
A Calculus of Mobile Processes, Part IIRobin Milner, University of Edinburgh, ScotlandJoachim Parrow, Swedish Institute of Computer Science,Kista, SwedenDavid Walker, University of Technology, Sydney, AustraliaJune 1989 (Revised October 1990)

1

Running title: Calculus of Mobile Processes, Part IIAddress for proofs: Joachim Parrow, SICS, Box 1263, S-16428 Kista,Sweden.

2

Special symbols: Since this copy is mathematically type-set, only a fewof the less obvious symbols are listed below.0 Boldface zero; Empty set� � � � � ! Greek letters�� � = def= � _� _6� �D _�0 �0 Various relation symbolsN The set of namesS S�Sn . . . Bisimulation symbols��! ��! xy�! x(y)�! x(y)�! . . . Transition arrows* + m Other arrowsSn<! Indexed union (note: Greek omega)[\ � n � j� Operations on sets etc.:= Replacement symbol::= Syntax de�nition symbolA C0 . . .SGE D Boldface names of axioms etc.input-act par close . . . small caps names of inference rules

3

AbstractThis is the second of two papers in which we present the �-calculus,a calculus of mobile processes. We provide a detailed presentation ofsome of the theory of the calculus developed to date, and in particularwe establish most of the results stated in the companion paper.

4

IntroductionThis is the second of two papers in which we present the �-calculus, a calculusof mobile processes. The companion paper [2] contains an introduction tothe calculus through a sequence of examples, together with statements ofmany results about it. The purpose of the present paper is to provide adetailed presentation of some of the theory of the calculus developed to date,and in particular to establish most of the results stated in the companionpaper. Once the motivation and intuition for the �-calculus are understood,with the help of [2], the present paper serves as a self-contained developmentof the theory. To achieve this we have found it necessary to repeat somematerial from the companion paper.Section 1 contains a description of the syntax of agents and a discursivepresentation of the transitional semantics. In Section 2 we present and mo-tivate the de�nitions of strong bisimulation and strong bisimilarity, strongequivalence, and a useful family of indexed equivalences. Section 3 containsa series of properties of strong bisimilarity, while properties of strong equiv-alence and indexed equivalences are developed in Section 4. A completeaxiomatization for �nite agents is presented in Section 5.There are many points of interest in the detailed development of the the-ory. However, in order to reduce the length of the paper and to avoid givingthe impression that the theory generally is more complicated or surprisingthan it in fact is, we do not include complete proofs of all results. Instead, theAppendix contains extracts giving a taste of the techniques used. Completeproofs may be found in [3].1 Agents and their transitional semantics1.1 AgentsWe �rst recapitulate some of the de�nitions and the notation from our com-panion paper. Assume an in�nite set N of names and use x; y; z; w; v; u asmetavariables over names. We assume also a set of agent identi�ers. Eachagent identi�er A has a nonnegative arity.De�nition 1 The set of agents is de�ned as follows (we use P;Q;R asmetavariables over agents): 5

P ::= 0j xy: Pj x(y): Pj �: Pj (x)Pj [x=y]Pj P j Qj P +Qj A(y1; . . . ; yn)Here 0 is a nullary operator, xy:, x(y):, �:, (x) and [x=y] are unary operators,j and + are binary operators, and n is the arity of A. 2The order of precedence among the operators is the order listed above. Fora description of the intended interpretation of agents see [2]. In that paperwe also use a general summation operator �; in the present paper we will besatis�ed with nullary and binary summation (0 and +) and regard generalsummation as a derived operator.De�nition 2 In each agent of one of the forms x(y): P and (y)P theoccurrence of y within parentheses is a binding occurrence, and in each casethe scope of the occurrence is P . An occurrence of y in an agent is saidto be free if it does not lie within the scope of a binding occurrence of y.The set of names occurring free in P is denoted fn(P). We sometimes writefn(P;Q; . . . ; x; y; . . .) as an abbreviation for fn(P) [fn(Q) [. . . [fx; y; . . .g.2De�nition 3 A de�ning equation for an agent identi�er A of arity n is ofthe form A(x1; . . . ; xn) def= Pwhere the xi are pairwise distinct and fn(P) � fx1; . . . ; xng. 2In the following we assume that each agent identi�er A has a unique de�ningequation.De�nition 4 An occurrence of a name in an agent is said to be bound if itis not free. We assume that the set of bound names of P , bn(P), is de�nedin such a way that it contains all names which occur bound in P and that ifA(~x) def= Q then bn(A(~x)) = bn(Q), where ~x = x1; . . . ; xn. We write n(P) forthe set fn(P) [bn(P) of names of P . 2To avoid pathological technical di�culties we further assume that the familyof de�ning equations of agent identi�ers is such that for each identi�er A,bn(A(~x)) is �nite. 6

De�nition 5 A substitution is a function � from N to N which is almosteverywhere the identity. If xi� = yi for all i with 1 � i � n (and x� = x forall other names x), we sometimes write fy1=x1; . . . ; yn=xng or f~y=~xg for �. 2De�nition 6 P� denotes the agent obtained from P by simultaneouslysubstituting z� for each free occurrence of z in P for each z, with changeof bound names to avoid captures. In particular the following hold where �denotes syntactic identity:(x(y): P)� � x�(y0): Pfy0=yg� where y0 62 fn((y)P;P�) and y0� = y0((y)P)� � (y0)Pfy0=yg� where y0 62 fn((y)P;P�) and y0� = y02De�nition 7 The symbol�� denotes the relation of alpha-convertibility onagents de�ned in the standard way. (The subscript � here bears no relationto the actions � de�ned below.) 21.2 ActionsPrecisely as in CCS [1], a transition in the �-calculus is of the formP ��! QIntuitively, this transition means that P can evolve into Q, and in doing soperform the action �. In our calculus there will be four kinds of action � asfollows:1. The silent action � . As in CCS, P ��! Q means that P can evolveinto Q, and in doing so requires no interaction with the environment.Silent actions can naturally arise from agents of form �:P , but also fromcommunications within an agent.2. A free output action xy. The transition P xy�! Q implies that P canemit the free name y on the port x. Free output actions arise from theoutput pre�x form xy:P .3. An input action x(y). Intuitively, P x(y)�! Q means that P can receiveany name w on the port x, and then evolve into Qfw=yg. Note that thisdeparts slightly from CCS, where an input action contains the actualreceived value. Here, (y) instead represents a reference to the placewhere the received name will go; y is enclosed in brackets in order tostress this fact. Input actions arise from the input pre�x form x(y):P .7

� Kind Free/Bound Polarity fn(�) bn(�)� Silent f 0 ; ;xy Free Output f � fx; yg ;x(y) Input b + fxg fygx(y) Bound Output b � fxg fygTable 1: The actions.4. A bound output action x(y). This kind of action has no counterpart inCCS. Intuitively, P x(y)�! Q means that P emits a private name (i.e. aname bound in P) on the port x, and (y) is a reference to where thisprivate name occurs. As in the input action above, y is enclosed inbrackets to emphasize that it is a reference and does not represent afree name. Bound output actions arise from free output actions whichcarry names out of their scope, as e.g. in the agent (y)xy:P .The silent action and free output actions will collectively be called free ac-tions, while input actions and bound output actions will be called boundactions. Thus, the bound actions carry \references" rather than values; thesereferences are in the form of names within brackets.The free output and bound output actions will collectively be called out-put actions, or sometimes negative actions (actions of negative polarity).Similarly, the input actions will be called positive actions (actions of positivepolarity). Two actions must be of opposite polarity in order to combine intoan internal communication.In the output and input actions mentioned above, x is the subject and ythe object or parameter. The object is said to be bound in the bound actionsand free in the free actions. The set of bound names bn(�) of an action � isthe empty set if � is a free action; otherwise it contains just the bound objectof �. The set of free names fn(�) of � contains the subject and free object(if any) of �, and the names n(�) of � is the union of bn(�) and fn(�). Notethat n(�) = ;. A summary of these de�nitions appears in Table 1.1.3 TransitionsWe now proceed to de�ne the transition relations ��! on agents.De�nition 8 The transition relations are the smallest relations satisfyingthe rules of action in Table 2. 2This de�nition has the same structure as the corresponding de�nition in CCS.However, the details di�er to a considerable extent. Brie
y stated, the dif-ferences between CCS and the present calculus emanate from the restriction8

tau-act : ��:P ��! P output-act : �xy:P xy�! Pinput-act : �x(z):P x(w)�! Pfw=zg w 62 fn((z)P)sum : P ��! P 0P +Q ��! P 0 match : P ��! P 0[x=x]P ��! P 0ide : Pfey=exg ��! P 0A(ey) ��! P 0 A(ex) def= Ppar : P ��! P 0P jQ ��! P 0 jQ bn(�) \ fn(Q) = ;com : P xy�! P 0 Q x(z)�! Q0P jQ ��! P 0 jQ0fy=zg close : P x(w)�! P 0 Q x(w)�! Q0P jQ ��! (w)(P 0 jQ0)res : P ��! P 0(y)P ��! (y)P 0 y 62 n(�) open : P xy�! P 0(y)P x(w)�! P 0fw=yg y 6= xw 62 fn((y)P 0)Table 2: Rules of Action. Rules involving the binary operators + and jadditionally have symmetric forms. 9

operator (x), which in the present calculus restricts the scope of both actionsubjects and action objects. It is worth noting that the complication overCCS comes from the ability to restrict the scope of action objects, and notprimarily from the fusion of \port names" with \data values". We will hereexplain this issue.1.3.1 Communicating Free NamesTo begin, consider the usual CCS rules for deriving an internal communica-tion. These are:�av:P av�! P �a(x):P av�! Pfv=xg P av�! P 0 Q av�! Q0P jQ ��! P 0 jQ0Thus, the CCS value variable x is instantiated to a value v when inferringan action from a(x):P ; the rule admits an instantiation to any such value,and hence the agent a(x):P can combine with any output transition in thecommunication rule. We call this scheme early instantiation, since variablesare instantiated at the time of inferring the input transition.Although rules representing early instantiation can be given for the �-calculus we instead adopt a scheme of late instantiation, where the inputactions contain bound objects which become instantiated only when infer-ring an internal communication. Our reason is simply that this will admit anotion of equivalence for which the algebraic theory appears somewhat sim-pler; we defer the treatment of early instantiation to a forthcoming paper.The late instantiation scheme in the �-calculus is represented by the rulesoutput-act, input-act and com in Table 2. We have explored a numberof alternative rules, but they all seem to be essentially equivalent. Noticethat scope intrusions resulting from com if y occurs bound in Q0 are prop-erly taken care of since a bound y is renamed in the substitution Q0fy=zg (cf.De�nition 6).However, bound objects require careful treatment: a bound object isessentially a reference to locations within an agent, and it is important thatsuch references are maintained in all rules of action. The problematic rule inthis respect is one of the usual CCS rules for parallel compositionP ��! P 0P jQ ��! P 0 jQ (1)The corresponding rule in the �-calculus is par in Table 2; it is di�erent onlyin that it has a side condition bn(�) \ fn(Q) = ;. To see that this conditionis needed consider a transition P x(z)�! P 0. Here z is a reference to locationsin P 0; the intuition is that in a subsequent communication a name will bereceived and substituted for the z:s in P 0. But if z also occurs free in Q, then10

in the conclusion of (1) the bound object z will refer to additional locationswithin Q. A subsequent communication will then substitute not only the z:sin P 0 but also the free z:s in Q. For example, from input-act, (1) and comwe can derive the obviously incorrect transition(x(z):P jQ) j xy:R ��! (P jQ)fy=zg jR (2)This transition is incorrect since the free name z in Q is only accidentallythe same as the bound name z in x(z):P . For this reason we require in parthat (1) can only be applied when a name bound in � does not occur free inQ. This also explains why input-act cannot be simpli�ed to the followingrule: �x(z):P x(z)�! PWith this simpler rule the side condition in par would prevent all inputtransitions from e.g. x(z):P jzy:Q. The change of bound name in input-actis harmless since bound names represent references to places within an agent.Clearly, if w does not occur free in P , then w refers to the same places inPfw=zg as z refers to in P . So we allow any such w (and also z itself) tostand for z. Instead of the incorrect (2) we can now correctly infer(x(z):P jQ) j xy:R ��! (Pfw=zg jQ)fy=wg jRThe side condition in input-act ensures that w = z or w 62 fn(P), and theside condition in par ensures that w 62 fn(Q). Hence the agent after ��!can be simpli�ed to (Pfy=zg jQ) jRwhich is the expected result of the communication.1.3.2 Communicating bound namesThe rules in the �-calculus must accommodate scope extrusions, as for ex-ample in (y)xy:P j x(z):Q ��! (y)(P jQfy=zg) (3)Note that we expect this transition to be correct only if either y is z or y isnot free in Q: otherwise the restriction (y) in (y)(P jQfy=zg) will bind occur-rences of names in Q which are only accidentally related to the extrusion. Ifthis requirement is not ful�lled, we expect an alpha-conversion of the boundy in the resulting agent:(y)xy:P j x(z):Q ��! (y0)(Pfy0=yg jQfy0=zg) (4)where y0 is a fresh name. 11

We achieve the desired e�ect with two additional rules of action, openand close, which have no counterparts in CCS. The scope opening rule opentransforms a free output action to a bound output action, and removes onerestriction operator. The fact that y was bound is now represented in theaction, which contains a reference to the places where this bound y occurred.Since the objects of bound output actions represent references, they must alsoobey the side condition in the rule par: a bound object may not occur freein Q in that rule. Therefore we allow a renaming in open just as in the inputpre�x rule: the particular name representing the reference is unimportant aslong as it refers to the same locations in P 0. Note that the side conditionensures y 6= x, so the subject in the output action cannot be the same as therestricted name.In the scope closing rule close, a bound output action combines with aninput action. Intuitively, the rule means that the bound object is received,and then the restriction of this bound name must reappear: that name is stillprivate although its scope has grown. Note that since both input-act andopen allow an almost arbitrary choice of bound names, the two premises ofclose can use the same bound name without any loss of generality.As an example of deriving a scope extrusion, consider again (3). We havefrom open that (y)xy:P x(w)�! Pfw=ygfor all w such that w = y or w 62 fn(P). From input-act we have thatx(z):Q x(w)�! Qfw=zgfor all w such that w = z or w 62 fn(Q). Applying the scope closing rule weget (y)xy:P j x(z):Q ��! (w)(Pfw=yg jQfw=zg)for all w satisfying both the side conditions. If additionally y = z or y doesnot occur free in Q, then y itself satis�es the accumulated conditions onw. We can then choose y instead of w in this derivation, so the �nal agentbecomes (y)(P jQfy=zg)which is precisely the agent in (3). If y 6= z and y is free in Q, then theside condition in the closing rule prevents this derivation, but we can alwayschoose a fresh name y0 in place of w and obtain precisely the transition (4).12

2 Strong bisimilarity and equivalence2.1 Strong bisimilarityWe will here present and motivate the de�nition of strong bisimilarity in the�-calculus. It is helpful to �rst recapitulate ordinary CCS, where the strongequivalence may be de�ned through simulations: a binary relation S is asimulation if PSQ implies thatIf P ��! P 0 then for some Q0, Q ��! Q0 and P 0SQ0 (5)In other words, any transition from P must be simulated by a transition fromQ, such that the derivatives P 0 and Q0 remain in the simulation. A binaryrelation S is a bisimulation if both S and its inverse are simulations. Strongequivalence on agents is de�ned as the largest bisimulation.We will apply the same idea to the �-calculus. The main modi�cationis that we must take special account of actions with bound objects. Forexample, if z 62 fn(R;x) we obviously want the following agentsP � x(y):RQ � (z)x(y):Rto be bisimilar, even though P has an input transition x(z)�! which Q cannotsimulate exactly. The reason that this di�erence between P and Q is unim-portant is that Q (and P) have other transitions x(w)�! which only di�er inthe choice of the bound name w. A bound object is merely a reference tolocations within an agent, and the particular name used for this referenceis unimportant | an external observer cannot observe the identity of thebound name. So, for the purpose of de�ning bisimilarity, we will only con-sider bound objects which are completely fresh, i.e. do not occur in any ofthe agents to be compared. Recalling the rules of the previous section thelimitation to use fresh bound objects is harmless: for any transition with abound object there is a corresponding transition where the object is suitablyfresh (cf. also Lemma 2 in Section 3.1 below).Another important point is that in order to simulate an input action, it isnot su�cient that the derivatives P 0 and Q0 continue to simulate. Intuitively,an object in an input action is a placeholder for something to be received,and can become instantiated to an arbitrary name. We thus require that P 0and Q0 continue to simulate for all instantiations of the object in the inputaction. These considerations lead to the following de�nition:De�nition 9 A binary relation S on agents is a (strong) simulation if itsatis�es the requirements in Table 3. The relation S is a (strong) bisimulation13

S is a simulation if PSQ implies that1. If P ��! P 0 and � is a free action,then for some Q0, Q ��! Q0 and P 0SQ02. If P x(y)�! P 0 and y 62 n(P;Q),then for some Q0, Q x(y)�! Q0 and for all w, P 0fw=ygSQ0fw=yg3. If P x(y)�! P 0 and y 62 n(P;Q),then for some Q0, Q x(y)�! Q0 and P 0SQ0Table 3: De�nition of (Strong) Simulation.if both S and its inverse are simulations. The relation _� , (strong) bisimilar-ity, on agents is de�ned by P _� Q if and only if there exists a bisimulationS such that PSQ. 2It is straightforward to verify that _� is a bisimulation and hence the largestbisimulation.Note that requirement (5) applies only to free actions � (clause 1), whileother requirements are associated with the bound actions. Also, note thatthe clauses for input and bound output actions are di�erent. In order tosimulate an input transition, clause 2 requires Q to have a similar transitionsuch that the derivatives P 0 and Q0 continue to simulate for all instantiationsw of the bound objects. On the other hand, the bound output transition inclause 3 intuitively means that P can emit a private name, and (y) refers tothe places where this private name used to occur. In order to simulate sucha transition Q should similarly emit a private name and continue to simulateP 0. This is su�cient, since the bound object y cannot become instantiatedthrough an interaction with the environment.As an example consider the following equation, where we abbreviate xvto x, and y(u) to y, and omit a trailing :0:x j y _� x:y + y:x (6)This equation is true when x 6= y and u 6= v, since then any transition bythe left hand side can be simulated by a transition of the right hand side,and vice versa. On the other hand,x j x _6� x:x+ x:x (7)since the left hand side has an additional � -transition. It follows that _� isnot in general preserved by substitutions of names. (This is not surprising;14

in CCS strong equivalence is also not in general preserved by substitution ofport names, for the same reason.) It also follows that the equation(y)zy:(x j y) _� (y)zy:(x:y + y:x)is true, since a bound output transition of the left hand side can be simulatedby a bound output transition of the right hand side, and vice versa. Notethat the bound objects in these transitions cannot be x, since x occurs onboth sides of the equation. In contrast,z(y):(x j y) _6� z(y):(x:y + y:x)since clause 2 requires the derivatives of the leading input transitions to besimilar for all instances of y, and they are not similar when y is instantiatedto x. It follows that strong bisimilarity is not preserved by input pre�x.2.2 Strong equivalence and distinctionsSince strong bisimilarity is not preserved by substitution of free names we willsometimes refer to it as (strong) ground equivalence; this can be thought of asequivalence under the assumption that di�erent names will not be identi�ed,i.e. names behave as constants. It is then natural to consider the �nerequivalence obtained as bisimilarity under all substitutions of names:De�nition 10 P and Q are (strongly) equivalent, written P � Q, ifP� :�Q� for all substitutions �.Thus (6) does not hold for strong equivalence; instead we have the moregeneral x j y � x:y + y:x+ [x=y]�In a sense, for the purpose of strong equivalence names behave as variablesin that equivalence must hold for all instantiations of free names. As pointedout in our companion paper there is a spectrum of equivalences between _�and � depending on which names may be assumed to be distinct:De�nition 11 A distinction is a symmetric irre
exive relation betweennames. We shall let D range over distinctions. A substitution � respects adistinction D if, for all (x; y) 2 D, x� 6= y�.De�nition 12 P and Q are strongly D-equivalent, written P �D Q, ifP� :�Q� for all substitutions � respecting D.15

Note that an immediate consequence of this de�nition is that if D � D0 thenP �D Q implies P �D0 Q. As a simple example, we havex j y �fx;yg x:y + y:xHere we have used a natural abbreviation, allowing ourselves to write a setA � N when we mean the distinction A�A� IdN , which keeps all membersof A distinct from each other. Clearly, then, we have the two extreme cases:� = �N and � = �;2.3 Late and early bisimilarityWe close this section with a discussion of an interesting alternative de�nitionof bisimulation obtained by commuting the quanti�ers in clause 2 in Table 3:20 If P x(y)�! P 0 and y 62 n(P;Q),then for all w, there isQ0 such that Q x(y)�! Q0 and P 0fw=ygSQ0fw=ygWrite _�0 for the ground equivalence obtained with this modi�cation. Now_�0 is strictly weaker than _� (and the corresponding non-ground equivalence�0 is strictly weaker than �), i.e. more agents are equivalent when clause 20is adopted. The reason is that clause 2 requires that there is one simulatinginput transition which is equipotent for all instances of the object. In con-trast, clause 20 only requires that for each instance of the object there existsa simulating transition (and these simulating transitions may be di�erent fordi�erent instances). Thus, for the purpose of _�0 the instantiation of theobject can be regarded as happening simultaneously with (or even before)the input transition, and for _� the instantiation may be regarded as hap-pening after the transition. For this reason we will sometimes call _�0 earlybisimilarity and _� late bisimilarity.As an example consider the following agents:P = x(u):R+ x(u):0Q = P + x(u):[u=z]RIt always holds that P _�0 Q, but P _� Q is not true in general. To see thisconsider the transition Q x(u)�! [u=z]R (8)P has no transition which simulates (8) for all instantiations of u. However,for each instantiation of u there is a simulating transition: for z it isP x(u)�! R16

(since ([u=z]R)fz=ug _�0 Rfz=ug) and for all other names it isP x(u)�! 0(since ([u= z]R)fz0=ug _�0 0 � 0fz0=ug for all z0 6= z). A similar but slightlylonger example not involving the matching operator also exists.It is interesting to note that with the early instantiation schemementionedin Section 1.3.1 the natural concept of bisimilarity would coincide with earlybisimilarity, while late bisimilarity would be hard to de�ne. Our late instan-tiation scheme has thus the advantage that both versions of bisimilarity caneasily be treated. Although early bisimilarity is closer to the original idea ofequivalence as presented in CCS its equational theory is more complicated,and we defer a treatment of it to a forthcoming paper.3 Properties of strong bisimilarityThe main contribution in this paper is to develop the properties of strongbisimilarity and equivalence. Even though equivalence is perhaps the moreinteresting of the two (since it turns out to be a congruence) it is necessaryto �rst derive the properties of bisimilarity.3.1 Transitions and alpha-conversionIn this subsection we give a series of fundamental lemmas which underpinmany later results. None of the results is unexpected and their proofs aremostly straightforward, though they do require careful attention to detail.Moreover, care is also required in �nding a correct order of presentation asthe proofs of some of the lemmas rely on properties established earlier in theseries.The �rst lemma describes the relationships among the free names of anagent, the names of its possible actions, and the free names of its immediatederivatives.Lemma 1 If P ��! P 0 then (i) fn(�) � fn(P) and (ii) fn(P 0) � fn(P) [bn(�).Proof : By induction on depth of inference. See the Appendix. 2De�nition 13 In the following lemmas the phrase:if P ��! P 0 then equally Q �0�! Q0means that if P ��! P 0 may be inferred from the transition rules then so, byan inference of no greater depth, may be Q �0�! Q0. 217

The reason for introducing this notion, and for including it in the state-ments of Lemmas 2{5 to follow, is that it facilitates the proofs of the prop-erties of interest. It is not used anywhere other than in the present series oflemmas.As discussed in the preceding sections the following lemma, whose contentmay be paraphrased by saying that the object of a bound action may be`almost any' name, is of the utmost importance.Lemma 2 Suppose that P a(y)�! P 0 where a = x or a = x and that z 62 n(P).Then equally for some P 00 �� P 0fz=yg, P a(z)�! P 00.Proof : By induction on depth of inference. 2The following two lemmas are concerned with the relationship betweenaction and substitution. First we de�ne the result of applying a substitutionto an action.De�nition 14 If � is an action and � a substitution then �� is de�ned asfollows: (xy)� = x�y��� = �(a(y))� = a�(y) if a = x or a = x 2The next lemma asserts that if an agent P may perform an action � andthereby evolve into P 0, then up to alpha-equivalence P� may perform ��and evolve into P 0�. In the case � = a(y) where a = x or a = x a sidecondition is necessary. For in general, P� may not admit actions with y asbound object, and y may occur free in P 0.Lemma 3 If P ��! P 0, bn(�) \ fn(P 0�) = ;, and �dbn(�) = id, thenequally for some P 00 �� P 0�, P� ���! P 00.Proof : By induction on depth of inference. 2The full converse of the preceding lemma does not hold. As a simpleillustration of this point suppose that P � xy:0 j w(z):0 and � = fw=xg.Then P� ��! (0 j 0) but P cannot perform a � -action. However the followingpartial converse does hold. A more general statement is possible but the onebelow su�ces for the present development.Lemma 4 If Pfw=zg ��! P 0 where w 62 fn(P) and bn(�) \ fn(P;w) = ;,then equally for some Q and � with Qfw=zg �� P 0 and �� = �, P ��! Q.18

Proof: By induction on depth of inference. 2In stating the preceding three lemmas we have been careful in our useof the relation of alpha-convertibility of agents. The content of Theorem 1below is that alpha-convertibility is a strong bisimulation and thus alpha-convertible agents are strongly bisimilar. To prove it we require the follow-ing lemma which describes the relationship between the actions of alpha-convertible agents.Lemma 5 Suppose that P �� Q.(a) If � is a free action and P ��! P 0 then equally for some Q0 withP 0 �� Q0, Q ��! Q0.(b) If P a(y)�! P 0 where a = x or a = x and z 62 n(Q) then equally for someQ0 with P 0fz=yg �� Q0, Q a(z)�! Q0.Proof : By induction on depth of inference. 2Theorem 1 �� is a strong bisimulation.Proof: Straightforward using the preceding lemma. 2Having established this theorem, in what follows we shall freely identifyalpha-convertible agents writing � for ��.3.2 Bisimilarity as an equivalenceAs we saw in Section 2.1 strong bisimilarity is not, in general, preserved bysubstitution. However the following important result holds.Lemma 6 If P :�Q and w 62 fn(P;Q), then Pfw=zg :�Qfw=zg.Proof: The relation S = Sn<! Sn is a strong bisimulation whereS0 = _�Sn+1 = f(Pfw=zg; Qfw=zg) j PSnQ; w 62 fn(P;Q)gSee the Appendix. 2The next objective is to establish that _� is an equivalence relationpreserved by many of the operators. To prove preservation in the case ofthe composition and scope restriction operators it is necessary to constructa suitable bisimulation. It turns out that this construction is useful in othercontexts and thus we isolate it in a de�nition.De�nition 15 A relation S is a strong simulation up to restriction i�whenever PSQ then 19

1. if w 62 fn(P;Q) then Pfw=zgSQfw=zg, and2. (a) if P xy�! P 0 then for some Q0, Q xy�! Q0 and P 0SQ0,(b) if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and forall v, P 0fv=ygSQ0fv=yg,(c) if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 andP 0SQ0,(d) if P ��! P 0 then for some Q0, Q ��! Q0 and either P 0SQ0 or forsome P 00, Q00 and w, P 0 � (w)P 00, Q0 � (w)Q00 and P 00SQ00.A relation S is a strong bisimulation up to restriction i� both S and S�1 arestrong simulations up to restriction. 2The import of the next result is that in order to establish that P _�Q itsu�ces to �nd a strong bisimulation up to restriction containing (P;Q).Lemma 7 If S is a strong bisimulation up to restriction then S � :� .Proof: We show that S� = Sn<! Sn is a strong bisimulation whereS0 = SSn+1 = f((w)P; (w)Q) j PSnQ; w 2 NgSee the Appendix. 2Combining the preceding results we can now prove the following.Theorem 2 (a) :� is an equivalence relation.(b) If P :�Q then �:P :� �:Q; � a free actionP +R :� Q+R;[x=y]P :� [x=y]Q;P jR :� QjR;(w)P :� (w)Q:(c) If for all v 2 fn(P;Q; y), Pfv=yg :�Qfv=yg then x(y): P :�x(y): Q.Proof : For details see the Appendix. The proof ideas are:(a) Re
exivity and symmetry are obvious but transitivity is not. Indeedit is not in general the case that if S1 and S2 are strong bisimulations thenso is S1S2. However it is the case that _� _� is a strong bisimulation.(b) The �rst three assertions are easily veri�ed. The other two are provedby showing that f(P jR;QjR) j P _�Qg is a strong bisimulation up to restric-tion, and by observing that by Lemma 6, _� is a strong bisimulation up torestriction. 20

(c) This is straightforward using Lemma 6. 2This theorem establishes that bisimilarity is almost a congruence; it ispreserved by all operators but input pre�x. Although x(y):P _� x(y):Q doesnot follow from P _� Q (as established in Section 2.1) it follows from thestronger assumption that P and Q are bisimilar for all instances of y.3.3 Algebraic laws for bisimilarityWe proceed to investigate further the theory of _� by stating and provinga collection of algebraic laws. To begin, there are the obvious laws for sum-mation from CCS, which establish that 0 is a zero for summation, and thatsummation is idempotent, commutative, and associative:Theorem 3 (a) P + 0 _� P(b) P + P _� P(c) P1 + P2 _� P2 + P1(d) P1 + (P2 + P3) _� (P1 + P2) + P3Proof : The following relations are easily seen to be strong bisimulations:Sa = f(P1 + 0; P1) j P1 agentg [IdSb = f(P1 + P1; P1) j P1 agentg [IdSc = f(P1 + P2; P2 + P1) j P1; P2 agentsg [IdSd = f(P1 + (P2 + P3); (P1 + P2) + P3) j P1; P2; P3 agentsg [Idwhere Id is the identity on agents. 2There are also the following simple laws for agent identi�ers and matching:Theorem 4 If A(ex) def= P then A(ey) _� Pfey=exg.Proof : It is straightforward to show that the relationS = f(A(ey); Pfey=exg)g [Idis a bisimulation 2Theorem 5 (a) [x=y]P _� 0 if x 6= y(b) [x=x]P _� PProof : We can prove the following relations to be strong bisimulations:Sa = f([x=y]P1; 0) j P1 agent, x 6= ygSb = f([x=x]P1; P1) j P1 agentg [Id21

2These are the only laws for _� which correspond to the \dynamic" lawsin CCS (of course matching is not present in CCS, but it quali�es as a \dy-namic operator" since it disappears in the derivative of a transition). The\static" laws in CCS are related to the relabelling, restriction, and paralleloperators. In the �-calculus there is no relabelling operator. Moreover, ourrestriction operator is perhaps not quite a static operator since it may disap-pear (through an application of the open rule) and reappear in a di�erentplace (through the close rule). Nevertheless, it satis�es many natural laws:Theorem 6(a) (y)P _� P if y 62 fn(P)(b) (y)(z)P _� (z)(y)P(c) (y)(P +Q) _� (y)P + (y)Q(d) (y)�:P _� �:(y)P if y 62 n(�)(e) (y)�:P _� 0 if y is the subject of �Proof : We prove the following relations to be strong bisimulations:Sa = f((y)P1; P1) j P1 agent, y 62 fn(P1)gSb = f((y)(z)P1; (z)(y)P1) j P1 agentg [IdSc = f((y)(P1 + P2); (y)P1 + (y)P2) j P1; P2 agentsg [IdSd = f((y)�:P1; �:(y)P1) j P1 agent, y 62 n(�)g [IdSe = f((y)�:P1; 0) j P1 agent, y subject of �gWe must include Id in Sb since one of the restrictions may disappear becauseof the open rule. 2Theorem 6 (a) just says that vacuous restrictions can be removed, andTheorem 6 (b) that restrictions commute. Theorem 6 (c) implies that re-striction distributes over summation, while the last two parts of Theorem 6relate restriction and pre�x. It is worth noting that neither Theorem 6 (d)nor Theorem 6 (e) is immediately applicable when y is the object in �. Ify is a bound object, then an alpha-conversion will make an application ofTheorem 6 (d) possible. But if y is a free object, i.e. � = xy, then the restric-tion cannot be propagated through the pre�x operator. This is in contrastwith the situation in CCS, where all restriction operators can be eliminatedwhile preserving equivalence. In the �-calculus, agents of type (y)xy:P (whenx 6= y) contain an irreducible restriction operator; this type of agent will beof importance for the completeness proof, so we de�ne:De�nition 16 If x 6= y, then x(y):P means (y)xy:P , and the pre�x x(y)is called a derived pre�x. 22

Thus, by Theorem 6 (d) and (e), any restriction operator can either be prop-agated through a pre�x or form a derived pre�x. It will often be useful totreat derived pre�xes along with ordinary pre�xes. In these situations it isimportant that Theorem 6 also holds for derived pre�xes:Theorem 7 Theorem 6 is valid also if � ranges over derived pre�xes.Proof : Directly from Theorem 6:(d) (y)(z)xz:P _� (z)(y)xz:P _� (z)xz:(y)P if z; x 6= y(e) (y)(z)yz:P _� (z)(y)yz:P _� (z)0 _� 0 2We proceed with some expected laws for parallel composition.Theorem 8(a) P j 0 _� P(b) P1 j P2 _� P2 j P1(c) (y)P1 j P2 _� (y)(P1 j P2) if y 62 fn(P2)(d) (P1 j P2) j P3 _� P1 j (P2 j P3)Proof : See the Appendix. Note that in order to prove (d) of the theorem,we must �rst establish (c), since a parallel composition may generate a re-striction operator through the close rule. To prove (c) and (d) we showthat certain relations are strong bisimulations up to _� and restriction. Theconcept of a strong bisimulation up to _� is the obvious analogue of a similarconcept from CCS. It di�ers from a strong bisimulation in that any transitionneed be simulated only up to strong bisimilarity. To prove (c) and (d) wemust combine this idea with that of bisimulation up to restriction introducedearlier. 2Theorem 8 (a), (b), and (d) assert that 0 is a unit for parallel, and thatparallel is commutative and associative. Part (c) is the scope extension law:it says that a restriction can safely extend its scope to agents which do notcontain free occurrences of the restricted name. This can be thought of asa generalization of Theorem 6 (a), which in fact is an easy consequence ofTheorem 8 and (y)0 _� 0:(y)P _� (y)(P j 0) _� P j (y)0 _� P j 0 _� P if y 62 fn(P)The scope extension law is also related to the CCS law which says that arestriction distributes over parallel composition if the components cannotinteract by means of the restricted port. In our calculus, two agents cancommunicate through a name if one agent has the name in positive subjectposition, and the other agent has the name in negative subject position. Inthe absence of a more re�ned notion of sort, we can at least say that bothagents must have the name free, so our formulation of this law is:23

Theorem 9(y)(P1 j P2) _� (y)P1 j (y)P2 if y 62 fn(P1) \ fn(P2)Proof : If y 62 fn(P1) \ fn(P2), then y cannot be free in both P1 and P2.Assume that y is not free in P2. Then by Theorems 6 (a) and 8 (c):(y)(P1 j P2) _� (y)P1 j P2 _� (y)P1 j (y)P2The situation when y is not free in P1 is similar. 2Conversely, Theorem 8 (c) is an easy consequence of Theorems 9 and 6 (a).Finally, there is a counterpart to the expansion law in CCS. In our calculusthe expansion law also covers derived pre�xes, so in the following, �; � willrange over ordinary and derived pre�xes.Theorem 10 Let P � Pi �i:Pi and Q � Pj �j:Qj, where bn(�i)\fn(Q) =; for all i, and bn(�j) \ fn(P) = ; for all j. ThenP jQ _� Xi �i:(Pi jQ) +Xj �j:(P jQj) + X�i comp�j �:Rijwhere the relation �i comp�j (�i complements �j) holds in the following fourcases, which also de�ne Rij :1. �i is xu and �j is x(v); then Rij is Pi jQjfu=vg.2. �i is x(u) and �j is x(v); then Rij is (w)(Pifw=ug jQjfw=vg), where wis not free in (u)Pi or in (v)Qj.3. �i is x(v) and �j is xu; then Rij is Pifu=vg jQj.4. �i is x(v) and �j is x(u); then Rij is (w)(Pifw=vg j Qjfw=ug), where wis not free in (v)Pi or in (u)Qj.Proof : Assume the premises of the lemma, and write R for the right handside of the equation. De�ne the relation S byS = f(P jQ; R)g [IdWe can show that S is a bisimulation. 2Note that the side conditions bn(�i) \ fn(Q) = ; and bn(�j) \ fn(P) = ;are important, otherwise a bound object in �i (or �j) would bind names inQ (or P) in the right hand side but not in the left hand side.24

4 Properties of strong (D-) equivalence4.1 Algebraic properties of of D-equivalenceMost of the properties established for strong bisimilarity carry over to strongD-equivalence for any D:Theorem 11 For any distinction D it holds that(a) �D is an equivalence relation.(b) If P �D Q then �:P �D �:Q; � a free actionP +R �D Q+R;[x=y]P �D [x=y]Q;P jR �D QjR;(w)P �D (w)Q:(c) If P �D Q and for all v 2 fn(P;Q) such that (v; y) 2 D it holds thatPfv=yg �D Qfv=yg then x(y): P �D x(y): Q.Proof : Directly from De�nition 6 and Theorem 2. 2An immediate consequence is the following:Theorem 12 Strong equivalence is a congruence.Proof : Put D = ; in Theorem 11. 2So in particular P � Q implies x(y):P � x(y):Q.Theorem 13 All theorems in Section 3.3 except Theorems 5 (a) and 10also hold for �D for all distinctions D.Proof : Immediately from De�nition 6 and the theorems in Section 3.3. 2To see that Theorem 5 (a) is invalid for strong equivalence note that([x=y]P)fx=yg _6� 0fx=ygwhen P _6� 0. The failure of the expansion law (Theorem 10) for strongequivalence was demonstrated in Section 2.2. Instead of these two theoremswe have the following two:Theorem 14 [x=y]P �fx;yg 0Proof : Immediately from De�nition 12 and Theorem 5 (a). 225

Theorem 15 Let P � Pi �i:Pi and Q � Pj �j:Qj, where no �i (resp. �j)binds a name free in Q (resp. P); thenP j Q � Xi �i:(Pi j Q) +Xj �j:(P j Qj) + X�i opp�j[xi = yj]�:Rijwhere the relation �i opp �j (�i opposes �j) holds in four cases:1. �i is xiu and �j is yj(v); then Rij is Pi j Qjfu=vg.2. �i is xi(u) and �j is yj(v); then Rij is (w)(Pifw=ug j Qjfw=vg), where wis not free in (u)Pi or in (v)Qj.3. �i is xi(v) and �j is yju; then Rij is Pifu=vg j Qj.4. �i is xi(v) and �j is yj(u); then Rij is (w)(Pifw=vg j Qjfw=ug), where wis not free in (v)Pi or in (u)Qj.Proof : It is straightforward to check (using Theorems 5 (a) and 10) that ap-plying a substitution � to both sides of the equation yields strongly bisimilaragents. 2The last two theorems can be combined into expansion laws for D-equivalence for arbitrary D; we believe that these will be useful workinglaws. The following laws additionally relate D-equivalences for di�erent D:sand throw light on the two forms of name binding in the calculus. We �rstde�ne two operations on distinctions:De�nition 17 Dnx def= D � (fxg�N [N�fxg) 2This removes any constraint in D upon the substitution for x.De�nition 18 For any set A � N of names,Dj�A def= D \ (A�A) 2Theorem 16 (a) If P �D Q then (x)P �Dnx (x)Q(b) If P �Dnx Q then y(x):P �D y(x):Q(c) If P �D Q and A = fn(P;Q) then P �Dj�A Q26

Proof : For (a), if P �D Q and � respectsDnx, then for some x0 62 fn((x)P; (x)Q;P�;Q�)with x0� = x0, ((x)P)� � (x0)P�0 and ((x)Q)� � (x0)Q�0 where �0 =fx0=xg�. Since �0 respects D, P�0 _� Q�0 and hence (x0)P�0 _� (x0)Q�0, i.e.((x)P)� _� ((x)Q)�. Hence (x)P �Dnx (x)Q.For (b), suppose that P �Dnx Q and � respects D. Then for somex0 62 fn((x)P; (x)Q;P�;Q�) with x0� = x0, (y(x): P)� � y�(x0): Pfx0=xg� and(y(x): Q)� � y�(x0): Qfx0=xg�. Then for any w 2 fn(Pfx0=xg�;Qfx0=xg�; x),since fx0=xg�fw=x0g respects Dnx, Pfx0=xg�fw=x0g _� Qfx0=xg�fw=x0g. Hence(y(x): P)� _� (y(x): Q)�. So y(x): P �D y(x): Q.For (c), note that if � respects Dj�A then there is �0 respecting D suchthat �j�A = �0j�A. 24.2 Strong equivalence and recursionWe record here the properties which we would expect of recursive de�nitions,by analogy with CCS [1]. First, if we transform the right-hand sides ofde�nitions, respecting �, then the agent de�ned is the same up to �. Second,if two agents satisfy the same (recursive) equation, then they are the sameup to �, provided the equation satis�es a standard condition. Both theseproperties hold for strong equivalence but fail for strong bisimilarity.In order to state these results, we need a few preliminaries. We assume aset of schematic identi�ers, each having a nonnegative arity. In the following,X and Xi will range over schematic identi�ers. An agent expression is likean agent but may contain schematic identi�ers in the same way as identi�ers;we use E;F to range over agent expressions.De�nition 19 Let X have arity n, let ex = x1; . . . ; xn be distinct names,and assume that fn(P) � fx1; . . . ; xng. The replacement of X(ex) by P in E,written EfX(ex) :=Pg, means the result of replacing each subterm X(ey) inE by Pfey=exg. This extends in the obvious way to simultaneous replacementof several schematic identi�ers, EfX1(ex1) :=P1; . . . ;Xm(exm) :=Pmg. 2As an example,�xy:X(x; x) + (y)X(x; y)�fX(u;w) :=uw:0g � xy:xx:0+ (y)xy:0In what follows, we assume the indexing set I to be either f1; . . . ;mg for somem, or else !. We write fX for a sequence X1;X2; . . . indexed by I; similarlyP , etc. We use i; j to range over I. When a sequence fX of schematicidenti�ers is implied by context, each with an associated name sequence exi,then it is convenient to write EfX1(ex1) :=P1; . . . ;Xm(exm) :=Pmg simply asE(P1; . . . ; Pm) or as E(eP). If each Pi is Ai(exi), we also write E(A1; A2; . . .)or E(eA). 27

It is natural to de�ne strong equivalence between agent expressions asequivalence under all replacements of schematic identi�ers by agents:De�nition 20 Let E and F be two agent expressions containing only theschematic identi�ersX1; . . . ;Xm, with associated name sequences ex1; . . . ; exm.Then E � F means that E(eP) � F (eP)for all eP such that fn(Pi) � exi for each i. 2We can now state our �rst result, that recursive de�nition preserves strongequivalence:Theorem 17 Assume that eE and eF are agent expressions containing onlythe schematic identi�ersXi, each with associated name sequence exi. Assumethat eA and eB are identi�ers such that for each i the arities of Ai, Bi and Xiare equal. Assume that for all i:Ei � FiAi(exi) def= Ei(eA)Bi(exi) def= Fi(eB)Then Ai(exi) � Bi(exi) for all i.Proof : See the Appendix. 2De�nition 21 A term or identi�er is weakly guarded in P if it lies withinsome subterm �:Q of P . 2If A is weakly guarded in E then intuitively, from the de�nition A def= E,we can unfold the behaviour of A uniquely. The next result makes this precisein the general case:Theorem 18 Assume that eE are agent expressions containing only theschematic identi�ers Xi, each with associated name sequence exi, and thateach Xi is weakly guarded in each Ej. Assume that eP and eQ are agents suchthat fn(Pi) � exi and fn(Qi) � exi for each i. Assume that for all i:Pi � Ei(eP)Qi � Ei(eQ)Then Pi � Qi for all i. 2Proof : The proof follows the lines of the proof of Proposition 14 (2) in [1].It uses the idea of bisimulation up to _� as de�ned in the appendix (De�ni-tion 25) below. We omit the details. 228

5 Algebraic theoryIn this section we establish an axiomatization of strong ground equivalence,and show how this axiomatization can easily be extended to non-groundequivalence and D-equivalences. These theories are complete over �niteagents (i.e. agents not containing any agent identi�ers), but incomplete overall agents (necessarily since :� is not recursively enumerable).We shall state the rules using the standard equality symbol =. We omitthe usual rules for an equivalence relation. Note that = is not assumed tostand for a congruence relation (since _� is not a congruence); the substitutiveproperties of = are therefore explicitly mentioned.De�nition 22 The theory SGE (for strong ground equivalence) consists ofthe following axioms and inference rules:Alpha-conversionA From P � Q infer P = QCongruenceC0 From P = Q infer�:P = �:Q xy:P = xy:QP +R = Q+R P j R = Q j R(x)P = (x)Q [x=y]P = [x=y]QC1 From Pfz=yg = Qfz=yg, for all names z 2 fn(P;Q; y), inferx(y):P = x(y):QSummation S0 P + 0 = PS1 P + P = PS2 P +Q = Q+ PS3 P + (Q+R) = (P +Q) +RRestrictionR0 (x)P = P if x =2 fn(P)R1 (x)(y)P = (y)(x)PR2 (x)(P +Q) = (x)P + (x)QR3 (x)�:P = �:(x)P if x is not in n(�)R4 (x)�:P = 0 if x is the subject of �29

Match M0 [x=y]P = 0 if x 6= yM1 [x=x]P = PExpansionE Assume P � Pi �i:Pi and Q � Pj �j:Qj, where no �i (resp. �j) bindsa name free in Q (resp. P); then inferP j Q = Xi �i:(Pi j Q) +Xj �j:(P j Qj) + X�i comp�j �:Rijwhere the relation �i comp�j (�i complements �j) holds in four cases:1. �i is xu and �j is x(v); then Rij is Pi j Qjfu=vg.2. �i is x(u) and �j is x(v); then Rij is (w)(Pifw=ug j Qjfw=vg), wherew is not free in (u)Pi or in (v)Qj.3. �i is x(v) and �j is xu; then Rij is Pifu=vg j Qj.4. �i is x(v) and �j is x(u); then Rij is (w)(Pifw=vg j Qjfw=ug), wherew is not free in (v)Pi or in (u)Qj.Identi�erI From A(ex) def= P infer A(ey) = Pfey=exgThis completes the de�nition of SGE. 2If P = Q can be proved in SGE we writeSGE ` P = Qor just ` P = QTheorem 19 (Soundness) If SGE ` P = Q then P _�QProof: The soundness of all laws in SGE has been established in Section 3.2We will next prove that SGE admits a natural head normal form, andthat it is complete for �nite agents.De�nition 23 The agent identi�er A is weakly-guardedly de�ned if everyagent identi�er is weakly guarded in the right-hand side of the de�nition ofA. 30

De�nition 24 An agent P is in head normal form if it is a sum of pre�xes:P � Xi �i:Pi 2The following shows the importance of head normal form:Lemma 8 If every agent identi�er is weakly-guardedly de�ned then, forany agent P , there is a head normal form H such thatSGE ` P = HProof : By the assumption that every agent identi�er is weakly-guardedlyde�ned, we may work by induction on the structure of P . The case when Pis an agent identi�er follows from I above, while if P is a pre�x form then Pis in head normal form. If P � P1 + P2 and H1, H2 are head normal formssuch that ` P1 = H1 and ` P2 = H2, then ` P = H where H � H1 +H2.If P � [x= y]Q and ` Q = H, then since either ` P = Q or ` P = 0, theresult follows. If P � (y)Q and ` Q = H then ` P = (y)H, so since usingR2{R4, ` (y)H = H 0 for some head normal form H 0, the result follows. IfP � P1 j P2 and ` P1 = H1 and ` P2 = H2 then ` P = H1 j H2, so sinceusing E, ` H1 j H2 = H for some head normal form H, the result follows.2From this, it is a not hard to show that SGE is complete for strongground equivalence of �nite agents.Theorem 20 (Completeness for �nite agents) For all �nite agents Pand Q, if P :�Q then SGE ` P = Q.Proof : By the preceding two results it su�ces to establish the claim whenboth P and Q are in head normal form. If R � �ki=1�i: Ri is in head normalform then the depth, d(R), of R is 0 if k = 0 and 1+maxfd(Ri) j 1 � i � kgotherwise. We prove the result by induction on d = d(P) + d(Q). If d = 0then P � 0 and Q � 0 and the result is immediate. Suppose d > 0.If �:M is a summand of P with � a free action, then since P ��!M andQ is in head normal form there is a summand �:N of Q such that M _�N .By induction hypothesis, `M = N , and so ` �:M = �:N .Suppose that x(y):M is a summand of P . Then choosing z 62 n(P;Q),P x(z)�!M 0 �Mfz=yg. Hence there is a summand x(w): N of Q such that forall v, M 0fv=zg _�N 0fv=zg where N 0 � Nfz=wg. Then by induction hypothesisfor all v, ` M 0fv=zg = N 0fv=zg. So by C1, ` x(z):M 0 = x(z): N 0, and31

hence by A, since x(z):M 0 � x(y):M and x(z): N 0 � x(w): N , ` x(y):M =x(w): N .Suppose that x(y):M is a summand of P . Then choosing z 62 n(P;Q),P x(z)�! M 0 � Mfz=yg. Hence there is a summand x(w): N of Q such thatM 0 _� N 0 where N 0 � Nfz=wg. Then by induction hypothesis ` M 0 = N 0and so ` x(z):M 0 = x(z): N 0, and hence by A, since x(z):M 0 � x(y):M andx(z): N 0 � x(w): N , ` x(y):M = x(w): N .Similarly, for each summand �:N of Q there is a summand �:M of Psuch that ` �:M = �:N . The result follows by S0{S3. 2With this result we easily obtain a complete axiomatization of strongD-equivalence by adding the following law:D From P� = Q�, for all � respecting D, infer P =D Q(A more re�ned formulation of rule D actually con�nes the hypothesis to�nitely many distinct �.)Theorem 21 SGE[fDg is sound, and complete over �nite agents, when= and =D are interpreted as :� and �D respectively.Proof : Directly from De�nition 12 and Theorem 20. 2Thus strong equivalence (with the pleasant property of being a con-gruence) is given an indirect axiomatization in terms of strong bisimilarity(which is not preserved by positive pre�x). We leave the problem of axioma-tizing strong equivalence directly as a topic of further investigation. At �rstit might appear that such a direct axiomatization can be obtained from SGE(omitting M0 and E which are not valid for �) by adding appropriate lawsfrom Section 4.1. Unfortunately this is not the case. There are equationsinvolving matching, such as[x=y][y=z]P � [x=y][x=z]Pwhich we are presently unable to derive without D.References[1] Milner, R., Communication and Concurrency, Prentice Hall, 1989.[2] Milner, R., Parrow, J. and Walker, D.J., A calculus of Mobile Processes,Part I, Report ECS-LFCS-89-85, Laboratory for Foundations of Com-puter Science, Computer Science Department, Edinburgh University,1989. To appear in Information and Computation.32

[3] Milner, R., Parrow, J. and Walker, D.J., A calculus of Mobile Processes,Part II, Report ECS-LFCS-89-86, Laboratory for Foundations of Com-puter Science, Computer Science Department, Edinburgh University,1989.AppendixIn this Appendix we outline the proofs of some of the results stated in thetext; most of the proofs are by case analysis, and we give the argument for afew crucial or typical cases. Full proofs may be found in [3].Proof of Lemma 1: The proof is by induction on depth of inference. Weconsider in turn each transition rule as the last rule applied in the inferenceof the antecedent P ��! P 0. We give two cases.(input-act) Then � = x(y) and P � x(z): P1 with y 62 fn((z)P1) andP 0 � P1fy=zg, so (i) holds and (ii) fn(P 0) � (fn(P1)�fzg)[fyg � fn(P)[fyg.(close) Then � = � and P � P1 j P2 with P1 x(y)�! P 01, P2 x(y)�! P 02 andP 0 � (y)(P 01 j P 02), so (i) holds, and fn(P 01) � fn(P1) [fyg and fn(P 02) �fn(P2) [fyg, so fn(P 0) = (fn(P 01) [fn(P 02))� fyg � fn(P). 2Lemmas 2{5 are all similarly proved by induction on depth of inference.Theorem 1 follows easily from the lemmas.Proof of Lemma 6: Let S = Sn<! Sn whereS0 = :�Sn+1 = f(Pfw=zg; Qfw=zg) j PSnQ; w 62 fn(P;Q)gWe show that S is a strong bisimulation by showing by induction on n thatif PSnQ then1. if � is a free action and P ��! P 0 then for some Q0, Q ��! Q0 andP 0SQ0,2. if y 62 fn(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and for allv, P 0fv=ygSQ0fv=yg,3. if y 62 fn(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and P 0SQ0.If n = 0 then 1, 2 and 3 hold since S0 = :� .Suppose n > 0 and that P�SnQ� where PSn�1Q and � = fw=zg wherew 62 fn(P;Q). We consider only 3.Suppose that P� x(y)�! P 0 where y 62 fn(P�;Q�). Choose y0 62 n(P;Q;w; z).Then P� x(y0)�! P 00 � P 0fy0=yg. Hence by Lemma 4 for some P 00 and x0 with33

P 000� � P 00 and x0� = x, P x0(y0)�! P 000. Since PSn�1Q and y0 62 n(P;Q)for some Q000, Q x0(y0)�! Q000 and P 000SQ000. Hence Q� x(y0)�! Q00 � Q0�, and soQ� x(y)�! Q0 � Q00fy=y0g. ThenP 0 � P 000fw=zgfy=y0gS Q000fw=zgfy=y0g since y 62 fn(P 000fw=zg; Q000fw=zg)� Q0 2Proof of Lemma 7: Let S� = Sn<! Sn whereS0 = SSn+1 = f((w)P; (w)Q) j PSnQ; w 2 NgThe proof involves showing that S� is a strong bisimulation. First we notethat by induction on n, if PSnQ and w 62 fn(P;Q), then Pfw=zgSnQfw=zg.For n = 0 this is immediate from the de�nition. Suppose n > 0 and(v)PSn(v)Q where PSn�1Q and w 62 fn((v)P; (v)Q). Then ((v)P)fw=zg �(u)Pfu=vgfw=zg and ((v)Q)fw=zg � (u)Qfu=vgfw=zg where u 62 fn((v)P; (v)Q;w)and ufw=zg = u, so (v)Pfw=zgSn(v)Qfw=zg.Next we show by induction on n that if PSnQ then1. if � is a free action and P ��! P 0 then for some Q0, Q ��! Q0 andP 0S�Q0,2. if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and for all v,P 0fv=ygS�Q0fv=yg,3. if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and P 0S�Q0.For n = 0 this is immediate from the fact that S0 is a strong bisimulation upto restriction and the de�nition of S�. The remaining details are omitted.2Proof of Theorem 2:(a) That :� is both re
exive and symmetric is clear. For transitivity itsu�ces to show that :� :� is a strong bisimulation. The proof usesLemma 2. We give one case.Suppose that y 62 n(P;R) and P x(y)�! P 0. Choose z 62 n(P;Q;R).Then P x(z)�! P 00 � P 0fz=yg, so for some Q0, Q x(z)�! Q0 and for allw, P 00fw=zg :�Q0fw=zg. Hence for some R0, R x(z)�! R0 and for allw, Q0fw=zg :�R0fw=zg. Then R x(y)�! R00 � R0fy=zg and for all w,P 0fw=yg :� :�R00fw=yg. 34

(b) For the congruence properties note that:(1) f(�:P; �:Q) j P :�Qg [:� is a strong bisimulation.(2) f(P +R;Q+R) j P :�Qg [:� is a strong bisimulation.(3) f([x=y]P; [x=y]Q) j P :�Qg [:� is a strong bisimulation.(4) Let S = f(P jR;QjR) j P :�Qg. It su�ces by Lemma 7 to showthat S is a strong bisimulation up to restriction. To see thisnote �rst that if P :�Q and w 62 fn(P;Q) then by Lemma 6,Pfw=zg :�Qfw=zg and so (P jR)fw=zgS(QjR)fw=zg. It is routineto check that the clauses concerning transitions hold. The onlyrules applicable are par, com and close.(5) It follows from Lemma 6 that :� is a strong bisimulation up to re-striction. Hence by the proof of Lemma7, if P :�Q then (w)P :� (w)Q.(c) Note that f(x(y): P; x(y): Q) j for all w 2 fn(P;Q; y), Pfw=yg :�Qfw=yggis a strong bisimulation. This follows easily using Lemma 6. 2Proof of Theorem 8: The proofs of Theorem 8 (a) and Theorem 8 (b)are straightforward. In contrast, the proofs of Theorem 8 (c) and (d) are notshort.Proof of Theorem 8 (c): In the proof we make use of the idea of a strongbisimulation up to _� and restriction. For completeness we introduce �rstthe following concept.De�nition 25 A relation S is a strong simulation up to _� i� wheneverPSQ then1. if � is a free action and P ��! P 0 then for some Q0, Q ��! Q0 andP 0 _� S _�Q0,2. if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and for all w,P 0fw=yg _� S _�Q0fw=yg,3. if y 62 n(P;Q) and P x(y)�! P 0 then for someQ0, Q x(y)�! Q0 and P 0 _�S _�Q0.S is a strong bisimulation up to _� i� both S and S�1 are strong simulationsup to _� .Lemma 9 If S is a strong bisimulation up to _� then S � _� .Proof: Let S� = Sn<! Sn whereS0 = _� S _�Sn+1 = f(Pfw=zg; Qfw=zg) j PSnQ; w 62 fn(P;Q)g35

Then by an argument very similar to that in the proof of Lemma 6 it can beshown that S� is a strong bisimulation. We omit the details. 2Combining this concept with that of a strong bisimulation up to restric-tion we obtain the following.De�nition 26 A relation S is a strong simulation up to _� and restrictioni� whenever PSQ then1. if w 62 fn(P;Q) then Pfw=zgSQfw=zg,2. if P xy�! P 0 then for some Q0, Q xy�! Q0 and P 0 _�S _�Q0,3. if y 62 n(P;Q) and P x(y)�! P 0 then for some Q0, Q x(y)�! Q0 and for all w,P 0fw=yg _� S _�Q0fw=yg,4. if y 62 n(P;Q) and P x(y)�! P 0 then for someQ0, Q x(y)�! Q0 and P 0 _�S _�Q0,5. if P ��! P 0 then for some Q0, Q ��! Q0 and either P 0 _� S _�Q0 or forsome P 00, Q00 and w, P 0 _� (w)P 00, Q0 _� (w)Q00 and P 00SQ00.S is a strong bisimulation up to _� and restriction i� both S and S�1 arestrong simulations up to _� and restriction.We have the following result.Lemma 10 If S is a strong bisimulation up to _� and restriction thenS � _� .Proof: Let S� = Sn<! Sn whereS0 = _� S _�Sn+1 = _� f((w)P; (w)Q) j PSnQ; w 2 Ng _�Then by an argument similar to that in the proof of Lemma 7 it may beshown that S� is a strong bisimulation. We omit the details. 2Returning to the main proof of Theorem 8 (c), we prove that the relationS = f((y)P1 j P2; (y)(P1 j P2)) j P1; P2 agents; y 62 fn(P2)g [Idis a strong bisimulation up to _� and restriction. Thus, for each P and Qsuch that PSQ and each transition P ��! P 0, we must �nd a \simulating"transition Q ��! Q0 satisfying the requirements of a strong simulation up torestriction and equivalence, and vice versa. Clearly, if P � Q this is trivial,so we assume that P � (y)P1 j P2 , Q � (y)(P1 j P2) , and y 62 fn(P2).The proof that there always exists an appropriate transitionQ � (y)(P1 j P2) ��!Q0 is by a case analysis on how the transition P � (y)P1 j P2 ��! P 0 is36

derived, and vice versa. There are sixteen cases in all from which we draw asample of two.For each case the derivations of transitions from P and Q are presentedin the following way: ...(y)P1 j P2 ��! P 0m...(y)(P1 j P2) ��! Q0We then have to prove three things:(+): that the premises of the upper derivation imply the premises of thelower derivation;(*): conversely that the premises of the lower derivation imply the premisesof the upper derivation;(S): that the derivatives P 0 and Q0 satisfy the requirement of a strong bisim-ulation up _� and restriction.Note that by the de�nition of strong simulation we only have to consider �such that y 62 bn(�), since y occurs in the agents P and Q.Case : com :res: P1 x(z)�! P 01 x; z 6= y(y)P1 x(z)�! (y)P 01 P2 xv�! P 02(y)P1 j P2 ��! ((y)P 01)fv=zg j P 02mres :com: P1 x(z)�! P 01 P2 xv�! P 02P1 j P2 ��! P 01fv=zg j P 02(y)(P1 j P2) ��! (y)(P 01fv=zg j P 02)37

(+): Trivial.(*): From y 62 fn(P2) and Lemma 1 we get that x 6= y. We cannot prove thatz 6= y, but if z = y then we use a fresh z0 instead of z to get a simulatingtransition as follows: from Lemma 2 we get that P1 x(z0)�! P 01fz0=yg. Thesimulating transition then is:(y)P1 j P2 ��! ((y)P 01fz0=yg)fv=z0g j P 02 (�)(S): From v; z 6= y it follows that ((y)P 01)fv=zg � (y)P 01fv=zg, and Lemma 1with y 62 fn(P2) gives that y 62 fn(P 02), so((y)P 01)fv=zg j P 02 S (y)(P 01fv=zg j P 02)as required. For the simulating transition (�) we know that z = y, so it holds(since v 6= y and z0 is chosen fresh) that((y)P1fz0=yg)fv=z0g j P 02 � (y)P 01fv=yg j P 02 S (y)(P 01fv=yg j P 02)Case : com :res: P1 xv�! P 01 x; v 6= y(y)P1 xv�! (y)P 01 P2 x(z)�! P 02(y)P1 j P2 ��! (y)P 01 j P 02fv=zgmres :com: P1 xv�! P 01 P2 x(z)�! P 02P1 j P2 ��! P 01 j P 02fv=zg(y)(P1 j P2) ��! (y)(P 01 j P 02fv=zg)(+): Trivial.(*): From Lemma 1 and y 62 fn(P2) we get x 6= y. The situation when v = yis treated in another case (see [3]).(S): From Lemma 1 and y 62 fn(P2) we get that y = z or y 62 fn(P 02), so fromv 6= y it follows y 62 fn(P 02fv=zg). This proves as required(y)P 01 j P 02fv=zg S (y)(P 01 j P 02fv=zg)38

2Proof of Theorem 8 (d): The proof involves showing that the relationS = f((P1 j P2) j P3; P1 j (P2 j P3)) j P1; P2; P3 agentsgis a strong bisimulation up to _� and restriction. Thus, for each P and Qsuch that PSQ and each transition P ��! P 0 we must �nd a simulatingtransition Q ��! Q0 satisfying the requirements of a strong simulation upto _� and restriction, and vice versa.The proof that there always exists an appropriate transition Q ��! Q0is by a case analysis on how the transition P ��! P 0 is derived, and viceversa. There are 30 cases in total. We present one sample case in the samestyle as in the proof of Theorem 8 (c).Case : par :close: P1 x(z)�! P 01 P2 x(z)�! P 02P1 j P2 ��! (z)(P 01 j P 02)(P1 j P2) j P3 ��! (z)(P 01 j P 02) j P3+close :par: P2 x(z0)�! P 02fz0=zg z0 62 fn(P3)P2 j P3 x(z0)�! P 02fz0=zg j P3 P1 x(z0)�! P 01fz0=zgP1 j (P2 j P3) ��! (z0)(P 01fz0=zg j (P 02fz0=zg j P3))(+): By Lemma 2 there exists a fresh z0 such that P1 x(z0)�! P 01fz0=zg andP2 x(z0)�! P 02fz0=zg.(S): Note that z0 is a fresh name. By alpha-converting z to z0 and thenapplying Theorem 8 (c) we get that(z)(P 01 j P 02) j P3 � (z0)(P 01fz0=zg j P 02fz0=zg) j P3 _� (z0)((P 01fz0=zg j P 02fz0=zg) j P3)so the condition for a simulation up to _� and restriction is satis�ed:(P 01fz0=zg j P 02fz0=zg) j P3 S P 01fz0=zg j (P 02fz0=zg j P3) 239

Proof of Theorem 17: We �rst state some immediate consequences of thede�nition of replacement. If E is an agent expression and � a substitutionof names, then E� is de�ned to be the agent expression obtained in the wayanalogous to De�nition 3. Then substitutions of names as expected commutewith replacements in the following way: E(A1; . . .An)� � E�(A1; . . .An).Also, since replacement clearly distributes over the operators we have thatTheorem 2 generalizes to agent expressions. These facts will be used freelyin what follows.We will only prove the theorem for I = f1g. The proof of the general caseis similar and only notationally more cumbersome. We write E;F;A;B;X; exfor E1; F1; A1; B1;X1; ex1. Assuming the premises of the theorem, de�ne therelation S byS = f(G(A); G(B)) : G has only the schematic identi�er XgWe show that S is a strong bisimulation up to _� . By Lemma 9 it followsthat S � _� . By choosing G � X(ey) we then get that A(ey) _�B(ey); sincethis holds for any names ey it implies that A(ex)� _� B(ex)� for any �, whichamounts to A(ex) � B(ex).To prove S a strong bisimulation up to _� it is clearly enough to provethe following properties, which we will call (�):1. If G(A) ��! P 0 and � is a free action or bound output action withbn(�) \ n(G(A); G(B)) = ;, then G(B) ��! Q00 with P 0S _�Q00.2. If G(A) x(y)�! P 0 and y 62 n(G(A); G(B)) then G(B) x(y)�! Q00 such thatfor all u, P 0fu=ygS _�Q00fu=yg.So assume G(A) ��! P 0; we will prove (�) by induction on the depth of theinference of this transition. We argue by cases on how the last step in thistransition is inferred. We give two sample cases.Case : The transition G(A) ��! P 0 is inferred with the rule ide. ThenG(A) � C(ey) for some identi�erC. There are two subcases: eitherG � C(ey)or G � X(ey). In the �rst subcase G(A) � G(B), so (�) is immediate.Consider the second subcase G � X(ey). Then G(A) � A(ey) ��! P 0. Thenby a shorter inference, E(A)fey=exg � Efey=exg(A) ��! P 0.Consider �rst the subsubcase where � is a free action or a bound outputaction. We only have to consider � such that bn(�) \ n(G(A); G(B)) = ;.By de�nition, then bn(�) \ n(Efey=exg(A); Efey=exg(B)) = ;, so by induc-tion, Efey=exg(B) ��! Q00 with P 0S _� Q0. Since E � F it follows thatEfey=exg(B) _�Ffey=exg(B); hence Ffey=exg(B) ��! Q000 _�Q00. So by the ide rule,G(B) � B(ey) ��! Q000. Since _� is transitive, P 0S _�Q000 as required.Consider next the subsubcase where � = x(y) is an input action. We onlyhave to consider y 62 n(G(A); G(B)). By de�nition, then y 62 n(Efey=exg(A); Efey=exg(B)),40

so by induction, Efey=exg(B) ��! Q00 with P 0fu=ygS _�Q00fu=yg for all u. SinceE � F it follows that Efey=exg(B) _�Ffey=exg(B); hence Ffey=exg(B) ��! Q000 suchthat for all u, Q000fu=yg _�Q00fu=yg. By the ide rule, G(B) � B(ey) ��! Q000.Since _� is transitive, P 0fu=ygS _�Q000fu=yg as required.Case : The transition G(A) ��! P 0 is inferred with the rule par. ThenG � G1 jG2, and by a shorter inference, Gi(A) ��! P 0i for i = 1 or i = 2;assume i = 1 (the case i = 2 is symmetric). So, P 0 � P 01 j G2(A) andbn(�) \ fn(G2(A)) = ;.Consider �rst the subcase where � is a free action or a bound outputaction. We only have to consider � such that bn(�) \ n(G(A); G(B)) = ;.So by induction, G1(B) ��! Q001 with P 01S _� Q001. Hence there exists an H 0such that P 01 � H 0(A) and Q001 _� H 0(B). By par (remember fn(G2(A)) =fn(G2(B))) we get that G(B) � G1(B) j G2(B) ��! Q001 j G2(B). LetH � H 0 jG2. Then P 0 � H(A) and Q001 jG2(B) _�H(B), so P 0S _�Q001 jG2(B)as required.Consider next the subcase where � = x(y) is an input action. Weonly have to consider y such that y 62 n(G(A); G(B)). So by induction,G1(B) ��! Q001 with P 01fu=ygS _�Q001fu=yg for all u. Hence there exist H 0u suchthat P 01fu=yg � H 0u(A) and Q001fu=yg _�H 0u(B). By par (remember fn(G2(A)) =fn(G2(B))) we get that G(B) � G1(B) jG2(B) ��! Q001 jG2(B). Let Hu �H 0u jG2. Then P 0fu=yg � (P 01 jG2(A))fu=yg � P 01fu=yg jG2(A) � H(A) andQ001 jG2(B)fu=yg � Q001fu=yg jG2(B) _�Hu(B), so P 0fu=ygS _�(Q001 jG2(B))fu=ygfor all u as required. 2

41

