hask ell data structure:

Phase f Mut-Obs. Wgt. Ratio g f Mortality g f pmf g f pof g

Eac h w eigh t ratio is a list of n um b ers. F or example, [1,2,3] represen ts the

ratio 1 : 2 : 3. The order of the op erations within the ratios is primarily b y role

(generator, m utator, and observ er) and then alphab etically . In v oking help with

the -h 
ag giv es this order.

F or example, using a dug manager generated from the signature of Figure 6.3,
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List Man -g "Profile [1] [Phase [2,1.5,1,2.5,3,1] 0 0.2 0.3]" 123

-o example.dug

generates a dug in the �le example.dug , using a single-phased pro�le: the gen-

eration w eigh t ratio is redundan t as there is only one generator; the m utation-

observ ation w eigh t ratio is

catenate : cons : tail : head : lookup : isEmpty = 2 : 1 : 5 : 1 : 2 : 5 : 3 : 1;

the mortalit y is 0; the pmf is 0.2; and the pof is 0.3. The dug generator is giv en

a seed 123 for pseudo-random n um b er generation.

Other 
ags mo dify the b eha viour of dug generation:

-a f Phase Argument g

See Section 3.4.3. The default is no phase argumen t.

-b f Pool Size g

See Section 4.1.1, Cho osing non-version ar guments fr om the gr aph . The

default is 10.

-fL f Minimum Frontier Size g

See Section 4.1.1, The dug Gener ation A lgorithm . The default is 1.

-fU f Maximum Frontier Size g

See Section 4.1.1, The dug Gener ation A lgorithm . The default is 10.

-n f Number of Nodes g

The n um b er of no des in the generated dug . The default is 10000.

Sections 4.1.1 and 4.3.1 detail the implemen tation of dug generation.

6.4.2 dug Pro�ling

The dug manager can calculate a pro�le of a dug with:

Sig Man -p f Profile File g f dug File g

The pro�le ma y b e pip ed to standard output using the -pP 
ag. The pro�le is

written in the form giv en in Section 6.4.1, along with the shado w pro�le (Sec-

tion 3.4.4), the maxim um fron tier size, and the mean fron tier size. The initial

fron tier size is alw a ys zero.
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F or example,

List Man -p example.profile example.dug

places the pro�le of example.dug in the �le example.profile .

As with dug generating, a phase argumen t can b e giv en using the -a 
ag.

6.4.3 dug Describing

As dug �les are compressed binary �les|to reduce input and output o v erhead in

dug ev aluation|Auburn also pro vides visual and textual descriptions of a dug .

The visual description of a dug is suitable for the Gr aphViz pac k age of A T&T

[17], and pro duced b y:

Sig Man -d f Graph File g f dug File g

The textual description of a dug is v ery simple, and pro duced b y:

Sig Man -t f Text File g f dug File g

As with dug generation and dug pro�ling, output can b e pip ed to standard

output using similar 
ags: -dP and -tP for visual and textual descriptions re-

sp ectiv ely .

F or example, the dug of Figure 3.4 can b e con v erted to a �le view able through

GraphViz (see Figure 6.4) or con v erted to a text �le (see Figure 6.5). Note that

the textual description resem bles Hask ell co de. Indeed, adding the -H 
ag mak es

the textual description a Hask ell program that ev aluates the dug |see Figure 6.6.

6.5 Shado w Data Structure

A shado w data structure aids the generation of dug s, and adds information to

pro�les|see Section 3.4. The shado w data structure m ust exp ort the follo wing:

� The t yp e of a shado w

� The shado w op erations

� The shado w of an unev aluated v ersion argumen t (see Section 4.3.4)
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empty [],1

cons [99],2

empty [],3

cons [104],4

isEmpty [],11tail [],9

lookup [1],10catenate [],8

tail [],7

2

catenate [],6

2

head [],5

1

1

Figure 6.4: Output from the GraphViz pac k age viewing the dug of Figure 3.4

(the orien tation, the spacing and the fon t size w ere altered so the output could �t

on this page). The functions � , � , and � |see De�nition 3.6|are indicated on the

graph. Eac h no de is lab elled with the partial application giv en b y � (the name

of an op eration and a list of non-v ersion argumen ts), and the no de's p osition in

the order of ev aluation, giv en b y � . The arc lab els giv en b y � are placed next to

the relev an t arcs.
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n1 = empty

n2 = cons 99 n1

n3 = empty

n4 = cons 104 n3

n5 = head n4

n6 = catenate n2 n4

n7 = tail n6

n8 = catenate n2 n7

n9 = tail n8

n10 = lookup n8 1

n11 = isEmpty n9

Figure 6.5: T extual description of the dug of Figure 3.4. Eac h line describ es the

birth of a no de.

� The guards

� The t yp e of a shado w pro�le

� The shado w pro�le functions

� The t yp e of a phase argumen t

� The phase functions

Giv en only the signature of an adt , it is imp ossible to generate a suitable shado w

data structure for an adt in general. Ho w ev er, Auburn can generate a trivial

shado w data structure, or guess at one based on size.

6.5.1 T rivial Shado w Data Structure

A trivial shado w data structure stores no information in the shado w, allo ws ev ery

op eration application, giv es an empt y shado w pro�le, and puts ev ery v ersion in
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import List

os0 = []

n1 :: List Int

n1 = empty

n2 :: List Int

n2 = cons 99 n1

n3 :: List Int

n3 = empty

n4 :: List Int

n4 = cons 104 n3

n5 = head n4

os1 = fromEnum n5 : os0

n6 :: List Int

n6 = catenate n2 n4

n7 :: List Int

n7 = tail n6

n8 :: List Int

n8 = catenate n2 n7

n9 :: List Int

n9 = tail n8

n10 = lookup n8 1

os2 = fromEnum n10 : os1

n11 = isEmpty n9

os3 = fromEnum n11 : os2

main = print (sum (reverse os3))

Figure 6.6: T extual description of the dug of Figure 3.4 as a Hask ell program.

Running this program ev aluates the dug it describ es.
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Phase 1. It is useful for pro viding a base on whic h to build a non-trivial shado w

data structure. F or example, the t yp es of ev ery function required are presen t.

Auburn builds a trivial shado w data structure from a signature �le with:

auburn -sT f Signature File g

F or example,

auburn -sT List

generates a trivial shado w data structure in the �le List Shadow.hs .

The generation of a trivial shado w data structure is quite straigh tforw ard, so

w e do not giv e an y implemen tation details here.

6.5.2 Size-Based Shado w Data Structure

A size-based shado w data structure stores the size of a v ersion in its shado w.

This size is then used: (1) to guard against unde�ned applications; (2) to phase

v ersions in to those no larger than a giv en size, and those larger; and (3) to

calculate the a v erage and standard deviation of the size of ev ery v ersion across

all m utations and observ ations. Example 3.27 is an instance of suc h a shado w

data structure.

Auburn can only guess at a size-based shado w data structure, using the t yp es

of the adt op erations, as giv en b y the signature. F or most of the common

adt s Auburn guesses correctly: queues, lists, random-access sequences, catenable

sequences, and heaps. Ho w ev er, some adt s require a more sophisticated shado w

data structure, for example, sets and �nite maps (the size of a set v aries according

to whic h elemen t is added or remo v ed, and this is not captured b y the t yp e of an

op eration).

Auburn sets the size of an unev aluated v ersion argumen t to 0, on the basis

that none of the elemen ts of an unev aluated v ersion are examined.

Auburn guesses at a size-based shado w data structure b y using the signature

�le with:

auburn -sS f Signature File g

F or example, using the signature List.sig of Figure 6.3,
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auburn -sS List

guesses (correctly) at a size-based shado w data structure for lists, and places it

in the �le List Shadow.hs .

Guessing Size-Based Shado w Data Structures

The metho d for guessing the de�nitions of the shado w op erations and the guards

of a size-based shado w data structure is tailored for the simple adt s that can

b e shado w ed b y size. The phasing and the shado w pro�ling remain constan t for

ev ery adt |for further details of these, see Example 3.27.

Consider the follo wing simple adt s: sequences (with or without access to

fron t or rear, random access, and catenation), heaps, sets, �nite maps (with �xed

k ey t yp e to mak e the adt simple), and bags. Of these, sets, �nite maps, and bags

cannot b e shado w ed b y size. Of the rest, all ha v e their size-based shado w data

structure guessed correctly b y Auburn

1

. T able 6.2 sho ws the desired de�nitions

of the shado w op erations of all these adt s. T able 6.3 condenses these de�nitions

in to rules for Auburn to use. T able 6.4 sho ws the desired de�nitions of guards

of the same adt s. T able 6.5 condenses these de�nitions in to rules for Auburn to

use.

F or example, for the signature of Figure 6.3, Auburn de�nes the t yp e of

shado ws with

data Shadow = Shadow {size :: Int}

and de�nes the shado w of the cons op eration as

cons_Shadow :: Int -> Shadow -> Shadow

cons_Shadow i0 (Shadow {size=s0}) = Shadow {size=s0+1}

and de�nes the guard of the head op eration using

head_Guard :: Shadow -> Bool

head_Guard (Shadow {size=s0}) = s0>0

1

It ma y b e p ossible to form an adt signature that mo dels a sequence or a heap in a w a y

that mak es Auburn guess incorrectly , but that is not the case for the adt signatures giv en in

this thesis.
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and de�nes the guard of the cons op eration using

cons_Guard :: Shadow -> [IntSubset]

cons_Guard (Shadow {size=s0}) = [Pool]

Note that Auburn uses Pool instead of All to select an argumen t where there

are no restrictions. This enables the user to con trol Pool argumen ts with the

p o ol size (see Section 4.1.1).

6.6 dug Ev aluator

Auburn can generate a dug evaluator sp eci�c to an adt and an implemen tation

of that adt .

auburn -e f Implementation Name g f Signature File g

F or example,

auburn -e NaiveList List

pro duces a dug ev aluator in the �le List Eval NaiveList.hs imp orting the

mo dule NaiveList whic h should implemen t the adt whose signature is giv en in

List.sig .

The dug ev aluator tak es t w o argumen ts: the name of the dug �le to ev aluate,

and the n um b er of in ternal rep etitions of this ev aluation (useful for increasing the

time of ev aluation to a measurable size).

Sig Eval Implementation f dug file g f No. of Repetitions g

F or example,

List Eval NaiveList example.dug 10

ev aluates the dug example.dug 10 times using the implemen tation NaiveList .

As Section 4.3.2 and Section 6.1 men tion, the o v erhead of a dug ev aluator

implemen ted en tirely in Hask ell can sometimes b e unacceptable. Mo ving the

algorithm in to C and calling the Hask ell adt op erations from within C reduces

this o v erhead signi�can tly . The C routines are in terfaced to Hask ell using Green
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Op eration No. of Argumen ts Result of

T a a Int Shado w Op eration

empty 0 0 0 0

singleton 0 0 1 1

tail / init / deleteMin 1 0 0 s

0

� 1

up date 1 1 1 s

0

+ + / mer ge 2 0 0 s

0

+ s

1

c ons / sno c / insert 1 0 1 s

0

+ 1

T able 6.2: Shado w op erations of simple adt s that can b e shado w ed b y size. A

shado w op eration tak es shado w argumen ts s

0

, s

1

, . . . , s

k

.

No. of Argumen ts Condition Result of

T a a Int Shado w Op eration

0 m n n

1 m 0 s

0

� 1

l m n n = 0 _ m > 0 s

0

+ : : : + s

l � 1

l m n n > 0 ^ m = 0 s

0

+ : : : + s

l � 1

+ n

T able 6.3: Rules for guessing the result of a size-based shado w

op eration. A shado w op eration tak es shado w argumen ts s

0

, s

1

, . . . , s

k

.
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Op eration No. of Argumen ts T yp e of Result of

T a a Int Result Guard

tail / init / deleteMin 1 0 0 T a s

0

> 0

he ad / �ndMin 1 0 0 a s

0

> 0

size 1 0 0 Int T rue

isEmpty 1 0 0 Bo ol T rue

empty 0 0 0 T a T rue

+ + / mer ge 2 0 0 T a T rue

singleton 0 0 1 T a [ Po ol ]

c ons / sno c / insert 1 0 1 T a [ Po ol ]

lo okup 1 1 0 a [0.. s

0

� 1]

up date 1 1 1 T a [ Po ol , 0.. s

0

� 1]

T able 6.4: Guards for simple adt s that can b e shado w ed b y size. A guard tak es

argumen ts s

0

, s

1

, . . . , s

k

.

No. of Argumen ts T yp e of Result of Guard

T a a Int Result

1 0 0 T a or a s

0

> 0

l 0 0 An y T rue

l m n An y Replace a with Po ol

and Int with 0.. s

0

� 1

T able 6.5: Rules for guessing the result of a guard using size-based shado ws. A

guard tak es argumen ts s

0

, s

1

, . . . , s

k

.
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Card [43], extended to allo w C to call Hask ell (included with the nhc13 compiler

[53]). Supplying the 
ag -G informs Auburn to use Green Card in creating the

dug ev aluator. F or example,

auburn -G -e NaiveList List

pro duces a dug ev aluator in the �le List Eval NaiveList.gc imp orting the

Hask ell mo dule NaiveList , and the C library Auburn evaldug.c .

Sections 4.1.2 and 4.3.2 detail the implemen tation of a dug ev aluator.

6.7 Null Implemen tation

Auburn can generate a nul l implementation of an adt .

auburn -n f Signature File g

A n ull implemen tation p erforms v ery little w ork but pro vides op erations of the

correct t yp e. Ev aluating a dug with the n ull implemen tation giv es an estimate

of the o v erhead of dug ev aluation, allo wing a b etter estimate of the actual w ork

done b y the op erations of other implemen tations.

F or example,

auburn -n List

pro duces a n ull implemen tation in the �le List Null.hs of the adt whose sig-

nature is in the �le List.sig .

A n ull implemen tation de�nes the exp orted t yp e constructor as a n ullary data

constructor Null . F or example, for the t yp e constructor List of Figure 6.3, the

n ull implemen tation de�nes

data List a = Null

Eac h op eration ignores its argumen ts but returns some v alue of the correct t yp e.

But what v alue do w e return of t yp e a ? W e a v oid this problem b y noting that

as w e only use the n ull implemen tation to ev aluate dug s with the t yp e v ariable

a instan tiated to Int , w e de�ne op erations o v er v ersions of t yp e T Int .
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F or List Int the n ull implemen tation returns Null , for Int it returns 7 , and

for Bool it returns True

2

. F or example, the lookup op eration is implemen ted b y

lookup :: List Int ! Int ! Int

lookup = 7

As the b o okk eeping in dug ev aluation is strict (see Section 4.3.2), ev aluating a

dug with this v ery lazy implemen tation will force all of the b o okk eeping without

p erforming m uc h more w ork, giving a go o d estimate of the w ork done b y the

b o okk eeping.

6.8 dug Extraction

Auburn can transform an application that imp orts an implemen tation of an adt

in to a similar application that p erforms the same w ork whilst also pro ducing a

dug of the w a y it uses the adt implemen tation.

auburn -x f Implementation File g f Main File g f Signature File g

Auburn wraps the implemen tation mo dule and the main mo dule to pro duce the

dug as a side-e�ect (see Sections 4.2.1 and 4.3.3).

But ho w do w e implemen t this? The application ma y consist of man y mo dules,

some of whic h will imp ort the adt . W e do not w an t to c hange ev ery suc h

mo dule, so w e m ust k eep the same mo dule name for the wrapp ed implemen tation.

As Hask ell compilers use the con v en tion that a mo dule app ears in a �le of the

same name, w e m ust replace the existing implemen tation mo dule with the new

wrapp ed mo dule. Instead of trying to insert the new de�nitions in to the old

implemen tation mo dule, w e rename the old implemen tation mo dule, place it in

a di�eren t �le, and imp ort it. The imp ort is quali�ed to a v oid name clashes.

Similarly , instead of trying to insert the new de�nition of main in to the main

�le, w e imp ort the old de�nition in to a new main �le. In order to imp ort the

old main mo dule in to the wrapp ed main mo dule, w e m ust rename the main

2

Returning 0 for Int ma y in v ok e an optimisation in the compiler, reducing the b o okk eeping

w ork for the n ull implemen tation. Ho w ev er, w e wish to use the b o okk eeping of the n ull imple-

men tation as an estimate of the b o okk eeping of other implemen tations. Similarly , w e do not

return False for Bool , since fromEnum ev aluates this to 0 .
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mo dule from Main . As Hask ell also has the con v en tion that the Main mo dule

ma y b e implicitly de�ned in a �le of an y name, w e ma y need to add a mo dule

declaration and an exp ort declaration, exp orting the old main function. The new

main mo dule imp orts the old main mo dule, quali�ed to a v oid name clashes.

The wrapp ed mo dules �les use Green Card. They imp ort C functions from

an Auburn library Auburn extractdug.c . Auburn creates bac kups of the re-

named �les to prev en t acciden tal loss and to aid reco v ery . Auburn can rev ert the

implemen tation and main �les to the original v ersions with:

auburn -u f Implementation File g f Main File g f Signature File g

F or example,

auburn -x NaiveList mean List

mo v es NaiveList.hs to Old NaiveList.hs , and mean.hs to Old mean.hs .

The mo dule NaiveList is an implemen tation of an adt whose signature is

in List.sig . The main mo dule in mean.hs de�nes an application that im-

p orts this implemen tation. Auburn also creates the �les NaiveList.gc and

mean.gc and creates bac kups of the old �les at auburn-backup.NaiveList.h s

and auburn-backup.mean.hs . The new main �le mean.gc de�nes an imple-

men tation that imp orts the new implemen tation NaiveList.gc . These compile

and link with the C �le Auburn extractdug.c , the �les Old NaiveList.hs and

Old mean.hs , and with an y other �les the old main �le imp orted, to pro duce a

dug -extracting executable mean . This runs as b efore, but also pro duces a dug

in the �le app.dug . Also,

auburn -u NaiveList mean List

remo v es the �les NaiveList.gc and mean.gc , and restores the �les NaiveList.hs

and mean.hs from their bac kups.

6.9 Automation

Auburn pro vides to ols to automate most of the w ork in v olv ed in a b enc hmarking

exp erimen t.
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1. Making the executables: auburnExp

2. Making dug s: makeDugs

3. Timing the ev aluations of dug s: evalDugs

4. Gathering the times of ev aluations: processTimes

5. Cleaning up after T o ols 2, 3, and 4: cleanDugs

6. T racing bugs in adt implemen tations

7. Gathering b enc hmarking results

T o ols 2 through 5 are used b y T o ols 6 and 7. The implemen tation of T o ols 2

through 5 is straigh tforw ard. The user will probably not need to use them directly ,

but instead use T o ols 1, 6, and 7. F or further details of T o ols 2 through 5, see

App endix C.

T o ol 1, auburnExp , is quite simple. It creates a make�le , for use with the

GNU mak e utilit y [16]. This automates the building, compiling, and linking of

all the executables needed b y the other to ols.

T o ols 6 and 7 are implemen ted within the same executable, whic h w e shall

no w describ e in detail.

6.9.1 Benc hmark er

Auburn can generate a b enchmarker sp eci�c to an adt and some of its imple-

men tations with the follo wing:

auburn -b f Implementation Modules g f Signature File g

F or example,

auburn -b NaiveList AVLList List

creates a b enc hmark er in the �le List Bmark.hs .

The b enc hmark er serv es t w o purp oses: (1) tracing bugs in adt implemen ta-

tions, and (2) gathering b enc hmarking results.
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T racing Bugs

A b enc hmark er can searc h for the smallest dug that causes an error when ev al-

uated b y the adt implemen tations. A dug causes an error when an y implemen-

tation fails to ev aluate the dug |for example, b ecause of a run-time error|or if

an y t w o implemen tations return di�eren t c hec ksums.

Sig Bmark -q f Seed g

The b enc hmark er uses the seed to direct the random searc h. The b enc hmark er

generates a series of dug s. If a dug causes an error, the b enc hmark er rep orts

the error and the dug , and then generates a smaller dug . It is p ossible that the

b enc hmark er generates a dug that is smaller than the smallest dug that causes

an error. Therefore, if a dug do es not cause an error, the b enc hmark er then

generates a larger dug .

The b enc hmark er displa ys a dug as a Hask ell program using the dug manager

with the 
ags -t and -H |see Section 6.4.3. This program do es not require a dug

�le to read, as the dug is con tained within the program. Hence it ma y b e copied

in to a �le, and compiled on its o wn, p erhaps with the tracing facilit y of the

compiler turned on.

If a dug causes an error, and it is the smallest suc h dug found so far, this

fact is also rep orted. This allo ws the user to let the b enc hmark er run for as long

as they lik e, scan the output for the last rep ort of a smallest dug , and hence �nd

the smallest erroneous dug found o v erall. A neater solution using some form

of in terrupt signal handling w ould b e preferable, but Hask ell do es not supp ort

exception handling.

See Section 7.1.2 for an example of using a b enc hmark er to �nd bugs.

Gathering Benc hmarking Results

A b enc hmark er can compute, gather, and analyse b enc hmarking results; that is,

it can measure ho w w ell di�eren t adt implemen tations p erform across di�eren t

datat yp e usages. Sp eci�cally , the b enc hmark er pro vides the follo wing function-

alit y:
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� Generate a set of dug s with randomly c hosen pro�les, measure the p erfor-

mance of eac h adt implemen tation ev aluating eac h dug , and record the

results as a sample .

f Sig g Bmark -g f Seed g -o f Sample File g

The seed is used to direct the c hoice of pro�les and the generation of dug s.

� Induce a de cision tr e e from a sample, p erhaps using one of t w o pruning

tec hniques.

f Sig g Bmark -s f Sample File g -i [ -r j -P ] -w f Tree File g

The 
ag -r requests reduced-error pruning whereas the 
ag -P requests

v ery p essimistic pruning|see Section 5.4.2.

� Rep ort the accuracy of a giv en decision tree on a giv en sample.

f Sig g Bmark -s f Sample File g -t f Tree File g -c f Report File g

� Use a decision tree to decide whic h implemen tation suits a giv en pro�le.

f Sig g Bmark -t f Tree File g -d f Profile File g

These 
ags ma y b e com bined. An accuracy rep ort ma y b e written to standard

output using the 
ag -cP . Similarly mo di�ed 
ags (using the p ost�x P ) exist for

reading or writing a tree or a sample from standard input or to standard output.

Random Sampling

T racing bugs and gathering b enc hmarking results b oth require the b enc hmark er

to create a dug from a r andomly chosen pro�le. Eac h pro�le attribute is c hosen

fairly from a list of ab out 20, with the list v arying according to the attribute. Ev-

ery w eigh t ratio comp onen t is c hosen from [0 ; 0 : 05 ; : : : ; 1]. The mortalit y is c hosen

from [0 ; 10

� 4

; 10

� 3 : 75

; : : : ; 10

� 1

]. The pmf is c hosen from [0 ; 2

� 20

; 2

� 19

; : : : ; 2

� 2

].

The pof is c hosen from [0 ; 0 : 05 ; : : : ; 1]. These lists ma y b e c hanged b y the user.

Auburn uses these lists b y default to attempt a fair distribution of b enc hmarks

o v er the datat yp e usage space. The qualit y of \fairness" m ust re
ect the \t ypical"
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application and therefore an y suc h attempt is primarily guided b y exp erience. On

this basis, w e shall no w attempt to justify our c hoice of lists.

Using a uniform distribution for eac h w eigh t ratio comp onen t treats eac h

op eration equally and in particular allo ws for no use of an op eration. Making

a zero w eigh t ev en more lik ely than 1 in 20 ma y b e justi�ed on the grounds

that applications often neglect an op eration completely . The mortalit y and pmf

attributes should b e v ery lo w. F or example, for a list adt , a mortalit y of 0.5

implies that, on a v erage, a list is m utated only once b efore b eing discarded.

Similarly , a pmf of 0.5 implies that, on a v erage, an empt y list giv es rise to o v er

1000 di�eren t lists after just 20 successiv e m utations. Giv en the need to k eep

these attributes generally lo w, with the o ccasional high v alue, it is natural to use

an exp onen tial scale. The pof ho w ev er ma y tak e an y v alue b et w een 0 and 1 and

so is giv en a uniform distribution.

The b enc hmark er excludes an y imp ossible or unsuitable pro�les. F or exam-

ple, a pro�le where the m utation w eigh ts are all 0 without mortalit y b eing 1

is imp ossible, and a pro�le where the observ ation w eigh ts are all 0 is p ossible

but undesirable as it forces no w ork. Tw o other t yp es of unsuitable pro�les

are excluded b y default, b oth relating to op erations that increase or decrease

size. A pro�le with a greater sum of size-decreasing op eration w eigh ts than size-

increasing op eration w eigh ts is often imp ossible without p ersisten t m utation, and

highly undesirable otherwise. A pro�le with all size-increasing op eration w eigh ts

0 is also highly undesirable. The b enc hmark er excludes b oth of these t yp es of

pro�le b y default. The user ma y add or remo v e other suc h exclusions of pro�les.

Note that, as with generating a shado w data structure, it is imp ossible to tell

the e�ect of an op eration on size just from its t yp e. Therefore, when generating a

b enc hmark er, Auburn guesses whic h op erations increase size and whic h decrease

size, in the same manner as it do es for generating a size-based shado w data

structure (see Section 6.5.2).

6.10 Summary

Auburn can generate a b enc hmark from a description of use and a extract a

description of use from an application, as motiv ated in Section 1.3. Moreo v er,
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Auburn can automate calls to these functions to �nd small b enc hmarks rev ealing

bugs in implemen tations and also to pro duce a summary , in the form of a decision

tree, of whic h implemen tation is b est according to the datat yp e usage.

Chapter 7 giv es examples of using Auburn in this w a y , and ev aluates Auburn's

p erformance and accuracy .
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Chapter 7

Results

Chapter 6 presen ted a b enc hmarking to ol, Auburn, built on Chapters 3{5. This

c hapter uses Auburn and ev aluates its accuracy at predicting the b est data struc-

ture.

Section 7.1 uses Auburn on the data structures review ed in Chapter 2 to

pro duce a summary of whic h data structure is b est when. Section 7.2 uses sev-

eral real applications as b enc hmarks to test the advice pro duced b y Auburn in

Section 7.1. Section 7.3 examines the p ossible sources of inaccuracy in Auburn.

T ec hnical Note. All b enc hmarks in this c hapter, whether real or generated b y

Auburn, are compiled using the Y ork nhc13 compiler [53 ] (release v0.9.4), and

run in a heap of 80Mb, on an SGI Indy running IRIX 5.3. As with the remainder

of this thesis, w e use Auburn v ersion 2.3. All b enc hmarks are run, rep eating

in ternally if necessary , till the total time is at least 1 second. Eac h b enc hmark is

timed just once, to an accuracy of 0.01 seconds, giv en as the \user time" b y the

standard UNIX command time .

7.1 Benc hmarking Three adt s

In Chapter 2, w e review ed sev eral implemen tations of three adt s: queues,

random-access sequences

1

, and heaps. W e shall no w use Auburn to b enc hmark

these implemen tations. There are �v e stages in our exp erimen t:

1

As some implemen tations of the random-access sequence adt do not supp ort the op erations

sno c , last and init , w e remo v e these op erations from the adt for the purp ose of b enc hmarking.

167
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� Set up the Auburn executables.

� Chec k the correctness of the implemen tations.

� Fine-tune the implemen tations.

� Run and time the implemen tations.

� Induce decision trees from the times.

7.1.1 Setting Up

F or eac h of the three adt s, setting up the Auburn executables is straigh tforw ard.

� W e mak e a directory for the adt , sa y Queue . In to this directory , w e place

eac h implemen tation of the adt . Auburn creates a mak e�le in this directory

with

auburnExp

� W e mak e the Auburn executables with

make SIG=Queue

whic h instructs Auburn to create a common signature from all implemen-

tations with names ending in Queue (see Section 6.3). When prompted to

c hec k the guess at a size-based shado w data structure, w e con tin ue with

make

as Auburn guesses correctly for eac h of the three adt s, and so w e need not

mo dify the shado w data structure.

All of the executables needed for our exp erimen t are no w a v ailable: the dug

manager, the dug ev aluators, and the b enc hmark er. The b enc hmark er uses the

default pro�le space describ ed in Section 6.9.1.



7.1. BENCHMARKING THREE ADT S 169

7.1.2 T racing Bugs

Before w e b enc hmark the implemen tations, w e should ensure that w e ha v e co ded

them correctly . Although t yp e c hec king ma y remo v e most acciden tal errors, some

ma y remain. It is also p ossible that the implemen tation presen ted in the literature

con tained a mistak e. W e can use Auburn to c hec k that the implemen tations do

not pro duce an y run-time errors and that they pro duce the same results as eac h

other. Section 6.9.1 describ es this in further detail. F or example, w e ma y en ter

a command suc h as

Queue Bmark -q se e d

where se e d is an initial v alue for the pseudo-random n um b er generator. The

b enc hmark er ma y then output a rep ort lik e the follo wing:

*** Tracer: Potential bug found. The following implementations:

*** PhysicistsQueue

*** either did not evaluate the dug correctly, or gave a different

*** checksum to the implementation `BankersQueue'.

Giv en that PhysicistsQueue is the only implemen tation to di�er in c hec ksum

from the implemen tation BankersQueue , w e can b e fairly sure that the error is

in PhysicistsQueue . Ho w ev er, a rep ort lik e the follo wing:

*** Tracer: Potential bug found. The following implementations:

*** Batched1Queue, BatchedQueue, Bootstrapped1Queue,

Bootstrapped2Queue, BootstrappedQueue, Implicit1Queue,

Implicit2Queue, ImplicitQueue, Multihead1Queue, MultiheadQueue,

NaiveQueue, PhysicistsQueue, RealTimeQueue

*** either did not evaluate the dug correctly, or gave a different

*** checksum to the implementation `BankersQueue'.

tells us that the bug is probably in BankersQueue .

Along with the ab o v e rep ort, the b enc hmark er outputs the dug resp onsible as

a Hask ell program (see Section 6.9.1). T o �nd the bug, w e c ho ose to compile the

dug with the Y ork nhc13 compiler [53 ] with tracing enabled [50]. Note ho w ev er

that w e ma y use an y other tracer or debugger, or w e ma y simply insp ect the dug .
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import PhysicistsQueue

import Prelude hiding (head,tail)

os0 = []

n1 :: Queue Int

n1 = empty

n2 = isEmpty n1

os1 = fromEnum n2 : os0

n3 :: Queue Int

n3 = snoc n1 7

main = print (sum (reverse os1))

Figure 7.1: The smallest dug found b y the queue b enc hmark er that causes an

error in the ph ysicist's queues. The queue b enc hmark er searc hed for ab out an

hour.

W e let the b enc hmark er run for a long time, trying to �nd the smallest dug

that causes an error. The smaller the dug , the easier it is to �nd the bug. Out

of 23 implemen tations, w e �nd 4 con tain bugs. All of these bugs result from

acciden tal errors. W e shall no w describ e 2 of these bugs.

Ph ysicist's Queues

The queue b enc hmark er �nds that the dug of Figure 7.1 causes our �rst imple-

men tation of ph ysicist's queues (see Section 2.1.5) to ev aluate with a c hec ksum

di�eren t to the other queue implemen tations. Using the tracer of nhc13, w e

quic kly �nd that the ph ysicist's queue is ev aluating isEmpty n1 to False . As n1

is empty , w e w ould instead exp ect isEmpty n1 to ev aluate to True . Examining

the co de for isEmpty

isEmpty (Queue (x:w) f lenF r lenR) = True

isEmpty _ = False
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w e �nd that the t w o cases are sw app ed, returning True when the answ er is False ,

and vice v ersa. T o �x the bug, w e just sw ap True with False .

Bo otstrapp ed Queues

The queue b enc hmark er �nds a subtle bug in the b o otstrapp ed queue implemen-

tation (see Section 2.1.7). It can only �nd dug s of a reasonable size|ab o v e 20

no des|that con tain the bug. The smallest dug that it �nds on a fairly large

run, taking sev eral hours, has 22 no des. W e omit the dug here as it is rather

large. The dug ev aluator for b o otstrapp ed queues rep orts the error tail Empty .

In order to understand the bug, it is necessary to understand part of the co de

implemen ting b o otstrapp ed queues. A b o otstrapp ed queue has a fron t list, a

middle queue of lists, and a rear list. The co de also stores the size of the fron t

and middle com bined, and the size of the rear.

data Queue a = Empty

| Queue [a] (Queue [a]) Int [a] Int

So, Queue f m fmN r rN has fron t f , middle m , rear r , and the size of the fron t

and middle com bined is fmN , and the size of the rear is rN .

W e compile the dug with tracing, and lo ok for the ro ot of the problem. The

error results from a call to tail on an empt y queue. The source of the tail is

in the dug itself. The shado w data structure prev en ts suc h a call in a dug , and

so the error m ust lie in the empt y queue. The tracer rev eals that a call to tail

on a queue with 1 elemen t in the fron t and 3 elemen ts in the rear pro duces the

empt y queue. Ho w ev er, the fron t-middle size �eld, fmN , is 5, where it should b e

1. This error leads to the queue b ecoming empt y .

W e step bac k through the trace of the queue till fmN agrees with the size of

f and m com bined. A t this p oin t, a list is pulled out of m . Before the pull, fmN

agrees with f and m ; after the pull, it do es not. Before the pull, m con tains t w o

lists, one of 2 elemen ts, and one of 4 elemen ts; after the pull remo v es the list of

2 elemen ts, m is empt y , whereas it should con tain the list of 4 elemen ts.

Therefore, w e �nd that fmN is correct, but that the queue has lost some

elemen ts from its middle. Let m

1

b e the middle queue b efore the pull, and m

2

b e

the empt y middle queue after the pull. Examining the trace of m

2

, w e �nd a c hec k
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on the size of the fron t and rear of m

2

. The fron t and rear of m

1

eac h con tain one

list, but the pull lea v es m

2

with an empt y fron t. Ho w ev er, the fmN �eld for m

2

is

1. This error leads to the queue b eing discarded as empt y .

But wh y is the fmN �eld of m

2

not 0? F urther bac k in the trace of m

2

, w e �nd

that the pull copies the fmN of m

2

from m

1

. Ho w ev er, after a pull, the com bined

size of the fron t and middle of the middle should b e one less. This is the bug:

The implemen tation of pull on a queue

Queue f (Queue mf mm mfmN mr mrN) fmN r rN

do es not reduce mfmN .

7.1.3 Fine-T uning the Implemen tations

When co ding an implemen tation, there are man y design decisions to mak e. F or

example, w e migh t ha v e the option to use a strictness 
ag on an in teger �eld.

This ma y mak e a signi�can t di�erence to the p erformance of the implemen tation.

Auburn helps us to mak e suc h design decisions. Auburn can compare the o v erall

p erformance of an implemen tation, with and without a minor mo di�cation, on a

large sample of b enc hmarks.

W e mak e sev eral minor mo di�cations to the implemen tations of the three

adt s. W e use the b enc hmark er of eac h adt to time eac h implemen tation and its

mo di�cations o v er a sample of 100 b enc hmarks. The b enc hmark er can rep ort the

o v erall p erformance of an implemen tation I b y c hec king the accuracy of the tree

with a single leaf I . A \decision tree" made from a single leaf I alw a ys c ho oses

I . Therefore, the accuracy of this tree rep orts ho w man y times this c hoice is

correct|that is, ho w man y times I is the winner|and the a v erage ratio I to the

actual winner.

F or example, to �nd the o v erall e�ciency of implemen tation BankersQueue

on the sample sample , use

echo BankersQueue | Queue_Bmark -tP -s sample -cP

This giv es the n um b er of times BankersQueue w as the b est implemen tation,

and more imp ortan tly , the mean ratio of the time for BankersQueue compared

to the time of the b est implemen tation. By comparing the mean ratio of an
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Mo di�cation Description E�ect on Use?

P erformance

Bank ers Add strictness 
ags � 2% �

Batc hed Remo v e reverse [x] from snoc +10% X

Bo otstrapp ed Merge calls to head and tail in

checkF

+0% �

Implicit{1 Use TwoInTwo instead of a pair in

the inner queue.

+4% X

Implicit{2 Merge calls to head and tail in

tail .

+12% X

Multihead Change to Ok asaki's implemen ta-

tion.

� 6% �

Ph ysicists Add strictness 
ags. +1% �

T able 7.1: The e�ect of mo di�cations on p erformance of queue implemen tations

o v er a sample of 100 b enc hmarks.

implemen tation with and without a mo di�cation, w e ha v e an estimate of the

o v erall e�ect of the mo di�cation.

Eac h implemen tation ma y ha v e sev eral or no mo di�cations. W e c ho ose the

b est com bination of mo di�cations for eac h implemen tation. T ables 7.1, 7.2 and 7.3

sho w the results of the �ne-tuning. The e�ect on p erformance is calculated b y

A ver age r atio after mo di�c ation

A ver age r atio b efor e mo di�c ation

� 100%

W e decide to use the mo di�cation if the e�ect on p erformance is signi�can t|

ab o v e 3%. Note that the b enc hmark er uses the default pro�le space describ ed in

Section 6.9.1. App endix B details eac h mo di�cation in full.

An in teresting p oin t to note from the results, is that adding strictness 
ags

mak es v ery little di�erence.

7.1.4 Inducing Decision T rees

F or eac h adt , w e use the b enc hmark er to time the implemen tations c hosen from

the �ne-tuning of Section 7.1.3. W e ha v e sev eral options for inducing the decision
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Mo di�cation Description E�ect on Use?

P erformance

A VL{1 Replace < and == with compare in

lookup and update .

� 21% �

A VL{2 Replace < and == with compare in

lookup and update , with LT �rst.

� 21% �

A VL{3 Place < �rst in lookup and

update .

+1% �

A VL{4 Split case on a pair in to t w o, in

cons and tail .

+21% X

Adams Main tain the balance in v arian t

p erfectly .

� 1% �

Braun Merge calls to head and tail in

tail .

+4% X

Elev ator{1 Change 
o or separation from 10

to 3.

+5% �

Elev ator{2 Change 
o or separation from 10

to 5.

+13% X

Elev ator{3 Change 
o or separation from 10

to 25.

� 32% �

Sk ewBin Add strictness 
ags. +1% �

ThreadSk ewBin Add separate constructor for rank

1 elemen ts.

+63% X

T able 7.2: The e�ect of mo di�cations on p erformance of random-access sequence

implemen tations o v er a sample of 100 b enc hmarks.
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Mo di�cation Description E�ect on Use?

P erformance

Binomial Add strictness 
ags. � 2% �

Bo otSk ewBin Add strictness 
ags. +0% �

Leftist Sp ecialise insert . +19% X

P airing{1 Replace <= with < in merge . � 10% �

P airing{2 Sp ecialise insert . +8% X

Sk ewBin Add strictness 
ags. � 1% �

T able 7.3: The e�ect of mo di�cations on p erformance of heap implemen tations

o v er a sample of 100 b enc hmarks.

tree. Do w e prune the tree? If so, using whic h metho d? W e w an t the tree that

most accurately represen ts the e�ciencies of the implemen tations according to

datat yp e usage. But ho w do w e kno w whic h tree is the b est? W e w an t to mak e

a general recommendation, for an y adt .

Cho osing the Best Decision T ree

One w a y to estimate the accuracy of a tree is through collecting an additional

sample of b enc hmarking results, and examining the accuracy of eac h tree on the

unseen results. Ho w large a sample do w e collect for the induction of decision

trees, and ho w large an additional sample for testing these trees? W e decide to

tak e as large a sample as w e can �t in an o v ernigh t batc h for the induction of

decision trees, on the basis that a user will not w an t to tak e m uc h longer than

this. W e tak e a m uc h larger sample for the purp ose of testing these trees, on the

basis that w e w an t to test the trees as m uc h as p ossible.

W e tak e a training sample of 200 dug s for eac h adt from whic h to induce

the decision trees. These samples tak e ab out 10 hours to collect in total. W e

tak e a further test sample of 500 dug s for eac h adt with whic h to test the trees.

These samples tak e ab out 25 hours to collect in total. F or example, the follo wing

command:

Queue Bmark -g se e d -n 200 -o final.sample
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generates a sample of size 200, writing the sample to the �le final.sample . W e

use a heap of 80Mb for the dug ev aluator compiled using nhc13, whic h tak es

heap 
ags within +RTS and -RTS 
ags, and w e pass these 
ags as follo ws:

Queue Bmark -g se e d -n 200 -o final.sample

-e "-r 1 -R 5 -o \"+RTS -H80M -RTS\""

The 
ags -r 1 -R 5 are the default 
ags passed to the to ol evalDugs describing

ho w to run the dug ev aluator|for further details see App endix C. All other

settings are the default, including using the default pro�le space describ ed in

Section 6.9.1.

F rom eac h training sample, w e induce t w o trees: one using the gain criterion

and the other using the gain ratio criterion. As w ell as k eeping these trees, w e

also prune eac h of them using b oth reduced error pruning and v ery p essimistic

pruning. F or example, the follo wing command:

Queue_Bmark -s final.sample -i -r -G -w re.tree

induces a tree from the sample in final.sample using the gain criterion, prunes

the tree using the reduced error metho d, and writes the tree to re.tree .

F or eac h of the three adt s, T able 7.4 sho ws the accuracy of eac h of the six

resulting trees applied to the test sample.

Recommendation for the Most Accurate T ree. W e w an t to mak e a general

recommendation for whic h tree to use when w e w an t the b est prediction of the

most e�cien t comp eting implemen tation.

F or queues and heaps, the accuracy of the original tree is ab out the same as the

accuracy of either of the pruned trees. Ho w ev er, for random-access sequences, the

mean ratio of the trees pruned using the reduced error metho d is signi�can tly

higher than the original trees or the trees pruned using the v ery p essimistic

metho d. F urther, the mean ratio is lo w er when using the gain ratio criterion.

There is little to c ho ose b et w een the accuracy of the original tree and the tree

pruned using the v ery p essimistic metho d, but the latter is smaller. Therefore,

based on this evidence, to pro duce an accurate tree, w e recommend using the

gain r atio criterion , follo w ed b y pruning using the very p essimistic metho d .
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adt Pruning Criterion Size Success Mean

Rate (%) Ratio

None Gain 25 83 1.023

Gain Ratio 29 79 1.026

Queue Reduced Gain 5 86 1.011

Error Gain Ratio 6 80 1.023

V ery Gain 16 87 1.010

P essimistic Gain Ratio 17 84 1.015

None Gain 25 79 1.174

Gain Ratio 28 77 1.099

RASeq Reduced Gain 6 75 1.506

Error Gain Ratio 9 75 1.207

V ery Gain 23 79 1.172

P essimistic Gain Ratio 22 78 1.093

None Gain 19 83 1.054

Gain Ratio 23 84 1.047

Heap Reduced Gain 4 77 1.059

Error Gain Ratio 5 84 1.035

V ery Gain 17 83 1.054

P essimistic Gain Ratio 17 85 1.045

T able 7.4: The accuracy of v arious trees applied to the corresp onding test sample.

The size of a tree is the n um b er of branc h no des. A success is a correct prediction

of the winning implemen tation. The mean ratio is calculated from the ratios of

the times tak en b y the predictions to the times tak en b y the winners.
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Recommendation for the Smallest Accurate T ree. Although the accuracy

of a tree is v ery imp ortan t, it is also imp ortan t for the tree to b e small. The

smaller the tree, the easier it is to analyse the tree, matc hing the design of the

implemen tation to the resulting empirical p erformance. Therefore w e also w an t to

mak e a general recommendation for whic h tree to use when w e w an t a prediction

from a small but accurate tree.

In ev ery case, pruning using the reduced error metho d pro duces the smallest

trees. Of these trees, using the gain criterion pro duces a tree that is a little

smaller. Therefore, to pro duce a small but fairly accurate tree, w e recommend

using the gain criterion , follo w ed b y pruning using the r e duc e d err or metho d .

Bene�ts of Using T rees

Ho w m uc h do w e gain from c ho osing an implemen tation according to the datat yp e

usage? Ho w do es using a tree compare with c ho osing the same implemen tation

regardless of datat yp e usage? T ables 7.5, 7.6 and 7.7 sho w the a v erage ratio of

eac h implemen tation o v er the corresp onding training samples.

F or queues, the Batc hed implemen tation wins most often on the test sample

with a v ery go o d mean ratio of 1 : 02. So in the case of queues, there is little to

gain from c ho osing the implemen tation according to datat yp e usage|one should

just c ho ose the Batc hed implemen tation regardless. Ho w ev er, the most accurate

tree still manages to impro v e on this uniform selection with a mean ratio of 1 : 01,

as do es the smallest tree with a mean ratio of 1 : 011.

Similarly , for heaps, the P airing implemen tation wins most often on the test

sample with a v ery go o d mean ratio of 1 : 08. So, as with queues, c ho osing the

P airing implemen tation regardless of datat yp e usage is close to the optimal c hoice.

Still, the most accurate tree impro v es on this with a mean ratio of 1 : 035, as do es

the smallest tree with a mean ratio of 1 : 059.

Ho w ev er, for random-access sequences, the results are more mixed. The A VL

and ThreadSk ewBin implemen tations come �rst most often, but the A VL imple-

men tation has a b etter o v erall p erformance, and the Elev ator implemen tation has

the b est o v erall p erformance with a mean ratio of 2 : 12. The most accurate tree

manages a mean ratio of 1 : 093, and the smallest tree manages a mean ratio of
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Implemen tation T raining Sample T est Sample

Winner (%) Mean Ratio Winner (%) Mean Ratio

Bank ers 0 1.70 0 1.72

Batc hed 72 1.02 72 1.02

Bo otstrapp ed 0 1.99 0 2.00

Implicit 16 1.16 17 1.18

Multihead 0 2.30 0 2.33

Naiv e 3 16.11 3 19.15

Ph ysicists 0 2.12 0 2.14

RealTime 10 1.19 9 1.22

T able 7.5: Av erage ratio of the time tak en b y eac h queue implemen tation com-

pared to the winner o v er the training sample of 200 b enc hmarks and the test

sample of 500 b enc hmarks.

Implemen tation T raining Sample T est Sample

Winner (%) Mean Ratio Winner (%) Mean Ratio

A VL 38 1.69 36 2.21

Adams 0 4.18 0 6.05

Braun 0 5.24 0 5.67

Elev ator 10 2.00 8 2.12

Naiv e 6 7.88 10 7.54

Sk ewBin 0 2.54 0 2.69

Slo wdo wn 0 2.86 0 3.26

ThreadSk ewBin 46 2.95 46 8.09

T able 7.6: Av erage ratio of the time tak en b y eac h random-access sequence im-

plemen tation compared to the winner o v er training sample of 200 b enc hmarks

and the test sample of 500 b enc hmarks.
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size <= 8.69

tail <= 0.122

Yes

tail <= 0.29

No

Batched (27/12)

Yes

Implicit (67/9)

No

mortality <= 0.016

Yes

RealTime (38/7)

No

tail <= 0.267

Yes

Batched (156/28)

No

Batched (201/7)

Yes

RealTime (11/8)

No

Figure 7.2: The tree induced using the gain criterion on the training sample for

the queue adt , pruned using the reduced error metho d.

1 : 506, eac h m uc h b etter than the b est uniform c hoice of a single implemen tation.

Therefore, based on these results, the b est implemen tation of queues is

Batc hed, and the b est implemen tation of heaps is P airing, regardless of ho w

these data structures are used. Ho w ev er, for random-access sequences, the b est

implemen tation do es v ary according to ho w the data structure is used. These

results are discussed b elo w in greater detail.

Results

Using the recommendations ab o v e for accurate and small trees, the accurate trees

are to o large to sho w and discuss. Ho w ev er, Figures 7.2, 7.3 and 7.4 sho w the

smallest trees. Eac h leaf is annotated with ( N =E ), where N is the n um b er of

b enc hmarks in the test sample co v ered b y this leaf, and E is the n um b er of

misclassi�cations b y this leaf. A b enc hmark er pro duces an accuracy rep ort (see
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size <= 97.728

lookup <= 0.079

Yes

AVL (139/32)

No

Naive (87/46)

Yes

update <= 0.08

No

ThreadSkewBin (65/1)

Yes

size <= 28.014

No

ThreadSkewBin (143/21)

Yes

tail <= 0.071

No

AVL (27/7)

Yes

cons <= 0.202

No

AVL (18/2)

Yes

Elevator (21/16)

No

Figure 7.3: The tree induced using the gain criterion on the training sample for

the random-access sequence adt , pruned using the reduced error metho d.
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Implemen tation T raining Sample T est Sample

Winner (%) Mean Ratio Winner (%) Mean Ratio

BinomialHeap 0 4.95 0 4.56

Bo otSk ewBinHeap 0 4.64 0 4.52

LeftistHeap 0 1.99 0 1.98

Naiv eHeap 26 1.30 20 1.28

P airingHeap 74 1.09 80 1.08

Sk ewBinHeap 0 5.40 0 5.01

Spla yHeap 0 8.35 0 7.08

T able 7.7: Av erage ratio of the time tak en b y eac h heap implemen tation compared

to the winner o v er training sample of 200 b enc hmarks and the test sample of 500

b enc hmarks.

pmf <= 0.031

size <= 18.712

Yes

Naive (84/38)

No

size <= 2.53

Yes

deleteMin <= 0.252

No

Pairing (21/4)

Yes

Naive (97/57)

No

Pairing (284/7)

Yes

Naive (14/11)

No

Figure 7.4: The tree induced using the gain criterion on the training sample for

the heap adt , pruned using the reduced error metho d.
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Section 6.9.1) giving these annotations, whic h help to in terpret the trees. The

signi�cance of a leaf can b e estimated from the n um b er and prop ortion of winning

implemen tations that it classi�es correctly .

F or example, the deep er of the t w o lea v es lab elled with the RealTime queue

implemen tation in Figure 7.2 only classi�es 3 of the 11 winning implemen tations

correctly . Hence this is not a v ery signi�can t leaf. On the other hand, the top-

most leaf lab elled with the ThreadSk ewBin random-access sequence implemen ta-

tion in Figure 7.3 classi�es 64 out of 65 winning implemen tations correctly . Hence

this is a v ery reliable leaf. Therefore it is a v ery signi�can t leaf in the analysis of

the tree. Recall that eac h test sample con tains 500 di�eren t b enc hmarks.

Analysis of the Queue Decision T ree. Lo oking at Figure 7.2, there are

only t w o signi�can t cases where the Batc hed implemen tation consisten tly loses

to another implemen tation:

� Smal l size, fair tail weight (Implicit). This ma y b e the result of the Im-

plicit implemen tation ev aluating all op erations on small queues without

additional function calls. The Batc hed implemen tation on the other hand,

m ust alw a ys mak e at least one extra function call in ev aluating tail on a

queue of an y size.

� F air size, lar ge tail weight (R e alTime). It is not clear wh y the RealTime

implemen tation should b eat the Batc hed implemen tation so consisten tly for

this region of the pro�le space. Ok asaki writes that the RealTime imple-

men tation is \the fastest kno wn real-time implemen tation when used p er-

sisten tly". Ho w ev er, his commen t concerns an implemen tation in a strict

language (SML) where explicit laziness is costly , and it is not clear if the

same applies to an implemen tation in Hask ell. T o examine the e�ect of

p ersistence, w e c hec k the accuracy of a tree that splits up the test sample

according to the pmf . T able 7.8 sho ws the results. It is clear from these

results that the pmf do es not ha v e a signi�can t role to pla y in deciding

whic h implemen tation wins. Using pof instead of pmf pro duces similar

results. Therefore, this case remains unexplained.
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pmf Winner (%)

RealTime Batc hed

0 � pmf < 0 : 0001 10 63

0 : 0001 � pmf < 0 : 001 12 69

0 : 001 � pmf < 0 : 01 5 79

0 : 01 � pmf < 1 9 67

T able 7.8: The e�ect of p ersistence on the p erformance of the RealTime and

Batc hed queue implemen tations on the test sample.

Analysis of the Random-Access Sequence Decision T ree. Almost all of

the lea v es in Figure 7.3 are signi�can t|that is, almost all of them ha v e a lo w

prop ortion of errors. The Elev ator leaf has a high prop ortion of errors, and the

remaining lea v es on the subtree from the test tail � 0 : 071 sho w A VL to win o v er

half of the cases (36 out of 66). W e consider the other lea v es in turn.

� L ar ge size (A VL). The A VL and Adams implemen tations are the most tree-

lik e implemen tations, whic h gain strength as the size increases, b ecause

of their logarithmic complexit y . The A VL implemen tation b ene�ts from

balancing sp ecialised to adding or remo ving an elemen t at the left|that is,

from c ons or tail . It is not clear if the Adams implemen tation could use a

similar impro v emen t.

� F air size, smal l lo okup weight (Naive). This is a little surprising. If few

up date op erations are done, then w e w ould exp ect the Naiv e implemen tation

to win. But what if there are quite a lot of up date op erations? W e migh t

exp ect the Naiv e implemen tation to lose. The leaf 's annotation do es sho w

quite a few errors, but there is another reason: An up date will only b e fully

ev aluated if it is forced. The only observ ations in the absence of lo okup

are he ad and isEmpty , and b ecause the Naiv e implemen tation is so lazy ,

these observ ers will only force up dates on the �rst elemen t. The other

implemen tations are not as lazy , and so do not b ene�t as m uc h. The issue

of strictness is examined in more detail in Section 7.3.3.
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� F air size, fair lo okup weight, smal l up date weight (Thr e adSkewBin). The

annotation sho ws this leaf is v ery reliable, with 64 out of the 65 cases

correct. The ThreadSk ewBin implemen tation delib erately implemen ts an

e�cien t lo okup op eration, at the exp ense of an ine�cien t up date op eration.

� Smal l size, fair lo okup weight, fair up date weight (Thr e adSkewBin). Al-

though ThreadSk ewBin implemen ts up date to tak e O ( i ) time, where i is

the index of the elemen t up dated, for small lists, this is not v ery di�eren t

from the logarithmic complexit y of the A VL implemen tation. The simplic-

it y of the ThreadSk ewBin implemen tation mak es it win on small lists, ev en

with man y up date applications.

� F air size, fair lo okup weight, fair up date weight (A VL). With enough up date

op erations, and a reasonably sized sequence, the A VL implemen tation b eats

the ThreadSk ewBin implemen tation.

Analysis of the Heap Decision T ree. As with queues, Figure 7.4 sho ws

that a single implemen tation (P airing) dominates the results. Once again, there

are only t w o signi�can t cases where another implemen tation b eats the P airing

implemen tation.

� L ar ge pmf (Naive). More than half of the b enc hmarks with a large pmf

are w on b y the Naiv e implemen tation. Ok asaki advises in [38] that P airing

heaps are not e�cien t under p ersisten t use.

� Smal l size, but not v ery smal l size (Naive). The Naiv e implemen tation

wins for small heaps, whic h is t ypical of a naiv e implemen tation of an adt .

Surprisingly though, the P airing implemen tation wins signi�can tly for v ery

small heaps. This ma y b e the result of the newtype constructor in Naiv e

causing an extra function call, as compared with the P airing implemen ta-

tion.

It is surprising that Spla y heaps p erform so p o orly . W e shall see in Section 7.2.1

that Spla y heaps p erform m uc h b etter for some real b enc hmarks. Wh y do they

p erform so badly under Auburn-generated b enc hmarks? P erhaps there is an

asp ect of datat yp e usage that Auburn do es not con trol but �xes in a region
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where Spla y heaps p erform badly . Tw o p ossible candidates include the minim um

fron tier size, whic h a�ects the applications of non-unary m utators lik e mer ge ,

and the p o ol size, whic h a�ects the n um b er of equal elemen ts in a heap. The

b enc hmark er cannot record either of these factors curren tly , only pro�le and

shado w pro�le attributes.

7.1.5 Summary

Giv en these results from Auburn, whic h implemen tation should w e use for queues,

random-access sequences, and heaps? F or queues, w e recommend y ou alw a ys use

Batc hed queues. F or random-access sequences, w e mak e the follo wing recommen-

dations: use A VL trees if y our lists are quite large (an a v erage length of ab o v e

100); use Naiv e lists if y ou are not doing man y lo okup or up date op erations; use

Thr e adSkewBin lists if y ou are doing quite a few lo okup op erations, but not do-

ing man y up date op erations, or if y our lists are quite small (an a v erage length of

b elo w 30); otherwise, use A VL trees. F or heaps, w e recommend that y ou alw a ys

use P airing heaps.

7.2 Ev aluating Auburn

W e use Auburn to pro duce advice ab out the c hoice of implemen tation of three

adt s in Section 7.1.4. But ho w go o d is this advice?

Ultimately , the v alue of Auburn's advice lies in ho w w ell it predicts whic h

implemen tation is the b est. T o test this, w e construct sev eral r e al b enc hmarks|

real in that they pro duce useful results. W e time eac h b enc hmark with eac h

implemen tation, to �nd whic h implemen tation r e al ly is the b est. By comparing

this with Auburn's prediction, based on the pro�le of the b enc hmark, w e can

estimate Auburn's accuracy in practice.

7.2.1 Real Benc hmarks

All of the b enc hmarks are based on either sorting a list or pro cessing a graph.

There are four b enc hmarks for eac h adt , and four data sets for eac h b enc hmark.

This giv es a total of 16 di�eren t uses of eac h adt . W e describ e eac h b enc hmark
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v ery brie
y . References to literature giv e further details of the algorithms, and

the source co de is a v ailable from the Auburn w eb page [4].

Queue Benc hmarks

The queue b enc hmarks are the hardest to �nd.

� Shel lsort. It is p ossible to implemen t Shell's sort [48] using queues [26].

� Br e adth-First Se ar ch (BFS). Breadth-�rst searc h of a graph is a common

use of queues, see [11] (page 469).

Since w e could �nd no more b enc hmarks, and since v arying the incr ements used

b y Shellsort v aries ho w the algorithm uses the queue dramatically , w e let three

sets of incremen ts pro vide three of the four queue b enc hmarks.

Random-Access Sequence Benc hmarks

An arra y is one of the most commonly used data structures, ev en in functional

programs, so b enc hmarks are not hard to �nd. Ho w ev er, w e also wish to include

algorithms that use the sequences as lists, as in [33].

� Bucketsort. This sort uses random-access op erations hea vily , see [11 ] (page

180).

� Quicksort. Sorting a list using a functional implemen tation of Quic ksort

[19] do es not use an y random-access op erations.

� Depth-First Se ar ch (DFS). Implemen ting a graph as a random-access list of

adjacen t v ertices [11 ] (page 465) allo ws an y graph algorithm to use random-

access lists. W e c ho ose one of the simplest graph algorithms, depth-�rst

searc h [11] (page 477).

� Kruskal's Minimum-Cost Sp anning T r e e (KMCST). Krusk al implemen ts a

minim um cost spanning tree algorithm [11 ] (page 504) using a disjoin t-set

data structure [11 ] (page 440) whic h w e implemen t using a random-access

list.
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Heap Benc hmarks

A few common algorithms use a priorit y queue, or a heap. Man y of these ho w ev er

use additional op erations lik e de cr e aseKey . This op eration reduces the k ey of an y

elemen t in the heap b y a giv en amoun t. W e replace this op eration with an insert

of the elemen t with a lo w er k ey , and a guard against reading the same elemen t

more than once. This is not the most e�cien t implemen tation of de cr e aseKey ,

but it do es giv e us real b enc hmarks using heaps in a v ariet y of w a ys. V ery few

algorithms use the mer ge op eration: W e could �nd only one.

� He apsort. This is a simple sorting algorithm [11] (page 147).

� Mer ge able Minimum-Cost Sp anning T r e e (MMC). This is the only heap

b enc hmark to use the op eration mer ge [11] (page 418).

� Dijkstr a's Shortest Paths (DSP). W e replace de cr e aseKey with insert as

explained ab o v e in the mo di�e d Dijkstra algorithm [11 ] (page 530).

� Prim's Minimum-Cost Sp anning T r e e (PMC). Similarly , w e replace de-

cr e aseKey with insert in Prim's algorithm [11 ] (page 505).

Results

T ables 7.9, 7.10 and 7.11 giv e the results of running eac h b enc hmark, including:

the winning implemen tation; the ratio of the implemen tation predicted to win b y

the recommended accurate tree; the ratio of the implemen tation predicted to win

b y the recommended small but accurate tree; the ratio of the implemen tation

with the b est o v erall p erformance in the training samples of Section 7.1.4 (see

T ables 7.5, 7.6 and 7.7); and the a v erage ratio of all implemen tations.

The ratios of the implemen tations predicted b y the t w o trees that Auburn

pro duced from the training samples in Section 7.1.4 indicate Auburn's accuracy .

T o aid the in terpretation of this �gure, the ratio of the implemen tation with

the b est o v erall p erformance in the training samples giv es the di�erence b et w een

Auburn's prediction and a uniform c hoice made regardless of datat yp e usage.

F urther, the a v erage ratio of all implemen tations giv es the di�erence b et w een

Auburn's prediction and a random c hoice of implemen tation.
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F or queues, the uniform c hoice (of Batc hed queues) has a v ery go o d a v erage

ratio of 1.068, y et b oth of Auburn's trees predict a b etter implemen tation on

a v erage. All three are m uc h b etter than a random c hoice.

F or random-access sequences, the uniform c hoice (of A VL trees) has an a v erage

ratio of 1.837, indicating that the b est implemen tation v aries signi�can tly across

the b enc hmarks, as w e w ould exp ect from the results of Section 7.1.4. Both of

Auburn's predictions p erform b etter on a v erage than the uniform c hoice, and

m uc h b etter than the random c hoice.

F or heaps, lik e queues, the uniform c hoice (of P airing heaps) has a v ery go o d

ratio of 1.022, and neither of Auburn's trees can impro v e on this. Ho w ev er,

apart from one v ery bad prediction (PMC b enc hmark on data set 3), Auburn's

predictions are still m uc h b etter than a random c hoice.

F or a discussion of the w orst of Auburn's predictions, see Section 7.3.4.

Summary . The summary of Section 7.1.4 advised that w e use alw a ys use

Batc hed queues and P airing heaps, regardless of datat yp e usage, and that w e use

a di�eren t random-access sequence implemen tation according to sp eci�c asp ects

of the datat yp e usage. This advice giv es v ery go o d results for the real b enc h-

marks of this section, making c hoices within 10% of the b est implemen tation for

queues and heaps, and within 30% of the b est implemen tation for random-access

sequences.

7.3 Lo cating Inaccuracy in Auburn

Section 7.2.1 sho w ed that the advice of Section 7.1.4 is go o d, but not p erfect.

What is the source of an y inaccuracy in Auburn's results? What can go wrong?

Here are the main p ossibilities:

� The dug do es not capture datat yp e usage su�cien tly .

� The pro�le of a dug do es not capture datat yp e usage su�cien tly .

� Strictness issues cause the w ork that is actual ly done to b e less than the

w ork that is r ep orte d ly done.
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Benc hmark Data Winning Acc. Small Unfm. Avg.

Name Set Impn. T ree T ree Ratio Ratio

Ratio Ratio

BFS 1 Batc hed 1.046 1.046 1.000 1.054

BFS 2 Batc hed 1.050 1.000 1.000 1.052

BFS 3 Batc hed 1.000 1.000 1.000 1.175

BFS 4 Batc hed 1.000 1.000 1.000 1.060

Shellsort1 1 Implicit 1.110 1.054 1.110 1.525

Shellsort1 2 Implicit 1.098 1.040 1.098 1.805

Shellsort1 3 Implicit 1.079 1.026 1.079 4.632

Shellsort1 4 Implicit 1.080 1.025 1.080 4.961

Shellsort2 1 Implicit 1.087 1.054 1.087 1.454

Shellsort2 2 Implicit 1.081 1.052 1.081 1.414

Shellsort2 3 Implicit 1.068 1.038 1.068 2.546

Shellsort2 4 Implicit 1.065 1.037 1.065 2.431

Shellsort3 1 Implicit 1.000 1.000 1.126 1.388

Shellsort3 2 Implicit 1.000 1.000 1.116 1.357

Shellsort3 3 Implicit 1.093 1.042 1.093 1.719

Shellsort3 4 Implicit 1.093 1.040 1.093 1.713

Av erage 1.059 1.028 1.068 1.955

T able 7.9: Results of running the queue b enc hmarks.
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Benc hmark Data Winning Acc. Small Unfm. Avg.

Name Set Impn. T ree T ree Ratio Ratio

Ratio Ratio

Buc k etsort 1 A VL 1.000 1.000 1. 000 2.018

Buc k etsort 2 A VL 1.000 1.000 1. 000 2.405

Buc k etsort 3 A VL 1.000 1.000 1. 000 6.139

Buc k etsort 4 A VL 1.000 1.000 1. 000 3.186

DFS 1 A VL 1.000 1.203 1. 000 1.748

DFS 2 Adams 1.002 1.002 1. 002 2.316

DFS 3 A VL 1.000 1.000 1. 000 3.075

DFS 4 A VL 1.000 1.000 1. 000 5.992

KMC 1 ThreadSk ewBin 1.000 1.000 1. 181 1.404

KMC 2 ThreadSk ewBin 1.000 1.930 2. 063 1.932

KMC 3 ThreadSk ewBin 1.000 2.357 1. 699 1.672

KMC 4 ThreadSk ewBin 1.557 1.954 1. 954 1.599

Quic ksort 1 Naiv e 1.000 1.000 4. 856 3.193

Quic ksort 2 Naiv e 1.000 1.000 3. 069 2.310

Quic ksort 3 Braun 1.889 1.889 1. 826 1.828

Quic ksort 4 Naiv e 1.000 1.000 4. 740 3.088

Av erage 1.091 1.271 1. 837 2.744

T able 7.10: Results of running the random-access sequence b enc hmarks.
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Benc hmark Data Winning Acc. Small Unfm. Avg.

Name Set Impn. T ree T ree Ratio Ratio

Ratio Ratio

DSP 1 P airing 1.000 1.021 1.000 1.061

DSP 2 Spla y 1.028 1.106 1.028 1.086

DSP 3 Spla y 1.004 1.004 1.004 1.326

DSP 4 Spla y 1.012 1.040 1.012 1.067

Heapsort 1 Naiv e 1.009 1.009 1.009 1.343

Heapsort 2 Spla y 1.077 1.077 1.077 1.798

Heapsort 3 Naiv e 1.008 1.008 1.008 1.387

Heapsort 4 Spla y 1.171 1.171 1.171 3.371

MMC 1 Leftist 1.027 1.005 1.027 1.106

MMC 2 P airing 1.000 1.002 1.000 1.050

MMC 3 P airing 1.000 1.000 1.000 1.144

MMC 4 Naiv e 1.006 1.000 1.006 1.009

PMC 1 P airing 1.007 1.007 1.000 1.068

PMC 2 P airing 1.019 1.019 1.000 1.075

PMC 3 Spla y 3.363 1.018 1.018 1.446

PMC 4 P airing 1.007 1.007 1.000 1.055

Av erage 1.171 1.031 1.022 1.337

T able 7.11: Results of running the heap b enc hmarks.
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� The induction and pruning pro cesses pro duce inaccurate trees.

W e shall no w deal with these individually in detail.

7.3.1 Insu�cien t dug

W e de�ne the dug in Chapter 3 to capture the datat yp e usage of a data structure

b y an application. W e base the whole of this thesis on this de�nition of a dug .

But do es it capture datat yp e usage su�cien tly? W e can test this as follo ws.

W e tak e a real application or b enc hmark, and run it using eac h adt imple-

men tation, measuring the e�ciency of eac h. W e extract the dug from eac h run.

W e then run a dug ev aluator on eac h dug using the corresp onding adt imple-

men tation. W e then compare the e�ciencies of the implemen tations when used

b y the application with the e�ciencies of the implemen tations when used b y the

dug ev aluators.

If the dug captures all of the relev an t information for in
uencing the e�-

ciency of an adt implemen tation, w e w ould exp ect the relativ e e�ciencies of the

implemen tations to b e the same. F or example, the order of the implemen tations,

most e�cien t �rst, should b e the same for the application as for the dug ev al-

uator. F urther, the e�ciencies should correlate linearly . Note that the relativ e

e�ciencies need not b e exactly the same, as the total amoun t of w ork done di�ers

b et w een the application and the dug ev aluator. Ho w ev er, this is only a constan t

di�erence, whic h should therefore pro duce a linear relationship.

W e tak e the 12 b enc hmarks of Section 7.2.1 using all 4 data sets, giving 16

di�eren t uses of a data structure for eac h of the 3 adt s. Ideally w e w ould tak e one

dug for eac h implemen tation, b ecause the dug v aries b et w een implemen tations

due to strictness (Section 7.3.3). Ho w ev er, the total n um b er of dug s for eac h adt

w ould b e the n um b er of implemen tations m ultiplied b y 16, whic h is to o man y

to handle. Hence w e only tak e a dug from one of the implemen tations, and let

ev ery implemen tation ev aluate this represen tativ e dug . This will not a�ect the

results m uc h, as the dug s only v ary b y at most 2% across implemen tations, and

usually not at all. Also, this simpli�cation will more lik ely w orsen our results

than impro v e them.

F or eac h comparison of relativ e e�ciencies of implemen tations, w e calculate
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adt Correlation

W orst Mean Best

Queue 0.482 0.924 1.0

RASeq 0.983 0.998 1.0

Heap -0.261 0.579 0.989

T able 7.12: Correlation co e�cien ts for e�ciencies of implemen tations, comparing

a b enc hmark with a dug ev aluator. The dug ev aluator is ev aluating the dug

extracted from the b enc hmark.

the c orr elation c o e�cient (as de�ned in Section 5.2). T able 7.12 giv es these. T o

aid our understanding of ho w go o d or bad a correlation co e�cien t is, Figure 7.5

giv es graphs for a range of examples|the b etter the graph lo oks lik e a line, the

closer the relationship is to b eing linear.

F rom T able 7.12, w e see that the queue adt and the random-access sequence

adt sho w go o d correlations b et w een the b eha viour of implemen tations when used

in an application and when used in a dug ev aluator. Ho w ev er, the heap adt

sho ws w orse results.

The correlations for the queue adt are mostly v ery go o d, with 70% b eing

ab o v e 0.99. Ho w ev er, there w ere a few lo w correlations. What mak es these

correlations lo w? They all come from the same b enc hmark, breadth-�rst searc h.

In fact, every correlation for this b enc hmark is less than 0.5, regardless of the

data set used. It is not clear wh y the p erformance of the implemen tations di�ers

so m uc h b et w een b enc hmark and dug ev aluation in this case. It is p ossible that

there is some p eculiar run-time b eha viour due to garbage collection, as w e �nd

with the Quic ksort b enc hmark in Section 7.3.4.

F or the heap adt , the main reason for the bad results comes from the in-

abilit y of the dug extraction to record the elemen ts inserted in to the heap (see

Section 4.2.1). Therefore, all elemen ts are recorded as b eing 0. This a�ects the

e�ciency of the di�eren t implemen tations greatly b ecause ev ery elemen t in the

heap has the same v alue. T o test this suspicion, w e replace the elemen ts of the

extracted dug s with random v alues, and re-run the exp erimen t to obtain new

correlation co e�cien ts. W e �nd that the mean correlation co e�cien t increases



7.3. LOCA TING INA CCURA CY IN A UBURN 195

Correlation co e�cien t = 0.482 Correlation co e�cien t = 0.715

Correlation co e�cien t = 0.958 Correlation co e�cien t = 0.995

Figure 7.5: Examples of graphs plotting data with di�eren t correlation co e�-

cien ts.
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to 0.780, signi�can tly impro ving on the previous mean of 0.579. If dug extrac-

tion could record the elemen ts' v alues, w e susp ect the correlation w ould rise ev en

further.

7.3.2 Insu�cien t Pro�le

Just as w e design the dug to capture datat yp e usage, w e design the pro�le of a

dug to capture the most imp ortan t asp ects of datat yp e usage, where w e measure

imp ortance with regard to the e�ect on adt implemen tation e�ciency . W e base

the whole of Auburn on this premise. W e can test its v alidit y as follo ws.

W e can generate sev eral dug s from the same pro�le, thereb y ha ving similar

pro�les, and compare the e�ciencies of implemen tations ev aluating the di�eren t

dug s. If the pro�le of a dug do es capture datat yp e usage su�cien tly , then the

results should b e similar. Ho w ev er, all of the dug s are generated using Auburn,

and so this test is rather limited in scop e.

Therefore, w e tak e the pro�les of dug s extracted from real b enc hmarks, and

generate a few dug s from eac h pro�le. W e then compare the e�ciencies of the

implemen tations at ev aluating the dug s and at running the b enc hmarks. W e

tak e the same 12 b enc hmarks across 4 di�eren t data sets eac h that w e used in

Section 7.3.1, giving the same 16 di�eren t uses of a data structure for eac h of the

3 adt s. F or eac h dug extracted, w e generate 3 more dug s. T able 7.13 sho ws

the mean correlation co e�cien ts.

The correlation b et w een dug s generated from the same pro�le is v ery high for

eac h adt . Ho w ev er, the correlation b et w een the b enc hmark and the generated

dug s is m uc h lo w er, though still quite high. This indicates that some imp or-

tan t asp ects of datat yp e usage are not b eing carried through from a b enc hmark,

through a pro�le, in to a generated dug .

The most probable reason for this is the lac k of size information. This is

captured in the shadow pro�le, but this do es not in
uence the generated dug s.

T o test this, let's lo ok at some examples of lo w correlations b et w een b enc hmark

and generated dug .

T ak e the Buc k etsort b enc hmark for the random-access sequence adt . Run-

ning on the third data set, the correlations b et w een the b enc hmark and t w o of
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adt Mean Correlation

b et w een b et w een Ov erall

dug & Benc hmark dug & dug

Queue 0.859 0.923 0.891

RASeq 0.704 0.969 0.836

Heap 0.694 0.999 0.846

T able 7.13: Correlation co e�cien ts for the e�ciencies of implemen tations, com-

paring a b enc hmark with a dug ev aluator. The dug ev aluator is ev aluating

dug s with similar pro�les to the pro�le of the dug extracted from the b enc h-

mark. The mean correlation b et w een the b enc hmark and one run of the dug

ev aluator is separated from the mean correlation b et w een the di�eren t runs of

the dug ev aluator.

the three dug s are v ery lo w, at {0.118 and 0.0109. The shado w pro�le for the

b enc hmark rep orts an a v erage size of 667. The shado w pro�les for the t w o dug s

rep ort a v erage sizes of 12 and 15. Ho w ev er, the shado w pro�le for the third

dug rep orts an a v erage size of 88. The correlation b et w een this dug and the

b enc hmark is m uc h higher at 0.794. Therefore, for this example at least, a higher

correlation coincides with a closer a v erage size.

T ak e the Prim's minim um-cost spanning tree b enc hmark for the heap adt .

Running on the third data set, the correlations b et w een the b enc hmark and all

three dug s are v ery lo w, at {0.250, {0.244 and {0.242. The a v erage size for the

b enc hmark is 239. The a v erage size for the dug s are 14, 16 and 33. Again, this

example sho ws lo w correlations for distan t a v erage sizes.

In fact, almost ev ery lo w correlation coincides with a large di�erence in a v-

erage size. T o sho w this, Figure 7.6 plots the correlation co e�cien t against the

p ercen tage size di�erence (calculated as the di�erence in size, expressed as a p er-

cen tage of the larger size). Most of the lo w correlations ha v e a high size di�erence,

and most of the lo w size di�erences ha v e high correlations. F rom this w e deduce

that an imp ortan t datat yp e usage c haracteristic not caugh t in the pro�le is size.

Ho w ev er, there are a lot of p oin ts with large size di�erences and high correla-

tions, and from this w e deduce that size is not alw a ys an imp ortan t datat yp e
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Figure 7.6: Correlation co e�cien t for implemen tation e�ciency plotted against

the p ercen tage di�erence in size, as rep orted b y the shado w pro�le.
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usage c haracteristic.

7.3.3 Strictness Issues

When an implemen tation ev aluates a dug , only the observ ations are demanded.

As a result, some of the generations and m utations ma y not b e forced. This

dep ends on the strictness of the adt implemen tation ev aluating the dug . This

discrepancy b et w een what is rep ortedly ev aluated (ie. the dug ) and what is

actually ev aluated can cause the follo wing crucial problem: The pro�le of a dug

ma y no longer represen t the imp ortan t asp ects of the actual datat yp e usage.

T o estimate the a v erage prop ortion of a dug not ev aluated, w e ev aluate 10

dug s for eac h of the three adt s, queue, random-access sequence, and heap, and

all of their implemen tations. F or an y dug D

0

, w e extract the dug D

1

actually

ev aluated, b y transforming a dug ev aluator for dug extraction. W e then rep eat

this pro cess, obtaining D

2

, D

3

, etc. till w e obtain a �xed p oin t, that is, till

D

i

= D

i +1

.

F or eac h adt , and for ev ery com bination of dug and implemen tation, w e

reac h a �xed p oin t on the second iteration, that is, D

1

= D

2

.

Ev ery D

0

has 1000 no des. F or queues, the mean di�erence in size from D

0

to

D

1

is 5 no des, and the maxim um di�erence is 43 no des. F or an y dug D

0

, eac h

queue implemen tation ev aluates D

0

to the same degree, that is, D

1

is the same

across all the implemen tations. W e can accoun t for the di�erences b et w een the

sizes of D

0

and D

1

en tirely b y the follo wing t w o factors:

� Unless w e apply an observ ation to the result of a m utation, the m utation

is not ev aluated.

� The empty generator tak es no argumen ts, so the dug extraction shares

ev ery application of empty (see Section 4.4.3).

F or random-access sequences, the mean di�erence in size from D

0

to D

1

is

55 no des, and the maxim um di�erence is 694 no des. Apart from the t w o factors

giv en ab o v e for queues, these di�erences in sizes also result from an additional

factor: Consider n successiv e applications of c ons to an empt y list; if w e apply

he ad to the result of these applications, a su�cien tly lazy implemen tation of
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lists will only ev aluate the last application of c ons . F or the implemen tations of

a random-access sequence that w e consider, only the Naiv e implemen tation is

lazy enough for this factor to cause an y additional di�erence. Most of the large

di�erences in size comes from the t w o factors listed ab o v e for queues.

F or heaps, the mean di�erence in size from D

0

to D

1

is 37 no des, and the

maxim um di�erence is 160 no des. W e can accoun t for these di�erences in the

same manner as random-access sequences, except that dug extraction do es not

share ev ery application of the empty generator. This results from the Or d con text

on empty . The con text mak es the dug ev aluator rep eatedly ev aluate empty

applications.

Comparing the pro�le of D

0

with the pro�le of D

1

, a v eraging across all of

the dug s of the three adt s, eac h of the w eigh ts di�er b y less than 0.01, the

mortalit y di�ers b y ab out 0.05, the pmf di�ers b y ab out 0.01, and the pof

di�ers b y ab out 0.35. So only the pof di�ers greatly . This is b ecause neither

dug ev aluation nor dug extraction preserv e the order of ev aluation of m utations,

only the order of ev aluation of observ ations; dug ev aluation cannot enforce the

order of m utations b ecause of the priv acy of the adt framew ork com bined with

laziness (see Section 3.2.1); dug extraction c hanges the order of m utations to �t

the de�nition of a dug (see Section 4.3.3).

What these exp erimen ts do not rev eal, is ho w the de gr e e of ev aluation of indi-

vidual no des di�ers across implemen tations. F or example, the Naiv e implemen ta-

tion of random-access sequences is lazy enough not to ev aluate fully applications

of up date , unless an application of lo okup or he ad demands it. This causes a

surprising result in the analysis of the random-access sequence decision tree|see

Section 7.1.4.

7.3.4 Inaccurate T rees

Some of Auburn's predictions of the b est implemen tations for the real b enc hmarks

of Section 7.2.1 are quite inaccurate. Is there an y reason for these inaccuracies

sp eci�c to the induction or pruning of trees?

Consider the predictions for the implemen tations of random-access

sequences|see T able 7.10. The small tree predicts the winning implemen ta-
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tion for 10 out of the 16 com binations of b enc hmark and data set. F or the KMC

b enc hmark ho w ev er, it predicts the wrong implemen tation for three out of the

four data sets. Lo oking at the pro�le of the KMC b enc hmark running on data

set three, w e �nd

up date = 0, lo okup = 0.046, size = 63

The small tree for random-access sequences in Figure 7.3 predicts the Naiv e

implemen tation as the winner for this pro�le. This prediction w ould probably

b e correct for a smaller size, or a smaller lo okup w eigh t, but this detail has

b een pruned out of the tree. The most lik ely deciding factor b et w een Naiv e and

ThreadSk ewBin is the c ombination of lo okup and size . A more accurate tree

of the same size migh t b e obtained if the decision tree could emplo y tests on

arithmetic com binations of attributes. F or example, lo okup � size � 1. Ho w ev er,

as Quinlan p oin ts out in Section 10.2 of [46 ], in tro ducing the p ossibilit y of suc h

tests can slo w do wn the pro cess of induction b y an order of magnitude.

F or another example of the need for com binations of attributes, consider the

DFS b enc hmark running on data set 1. The pro�le for this run sho ws

up date = 0.469, lo okup = 0.531, size = 9

The small tree for random-access sequences in Figure 7.3 predicts the

ThreadSk ewBin implemen tation as the winner for this pro�le. Again, the most

lik ely deciding factor b et w een the A VL and ThreadSk ewBin implemen tations for

this region of the pro�le space is the com bination of up date and size . F or an y of

the other data sets, the size is ab o v e the 28.014 used in a test in the small tree,

and the tree correctly predicts A VL as the winner. This test is accurate so long

as up date is not v ery high, as it is with the pro�le ab o v e. Ho w ev er, again, this

detail has b een pruned out of the tree. A more accurate test migh t b e something

lik e up date � size � 5.

There are only t w o other bad predictions b y Auburn: the PMC b enc hmark

running on data set 3, and the Quic ksort b enc hmark running on data set 3. The

bad prediction for the PMC b enc hmark came from using the recommended ac-

curate tree. This tree is to o large to analyse (with 17 tests), and so w e do not

discuss this prediction. The bad prediction for the Quic ksort b enc hmark re
ects
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Sampling Time (s)

In terv al (s) Naiv e Braun

360 249 243

60 196 240

10 100 243

T able 7.14: Times tak en to run the Quic ksort b enc hmark using the Naiv e and

Braun random-access sequence implemen tations. The b enc hmark w as compiled

for heap pro�ling, and run using di�eren t heap sampling in terv als. The heap size

is set at 80Mb, and a constructor pro�le is requested.

a v ery pathological result: F or a b enc hmark with no random-access op erations,

the Braun tree is almost t wice as fast as the Naiv e list! After compiling the

b enc hmark with heap pro�ling, running the b enc hmark for eac h implemen tation

with di�eren t sampling rates rev eals some o dd b eha viour. F rom T able 7.14, w e

see that for a large sampling in terv al, the Braun tree is faster. As the sampling

in terv al decreases, the Braun time remains �xed, but the Naiv e time reduces

dramatically . When the run-time system tak es a sample of the heap, it also p er-

forms a garbage collection. Therefore, as the heap sampling in terv al decreases,

more garbage collections happ en. In the original run of the b enc hmark without

pro�ling, no garbage collections happ ened at all when using the Naiv e implemen-

tation. Giv en this, the most probable explanation is that without man y garbage

collections, the Naiv e implemen tation su�ers from some space problem. This

result is p eculiar to the compiler nhc13. Using the compiler HBC [18], Naiv e is

m uc h faster than Braun, regardless of ho w man y garbage collections happ en, as

exp ected.

7.4 Summary

F or sev eral comp eting implemen tations of three adt s, w e ha v e used Auburn to

c hec k for their correctness, to �ne-tune the co de, and to giv e advice on when to

use whic h, according to the datat yp e usage. The user of Auburn has to do v ery

little to ac hiev e all this, as most of it is automated.
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F urthermore, w e ha v e found Auburn's advice to b e quite go o d when applied

to real b enc hmarks, making c hoices within 10% of the b est implemen tation for

queues and heaps, and within 30% of the b est implemen tation for random-access

sequences. W e ha v e also examined p ossible sources of inaccuracy in Auburn's

advice, and iden ti�ed the main problems: the inabilit y of dug extraction to

record the v alues of t yp e a (where the t yp e of a v ersion is T a ), the lac k of

information on the degree of ev aluation of individual applications of op erations,

and the lac k of information ab out the space b eha viour of a b enc hmark.
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Chapter 8

Conclusions

In Chapter 1, w e noted that the empirical p erformance of functional data struc-

tures has b een neglected in the existing literature. F rom this w e decided to the

dev elop the theory and practice of b enc hmarking functional data structures. W e

shall no w summarise the progress of this thesis to w ards this goal.

8.1 Benc hmarking Theory

There is no previous literature on ho w to b enc hmark functional data structures

in a structured manner. Neither is there an y attempt to de�ne \the use of a data

structure", despite its imp ortance in the e�ciency of data structures.

In Chapter 3, w e ha v e presen ted a formally de�ned mo del, a dug , to capture

ho w an application uses a data structure. Chapter 3 also de�ned the pro�le of a

dug , summarising the most imp ortance asp ects of datat yp e usage. This allo ws

us to talk ab out the e�ciency of data structures with reference to a few imp ortan t

asp ects of datat yp e usage.

Previously , an y one w an ting to b enc hmark some data structures w ould ha v e to

create the b enc hmarks man ually , mostly without kno wing ho w these b enc hmarks

used the data structures. In Chapter 4, w e ha v e presen ted a metho d for creating

a b enc hmark from a pro�le of the datat yp e usage.

Some compilers supp ort time pro�ling that records ho w often a function is

called. Ho w ev er, there is no w a y to extract other asp ects of datat yp e usage. In

Chapter 4 w e ha v e presen ted a metho d for extracting a pro�le from an application.

205
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In Chapter 5 w e discussed ho w to use the algorithms of Chapter 4 to b enc h-

mark some comp eting data structures in a structured manner. After prop osing

a few alternativ es, w e c hose to use the induction of a decision tree from the re-

sults of a random sample of generated b enc hmarks. The decision tree presen ts a

summary of whic h data structure is b est according to the datat yp e usage.

In summary , previous attempts to b enc hmark data structures relied on hand-

pic k ed b enc hmarks, giving results biased to w ards an unkno wn datat yp e usage.

This thesis describ es a w a y to automate the pro duction of results quali�ed b y a

description of datat yp e usage.

8.2 Benc hmarking Practice

As stated ab o v e, previously , the only w a y to measure the e�ciencies of comp eting

data structures w as to �nd, co de, and test b enc hmarks y ourself. In Chapter 7

w e applied this metho d to sev eral implemen tations of three di�eren t adt s. This

pro v ed to b e v ery time-consuming and v ery tedious. F urther, it is not clear ho w

eac h b enc hmark uses a data structure. So the results of this man ual b enc hmark-

ing tell us little more than whic h implemen tation w as b est for those particular

b enc hmarks.

T o impro v e on this situation, w e ha v e built a to ol, called Auburn, whic h tak es

m uc h less time to use, and pro duces m uc h more useful results. In Chapter 7, w e

ha v e used Auburn on the same implemen tations of the same three adt s. Using

Auburn to ok m uc h less e�ort than the man ual creation of b enc hmarks. W e ha v e

pro duced a decision tree for eac h adt , and from these w e ga v e advice on when

to use whic h implemen tation. This advice accurately predicted the results of the

man ual b enc hmarking.

W e also sho w ed in Chapter 7 that Auburn is v ery useful for �nding bugs in

the co ding of implemen tations, and for testing the e�ect of minor mo di�cations

to this co de.
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8.3 Criticism

T aking a step bac k, w e can ask the follo wing question: Do es this thesis ac hiev e its

goals? W e list the main p oin ts b oth in fa v our of and against this thesis, starting

with those in fa v our.

� Benc hmarking functional data structures is a sub ject with v ery little co v er-

age in the existing literature, and this thesis mak es some k ey steps to w ards

understanding the imp ortan t issues, including ho w to de�ne datat yp e us-

age, and ho w to use this de�nition to conduct a b enc hmarking exp erimen t.

� Auburn is a useful to ol for b enc hmarking new and existing data structures.

W e ha v e demonstrated this for 23 di�eren t data structures across 3 di�eren t

adt s.

� An y one w an ting to use a queue, a random-access list, or a heap ma y use Sec-

tion 7.1.5 to decide when to use whic h implemen tation. This will impro v e

the e�ciency of their application.

Here are the main p oin ts against this thesis:

� Auburn is not v ery user friendly and rather in v olv ed. F or example, the user

has to learn ab out and c hec k the shado w data structure and pro�le space.

� Section 7.3 rev ealed some inaccuracies in Auburn, in particular its treat-

men t of strictness, space b eha viour, and v alues of t yp e a (where a v ersion

has t yp e T a ).

� W e do not consider the e�ect on the b enc hmarking results of c hanging

language, op erating system, or compiler. In particular, the advice of Sec-

tion 7.1.5 ma y not apply to other systems.

� Neither do w e consider the e�ect on the b enc hmarking results of c hanging

the pro�le distribution. Is the distribution w e use fair?

W e consider these criticisms in the follo wing section.
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8.4 F uture W ork

Dra wing on the previous section, here are the main areas for future w ork.

� Relax the restrictions on the op erations that Auburn can b enc hmark. In

particular, include higher-order op erations, and op erations o v er more than

one t yp e. F or example, Auburn cannot curren tly b enc hmark the follo wing

op erations:

fold :: ( a ! b ! b ) ! b ! RASe q a ! b

fr omList :: [ a ] ! RASe q a

� Add tests on com binations of attributes to decision trees. This should

impro v e the accuracy of the decision trees, but ma y slo w do wn the induction

pro cess considerably .

� Examine the e�ect of c hanging language, op erating system, and compiler on

the b enc hmarking results Auburn pro duces. In particular, do es the advice

of Section 7.1.5 apply to other systems?

� Examine the fairness of the pro�le distribution.

� Incorp orate space information in to Auburn's b enc hmarking pro cedures.

Curren tly Auburn only measures time.

� Examine the accuracy of Auburn in greater detail, explain the inaccuracies

satisfactorily , and mak e appropriate impro v emen ts to Auburn to reduce

these inaccuracies.

8.5 The F uture

I ha v e a dream that one da y w e will ha v e a library of implemen tations of data

structures, recommended according to datat yp e usage. This thesis is one step

to w ards that dream.



App endix A

Source Co de of Implemen tations

Figures A.1 through A.28 giv e the implemen tations of the data structures in

Chapter 2 used in the b enc hmarking of Section 7.1.4.

module BankersQueue (Queue,empty,snoc,tail,h ead ,isE mpty ) where

import Prelude hiding (head,tail)

data Queue a = Queue [a] Int [a] Int

empty = Queue [] 0 [] 0

snoc (Queue f lenf r lenr) x = queue f lenf (x:r) (lenr+1)

tail (Queue (x:f) lenf r lenr) = queue f (lenf-1) r lenr

head (Queue (x:f) lenf r lenr) = x

queue f lenf r lenr

| lenr <= lenf = Queue f lenf r lenr

| otherwise = Queue (f++reverse r) (lenf+lenr) [] 0

isEmpty (Queue [] lenf r lenr) = True

isEmpty _ = False

Figure A.1: Bank ers queue implemen tation.
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module BatchedQueue (Queue,empty,snoc,tail, hea d,is Empt y) where

import Prelude hiding (head,tail)

data Queue a = Queue [a] [a]

empty = Queue [] []

snoc (Queue [] _) x = Queue [x] []

snoc (Queue f r) x = Queue f (x:r)

tail (Queue (x:f) r) = queue f r

head (Queue (x:f) r) = x

isEmpty (Queue [] r) = True

isEmpty _ = False

queue [] r = Queue (reverse r) []

queue f r = Queue f r

Figure A.2: Batc hed queue implemen tation.

module BootstrappedQueue (Queue,empty,snoc,head,ta il,i sEm pty) where

import Prelude hiding (head,tail)

data Queue a = Empty

| Queue [a] (Queue [a]) Int [a] Int

empty = Empty

snoc Empty x = Queue [x] Empty 1 [] 0

snoc (Queue f m lenFM r lenR) x = queue f m lenFM (x:r) (lenR+1)

tail (Queue (x:f) m lenFM r lenR) = queue f m (lenFM-1) r lenR

head (Queue (x:f) m lenFM r lenR) = x

queue f m lenFM r lenR

| lenR <= lenFM = checkF f m lenFM r lenR

| otherwise = checkF f (snoc m (reverse r)) (lenFM+lenR) [] 0

checkF [] Empty lenFM r lenR = Empty

checkF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenR

checkF f m lenFM r lenR = Queue f m lenFM r lenR

isEmpty Empty = True

isEmpty _ = False

Figure A.3: Bo otstrapp ed queue implemen tation.
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module ImplicitQueue (Queue,empty,snoc,tail, hea d,is Empt y) where

import Prelude hiding (head,tail)

data ZeroOrOne a = ZeroInOne | OneInOne a

data OneOrTwo a = OneInTwo a | TwoInTwo a a

data Queue a = Shallow (ZeroOrOne a)

| Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a)

empty = Shallow ZeroInOne

snoc (Shallow ZeroInOne) x = Shallow (OneInOne x)

snoc (Shallow (OneInOne x)) y =

Deep (TwoInTwo x y) (Shallow ZeroInOne) ZeroInOne

snoc (Deep f m ZeroInOne) x = Deep f m (OneInOne x)

snoc (Deep f m (OneInOne x)) y =

Deep f (snoc m (TwoInTwo x y)) ZeroInOne

tail (Shallow (OneInOne x)) = Shallow ZeroInOne

tail (Deep (TwoInTwo x y) m r) = Deep (OneInTwo y) m r

tail (Deep (OneInTwo x) (Shallow ZeroInOne) r) = Shallow r

tail (Deep (OneInTwo x) m r) = pull m r

pull (Shallow (OneInOne xy)) r = Deep xy (Shallow ZeroInOne) r

pull (Deep (TwoInTwo xy z) m iR) oR =

Deep xy (Deep (OneInTwo z) m iR) oR

pull (Deep (OneInTwo xy) (Shallow ZeroInOne) iR) oR =

Deep xy (Shallow iR) oR

pull (Deep (OneInTwo xy) m iR) oR = Deep xy (pull m iR) oR

head (Shallow (OneInOne x)) = x

head (Deep (OneInTwo x) m r) = x

head (Deep (TwoInTwo x y) m r) = x

isEmpty (Shallow ZeroInOne) = True

isEmpty _ = False

Figure A.4: Implicit queue implemen tation.
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module MultiheadQueue (Queue,empty,snoc,tail,h ead, isEm pty ) where

import Prelude hiding (head,tail)

data Queue a = Queue Bool Int Int [a] [a] [a] [a] [a] [a]

empty = Queue False 0 0 [] [] [] [] [] []

snoc (Queue False 0 copy h t lh h' t' hr) x =

onestep (onestep (Queue True 0 0 h (x:t) h [] [] []))

snoc (Queue False lendiff copy h t lh h' t' hr) x =

Queue False (lendiff-1) 0 h (x:t) [] [] [] []

snoc (Queue recopy lendiff copy h t lh h' t' hr) x =

onestep (onestep

(Queue True (lendiff-1) copy h t lh h' (x:t') hr))

tail (Queue False 0 copy (x:h) t lh h' t' hr) =

onestep (onestep (Queue True 0 0 h t h [] [] []))

tail (Queue False lendiff copy (x:h) t lh h' t' hr) =

Queue False (lendiff-1) 0 h t [] [] [] []

tail (Queue recopy lendiff copy h t (x:lh) h' t' hr) =

onestep (onestep (Queue True lendiff (copy-1) h t lh h' t' hr))

head (Queue False lendiff copy (x:h) t lh h' t' hr) = x

head (Queue recopy lendiff copy h t (x:lh) h' t' hr) = x

onestep q@(Queue False lendiff copy h t lh h' t' hr) = q

onestep (Queue recopy lendiff 0 [] [] lh h' t' hr) =

Queue False lendiff 0 h' t' [] [] [] []

onestep (Queue recopy lendiff 1 [] [] lh h' t' (x:hr)) =

Queue False (lendiff+1) 0 (x:h') t' [] [] [] []

onestep (Queue recopy lendiff copy [] [] lh h' t' (x:hr)) =

Queue True (lendiff+1) (copy-1) [] [] lh (x:h') t' hr

onestep (Queue recopy lendiff copy [] (x:t) lh h' t' hr) =

Queue True (lendiff+1) copy [] [] lh (x:h') t' hr

onestep (Queue recopy lendiff copy (x:h) (y:t) lh h' t' hr) =

Queue True (lendiff+1) (copy+1) h t lh (y:h') t' (x:hr)

isEmpty (Queue False lendiff copy (x:h) t lh h' t' hr) = False

isEmpty (Queue recopy lendiff copy h t (x:lh) h' t' hr) = False

isEmpty _ = True

Figure A.5: Multihead queue implemen tation.
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module PhysicistsQueue (Queue,empty,snoc,tail,h ead, isEm pty ) where

import Prelude hiding (head,tail)

data Queue a = Queue [a] [a] Int [a] Int

empty = Queue [] [] 0 [] 0

snoc (Queue w f lenF r lenR) x = queue w f lenF (x:r) (lenR+1)

tail (Queue (x:w) f lenF r lenR) = queue w f' (lenF-1) r lenR

where (x':f') = f

head (Queue (x:w) f lenF r lenR) = x

queue w f lenF r lenR

| lenR <= lenF = checkW w f lenF r lenR

| otherwise = checkW f (f++reverse r) (lenF+lenR) [] 0

checkW [] f lenF r lenR = Queue f f lenF r lenR

checkW w f lenF r lenR = Queue w f lenF r lenR

isEmpty (Queue [] f lenF r lenR) = True

isEmpty _ = False

Figure A.6: Ph ysicists queue implemen tation.
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module RealTimeQueue (Queue,empty,snoc,tail,he ad,i sEmp ty) where

import Prelude hiding (head,tail)

data Queue a = Queue [a] [a] [a]

empty :: Queue a

empty = Queue [] [] []

snoc :: Queue a -> a -> Queue a

snoc (Queue f r s) x = queue f (x:r) s

tail :: Queue a -> Queue a

tail (Queue (x:f) r s) = queue f r s

head :: Queue a -> a

head (Queue (x:f) r s) = x

queue :: [a] -> [a] -> [a] -> Queue a

queue f r (x:s) = Queue f r s

queue f r [] = Queue f' [] f'

where f' = rotate f r []

rotate :: [a] -> [a] -> [a] -> [a]

rotate [] (y:r) a = y : a

rotate (x:f) (y:r) a = x : rotate f r (y:a)

isEmpty :: Queue a -> Bool

isEmpty (Queue [] r s) = True

isEmpty _ = False

Figure A.7: RealTime queue implemen tation.
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module AVLRASeq (RASeq,empty,cons,tail,u pdat e,h ead, isEm pty ,loo kup)

where

import Prelude hiding (tail,head,lookup)

data Balance = L | B | R

data RASeq a = Empty

| Node Balance Int (RASeq a) a (RASeq a)

empty = Empty

cons x xs = case ins xs of (b,t) -> t

where

ins Empty = (True,Node B 0 Empty x Empty)

ins (Node b n l y r) =

case ins l of

(False,l') -> (False,Node b (n+1) l' y r)

(_,l') ->

case b of

R -> (False,Node B (n+1) l' y r)

B -> (True, Node L (n+1) l' y r)

_ ->

case l' of

Node b m l' z r' ->

(False,Node B m l' z (Node B (n-m) r' y r))

tail xs = case del xs of (b,t) -> t

where

del (Node b 0 l x r) = (True,r)

del (Node b n l x r) =

case del l of

(False,l') -> (False,Node b (n-1) l' x r)

(_,l') ->

case b of

L -> (True, Node B (n-1) l' x r)

B -> (False,Node R (n-1) l' x r)

_ ->

case r of

Node R m l'' y r'' ->

(True, Node B (n+m) (Node B (n-1) l' x l'')

y r'')

Node _ m l'' y r'' ->

(False,Node L (n+m) (Node R (n-1) l' x l'')

y r'')

Figure A.8: A VL random-access sequence implemen tation (part I).
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update (Node b n l x r) i y

| i == n = Node b n l y r

| i < n = Node b n (update l i y) x r

| otherwise = Node b n l x (update r (i-n-1) y)

head (Node b 0 l x r) = x

head (Node b n l x r) = head l

isEmpty Empty = True

isEmpty _ = False

lookup (Node b n l x r) i

| i == n = x

| i < n = lookup l i

| otherwise = lookup r (i-n-1)

Figure A.9: A VL random-access sequence implemen tation (part I I).

module AdamsRASeq (RASeq,empty,cons,tail,up dat e,he ad,i sEm pty, look up)

where

import Prelude hiding (head,tail,lookup)

data RASeq a = Empty

| Branch Int Int (RASeq a) a (RASeq a)

empty = Empty

isEmpty Empty = True

isEmpty _ = False

lookup (Branch n nl l x r) i

| i < nl = lookup l i

| i == nl = x

| otherwise = lookup r (i-nl-1)

update (Branch n nl l x r) i y

| i < nl = Branch n nl (update l i y) x r

| i == nl = Branch n nl l y r

| otherwise = Branch n nl l x (update r (i-nl-1) y)

cons x Empty = Branch 1 0 Empty x Empty

cons x (Branch _ _ l y r) = balBranch (cons x l) y r

tail (Branch _ _ Empty y r) = r

tail (Branch _ _ l y r) = balBranch (tail l) y r

head (Branch _ _ Empty y r) = y

head (Branch _ _ l y r) = head l

Figure A.10: Adams random-access sequence implemen tation (part I).
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branch l x r = Branch (1 + sizeL + size r) sizeL l x r

where sizeL = size l

singleL l x (Branch _ _ rl y rr) = branch (branch l x rl) y rr

doubleL l x (Branch _ _ (Branch _ _ rll y rlr) z rr) =

branch (branch l x rll) y (branch rlr z rr)

singleR (Branch _ _ ll x lr) y r = branch ll x (branch lr y r)

doubleR (Branch _ _ ll x (Branch _ _ lrl y lrr)) z r =

branch (branch ll x lrl) y (branch lrr z r)

sigma = 5

size Empty = 0

size (Branch n _ _ _ _) = n

balBranch l x r

| sizeL + sizeR < 2 = branch l x r

| sizeR > sigma * sizeL =

let (Branch _ _ rl _ rr) = r

in if size rl < size rr

then singleL l x r

else doubleL l x r

| sizeL > sigma * sizeR =

let (Branch _ _ ll _ lr) = l

in if size lr < size ll

then singleR l x r

else doubleR l x r

| otherwise = branch l x r

where sizeL = size l

sizeR = size r

Figure A.11: Adams random-access sequence implemen tation (part I I).
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module BraunRASeq (RASeq,empty,cons,tail,up dat e,he ad,i sEm pty, look up)

where

import Prelude hiding (tail,head,lookup)

data RASeq a = Empty

| Node (RASeq a) a (RASeq a)

empty = Empty

cons x Empty = Node Empty x Empty

cons x (Node l y r) = Node (cons y r) x l

tail (Node l x r) = join l r

where join Empty t = Empty

join (Node l x r) t = Node t x (join l r)

update (Node l x r) 0 y = Node l y r

update (Node l x r) n y

| n `mod` 2 == 0 = Node l x (update r ((n `div` 2)-1) y)

| otherwise = Node (update l ((n-1) `div` 2) y) x r

head (Node l x r) = x

isEmpty Empty = True

isEmpty t = False

lookup (Node l x r) 0 = x

lookup (Node l x r) n | n `mod` 2 == 0 = lookup r ((n `div` 2)-1)

| otherwise = lookup l ((n-1) `div` 2)

Figure A.12: Braun random-access sequence implemen tation.
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module ElevatorRASeq (RASeq,empty,cons,tail, upd ate, head ,is Empt y,lo oku p)

where

import Prelude hiding (tail,head,lookup)

data RASeq a = Floor Int [a] (RASeq a)

floorSep = 5

empty = Floor 0 [] empty

cons x s@(Floor n xs yss)

| n < floorSep = Floor (n+1) (x:xs) yss

| otherwise = Floor 1 [x] s

tail (Floor n (x:xs) yss)

| n > 1 = Floor (n-1) xs yss

| otherwise = yss

update (Floor n xs yss) i y

| n <= i = Floor n xs (update yss (i-n) y)

| otherwise = Floor n (updateList xs i y) yss

updateList (x:xs) 0 y = y:xs

updateList (x:xs) n y = x:updateList xs (n-1) y

head (Floor n (x:xs) yss) = x

isEmpty (Floor n [] yss) = True

isEmpty _ = False

lookup (Floor n xs yss) i

| n <= i = lookup yss (i-n)

| otherwise = lookupList xs i

lookupList (x:xs) 0 = x

lookupList (x:xs) n = lookupList xs (n-1)

Figure A.13: Elev ator random-access sequence implemen tation.



220 APPENDIX A. SOUR CE CODE OF IMPLEMENT A TIONS

module NaiveRASeq (RASeq,empty,cons,tail,up dat e,he ad,i sEm pty, look up)

where

import Prelude hiding (tail,head,lookup)

newtype RASeq a = RASeq [a]

empty = RASeq []

cons x (RASeq xs) = RASeq (x:xs)

tail (RASeq (x:xs)) = RASeq xs

update (RASeq xs) n y = RASeq (updateList xs n y)

updateList (x:xs) 0 y = y : xs

updateList (x:xs) n y = x : updateList xs (n-1) y

head (RASeq (x:xs)) = x

isEmpty (RASeq []) = True

isEmpty _ = False

lookup (RASeq xs) i = xs !! i

Figure A.14: Naiv e random-access sequence implemen tation.
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module SkewBinRASeq (RASeq,empty,cons,tail,u pda te,h ead,

isEmpty,lookup) where

import Prelude hiding (tail,head,lookup)

data RATree a = Leaf a | Node (RATree a) a (RATree a)

data RASeq a = Nil

| Root Int (RATree a) (RASeq a)

empty = Nil

cons x (Root size1 l (Root size2 r rest))

| size1 == size2 = Root (1+size1+size2) (Node l x r) rest

cons x xs = Root 1 (Leaf x) xs

tail (Root size (Leaf x) rest) = rest

tail (Root size (Node l x r) rest) =

Root size' l (Root size' r rest)

where size' = size `div` 2

update (Root size t rest) i y

| i < size = Root size (treeUpdate size t i y) rest

| otherwise = Root size t (update rest (i-size) y)

treeUpdate size (Leaf x) 0 y = Leaf y

treeUpdate size (Node l x r) 0 y = Node l y r

treeUpdate size (Node l x r) i y

| i <= size' = Node (treeUpdate size' l (i-1) y) x r

| otherwise = Node l x (treeUpdate size' r (i-1-size') y)

where size' = size `div` 2

head (Root size (Leaf x) rest) = x

head (Root size (Node l x r) rest) = x

isEmpty Nil = True

isEmpty _ = False

lookup (Root size t rest) i

| i < size = treeLookup size t i

| otherwise = lookup rest (i-size)

treeLookup size (Leaf x) 0 = x

treeLookup size (Node l x r) 0 = x

treeLookup size (Node l x r) i

| i <= size' = treeLookup size' l (i-1)

| otherwise = treeLookup size' r (i-1-size')

where size' = size `div` 2

Figure A.15: Sk ewBin random-access sequence implemen tation.
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module SlowdownRASeq (RASeq,empty,cons,tail,up date ,hea d,

isEmpty,lookup) where

import Prelude hiding (tail,head,lookup)

data RASeq a = RedOrGreen (Prefix (Pairs a)) (RASeq a)

| Yellows [Prefix (Pairs a)] (RASeq a)

| Deepest (Prefix (Pairs a))

data Pairs a = Elem a | Pair (Pairs a) (Pairs a)

data Prefix a = Zero | One a | Two a a | Three a a a | Four a a a a

pcons a Zero = One a

pcons a (One b) = Two a b

pcons a (Two b c) = Three a b c

pcons a (Three b c d) = Four a b c d

phead (One a) = a

phead (Two a b) = a

phead (Three a b c) = a

phead (Four a b c d) = a

ptail (One a) = Zero

ptail (Two a b) = One b

ptail (Three a b c) = Two b c

ptail (Four a b c d) = Three b c d

inPrefix size p i = i < plength size p

primcons x (Deepest p) = Deepest (pcons x p)

primcons x (RedOrGreen p (Yellows ps rest)) =

Yellows (pcons x p : ps) rest

primcons x (RedOrGreen p rest) = Yellows [pcons x p] rest

primcons x (Yellows [p] rest) = RedOrGreen (pcons x p) rest

primcons x (Yellows (p:ps) rest) =

RedOrGreen (pcons x p) (Yellows ps rest)

primhead (Deepest p) = phead p

primhead (RedOrGreen p rest) = phead p

primhead (Yellows (p:ps) rest) = phead p

primtail (Deepest p) = Deepest (ptail p)

primtail (RedOrGreen p (Yellows ps rest)) =

Yellows (ptail p : ps) rest

primtail (RedOrGreen p rest) = Yellows [ptail p] rest

primtail (Yellows [p] rest) = RedOrGreen (ptail p) rest

primtail (Yellows (p:ps) rest) =

RedOrGreen (ptail p) (Yellows ps rest)

Figure A.16: Slo wdo wn random-access sequence implemen tation (part I).
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fix (Deepest (Four a b c d)) =

RedOrGreen (Two a b) (Deepest (One (Pair c d)))

fix (Yellows ps rest) = Yellows ps (fix rest)

fix (RedOrGreen Zero (Deepest Zero)) = Deepest Zero

fix (RedOrGreen Zero rest) = RedOrGreen (Two a b) (primtail rest)

where Pair a b = primhead rest

fix (RedOrGreen (Four a b c d) rest) =

RedOrGreen (Two a b) (primcons (Pair c d) rest)

fix xs = xs

empty = Deepest Zero

update xs i x = update' 1 xs i x

update' size (Deepest p) i x = Deepest (pupdate size p i x)

update' size (RedOrGreen p rest) i x

| inPrefix size p i =

RedOrGreen (pupdate size p i x) rest

| otherwise =

RedOrGreen p (update' (size*2) rest (i - plength size p) x)

update' size (Yellows [] rest) i x =

Yellows [] (update' size rest i x)

update' size (Yellows (p:ps) rest) i x

| inPrefix size p i = Yellows (pupdate size p i x:ps) rest

| otherwise = Yellows (p:ps') rest'

where (Yellows ps' rest') = update' (size*2) (Yellows ps rest)

(i - plength size p) x

pupdate size (One a) i x = One (pupdate' a i x (size `div` 2))

pupdate size (Two a b) i x

| i < size = Two (pupdate' a i x (size `div` 2)) b

| otherwise = Two a (pupdate' b (i - size) x (size `div` 2))

pupdate size (Three a b c) i x

| i < size =

Three (pupdate' a i x (size `div` 2)) b c

| i < size*2 =

Three a (pupdate' b (i - size) x (size `div` 2)) c

| otherwise =

Three a b (pupdate' c (i - size*2) x (size `div` 2))

pupdate size (Four a b c d) i x

| i < size =

Four (pupdate' a i x (size `div` 2)) b c d

| i < size*2 =

Four a (pupdate' b (i - size) x (size `div` 2)) c d

| i < size*3 =

Four a b (pupdate' c (i - size*2) x (size `div` 2)) d

| otherwise =

Four a b c (pupdate' d (i - size*3) x (size `div` 2))

Figure A.17: Slo wdo wn random-access sequence implemen tation (part I I).
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pupdate' (Elem a) 0 x mid = Elem x

pupdate' (Pair xs ys) i x mid

| i < mid = Pair (pupdate' xs i x (mid `div` 2)) ys

| otherwise = Pair xs (pupdate' ys (i-mid) x (mid `div` 2))

cons x xs = fix (primcons (Elem x) xs)

head xs = case primhead xs of Elem x -> x

tail xs = fix (primtail xs)

isEmpty (Deepest Zero) = True

isEmpty _ = False

lookup xs i = lookup' 1 xs i

lookup' size (Deepest p) i = plookup size p i

lookup' size (RedOrGreen p rest) i

| inPrefix size p i = plookup size p i

| otherwise = lookup' (size*2) rest (i - plength size p)

lookup' size (Yellows [] rest) i = lookup' size rest i

lookup' size (Yellows (p:ps) rest) i

| inPrefix size p i = plookup size p i

| otherwise =

lookup' (size*2) (Yellows ps rest) (i-plength size p)

plength size Zero = 0

plength size (One a) = size

plength size (Two a b) = size*2

plength size (Three a b c) = size*3

plength size (Four a b c d) = size*4

plookup size (One a) i = plookup' a i (size `div` 2)

plookup size (Two a b) i

| i < size = plookup' a i (size `div` 2)

| otherwise = plookup' b (i - size) (size `div` 2)

plookup size (Three a b c) i

| i < size = plookup' a i (size `div` 2)

| i < size*2 = plookup' b (i - size) (size `div` 2)

| otherwise = plookup' c (i - size*2) (size `div` 2)

plookup size (Four a b c d) i

| i < size = plookup' a i (size `div` 2)

| i < size*2 = plookup' b (i - size) (size `div` 2)

| i < size*3 = plookup' c (i - size*2) (size `div` 2)

| otherwise = plookup' d (i - size*3) (size `div` 2)

plookup' (Elem a) 0 mid = a

plookup' (Pair xs ys) i mid

| i < mid = plookup' xs i (mid `div` 2)

| otherwise = plookup' ys (i-mid) (mid `div` 2)

Figure A.18: Slo wdo wn random-access sequence implemen tation (part I I I).
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module ThreadSkewBinRASeq (RASeq,empty,cons,tail,up date ,he ad,

isEmpty,lookup) where

import Prelude hiding (tail,head,lookup)

data RASeq a = Empty

| Cons a (RASeq a)

| Node a (RASeq a) Int (RASeq a)

empty = Empty

lookup (Cons x xs) 0 = x

lookup (Cons x xs) i = lookup xs (i-1)

lookup (Node x xs r xs1) 0 = x

lookup (Node x xs r xs1) i

| i < r = lookup xs (i-1)

| otherwise = lookup xs1 (i-r)

update (Cons x xs) 0 y = Cons y xs

update (Cons x xs) i y = Cons x (update xs (i-1) y)

update (Node x xs r xs1) 0 y = Node y xs r xs1

update (Node x xs r xs1) i y =

case update xs (i-1) y of

xs@(Cons _ (Cons _ xs')) -> Node x xs 3 xs'

xs@(Node _ _ _ (Node _ _ _ xs')) -> Node x xs r xs'

cons x xs@(Node x1 xs1 r1 (Node x2 xs2 r2 xs3))

| r1 == r2 = Node x xs (1+r1+r2) xs3

cons x xs@(Cons _ (Cons _ xs')) = Node x xs 3 xs'

cons x xs = Cons x xs

head (Cons x xs) = x

head (Node x xs r xs1) = x

isEmpty Empty = True

isEmpty xs = False

tail (Cons x xs) = xs

tail (Node x xs r xs1) = xs

Figure A.19: ThreadSk ewBin random-access sequence implemen tation.
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module BinomialHeap (Heap,empty,isEmpty,ins ert ,mer ge,f ind Min,

deleteMin) where

data Ord a => Tree a = Node Int a [Tree a]

newtype Ord a => Heap a = Heap [Tree a]

rank (Node r x c) = r

root (Node r x c) = x

link t1@(Node r x1 c1) t2@(Node _ x2 c2) =

if x1 <= x2 then Node (r+1) x1 (t2:c1)

else Node (r+1) x2 (t1:c2)

insTree t [] = [t]

insTree t ts@(t':ts') =

if rank t < rank t' then t:ts else insTree (link t t') ts'

mrg ts1 [] = ts1

mrg [] ts2 = ts2

mrg ts1@(t1:ts1') ts2@(t2:ts2')

| rank t1 < rank t2 = t1 : mrg ts1' ts2

| rank t2 < rank t1 = t2 : mrg ts1 ts2'

| otherwise = insTree (link t1 t2) (mrg ts1' ts2')

removeMinTree [t] = (t, [])

removeMinTree (t:ts) =

if root t < root t' then (t, ts) else (t', t : ts')

where (t', ts') = removeMinTree ts

empty = Heap []

isEmpty (Heap ts) = null ts

insert x (Heap ts) = Heap (insTree (Node 0 x []) ts)

merge (Heap ts1) (Heap ts2) = Heap (mrg ts1 ts2)

findMin (Heap ts) = root t

where (t, _) = removeMinTree ts

deleteMin (Heap ts) = Heap (mrg (reverse ts1) ts2)

where (Node _ x ts1, ts2) = removeMinTree ts

Figure A.20: Binomial heap implemen tation.
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module BootSkewBinHeap (Heap,empty,isEmpty,inse rt,m erge ,fi ndMi n,

deleteMin) where

data Ord a => Heap a = Empty

| Root a (OldHeap (Heap a))

instance Ord a => Eq (Heap a) where

Empty == Empty = True

(Root x _) == (Root y _) = x == y

_ == _ = False

instance Ord a => Ord (Heap a) where

compare (Root x _) (Root y _) = compare x y

empty = Empty

isEmpty Empty = True

isEmpty _ = False

merge p Empty = p

merge Empty q = q

merge (Root x p) (Root y q)

| x <= y = Root x (oldInsert (Root y q) p)

| otherwise = Root y (oldInsert (Root x p) q)

insert x Empty = Root x oldEmpty

insert x p = merge (Root x oldEmpty) p

findMin (Root x _) = x

deleteMin (Root x p)

| oldIsEmpty p = Empty

| otherwise = Root y (oldMerge q1 q2)

where Root y q1 = oldFindMin p

q2 = oldDeleteMin p

Figure A.21: Bo otSk ewBin heap implemen tation (part I).
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newtype Ord a => OldHeap a = OldHeap [Tree a]

data Ord a => Tree a = Node Int a [a] [Tree a]

rank (Node r x xs c) = r

root (Node r x xs c) = x

link t1@(Node r x1 xs1 c1) t2@(Node _ x2 xs2 c2) =

if x1 <= x2 then Node (r+1) x1 xs1 (t2:c1)

else Node (r+1) x2 xs2 (t1:c2)

skewLink x t1 t2 =

let Node r y ys c = link t1 t2

in if x <= y then Node r x (y:ys) c else Node r y (x:ys) c

insTree t [] = [t]

insTree t ts@(t':ts') =

if rank t < rank t' then t:ts else insTree (link t t') ts'

mrg ts1 [] = ts1

mrg [] ts2 = ts2

mrg ts1@(t1:ts1') ts2@(t2:ts2')

| rank t1 < rank t2 = t1 : mrg ts1' ts2

| rank t2 < rank t1 = t2 : mrg ts1 ts2'

| otherwise = insTree (link t1 t2) (mrg ts1' ts2')

normalize [] = []

normalize (t:ts) = insTree t ts

removeMinTree [t] = (t, [])

removeMinTree (t:ts) =

if root t < root t' then (t, ts) else (t', t : ts')

where (t', ts') = removeMinTree ts

oldEmpty = OldHeap []

oldIsEmpty (OldHeap ts) = null ts

oldInsert x (OldHeap (t1:t2:ts)) | rank t1 == rank t2 =

OldHeap (skewLink x t1 t2 : ts)

oldInsert x (OldHeap ts) = OldHeap (Node 0 x [] [] : ts)

oldMerge (OldHeap ts1) (OldHeap ts2) =

OldHeap (mrg (normalize ts1) (normalize ts2))

oldFindMin (OldHeap ts) = root t

where (t, _) = removeMinTree ts

oldDeleteMin (OldHeap ts) = foldr oldInsert (OldHeap ts') xs

where (Node _ x xs ts1, ts2) = removeMinTree ts

ts' = mrg (reverse ts1) (normalize ts2)

Figure A.22: Bo otSk ewBin heap implemen tation (part I I).
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module LeftistHeap (Heap,empty,isEmpty,inser t,m erge ,fin dMi n,

deleteMin) where

data Heap a = Empty

| Node Int (Heap a) a (Heap a)

empty = Empty

isEmpty Empty = True

isEmpty _ = False

insert x Empty = Node 1 Empty x Empty

insert x h@(Node s l y r)

| x <= y = Node 1 h x Empty

| otherwise = node l y (insert x r)

findMin (Node _ _ x _) = x

deleteMin (Node s l x r) = merge l r

merge h Empty = h

merge Empty h = h

merge h1@(Node s1 l1 x1 r1) h2@(Node s2 l2 x2 r2)

| x1 <= x2 = node l1 x1 (merge r1 h2)

| otherwise = node l2 x2 (merge r2 h1)

node h x Empty = Node 1 h x Empty

node Empty x h = Node 1 h x Empty

node h1@(Node s1 _ _ _) x h2@(Node s2 _ _ _)

| s1 <= s2 = Node (s1+1) h2 x h1

| otherwise = Node (s2+1) h1 x h2

fromList = foldr insert empty

Figure A.23: Leftist heap implemen tation.
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module NaiveHeap (Heap,empty,isEmpty,insert ,me rge, find Min ,

deleteMin) where

newtype Ord a => Heap a = Heap [a]

empty = Heap []

isEmpty (Heap []) = True

isEmpty _ = False

insert w (Heap h) = Heap (insert' w h)

insert' w [] = [w]

insert' w vl@(v:vs) | w <= v = w : vl

| otherwise = v : insert' w vs

findMin (Heap (v:vs)) = v

deleteMin (Heap (v:vs)) = Heap vs

merge (Heap ws) (Heap vs) = Heap (merge' ws vs)

merge' [] vs = vs

merge' ws [] = ws

merge' wl@(w:ws) vl@(v:vs)

| w <= v = w : merge' ws vl

| otherwise = v : merge' wl vs

Figure A.24: Naiv e heap implemen tation.
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module PairingHeap (Heap,empty,isEmpty,inser t,m erge ,fin dMi n,

deleteMin) where

data Heap a = Empty

| Node a [Heap a]

empty = Empty

isEmpty Empty = True

isEmpty _ = False

insert x Empty = Node x []

insert x h2@(Node x2 hs2)

| x <= x2 = Node x [h2]

| otherwise = Node x2 (Node x []:hs2)

findMin (Node x _) = x

deleteMin (Node _ hs) = mergePairs hs

merge h Empty = h

merge Empty h = h

merge h1@(Node x1 hs1) h2@(Node x2 hs2)

| x1 <= x2 = Node x1 (h2:hs1)

| otherwise = Node x2 (h1:hs2)

mergePairs [] = Empty

mergePairs [a] = a

mergePairs (a:b:hs) = merge (merge a b) (mergePairs hs)

Figure A.25: P airing heap implemen tation.
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module SkewBinHeap (Heap,empty,isEmpty,inse rt, merg e,fi ndM in,

deleteMin) where

newtype Ord a => Heap a = Heap [Tree a]

data Ord a => Tree a = Node Int a [a] [Tree a]

rank (Node r x xs c) = r

root (Node r x xs c) = x

link t1@(Node r x1 xs1 c1) t2@(Node _ x2 xs2 c2) =

if x1 <= x2 then Node (r+1) x1 xs1 (t2:c1)

else Node (r+1) x2 xs2 (t1:c2)

skewLink x t1 t2 =

let Node r y ys c = link t1 t2

in if x <= y then Node r x (y:ys) c else Node r y (x:ys) c

insTree t [] = [t]

insTree t ts@(t':ts') =

if rank t < rank t' then t:ts else insTree (link t t') ts'

mrg ts1 [] = ts1

mrg [] ts2 = ts2

mrg ts1@(t1:ts1') ts2@(t2:ts2')

| rank t1 < rank t2 = t1 : mrg ts1' ts2

| rank t2 < rank t1 = t2 : mrg ts1 ts2'

| otherwise = insTree (link t1 t2) (mrg ts1' ts2')

normalize [] = []

normalize (t:ts) = insTree t ts

removeMinTree [t] = (t, [])

removeMinTree (t:ts) =

if root t < root t' then (t, ts) else (t', t : ts')

where (t', ts') = removeMinTree ts

Figure A.26: Sk ewBin heap implemen tation (part I).
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empty = Heap []

isEmpty (Heap ts) = null ts

insert x (Heap (t1:t2:ts)) | rank t1 == rank t2 =

Heap (skewLink x t1 t2 : ts)

insert x (Heap ts) = Heap (Node 0 x [] [] : ts)

merge (Heap ts1) (Heap ts2) =

Heap (mrg (normalize ts1) (normalize ts2))

findMin (Heap ts) = root t

where (t, _) = removeMinTree ts

deleteMin (Heap ts) = foldr insert (Heap ts') xs

where (Node _ x xs ts1, ts2) = removeMinTree ts

ts' = mrg (reverse ts1) (normalize ts2)

Figure A.27: Sk ewBin heap implemen tation (part I I).
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module SplayHeap (Heap,empty,isEmpty,insert ,me rge, find Min ,

deleteMin) where

data Heap a = Empty

| Node (Heap a) a (Heap a)

empty = Empty

isEmpty Empty = True

isEmpty _ = False

insert x h = Node l x r

where (l,r) = partition x h

partition pivot Empty = (Empty,Empty)

partition pivot h@(Node l x r)

| x <= pivot =

case r of

Empty -> (h,Empty)

Node rl y rr ->

if y <= pivot

then let (small,big) = partition pivot rr

in (Node (Node l x rl) y small,big)

else let (small,big) = partition pivot rl

in (Node l x small,Node big y rr)

| otherwise =

case l of

Empty -> (Empty,h)

Node ll y lr ->

if y <= pivot

then let (small,big) = partition pivot lr

in (Node ll y small,Node big x r)

else let (small,big) = partition pivot ll

in (small,Node big y (Node lr x r))

findMin (Node Empty x r) = x

findMin (Node l x r) = findMin l

deleteMin (Node Empty x r) = r

deleteMin (Node (Node Empty x lr) y r) = Node lr y r

deleteMin (Node (Node ll x lr) y r) =

Node (deleteMin ll) x (Node lr y r)

merge Empty h = h

merge (Node l x r) h = Node (merge small l) x (merge big r)

where (small,big) = partition x h

Figure A.28: Spla y heap implemen tation.



App endix B

Mo di�cations to Implemen tations

Figures B.1 through B.25 giv e the mo di�cations of T ables 7.1, 7.2 and 7.3, b y

sho wing the output of the UNIX diff command. Figure B.7 giv es the mo di�ca-

tion Multihead in the form of the mo di�ed implemen tation, as almost all of the

co de is mo di�ed.

5c5

< data Queue a = Queue [a] Int [a] Int

---

> data Queue a = Queue [a] !Int [a] !Int

Figure B.1: Bank ers queue mo di�cation.

11c11,12

< snoc (Queue f r) x = queue f (x:r)

---

> snoc (Queue [] _) x = Queue [x] []

> snoc (Queue f r) x = Queue f (x:r)

Figure B.2: Batc hed queue mo di�cation.

27c27,28

< checkF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenR

---

> checkF [] (Queue (iX:iF) iM iLenFM iR iLenR) lenFM r lenR =

> Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenR

Figure B.3: Bo otstrapp ed{1 queue mo di�cation.
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27c27

< checkF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenR

---

> checkF [] m lenFM r lenR = pull m lenFM r lenR

28a29,32

>

> pull (Queue (iX:iF) iM iLenFM iR iLenR) lenFM r lenR =

> Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenR

Figure B.4: Bo otstrapp ed{2 queue mo di�cation.

8c8

< | Deep (OneOrTwo a) (Queue (a,a)) (ZeroOrOne a)

---

> | Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a)

18c18

< snoc (Deep f m (OneInOne x)) y =

< Deep f (snoc m (x,y)) ZeroInOne

---

> snoc (Deep f m (OneInOne x)) y =

> Deep f (snoc m (TwoInTwo x y)) ZeroInOne

24,25c24

< tail (Deep (OneInTwo x) m r) = Deep (TwoInTwo y z) (tail m) r

< where (y,z) = head m

---

> tail (Deep (OneInTwo x) m r) = Deep (head m) (tail m) r

Figure B.5: Implicit{1 queue mo di�cation.

24,25c24,32

< tail (Deep (OneInTwo x) m r) = Deep (TwoInTwo y z) (tail m) r

< where (y,z) = head m

---

> tail (Deep (OneInTwo x) m r) = pull m r

>

> pull (Shallow (OneInOne (x,y))) r =

> Deep (TwoInTwo x y) (Shallow ZeroInOne) r

> pull (Deep (TwoInTwo (x,y) z) m iR) oR =

> Deep (TwoInTwo x y) (Deep (OneInTwo z) m iR) oR

> pull (Deep (OneInTwo (x,y)) (Shallow ZeroInOne) iR) oR =

> Deep (TwoInTwo x y) (Shallow iR) oR

> pull (Deep (OneInTwo (x,y)) m iR) oR =

> Deep (TwoInTwo x y) (pull m iR) oR

Figure B.6: Implicit{2 queue mo di�cation.
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module MultiheadQueue (Queue,empty,snoc,tail,he ad,i sEmp ty) where

import Prelude hiding (head,tail)

data RotationState a =

Idle

| Reversing Int [a] [a] [a] [a]

| Appending Int [a] [a]

| Done [a]

data Queue a = Queue Int [a] (RotationState a) Int [a]

exec (Reversing ok (x:f) f' (y:r) r') =

Reversing (ok+1) f (x:f') r (y:r')

exec (Reversing ok [] f' [y] r') = Appending ok f' (y:r')

exec (Appending 0 f' r') = Done r'

exec (Appending ok (x:f') r') = Appending (ok-1) f' (x:r')

exec state = state

invalidate (Reversing ok f f' r r') = Reversing (ok-1) f f' r r'

invalidate (Appending 0 f' (x:r')) = Done r'

invalidate (Appending ok f' r') = Appending (ok-1) f' r'

invalidate state = state

exec2 lenf f state lenr r =

case exec (exec state) of

Done newf -> Queue lenf newf Idle lenr r

newstate -> Queue lenf f newstate lenr r

check lenf f state lenr r =

if lenr <= lenf then exec2 lenf f state lenr r

else let newstate = Reversing 0 f [] r []

in exec2 (lenf+lenr) f newstate 0 []

empty = Queue 0 [] Idle 0 []

isEmpty (Queue lenf f state lenr r) = (lenf == 0)

snoc (Queue lenf f state lenr r) x =

check lenf f state (lenr+1) (x:r)

head (Queue _ (x:f') _ _ _) = x

tail (Queue lenf (x:f') state lenr r) =

check (lenf-1) f' (invalidate state) lenr r

Figure B.7: Multihead queue mo di�cation.
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5c5

< data Queue a = Queue [a] [a] Int [a] Int

---

> data Queue a = Queue [a] [a] !Int [a] !Int

Figure B.8: Ph ysicists queue mo di�cation.

41,44c41,45

< update (Node b n l x r) i y

< | i == n = Node b n l y r

< | i < n = Node b n (update l i y) x r

< | otherwise = Node b n l x (update r (i-n-1) y)

---

> update (Node b n l x r) i y =

> case compare i n of

> EQ -> Node b n l y r

> LT -> Node b n (update l i y) x r

> _ -> Node b n l x (update r (i-n-1) y)

55,58c56,60

< lookup (Node b n l x r) i

< | i == n = x

< | i < n = lookup l i

< | otherwise = lookup r (i-n-1)

---

> lookup (Node b n l x r) i =

> case compare i n of

> EQ -> x

> LT -> lookup l i

> _ -> lookup r (i-n-1)

Figure B.9: A VL{1 random-access sequence mo di�cation.
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41,44c41,45

< update (Node b n l x r) i y

< | i == n = Node b n l y r

< | i < n = Node b n (update l i y) x r

< | otherwise = Node b n l x (update r (i-n-1) y)

---

> update (Node b n l x r) i y =

> case compare i n of

> LT -> Node b n (update l i y) x r

> EQ -> Node b n l y r

> _ -> Node b n l x (update r (i-n-1) y)

55,58c56,60

< lookup (Node b n l x r) i

< | i == n = x

< | i < n = lookup l i

< | otherwise = lookup r (i-n-1)

---

> lookup (Node b n l x r) i =

> case compare i n of

> LT -> lookup l i

> EQ -> x

> _ -> lookup r (i-n-1)

Figure B.10: A VL{2 random-access sequence mo di�cation.

42d41

< | i == n = Node b n l y r

43a43

> | i == n = Node b n l y r

56d55

< | i == n = x

57a57

> | i == n = x

Figure B.11: A VL{3 random-access sequence mo di�cation.
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< case (ins l,b) of

< ((False,l'),b) -> (False,Node b (n+1) l' y r)

< ((True,l'),R) -> (False,Node B (n+1) l' y r)

< ((True,l'),B) -> (True, Node L (n+1) l' y r)

< ((True,Node b m l' z r'),L) ->

< (False,Node B m l' z (Node B (n-m) r' y r))

---

> case ins l of

> (False,l') -> (False,Node b (n+1) l' y r)

> (_,l') ->

> case b of

> R -> (False,Node B (n+1) l' y r)

> B -> (True, Node L (n+1) l' y r)

> _ ->

> case l' of

> Node b m l' z r' ->

> (False,Node B m l' z

> (Node B (n-m) r' y r))

29,38c33,44

< case (del l,b) of

< ((False,l'),b) -> (False,Node b (n-1) l' x r)

< ((True, l'),L) -> (True, Node B (n-1) l' x r)

< ((True, l'),B) -> (False,Node R (n-1) l' x r)

< ((True, l'),R) ->

< case r of

< Node R m l'' y r'' ->

< (True, Node B (n+m) (Node B (n-1) l' x l'')

< y r'')

< Node B m l'' y r'' ->

< (False,Node L (n+m) (Node R (n-1) l' x l'')

< y r'')

---

> case del l of

> (False,l') -> (False,Node b (n-1) l' x r)

> (_,l') ->

> case b of

> L -> (True, Node B (n-1) l' x r)

> B -> (False,Node R (n-1) l' x r)

> _ ->

> case r of

> Node R m l'' y r'' ->

> (True, Node B (n+m)

> (Node B (n-1) l' x l'')

> y r'')

> Node _ m l'' y r'' ->

> (False,Node L (n+m)

> (Node R (n-1) l' x l'')

> y r'')

Figure B.12: A VL{4 random-access sequence mo di�cation.
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47a48,50

> alpha :: Int

> alpha = 2

>

57c60

< in if size rl < size rr

---

> in if size rl < size rr * alpha

62c65

< in if size lr < size ll

---

> in if size lr < size ll * alpha

Figure B.13: Adams random-access sequence mo di�cation.

16,17c16,18

< tail (Node Empty x t) = Empty

< tail (Node l x r) = Node r (head l) (tail l)

---

> tail (Node l x r) = join l r

> where join Empty t = Empty

> join (Node l x r) t = Node t x (join l r)

Figure B.14: Braun random-access sequence mo di�cation.

8c8

< floorSep = 10

---

> floorSep = 3

Figure B.15: Elev ator{1 random-access sequence mo di�cation.

8c8

< floorSep = 10

---

> floorSep = 5

Figure B.16: Elev ator{2 random-access sequence mo di�cation.

8c8

< floorSep = 10

---

> floorSep = 25

Figure B.17: Elev ator{3 random-access sequence mo di�cation.
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7c7

< | Root Int (RATree a) (RASeq a)

---

> | Root !Int (RATree a) (RASeq a)

Figure B.18: Sk ewBin random-access sequence mo di�cation.
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6a7

> | Cons a (RASeq a)

12a14,15

> lookup (Cons x xs) 0 = x

> lookup (Cons x xs) i = lookup xs (i-1)

18a22,23

> update (Cons x xs) 0 y = Cons y xs

> update (Cons x xs) i y = Cons x (update xs (i-1) y)

20c25,28

< update (Node x xs r xs1) i y = cons x (update xs (i-1) y)

---

> update (Node x xs r xs1) i y =

> case update xs (i-1) y of

> xs@(Cons _ (Cons _ xs')) -> Node x xs 3 xs'

> xs@(Node _ _ _ (Node _ _ _ xs')) -> Node x xs r xs'

25c33,34

< cons x xs = Node x xs 1 xs

---

> cons x xs@(Cons _ (Cons _ xs')) = Node x xs 3 xs'

> cons x xs = Cons x xs

27a37

> head (Cons x xs) = x

34a45

> tail (Cons x xs) = xs

Figure B.19: ThreadSk ewBin random-access sequence mo di�cation.

3c3

< data Ord a => Tree a = Node Int a [Tree a]

---

> data Ord a => Tree a = Node !Int a [Tree a]

Figure B.20: Binomial heap mo di�cation.
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45c45

< data Ord a => Tree a = Node Int a [a] [Tree a]

---

> data Ord a => Tree a = Node !Int a [a] [Tree a]

Figure B.21: Bo otSk ewBin heap mo di�cation.

14c14,17

< insert x h = merge (Node 1 Empty x Empty) h

---

> insert x Empty = Node 1 Empty x Empty

> insert x h@(Node s l y r)

> | x <= y = Node 1 h x Empty

> | otherwise = node l y (insert x r)

Figure B.22: Leftist heap mo di�cation.

26c26

< | x1 <= x2 = Node x1 (h2:hs1)

---

> | x1 < x2 = Node x1 (h2:hs1)

Figure B.23: P airing{1 heap mo di�cation.

14c14,17

< insert x h = merge (Node x []) h

---

> insert x Empty = Node x []

> insert x h2@(Node x2 hs2)

> | x <= x2 = Node x [h2]

> | otherwise = Node x2 (Node x []:hs2)

Figure B.24: P airing{2 heap mo di�cation.

4c4

< data Ord a => Tree a = Node Int a [a] [Tree a]

---

> data Ord a => Tree a = Node !Int a [a] [Tree a]

Figure B.25: Sk ewBin heap mo di�cation.



App endix C

Auburn Reference

There are v arious executables pro duced b y Auburn, with v arious 
ags for mo d-

ifying their b eha viour. Rather than giv e a length y explanation of these, w e just

quote the help information for eac h executable, that is, the output they pro duce

when supplied with the 
ag -h . Here is a list of the help pages in order: auburn , a

dug manager, a b enc hmark er, auburnExp , makeDugs , evalDugs , processTimes ,

cleanDugs .
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Usage: auburn [options] sigfile[.sig]

Options:

-c IMP-MOD1[.hs] IMP-MOD2[.hs] ... IMP-MODn[.hs]

Write a signature of the common operations exported by the

the implementation modules IMP-MOD1, IMP-MOD2, ... IMP-MODn.

-sT Write a trivial shadow data structure.

-sS Write a best guess at size-based shadow data structure.

-m Write a dug manager.

-e IMP-MOD1 IMP-MOD2 ... IMP-MODn

Write a dug evaluator for each implementation module in

IMP-MOD1, IMP-MOD2, ..., IMP-MODn.

-n Write a null implementation.

-x IMP-MOD[.hs] MAIN[.hs]

-xI IMP-MOD[.hs]

-xM MAIN[.hs]

Write wrapped, dug-extracting versions of the implementation

module IMP-MOD and/or the main module stored in file MAIN.

Warning: The files they wrap will be backed up before being

overwritten, but they may be restored using `-u'. The wrapped

program will behave as before but will also extract and write a

dug as it is run. The wrapped files use Green Card.

-u IMP-MOD[.gc] MAIN[.gc]

-uI IMP-MOD[.gc]

-uM MAIN[.gc]

Unwrap the implementation module IMP-MOD and/or the main module

stored in file MAIN which were previously wrapped with `-x'.

-pT Write a script `makeProfiles.hs ' to make profiles (base version).

-pS Write a best guess at a version of `makeProfiles.h s' based on

a size-based shadow data structure.

-b IMP-MOD1 IMP-MOD2 ... IMP-MODn

Write a benchmarker covering implementation modules

IMP-MOD1, IMP-MOD2, ..., IMP-MODn.

(General.)

-h Show this help.

-v Show version info.

-G Use Green Card to construct dug evaluator.

Figure C.1: Help information for auburn .
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Usage: Queue_Man [options] [dug-file | -]

Options:

-g PROFILE SEED

Generate a dug using the given profile, and the given seed for

pseudo-random number generation. Any dug file given on the

command line is ignored. The seed should lie between 1 and

2147483646 inclusive.

PROFILE is of the form:

Profile GWGTS PHASES

where GWGTS is the generator weights, and PHASES is a Haskell list

with each element of the form:

Phase MOWGTS MORTALITY PMF POF

where MOWGTS is the mutator and observer weights, with the remaining

arguments giving the mortality, the persistent mutation factor and

persistent observation factor.

Operator weights are given as a Haskell list of decimals and are

ordered within the list firstly by role and then lexically, ie.

empty, snoc, tail, head, isEmpty.

Note that you will probably need to enclose arguments containing

spaces or parantheses in quotes to avoid confusing the shell.

-a PHASEARG

When using a profile to generate a dug with `-g', or when

producing a profile of a dug with `-p' or `-pP', use the phase

argument PHASEARG. PHASEARG is read in by `phaseArgRead'

defined in the shadow data structure and is used by `phaser' to

determine the phasing of nodes.

-r FILE

-rP

Read a textual dug file, as outputted by `-t' or `-tP', from FILE

or from standard input.

-p FILE

-pP

Write a profile of the dug to FILE or to standard output.

-N

Normalise the profile written with `-p' or `-pP' with the profile

given with `-g' (the averages of the weights are made equal for

easier comparison). If the dug is read rather than generated, make

the averages of the weights equal to one.

Figure C.2: Help information for a t ypical dug manager (part I).
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-o FILE

-oP

Write the dug to FILE or to standard output.

-d FILE

-dP

Write a visual depiction of the dug suitable for the `dotty'

package of AT&T to FILE or to standard output.

-t FILE

-tP

Write a text description of the dug to FILE or to standard output.

-H

When used with `-t' or `-tP', make the text description of the dug

a valid Haskell program.

-h

This help.

The following options are only applicable when used with `-g':

-b POOLSIZE

The size of the pool from which to draw integer arguments.

Default: 10

-fL MINFS

The minimum size of the frontier.

Default: 1

-fU MAXFS

The maximum size of the frontier. A value of 0 indicates no maximum.

Default: 0

-n NODES

The number of nodes to generate.

Default: 10000

Note that outputting a large amount of data to a file is significantly

slower than to standard output, eg. we recommend writing a sizeable

dug to standard output and re-directing this to a file if necessary.

Figure C.3: Help information for a t ypical dug manager (part I I).
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Usage: Queue_Bmark [options]

Options:

-h

Print this help.

Decision Tree Inducer

----------------- -- --

A sample of benchmarking results may be obtained via at most one of the

following flags:

-g SEED

Generate a random sample, using `makeDugs', `evalDugs', and

`processTimes'. The seed should lie between 1 and 2147483646

inclusive.

-s FILE

-sP

Read in a sample from FILE or standard input.

A decision tree may be obtained via at most one of the following flags:

-i

Induce a decision tree from the sample.

-t FILE

-tP

Read in a tree from FILE or standard input.

At least one of the following flags must be supplied to request output:

-c FILE

-cP

Check the accuracy of the decision tree on the sample. Output the

report to FILE or to standard output.

-o FILE

-oP

Write the sample to FILE or to standard output.

-w FILE

-wP

Write the decision tree to FILE or to standard output.

-d FILE

-dP

Using the profile taken from FILE or standard input, use the decision

tree to decide which implementation suits the profile. Write the

decision to standard output.

The following flags can be used to modify the behaviour of the `-i' flag:

-G

Use the gain criterion, rather than the default gain ratio criterion.

-p SIZE

Prune any leaves no larger than SIZE on the induced tree.

Default: 0.

Figure C.4: Help information for a t ypical b enc hmark er (part I).
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-a

Induce a decision tree on one half of the sample, prune this

tree to different maximum leaf sizes, and choose the pruned tree

with least error when applied to the other half of the sample.

-r

Perform reduced error pruning on the induced tree, by using half

of the sample for induction and half for testing.

-x

When used with `-a' or `-r', use the number of misclassificatio ns as

the measure of error. Without `-x', the mean ratio of the predicted

winner is used (the larger the mean, the worse the prediction).

-P

Perform very pessimistic pruning on the induced tree.

-C CF

When pruning with `-P', use confidence level CF (0 < CF < 1). The

smaller CF is, the more pruning is done.

Default: 0.25.

The following flags modify the behaviour of the flags above:

-v

Verbose. Show some of the output of generating a sample with `-g'.

-V

Very verbose. Show all of the output of generating a sample with `-g'.

-n SIZE

Specify the SIZE of a sample generated with `-g' (number of profiles

chosen).

Default: 100.

-m OPTIONS

Pass OPTIONS to `makeDugs' when generating a sample with `-g'.

Default: "".

-e OPTIONS

Pass OPTIONS to `evalDugs' when generating a sample with `-g'.

Default: "-r 1 -R 5".

-I IMP1 IMP2 ... IMPn

when generating a sample, use the ADT implementations named

IMP1, IMP2, ..., IMPn. When reading a sample, restrict the ratios

read to these implementations.

-A ATT1 ATT2 ... ATTn

When reading a sample, restrict the profile attributes read to

those named ATT1, ATT2, ..., ATTn.

ADT Implementation Tracer

---------------- --- -- -- --

-q SEED

Run the tracer. The seed should lie between 1 and 2147483646

inclusive, and is used to generate random dugs, printing any dug

that causes an error.

The flags `-v', `-V', `-m', and `-I' also modify the behaviour of `-q'.

Figure C.5: Help information for a t ypical b enc hmark er (part I I).
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Creates a GNU makefile in the current directory to manage an

experiment using Auburn.

Flags:

-l LIBRARY

Use Auburn library held in directory LIBRARY,

eg. `-l /usr/local/lib/au bur n' .

Default: /usr/gem/lib/aub urn

-q

Quiet running: do nothing but print everything.

-h

Show this help.

Figure C.6: Help information for auburnExp .
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Makes dugs from the profiles given in files of the form

`dug-${profile}.p ro fi le' in the current directory. The dugs are

stored in dug code files of the form `dug-${profile}- ${ see d} .du g'

with their _actual_ profiles stored in files of the form

`dug-${profile}-$ {s ee d}. pr ofi le '.

Flags:

(Where more than one value is passed, eg. with `-p', the string

passed should be a perl expression that evaluates to an array,

eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)". The following

also seem to work fine: "4", "1,3", "3..5".)

-s SIG

Name of signature which the dug manager uses, eg. `-s Queue'.

Default: signature of first manager in current directory.

-p PROFILES

Names of profiles, eg. `-p "(1..8)"'.

Default: all profiles in current directory.

-S N

Number of different seeds per profile, eg. `-S 3'.

Default: 3.

-o OPTIONS

Options to pass to the dug manager. The options will immediately

follow the dug manager and precede its arguments, so flags for the

Haskell run-time system can be included either using `+RTS' and

`-RTS' (GHC and nhc do this) or directly (HBC does this).

Eg. `-o "+RTS -p -RTS"' for GHC with profiling, and

`-o "-"' for HBC (as a minus must precede flags passed to an

executable), and

`-o "-m -"' for HBC with profiling.

Default: "-".

-O OPTIONS

Additional options to pass to the dug manager. Multiple `-O's

accumulate options. The options will follow the base options

given by `-o'.

Eg. `-O "-n 1000"' and `-O "-b 100"' together with `-o "-"' pass

the options `- -n 1000 -b 100' to the dug manager, telling it to

generate dugs of size 1000 nodes using a pool size of 100.

-z SEED

Initial seed (between 1 and 2147483646 inclusive).

Default: Obtained from the system clock.

-q

Quiet running: do nothing but print everything.

-h

Show this help.

Figure C.7: Help information for makeDugs .
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Runs and times the dug evaluators on dug code files (of the form

`dug-${profile} -$ {se ed }.d ug ' as outputted by `makeDugs') in the

current directory. Writes total times (over all seeds) to files of

the form `dug-${profile}- ${ imp le me nta ti on} .t im e'.

Flags:

(Where more than one value is passed (with `-i', `-p' and `-d'), the

string passed should be a perl expression that evaluates to an

array, eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)". The

following also seem to work fine: "4", "1,3", "3..5". Note that some

characters need to be quoted, eg. ".", so `-d test.dug' becomes

`-d '"test.dug"''.)

-s SIG

Name of signature which the dug evaluators use, eg. `-s Queue'.

Default: signature of first evaluator in current directory.

-i IMPS

Names of implementations,

eg. `-i "(NaiveQueue,Simp leQ ue ue ,Ba nk ers Qu eu e,Q ue ue_ Nu ll) "' .

Default: all implementations for chosen signature in current directory.

-p PROFILES

Names of profiles, eg. `-p "(1..8)"'.

Default: all profiles in current directory.

-d DUGS

Dugs to be evaluated.

Default: all dugs in current directory matching `dug-${profile}- *. dug '.

-r N

Number of separate timed runs per dug, eg. `-r 3'.

Default: 3.

-R N

Number of internal repeated evaluations per timed run, eg. `-R 10'.

Default: 10.

Figure C.8: Help information for evalDugs (part I).
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-t COMMAND

Time command to produce time information in POSIX standard 1003.2,

specifically:

real %e

user %U

sys %S

(Actually, only requirement is that the output contains the string

"user %U" where `%U' is the user time.)

Most UNIX time commands use this form of output. GNU time does if

passed the flag `-p'. The user time may contain a colon `:'

separating minutes from seconds, eg. `12:32.54'.

Eg. `-t "gnutime -p"'.

Default: "time".

-T TIME

Timeout dug evaluators after TIME seconds. Useful for preventing

excessively slow runs of a dug evaluator. Using a TIME of 0

prevents any timeouts.

Default: 600.

-o OPTIONS

Options to pass to each dug evaluator. The options will

immediately follow the dug evaluator and precede its arguments, so

flags for the Haskell run-time system can be included either using

`+RTS' and `-RTS' (GHC and nhc do this) or directly (HBC does

this).

Eg. `-o "+RTS -p -RTS"' for GHC with profiling, and

`-o "-m"' for HBC with profiling.

Default: "".

-c

Ignore checksum errors.

-q

Quiet running: do nothing but print everything.

-h

Show this help.

Figure C.9: Help information for evalDugs (part I I).
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Processes times outputted by `evalDugs' (files of the form

`dug-${profile} -$ {im pl eme nt ati on }. tim e' in the current directory).

Outputs resulting processed times in file `dugs.times' using summary

information found in `dugs.profiles'.

Flags:

(Where more than one value is passed, eg. with `-i' and `-p', the

string passed should be a perl expression that evaluates to an

array, eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)".)

-i IMPS

Names of implementations,

eg. `-i "(NaiveQueue,Simp leQ ue ue ,Ba nk ers Qu eu e,Q ue ue_ Nu ll) "' .

Default: all implementations for chosen signature in current directory.

-p PROFILES

Names of profiles, eg. `-p "(1..8)"'

Default: all profiles in current directory.

-f FORMAT

Format string used by `printf' to output the times, eg. `-f 8.3f'.

Default: "8.3f".

-F

Use brief format. Useful for automatic processing of results.

One number per line. First line contains number of

implementations used. Remaining lines contain ratios, in the

expected order.

-S

Sort profiles by string comparison, rather than by the default

numerical comparison.

-q

Quiet running, do nothing but print everything.

-h

Show this help.

Figure C.10: Help information for processTimes .

Cleans up all dug and profile files in current directory, that is,

all files of the form `dug-*.profile' `dug-*.dug' `dug-*.time', and

`dugs.times' and `dugs.profiles'.

Flags:

-q

Quiet running: do nothing but print everything.

-h

Show this help.

Figure C.11: Help information for cleanDugs .
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