
The geometry of optimal lambda reduction

Georges Gonthier

�

Mart��n Abadi

y

Jean-Jacques L�evy

�

Abstract

Lamping discovered an optimal graph-reduction im-

plementation of the �-calculus. Simultaneously, Gi-

rard invented the geometry of interaction, a mathe-

matical foundation for operational semantics. In this

paper, we connect and explain the geometry of in-

teraction and Lamping's graphs. The geometry of

interaction provides a suitable semantic basis for ex-

plaining and improving Lamping's system. On the

other hand, graphs similar to Lamping's provide a

concrete representation of the geometry of interac-

tion. Together, they o�er a new understanding of

computation, as well as ideas for e�cient and correct

implementations.

Acknowledgements

We have enjoyed discussions with Pierre-Louis Cu-

rien, Jean-Yves Girard, Yves Lafont, and John Lamp-

ing. Gordon Plotkin made useful suggestions on the

presentation. Many phrases and attitudes in this pa-

per are borrowed fromGirard; no criticism is implied.

1 Patter

This paper develops for the third time a semantics

of computation free from the twin drawbacks of re-

ductionism (which leads to static modelisation) and

subjectivism (which leads to syntactical abuses, in

other terms bureaucracy). Such a semantics was de-

veloped previously by Jean-Yves Girard [Gir89, Gira]

and by John Lamping [Lam90]. Girard is a logician

�

INRIA Rocquencourt.

y

Digital EquipmentCorporation, Systems Research Center.

0

and Lamping is an autodidactic engineer. It is no

surprise that they never read one another|although

they were working on the same problem from di�erent

perspectives.

Girard proposed the program of the geometry of

interaction. The geometry of interaction provides an

abstract semantics for algorithms, based on the judi-

cious use of C

�

-algebras. Girard's program has three

parts. The �rst two parts are concerned with de�ning

a model and showing that it is suitably rich; the suc-

cess here has been clearly remarkable. The third part

is concerned with the possibility of implementing the

geometry of interaction with an ad hoc machine, and

it has not yet been developed.

In this paper we pursue the implementation part of

Girard's program. We implement the geometry of in-

teraction with mere graph reduction; the graphs used

are a variant of Lamping's, and they are interaction

nets in the sense of Lafont [Laf90]. We feel that our

incredibly concrete formalism sheds some light on the

geometry of interaction. We undertake to explain the

geometry of interaction without using any relativity

theory, any quantum theory, or for that matter, any

mathematics.

Lamping described a graph-reduction implemen-

tation of the �-calculus. The implementation pro-

vides a new, �ne analysis of computation in the �-

calculus, to the point of being optimal in the sense

de�ned in [L�ev80]. After trying to read Girard's pa-

pers on the geometry of interaction, Lamping's \An

Algorithm for Optimal Lambda Calculus Reduction"

sounds like \TV Digest." Nevertheless, it seems fair

to say that Lamping's algorithm is rather complicated

and obscure. (Recently, Kathail proposed another

optimal algorithm [Kat90]; we consider it in the full

paper.)

It is our thesis that the geometry of interaction

gives the proper understanding of Lamping's sys-

tem. This view leads to some considerable simpli-

�cations, to a semantic basis, and to principled tech-

Page 1

niques for correctness proofs. It also helps us in

generalizing from the �-calculus to the proof nets

of linear logic [Gir87]. (We have dealt only with

multiplicative-exponential linear logic so far.)

We believe that research on optimal reductions is of

some practical importance. Lamping's work suggests

some useful techniques for partial sharing, which po-

tentially apply to a wide range of systems, from com-

pilers to theorem provers. We hope that our study

will further the impact of these techniques and con-

tribute some more.

The next section introduces some of the main

themes of the paper, informally. Section 3 describes

our graphs and the reduction rules that apply to

them; section 4 then presents the implementation of

the �-calculus. The rest of the paper is devoted to

discussing semantics and the correctness of these im-

plementations (section 5), optimality (section 6), and

directions for future work (section 7).

For the sake of simplicity, we concentrate on the

pure �-calculus, only hinting at the more general

treatment of linear logic.

2 Overview

This section introduces some of the ideas of a graph

representation for �-terms and corresponding graph-

reduction rules. The system described is based on

Lamping's, with several improvements. Then we dis-

cuss a semantics in the geometry of interaction and

the delicate problem of correctness.

2.1 Combinators for sharing

The sharing of common subexpressions is an impor-

tant optimization in the implementation of a variety

of formal systems. It is typically associated with vari-

ous graph representations and graph-reduction mech-

anisms. In a graph, sharing is represented by a fan-in.

Some time ago, an optimality criterion for �-

calculus reductions was de�ned. It was soon recog-

nized that sharing of common subexpressions is not

su�cient for optimality [Wad71, L�ev80, Fie90]. Re-

cently, a generalization of sharing was introduced that

does support optimal reductions. The idea is to al-

low not only fan-in but also fan-out. Fan-in nodes

and fan-out nodes are drawn

Fan-in nodes and fan-out nodes have symmetrical

syntactic and semantic descriptions. As the graphs

of interest to us are undirected, they are identical,

formally; they are all called fan nodes.

Fan-out nodes allow partial sharing: terms can

share a common subterm with a hole which may be

�lled in di�erent ways in di�erent versions. For ex-

ample, the term (MN)(MN

0

) can be represented by

the graph

M

@

@

N N'

Here (M) is shared by the function and the argu-

ment of the top application; the hole is �lled with N

for the function and with N

0

for the argument. We

write @ for application. (Application nodes appear

in Lamping's graphs, but, as we shall see shortly, not

in ours.)

The �-term represented can be recovered by trav-

ersing the graph. For this read-back to be correct, it

is essential to take matching branches of fan-in and

fan-out nodes during the traversal. This is why two

distinct marks, one grey and one black, label two of

the ports of these nodes. The graph is traversed so

that a path that goes through a grey mark at a fan-

in node also goes through a grey mark at the corre-

sponding fan-out node, and similarly for black marks.

To make precise this constraint on marks, Lamping

introduced the notion of a context. A context records

how fan-in nodes and fan-out nodes are traversed. In

some simple cases a context can be represented by

a stack; then going through a fan-in node pushes the

mark traversed, and it is popped at the matching fan-

out node, to select the port of exit.

Fan nodes do not su�ce in implementing partial

sharing: one must guarantee that fan-in nodes and

fan-out nodes are matched properly. For this purpose,

Lamping introduced three bracketing constructs, of

which we keep two (called bracket and croissant).

It follows that contexts become more complex and

structured; fortunately, it will turn out that very sim-

Page 2

ple trees su�ce for representing contexts in our sys-

tem.

In addition, there are two kinds of unary nodes,

root and void.

T

Informally, a root node terminates every important

dangling edge; for a �-term, these are the edges that

correspond to free variables and the edge for the result

(the value of the term). Although variable names are

not a formal part of our graph representation, they

sometimes appear in root nodes, for the sake of clar-

ity. Void nodes are mere plugs. Thus, for example,

the graph

T

x

represents x,

T

xx

@

represents xx, and

@

x

T

represents xx in a more contrived way.

Finally, one might expect nodes that correspond

to abstraction and to application, as in the exam-

ples above. Certainly these nodes appear in Lamp-

ing's graphs. Perhaps surprisingly, these nodes are

not needed. Fan nodes can be used instead of ab-

stractions and applications. This is a simpli�cation

in the syntax of the graphs and in the corresponding

reduction rules.

It is also a signi�cant simpli�cation in their seman-

tics. All we have left are nodes that transform con-

texts. Therefore, the semantics of a graph can be

given in terms of context transformations. This is

directly in the spirit of the geometry of interaction.

The geometry of interaction is concerned with oper-

ations on C

�

-algebras; our contexts provide a partic-

ular, concrete C

�

-algebra.

Some of the nodes we inherit from Lamping have

indices, as in Lamping's system. Indices are natu-

ral numbers; intuitively, an index says at what depth

in the context the node operates. In section 3.3

we describe an alternative to the use of indices;

edges (\wires") are replaced with bundles of wires

(\buses"), and then indices become superuous, as

one can explicitly draw on what wires in the bus an

operation should act.

The evaluation of �-expressions is based on graph

reduction. The notion of graph reduction at play is

a particularly benign one. Each sort of node has an

interaction port. When two nodes are adjacent and

their interaction ports are on the same edge, then

a local transformation on the graph happens. For

example, fan nodes interact through their unmarked

ports; the interaction rule for two fan nodes with the

same index is the expected one:

i
i

Lamping's rules were often of this form, and ours

all are. This means that our graphs are interaction

nets.

2.2 The geometry of interaction

There is no hope of explaining what is a C

�

-algebra

within this restricted space. There is no need for such

an explanation either.

From our perspective, the essence of the geometry

of interaction is representing computing devices as

context transformers. This representation appears in

Lamping's work, of course, and we develop it further.

The use of C

�

-algebras comes from a justi�able de-

sire to provide the most abstract possible formulation

of the geometry of interaction. But we have no im-

mediate need for C

�

-algebras, and hence omit dealing

with these new bêtes noires of semantics.

2.3 On correctness

Computer science is a young discipline, but it already

shows signs of senility. There is an obsession with cor-

rectness which often prevents the practitioners from

understanding the �nitary dynamics of computation.

Page 3

In this paper, we yield to this obsession. Our imple-

mentations are all correct.

Several notions of correctness are possible. The

simplest one is based on contexts. Graph reduction

is sound in that it preserves the context semantics of

graphs. It remains to see that the context semantics

corresponds to the usual notions of the �-calculus,

and in particular that read-back yields appropriate

�-terms.

More precisely, one would like a read-back proce-

dure R (a partial function) that maps graphs to �-

terms with two properties:

� if a graph G reduces to a graph G

0

then R(G)

reduces to R(G

0

);

� if a graph G

0

is in normal form then R(G

0

) is in

normal form as well.

The geometry of interaction provides an easy proof

that the graph reductions are correct in the case in

which G

0

is an \observable," for example if it rep-

resents a boolean. Girard has obtained a result of

this sort, and his proof applies in our setting. He has

argued that this theorem should be considered sat-

isfactory, explaining the reason that it might be the

best possible:

In fact from a purely syntactical viewpoint,

the execution makes \mistakes", but it is

precisely because of these \mistakes" that

we can free ourselves from the need of a uni-

versal time!

Thus, it would almost seem that one cannot expect

correct, parallel, higher-order computations.

Unfortunately, correctness for observables does not

su�ce. First, it is very dissatisfying. It is also in-

su�cient for optimality arguments, as these require

consideration of intermediate results, and not just of

certain normal forms.

The solution is found by pursuing Girard's ideol-

ogy of communication without understanding. Com-

munication without understanding is communication

where certain parts of messages are treated only in

a generic way, and any \isomorphic" transmission

would do just as well, without confusion. Typing

guarantees the possibility of communication without

understanding. Roughly, the type of a port induces a

class of isomorphisms that can be applied to contexts

communicated on this port without confusion.

Communication without understanding also im-

plies that generic parts of messages cannot be created

spontaneously. They must be copies of parts of previ-

ously received messages. Given a graph, a context is

called accessible if either it contains no generic parts

or it can be obtained from an accessible context by

applying the context transformation that the graph

de�nes and \cut-and-paste" of generic parts.

The graphs that one obtains by encoding the �-

calculus, or for that matter linear logic, admit a typ-

ing. (For the pure �-calculus, the typing requires re-

cursive types, but this hardly matters.) The type

system for these formalisms then determines accessi-

ble domains and a suitable class of isomorphisms; �-

reduction (or cut-elimination) is sound with respect

to the accessible part of the semantics, up to these

isomorphisms.

3 The Ad Hoc Machine

In this section we de�ne two graph-reduction for-

malisms. The �rst one is a simpli�cation of Lamp-

ing's, and relies on indices. The second one seems

more primitive; the use of buses frees us from certain

unnecessary, bureaucrating reductions.

3.1 Nodes

We start by considering undirected graphs built �a la

Lamping. We need only some of his nodes. The nodes

are those presented in the introduction:

T

root void

i

croissant

i

bracket

i

fan

3.2 Reduction

The rules for reduction are particularly simple, since

we want not to be ridiculous. (To our knowledge,

Girard was the �rst to write on the desire not to be

ridiculous [Girb]; we continue his work in this respect

too.)

In the rules, given in Figure 1, it is assumed that

0 � i < j.

Because of the form of these rules, we are dealing

with interaction nets. An immediate consequence is

that the system is Church-Rosser, as there are no

critical pairs. Interaction nets have trivial parallel

implementations.

Some pairs of operators do not have a rule for inter-

acting, for example brackets and fans with the same

index. When these operators meet face to face, we

have a deadlock. The context semantics of operators

will make clear that a deadlock arises exactly when

Page 4

i

i j
i

i i

j j

i

i

i

j
i

j-1 i

i

i

j

j+1

i

i i

j+1

j

i i

j

j+1

i j

i

i

j j

i

j

j-1

i i i

j-1i

j

i

j i

j j

Figure 1: Reduction rules with indices

incompatible constraints are put on the context in a

wire.

Garbage-collection rules are natural, and seem ap-

pealing for the sake of e�ciency. Their function is

to eliminate useless parts of graphs. For example, we

may add:

i i

Lamping has included a number of similar rules in

his system. The rules are not essential for correctness

or for optimality. They are not complete, in that they

do not collect all garbage. In particular, they fail to

collect certain kinds of cyclic garbage. For this reason

we prefer not to include garbage-collection rules in

our basic system.

In order to achieve optimality, a strategy needs

to be followed. Simple strategies (e.g., leftmost-

outermost) will do. We come back to this point below.

3.3 Decomposing the operators

There are some hints that the operators presented

above are not as primitive as possible. Consider, for

example, a row of brackets and croissants. Bringing

this row to normal form may take quadratic time,

because of uninteresting commutations. It is this sort

of bureaucratic overhead that we should try to avoid.

In this subsection we describe a more explicit graph

formalism. This system decomposes the operators

into more primitive ones, eliminating the need for in-

dices. The main idea is that we are going to view

a wire in the old system as a bus, a bundle of wires

running in parallel; indices are not necessary, because

operators can act on only a part of the bus.

The translation is given below. (The translation is

presented only informally; a precise de�nition would

require, in particular, the notions of \left" and \right"

in buses, which are introduced easily for roots and

then extended by contiguity.)

Root nodes and void nodes are as usual, but their

arity increases. (Alternatively, we could simply have

unary nodes and a metalinguistic way to group them.)

Brackets become ternary nodes. Their role is to

combine two wires:

i

j i

old bracket new bracket

Using hardware notation, this new bracket can be

represented as:

j i

Croissants become unary nodes. Their role is to

creat a wire ex-nihilo:

i
j i

old croissant new croissant

Page 5

Figure 2: Reduction rules with buses

The most complicated change is for fan nodes. For

a bus of width n (n = i+ j + 1), we are going to use

a fan node of arity 3n.

i
j i

old fan new fan

As in this picture, one of the levels is marked. This

is the level at the depth given by the index. We call

this the main level of the node. It is at the main level

that a context mark is added. The other levels do not

modify contexts.

We have considered going further, decomposing fan

nodes into slices, one for each level. Each slice of a fan

node would propagate on its own, but still depend on

information that should come from the slice for the

main level. This is a promising direction; we postpone

further discussion to the full paper.

3.4 More on reduction

With these more primitive operators, the rules of

interaction become clearer. They appear in Figure 2,

where we draw only special cases, from which the

general cases can be deduced by varying the width of

buses.

With the old rules, a bracket and a croissant with

di�erent indices could meet and interact. With the

new rules, this is no longer the case, as they simply

cross on di�erent wires on a bus. The commutation

is free.

We tend to use the two systems of nodes inter-

changeably. It is generally more enlightening to use

the system with buses. We use the other system only

for compactness of notation and in order to relate our

work to Lamping's and Girard's.

4 Implementations

The graphs described above can be used to en-

code a variety of computing formalisms. Here we

just demonstrate this for the pure �-calculus. We

postpone correctness and optimality considerations

to later sections, and only hint at the systematic

treatment of linear logic.

4.1 Implementing the �-calculus

The translation of the �-calculus into graphs has

two stages. In the �rst stage, we de�ne incomplete

graphs, where not all edges are terminated by nodes.

Edges are directed, and those that correspond to vari-

ables labelled with variable names. (We will not draw

directions explicitly, but will put result edges up-

wards and free-variable edges downwards.) The sec-

ond stage simply closes the graph, adding root nodes

as appropriate. Also, the direction of edges and the

variable names on the edges are removed; variable

names are put on roots.

The �rst stage of translation is de�ned inductively.

A variable is represented with a bus of width 3:

Page 6

Intuitively, this bus carries commands between the

occurrence and the value of the variable. In the �-

calculus, these commands can be construed as \call

a function," \return to a continuation," \access an

argument," and \report an argument value." Com-

mands can contain subcommands, allowing for arbi-

trary complex meanings.

Each commandpertains to a function call. Because

of sharing, commands generated at a single location

in the graph can refer to several actual calls, so each

must carry an \address" identifying the relevant call.

This address splits into a base address, shared by all

commands in an instance of a lexical scope, and an

o�set. Subcommands need only an o�set relative to

their base commands.

Thus, commands are composed of three parts,

which are carried by the three wires of the bus drawn

above. The left wire carries the base address, the

middle one the o�set, and the right one the actual

command, piled on top of its subcommands and their

o�sets.

If G and H represent M and N , respectively, then

G H

x

represents GH. Here we have drawn only the case

where M and N have the variable x in common; fan-

ins are used to combine all references to common vari-

ables.

Intuitively, a command coming from the top is

nested as a subcommand of a \call" command and

sent to G: the top fan piles a grey mark (the \call" to-

ken) on the pair ho�set; commandi created by the top

bracket. The croissant generates a null o�set for the

call. When the argumentH reports back a command

to G, the fan packs it under a \report" command

(black mark). Dually, the fan directs to H a sub-

command packed under an \access" command (black

mark) from G, and directs to the top edge a sub-

command packed under a \return" command (grey

mark). Finally, commands directed to the common

variable x are sent out on the same edge, but are given

di�erent o�sets by the fan so that responses from x

can be sorted out.

If G represents M and x occurs in M then

G

xy

represents �x:M . We have drawn only the case where

�x:M has one free variable y; brackets are added to

all edges for free variables.

The command handling for the abstraction fan is

exactly dual to that for the application fan; only

the address management di�ers. A lexical scope is

opened for the �x by pushing the call o�set onto the

base address for the entire body G. This ensures that

all commands inGwill be relative to the call instance.

Dually, commands generated by the fan simply pop

the call o�set o� the base address when they cross

the top bracket in the reverse direction. Upon leav-

ing the scope through a free variable y, the base ad-

dress is also restored and the popped o�set is added

to the command o�set so no information is lost and

responses from y reach their intended recipient.

If G represents M and x does not occur in M then

G

y

represents �x:M .

Since the argument is never accessed, the black

branch of the fan is e�ectively dead, and we can sim-

ply terminate it by a plug.

Note that there is no attempt to recognize com-

mon subexpressions in the �-term given for reduction.

Note also that this representation uses fan-in nodes,

Page 7

but not fan-out nodes. Sharing appears in the course

of reduction.

4.2 Implementing linear-logic proofs

The proof nets of linear logic can also be translated

into our graphs, at least for the fragment of linear

logic with multiplicative and exponential connectives.

No new nodes are needed. The main contribution of

this translation is the elimination of the fastidious

boxes of linear logic. We break these boxes in our

implementation, allowing their partial sharing.

Fan nodes represent the multiplicative connectives

and contractions; croissants represent derelictions;

void nodes represent weakenings; the edge of boxes is

indicated by brackets, which can propagate indepen-

dently. Our implementation of the �-calculus puts a

box around each abstraction: this box is implemented

by the brackets above fan nodes and on free variable

edges.

4.3 Types

As discussed earlier, types can be attached to the

ports of the graphs obtained by translation from the

�-calculus or linear-logic proof nets. For the pure �-

calculus, this is simple, as it consists in distinguishing

free variables from results.

This is not to say that types can be attached to

all edges in the course of reduction. In this sense,

the various logics that serve as type systems for the

�-calculus and for proof nets are not suitable logics

for our graphs. The problem of �nding such a logic

remains open.

5 Semantics

In this section we discuss the semantics of our

graphs. First, we describe the graphs as context

transformers. This semantics is of help in under-

standing the rules of reduction, but it does not suf-

�ce in proving the soundness of our implementation

of the �-calculus, for example. A more sophisticated

semantics appears later.

5.1 Rudimentary correctness

The �rst semantics is based on contexts. Contexts

are trees, de�ned by:

� 2 is a context. It represents a node with no

descendants.

� If a is a context then so are �:a and ?:a. These

terms represent the trees obtained by taking a

node and putting a under it, either to the left or

to the right. (The notations � and ? come from

Lamping's work, where they are used instead of

our grey and black marks, respectively.)

� If a and b are contexts then so is ha; bi. This

term represents the cons of a and b.

We denote a:b the context a where the rightmost 2 is

replaced by the context b. This is consistent with the

�:a and ?:a notations above if we let � denote the tree

with only one left node (� = �:2), and similarly for ?.

The concatenation operator \." is clearly associative

and 2 is its neutral element. Finally we abbreviate

ha;2i by hai, so we have hai:b = ha; bi.

Let A be the set of contexts. The semantics of the

nodes is given by relations on A. All variables repre-

sent contexts. Nothing (the absence of a context) is

denoted by a blank space.

~a b ~c ~a b ~c

j i j i

~a �:b ~c ~a ?:b ~c

a b

ha; bi 2

The semantics is extended to graphs, by composi-

tion. When the individual wires of a bus section of

width k are labeled a

1

; : : : ; a

k

we say that the bus

section is labeled with the context ha

1

i : : : ha

k�1

i:a

k

.

Assuming that the roots of a graph are numbered,

from 1 to n, the context semantics C(G) of a graph

G is a relation R

i;j

between contexts for each pair of

conclusions (i; j). The relation R

i;j

relates d to d

0

if

there is a path from conclusion i to conclusion j with

a consistent labelling and with d labelling the bus at

conclusion i and d

0

the bus at conclusion j.

It is simple to prove that the reduction rules of sec-

tion 3.4 preserve the context semantics. Good start!

(This property fails for the system that uses indices

instead of buses, for rather trivial reasons, not worth

discussing here.)

Page 8

Theorem 1 If G �. G

0

then C(G) = C(G

0

).

One may remark that contexts of left, middle, and

right wires are of rather di�erent kinds, as already

mentioned in section 4.1. The left wire is a stack of

o�sets, the middle wire is an o�set, the right wire is

a list of pairs ho�set; commandi. Speci�cally, the left

wire always contains a context

h: : : hha

1

; a

2

i; a

3

i : : : a

n

i

and the right wire a list

1

:ha

2

;

2

i:ha

3

;

3

i : : : ha

n�1

;

n�1

i:a

n

where a

i

are o�sets (arbitrary contexts),

i

are com-

mands � or ?, and n � 0. When n = 0, the context is

2. The middle wire contains always an a, the o�set

corresponding to

1

.

5.2 The read-back problem

Intuitively, we would expect to read back a �-term by

removing all sharing from the graph that represents

it. In fact, this is how Lamping proves the correctness

of his system. The proof is laborious, and somewhat

ad hoc.

A proof based on the context semantics seems more

appealing. Unfortunately, the context semantics does

not match the usual semantics exactly. For example,

the �-term (�x:yx)z is translated into

T

z

y

and then this graph reduces to

z

y

T

When we try to recover a �-term from this graph,

we notice that some spurious brackets are in the way,

right above the fan node that represents the applica-

tion. The context semantics does not justify removing

them.

5.3 Isomorphisms and accessibility,

or communication without under-

standing

We would like to have a principled way to understand

and to remedy the errors of graph reduction. This

would lead to a correct interpretation of graphs, and

connect the context semantics with the �-calculus.

As discussed in the introduction, we propose to

take a semantics coarser than the context semantics,

by taking types into account. From the type of a

root we can infer properties of the context seman-

tics at that root, and especially of its e�ect on the

right wire. In the case of our translation for the �-

calculus we have only two (recursive) types, result

D =!(D ��D) and variable D

?

, from which we can

infer the alternating structure of the right wire: each

multiplicative corresponds to a fan mark (? or �), and

each modality to a pair with an o�set (hai). Moreover

the o�set for a ! modality can be chosen arbitrarily

without changing the path.

More formally, say a context is even when it has

an even number of ? branches on its right spine, and

odd otherwise (so 2 is even, hai:c and �:c are even

when c is, and ?:c is even when c is odd). Say a

context is input at the top root when it is even, and

output when it is odd; dually, a context is input at

a variable root when it is odd, and output when it

is even. Finally, say that an o�set a is input in the

context c:hai:d at root X when c is input at X, and

dually for outputs. Then it can be shown that:

Proposition 1 A consistent path � between two

roots X

1

and X

2

of the translation of a �-term does

not depend on input o�sets; speci�cally, if there is a

consistent labelling of � with the bus at X

i

labelled

Page 9

ha

i

i:c

i

, then given any assignment of values for the

input o�sets in c

i

there is a corresponding assignment

of the output o�sets that yields a consistent labelling

for �. This is also true when X

1

= X

2

if the assign-

ment gives identical values to input o�sets a

0

that oc-

cur after the same pre�x p input at X

i

(c

i

= p:ha

0

i:c

0

i

for i = 1; 2).

An easy induction also shows that the left wire

must be invariant (a

1

= a

2

).

The environment should handle output o�sets just

as a term treats input o�sets, that is, opaquely, as

tokens. In particular, it should not be able to gener-

ate those o�sets spontaneously to prod the internal

structure of the graph. So not all contexts should

be used at the start of a path. Speci�cally, noting

that every consistent labelling of a root-to-root path

has an input context at one end and an output con-

text at the other, no pre�x of an input context at a

root should contain an output o�set unless it is also

a pre�x of an output context at that root.

This can be formalized as follows: de�ne E = f2g[

hAi:E [�:E, the set of star-free contexts. Now for

e; e

0

2 E, de�ne the operation of shunting e to e

0

by

c: � :e

e

�!

e

0

c: ? :e

0

Then an access path T in a �-term graph G is a di-

rected bus path labeled with contexts, starting at the

top root with a star-free label, such that any two suc-

cessive bus edges t

1

and t

2

of T are either consistent

with the context semantics or are linked by a shunt

loop: they respectively lead to and from a root of G,

are labeled c

1

; c

2

with c

1

e

�!

e

0

c

2

for some star-free

contexts e; e

0

.

Thus, an access path can be pictured as

E 3 d

0

�

0

�! d

0

0

e

1

�!

e

0

1

d

1

�

1

�! d

0

1

e

2

�!

e

0

2

: : :

�

n

�! d

0

n

(1)

where the �

i

are (simple) paths in G from root X

i

to

root X

i+1

that can be consistently labelled with d

i

at

X

i

and d

0

i

at X

i+1

, with the obvious provisos for d

0

n

if �

n

does not end at a conclusion.

Note that all the d

i

are input contexts, and all the

d

0

i

are output contexts. Note also that any edge in

an access path in the initial translation is traversed

upwards i� the context on the rightmost wire is odd.

This means that the edge direction which was forgot-

ten in the last translation step can be recovered from

the context semantics. Since the context semantics

is preserved by graph reduction, the orientation can

also be recovered in all residuals.

Now say a path is accessible i� it is the su�x of

an access path. Special cases are: a labelled edge or

a node is accessible i� it is part of an access path,

a context c is accessible at a conclusion X i� a bus

edge leading to or fromX labelled c is accessible. The

accessible semantics C

a

(M) of a termM is the subset

of C(G

M

) generated by the accessible paths, where

G

M

is the graph representation of M . Furthermore,

we show:

Proposition 2 C

a

is compositional: an access path

in the graph G

�x:M

representing �x:M only traverses

its subgraph G

M

representing M through accessible

paths, and similarly for G

MN

and G

M

; G

N

.

This is proved by structural induction, in conjunc-

tion with another important property of access paths:

Proposition 3 (access-path shunting) Given an ac-

cess path as in (1), ending at a conclusion X

n+1

,

either d

0

n

2 E or there is a unique i such that

X

i

= X

n+1

and d

i

e

�!

e

0

d

0

n

for some e; e

0

2 E.

Now ifX

n+1

is the top root, then d

0

n

must be odd so

the access path must end with a shunt. Since shunt-

ing cannot change the address on the left wire or the

o�set on the middle wire, this immediately shows that

an access path cannot traverse an edge upwards un-

less it has already traversed it downwards with the

same context on the left and middle wires. This is

important for garbage collection and the read-back

procedure.

Proposition 3 actually gives an algorithm for read-

ing out the B�ohm tree of the �-term represented by

a graph. For e 2 E, let jej denote the number of �'s

on the right spine of e. By Proposition 1 an access

path does not depend on the choice of the o�sets in

d

0

or any of the e

0

i

, so the only real choice initially

is jd

0

j. Let n

0

be the minimal value of jd

0

j such that

there is an access path starting with d

0

and leading

to a root X

1

. If there is no such d

0

then the term di-

verges, and the B�ohm tree is
. Otherwise n

0

is the

number of �'s in the head normal form of the term.

Now by Proposition 3, either X

1

is the root for some

variable x and d

0

0

2 E, or d

0

e

�!

e

0

for some e; e

0

2 E.

In the �rst case x is the head variable, above which

m

0

0

= jd

0

0

j applications are nested. In the second case,

the head variable is a bound variable with de Bruijn

index n

0

0

= jej, above whichm

0

0

= je

0

j applications are

nested. To continue reading out the arguments for the

applications, simply choose je

1

j = m

1

to select the ar-

gument of the (m

1

+ 1)st application (counted from

the outside in). In the general case, the de Bruijn

index of a bound head variable is n

0

n

+

P

n

j=i+1

n

j

.

Now this algorithm does not depend on the value

of input o�sets, and only depends on output o�sets

Page 10

through its use of Proposition 3. Thus it is insensitive

to a remapping of o�sets that leaves the shunt su�xes

invariant, so we will read back the same tree for two

terms whose accessible context semantics di�er only

by such an isomorphism. Now it is easy to see that

contracting the head redex of a term leaves its seman-

tics invariant up to such an isomorphism, and that the

read-back of a redex-free tree indeed yields back the

tree. Conversely, if the procedure computes the same

tree for two terms, simply matching the steps de�nes

the o�set mapping.

Theorem 2 The geometry of interaction semantics,

restricted to accessible contexts and quotiented by iso-

morphisms, is equivalent to the B�ohm tree semantics.

It is tempting to consider a much simpler de�nition

of isomorphism: a context mapping that preserves the

right spine and commutes with the accessible seman-

tics. With our translation it fails to yield the B�ohm

tree because the quotient semantics still conveys scop-

ing and sharing information for the applications in the

tree. Interestingly, the standard translation of the �-

calculus in linear logic, based on D = (!D)��D, does

not have this problem because it enforces less sharing.

We are now ready to consider directly the read-

back problem. It is quite easy to read back a �-term

from its translation: we know that fans on the right-

most wires correspond to nodes in the syntax tree

(application, abstraction, variable), and that edges

in the graph are oriented as in the syntax tree, so we

get the skeleton of the expression simply by travers-

ing the graph downwards; furthermore when we do so

we must have the same context on the left wire when

we enter an abstraction and when we reach its bound

variable, and nested �'s must have left contexts with

di�erent left spine length, so this property is enough

to identify binders.

Now we have shown that edge orientation is de-

�ned solely from the context semantics. We show

that we can use the same procedure to read back a �-

term from any residual of the initial graph. Now from

Proposition 1 the consistency of a downward leftmost

path in the graph does not depend on the contents

of the rightmost wire, except perhaps for the number

of �'s. Hence we have a very simple read-back pro-

cedure R: simply follow all downward paths that are

consistent on all but the rightmost wire, and produce

syntax nodes for each rightmost fan encountered, ac-

cording to the orientation. A variable is bound by

the � with the same left context.

Theorem 3 For any �-term M , R(G

M

) = M .

Moreover, if G

M

�.

�

G, then G �.

�

G

0

implies

R(G) �.

�

R(G

0

), and G in normal form implies R(G)

in normal form.

Proof sketch: Obviously reductions other than right-

most fan elimination don't change the read-back. For

� redexes, note that the two downward paths to the

variable and from the top of the application will be

consistent i� they are part of the same access path

in the application subterm, that is, i� they have the

same left context, that is, i� the variable was bound

by the redex �.

6 On Optimality

Girard wrote that the third part of his geometry

of interaction program should be concerned with the

study of e�ciency, as long as this remains a math-

ematical problem. The following discussion of opti-

mality follows his suggestion; clearly much more can

be done in this area.

6.1 Read-back and labelling

Because we have been able to solve the read-back

problem, we are now in a position to consider opti-

mality issues. It is straightforward to establish corre-

spondences between a �-term with a labelling [L�ev80]

and a suitably labelled graph that represents it. (The

graph has labels on the rightmost wires.) We can then

argue about how labels evolve through reduction.

The reduction rules are easily extended so that la-

bels commute with all nodes except rightmost fans,

and labels are concatenated when edges are, the di-

rection of concatenation matching the edge direction.

A label caught between two facing rightmost fans is

copied (with overlining and underlining to match the

�-term labelling) when the redex is contracted; it is

called the redex label.

Theorem 4 During reduction, no two redexes of

rightmost fans have the same label. Therefore, graph

reductions are optimal.

This means that the rules will never duplicate work,

but leaves open the possibility of work on subterms

that will turn out to be useless. Adopting a normal-

order strategy su�ces to avoid this possibility.

Proof sketch: De�ne the at labelling of a path to

be the concatenation of all labels traversed by the

path with the following provisos: the order of sym-

bols in a composite label on an edge that is traversed

backwards is reversed, and overlining and underlin-

ing are removed, reversing the order of symbols un-

der each removed underline. It is easy to see that

any consistent path between rightmost fans has the

same attened labelling as any of its ancestors in a

Page 11

graph reduction. Now suppose that during a graph

reduction we have two redexes of rightmost fans with

the same redex label. Consider the two paths consist-

ing of the forward edge reduced in each redex. They

have identical at labelling, so they must have an-

cestors in the translation of the initial �-term with

that same at labelling; but in this graph all paths

between rightmost fans bear a di�erent label, so the

two ancestor paths must be equal. Now a path be-

tween facing fans has a unique residual until either

end fan is deleted, so the two redex paths must be

equal, hence the redexes must be equal.

6.2 Garbage-collection issues

The optimality criteria considered do not say any-

thing about garbage collection, which we have delib-

erately neglected. In fact, garbage collection with lo-

cal rules (as in Lamping's paper) destroys optimality,

because it cannot collect the cyclic graphs the algo-

rithm creates without �rst executing these graphs to

unravel their structure.

However, Proposition 3 allows us to reclaim all

nodes that are unreachable from the top root in

the oriented graph, much as in Kathail's algorithm.

This standard collection procedure is complete, in

the sense that in a graph with no accessible redexes,

nodes are reachable from the top root in the oriented

graph exactly when there is an access path to them.

Thus, special garbage-collection rules are not neces-

sary.

Finer schemes could work by running the read-back

algorithm \intelligently" so that a common subterm

is not traced twice, and then collecting all untraced

nodes. Obviously, determining the exact extent of

garbage (nodes with no accessible path to them) re-

quires execution, and is thus undecidable.

7 Extensions

This work leaves open a number of interesting ques-

tions. Foremost is the extension of this formalism

to the whole of linear logic, including additives and

quanti�ers, and from there to classical logic [Gir91].

We should establish a clear relationship between the

coherence semantics of linear logic [Gir87] and the

geometry of interaction.

This should give us some guidance for the remain-

ing two problems: �nding a type system that ab-

stracts the behavior on the left wire well enough to

extend to arbitrary graphs (with \sharing" types),

and decomposing fan nodes so that the synchroniza-

tion they impose on the bus wires is relaxed.

References

[Fie90] John Field. On laziness and optimality

in lambda interpreters: Tools for speci�ca-

tion and analysis. In Seventeenth Annual

ACM Symposium on Principles of Program-

ming Languages, pages 1{15. ACM, January

1990.

[Gira] Jean-Yves Girard. Geometry of interaction

II: Deadlock-free algorithms.

[Girb] Jean-Yves Girard. Linear logic and paral-

lelism.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical

Computer Science, 50:1{102, 1987.

[Gir89] Jean-Yves Girard. Geometry of interaction

I: Interpretation of system F. In Ferro,

Bonotto, Valentini, and Zanardo, editors,

Logic Colloquium '88, pages 221{260. El-

sevier Science Publishers B.V. (North Hol-

land), 1989.

[Gir91] Jean-Yves Girard. A new constructive logic:

Classical logic. Technical report, June 1991.

INRIA Report 1443.

[Kat90] Vinod Kathail. Optimal interpreters for

lambda-calculus based functional languages.

PhD thesis, MIT, May 1990.

[Laf90] Yves Lafont. Interaction nets. In Seven-

teenth Annual ACM Symposium on Princi-

ples of Programming Languages, pages 95{

108. ACM, January 1990.

[Lam90] John Lamping. An algorithm for opti-

mal lambda calculus reduction. In Seven-

teenth Annual ACM Symposium on Princi-

ples of Programming Languages, pages 16{

30. ACM, January 1990.

[L�ev80] Jean-Jacques L�evy. Optimal reductions in

the lambda-calculus. In J.P. Seldin and J.R.

Hindley, editors, To H.B. Curry: Essays in

Combinatory Logic, Lambda Calculus and

Formalism, pages 159{191. Academic Press,

1980.

[Wad71] Christopher P. Wadsworth. Semantics and

pragmatics of the lambda calculus. PhD the-

sis, Oxford, 1971.

Page 12

