
A BASIC DISTRIBUTIVE LAWF. MARMOLEJO, R.D. ROSEBRUGH AND R.J. WOODABSTRACT. We pursue distributive laws between monads, particularly in the con-text of KZ-doctrines, and show that a very basic distributive law has (constructively)completely distributive lattices for its algebras. Moreover, the resulting monad is shownto be also the double dualization monad (with respect to the subobject classi�er) onordered sets.1. Introduction1.1. In February of 1984, at a meeting in San Juan, two of us heard Fred Linton describethe category of frames as the category of algebras for a distributive law between monadson the category of ordered sets (while at the same time he pointed out that no suchresult holds over the category of sets). A moment's reection on this suggests that ananalogous result must hold for the category of completely distributive lattices. It does.The distributive law in question is particularly interesting though and warrants bothdescription and study.1.2. Distributive laws between monads in a bicategory can lead to rather large diagrams,especially by way of the `pentagon' conditions. In [RW4] it was shown that for idempotentmonads (and comonads) there is a major simpli�cation | one triangle su�ces. In thispaper the distributive law on which we focus involves a `KZ' monad and a `co-KZ' monad.Such monads (or `doctrines' as they are often called) are generalizations of idempotentmonads, requiring one further categorical dimension to de�ne them, so it is not toosurprising that we are able to simplify the study of distributive laws between them. Thiswe do in Section 4. We express our results for such monads on an object in an ord-cat-category, where ord denotes the 2-category of antisymmetric ordered sets.1.3. A brief word on the level of generality may be helpful. In [STR] Street de�ned andstudied monads on objects in an arbitrary 2-category. His results are easily extended tomonads on objects in bicategories | either directly or by using the coherence theoremwhich states that each bicategory is biequivalent to a 2-category. It has become clear thatKZ-doctrines should be studied in the context of pseudomonads on objects in a tricategory.Given the coherence result of [GPS], it su�ces to study them inGray-categories and thisdevelopment has begun in [MO1], [MO2] and [MO3]. There is no doubt that substantialresults of the kind we present can be proved in general Gray-categories, however, theirpursuit here would take us too far a�eld from the main applications we have in mind.The authors gratefully acknowledge �nancial support from the Canadian NSERC. Diagrams typesetusing M. Barr's diagram macros.1991 Mathematics Subject Classi�cation: 06D10.Key words and phrases: KZ-doctrine, adjunction, completely distributive.1



2Our modi�cations (3-cells) are mere inequalities and we assume that any instance of � isantisymmetric.1.4. Section 3 is in the spirit of [STR] and the results are valid in any bicategory. Weadd a new formulation of distributive laws that is useful when the ambient bicategorydoes not necessarily admit the `construction of algebras' in the terminology of [STR] (or,said otherwise, Eilenberg-Moore objects are not known to exist). This formulation isfrequently useful and also clari�es the characterization of distributive laws in terms ofKleisli objects. (In this last connection we have in mind recent work of Pisani [PIS] andJohnstone [JOH].)1.5. In Section 5 we introduce our `basic distributive law' r : UD -DU , where Dand U underlie the `down-set' KZ-doctrine D, respectively the `up-set' co-KZ-doctrineU, on the 2-category of ordered sets. We show that this law restricts to a number ofimportant submonads of D and U. From our results in Section 4 it follows that the basiclaw gives rise to the only possible distributive law in each case. In particular, leaving Dunaltered and replacing U by the `�nitely-generated up-set' monad we obtain Linton'sdistributive law which captures frames in terms of sup-lattices and meet-semi-lattices,over the 2-category of (antisymmetric) ordered sets.1.6. In Section 6 we show that the algebras for the monad arising from our basic laware precisely the constructively completely distributive | CCD | lattices introducedin [F&W] and further studied in [RW1], [RW2], [RW3] and [P&W]. The distributive lawr : UD -DU has a left adjoint which is also a distributive law and its algebras are thoselattices whose dual is CCD. The distinction between such lattices and CCD lattices is notapparent with respect to boolean set theory but as with other papers that deal with CCDlattices our results are intuitionistically valid. Using our techniques of Section 5 we arealso able to answer an interesting question of Paul Taylor: the algebras over ordered setsfor double dualization with respect to the subobject classi�er are also the CCD lattices.2. KZ-Doctrines2.1. Let K be an ord-cat-category. Thus, for each pair of objects A;B in K, we havean ord-category K(A;B), meaning that for each pair of arrows (1-cells) A;B from A toB we have an ordered set K(A;B)(A;B) of transformations (2-cells) from A to B. To �xnotation, write a � b : A -B : A - Bfor an inequality providing a typical modi�cation of K. Composition of arrows in theunderlying ordinary category ofK is denoted by juxtaposition; we use��� for compositionin the K(A;B). Since we assume the � to be antisymmetric, K has an underlying 2-category. So given x : X - Y : X -A and a : A -B : A - B, we have Bx � aX =aY �Ax in the ordered set K(X ;B)(AX;BY ) providing a well-de�ned ax : AX -BY :X - B. When we speak of a monad on an object K in K we are in the �rst instanceconsidering the underlying 2-category of K and we have immediate access to the formal



3theory of monads as described in [STR]. (It should be stressed that replacing K by ageneral Gray-category considerably complicates this discussion.)2.2. Definition. A KZ-doctrine on an object K in K consists of an arrow D : K -Kand a transformation d : 1K -D which admit a fully-faithful adjoint string, in the senseof [RW4], Dd a m a dD : D - DD (in K(K;K)).Precisely because ourGray-category K is merely ordered at the level of modi�cations, weare able to dispense with the coherence equation in the general de�nition of KZ-doctrinegiven in [MO1]. We also avoid having to consider the adjunctions Dd a m and m a dDas data. Note that if K is ord-cat then our de�nition of KZ-doctrine coincides with thatin [KOK].2.3. It is convenient to say that a co-KZ-doctrine on an object K in K consists of anarrow U : K -K and a transformation u : 1K - U which admit a fully-faithful adjointstring uU a n a Uu : U - UU . A KZ-doctrine (D; d), [co-KZ-doctrine (U; u)] givesrise to a monad, (D; d;m) [(U; u; n)]. We note that fully-faithfullness in the de�nitiongives a modi�cation Dd � dD [uU � Uu]. A T-algebra for a monad T = (T; t; c)on K in K with domain X is an arrow X : X - K, together with a transformationx : TX -X satisfying the usual axioms, which for convenience we have stated in 3.3. Itis now classical, in fact the starting point of KZ study by Kock, that if (T; t; c) is KZ then(X;x) is a T-algebra if and only if x a tX (in K(X ;K)), with tX fully-faithful. Similarly,if (T; t; c) is co-KZ then (X;x) is a T-algebra if and only if tX a x, with tX fully-faithful.Of course, if t is fully-faithful then the fully-faithful requirement is satis�ed automaticallyand a similar remark applies to De�nition 2.2 if d itself is known to be fully-faithful.3. Distributive Laws3.1. For monads D = (D; d;m) and U = (U; u; n) on K a transformation r : UD -DUis a distributive law of U over D if it satis�es the following four axioms of Beck as foundin [BEK]: UD DU-rUUd �����	 dU@@@@@RDuD @@@@@I Du������ UD DU-rUDD DDU?Um ?mUDUD-rD -Dr
UUD DUU6nD 6DnUDU-Ur -rUObserve that each axiom involves precisely one of the structural transformations d;m; u; nof the monads in question. We will write r[s], for s in fd;m; u; ng to indicate that a mere



4transformation r : UD - DU does at least satisfy the axiom involving s. (So, forexample, r[d] is the equation expressed by the top triangle above.)3.2. In [BEK] it is shown that distributive laws r : UD -DU involving monads on acategory K are in bijective correspondence with multiplications p : DUDU -DU forwhich: (DU; du; p) is a monad; dU : U - DU � D : Du provide monad transforma-tions; and the middle unitary lawDU DUDU-DudU1DU@@@@@@@@RDU?pholds. It is further shown that distributive laws r : UD -DU are in bijective correspon-dence with `liftings' ~D of the monad D to KU, the category of U-algebras. `Laws' and`multiplications' are in a sense quite di�erent from `liftings'. The �rst two involve onlya (natural) transformation satisfying equations while the last requires construction of anendo-functor on a category which is best viewed as a (lax) limit. It is obvious that the for-mal theory of monads, [STR], applies to the �rst two without reservation but we can onlyhope to speak of the last in a bicategory in which the requisite lax limit exists. It is fairto say that laws and multiplications are syntactic entities while liftings live at the level ofsemantics. There are results about distributive laws that are immediately apparent whentranslated as liftings but which require some opaque diagram chasing when considereddirectly. A good example is provided by: `If U is an idempotent monad on K then, forany monad D on K there is at most one distributive law UD -DU '. Proof: The for-getful functor from the algebras for an idempotent monad is fully-faithful, so a lifting isa restriction and a functor either restricts or it doesn't. (In [RW4] a less memorable, butsyntactic, proof is given.)3.3. It transpires however that there is a syntactic formulation of `lifting' that enablesreasonably memorable proofs of results such as that at the end of 3.2 above. For aU-algebra with domain X , say x : UX - X : X - K, the requisite equations are:X UX� xUX UUX�nX? ?UxX -uX1X@@@@@R xIn particular, in the context of monads (D; d;m) and (U; u; n), we can examineU-algebrason DU : K -K. Let us write a : UDU -DU for such an algebra. We will consider



5such algebras satisfying, in addition to the two basic equations above, the following threeequations:DUU DU-DnUDUU UDU-UDn?aU ?a U DU-dUUU UDU-UdU?n ?a UDUDUUDDU UDU-UmU?UDuDUDUDU?aDUDDU DU-mU?Da ?aReplacing the generic (X;x) in the basic U-algebra equations by (DU; a), we will labelthe resulting �ve equations for (DU; a) that have appeared above as a[u], a[n], a[Dn],a[dU ] and a[mU ] respectively. Each of a[Dn], a[dU ] and a[mU ] asserts that the arrowon the bottom side of the square in question is a homomorphism of U-algebras. Thatthe domain of the �rst is in fact a U-algebra by way of structure aU follows from thegeneral fact that if x : UX -X : X - K is an algebra, then for any Y : Y - X ,xY : UXY -XY : Y -K is a U-algebra. (We may see such as the Y 'th instance of(X;x).) Of course (UU; n) is a U-algebra and for the third we note:3.4. Lemma. If (U; u; n) is a monad on an object K in a 2-category, D : K - K is anyarrow, and a : UDU - DU is a U-algebra structure satisfying a[Dn] thenUDDU UDuDU- UDUDU aDU- DUDU Da- DDUis a U-algebra.Proof. The proof is a large diagram chase that is nevertheless easily found using theDU 'th instance of a[Dn].3.5. Proposition. Given monads (D; d;m) and (U; u; n) on an object in a 2-category,there is a bijective correspondence between distributive laws r : UD -DU and U-algebras a : UDU - DU satisfying a[Dn], a[dU ], and a[mU ]; given by:r - �(r) = (UDU rU - DUU Dn- DU)with inverse given by:a - �(a) = (UD UDu- UDU a - DU)Proof. We will just give the equations (other than monad equations and `interchange')that are relevant at each step.i) To show that �(�(a)) = a, use a[Dn];ii) For �(�(r)) = r, no `r' equations are needed;



6iii) To show that �(r) satis�es �(r)[Dn], no `r' equations are needed;iv) For �(r)[u], use r[u];v) For �(r)[n], use r[n];vi) For �(r)[dU ], use r[d];vii) For �(r)[mU ], use r[m];viii) For �(a)[u], use a[u];ix) For �(a)[n], use a[n] and a[Dn];x) For �(a)[d], use a[dU ];xi) For �(a)[m], use a[mU ].The following result is sometimes helpful.3.6. Lemma. For a = �(r), the U-algebra structure on DDU given in Lemma 3.4 isUDDU rDU- DUDU DrU- DDUU DDn- DDU:3.7. The considerations of 3.3, in which we have isolated special left U-algebra structureson DU , suggest that it is reasonable to examine right D-algebra structures on DU . Quitegenerally, given a monad (D; d;m) on an object K in a 2-category and an arrow X :K - X , a right D-algebra structure on X | which we would prefer to call a D-opalgebrastructure following the terminology of [STR] | is a transformation x : XD -X whichis unitary and associative. In the case of X = DU and a transformation b : DUD -DUwe will writeb[d] for b �DUd = 1DUb[m] for b �DUm = b � bD(the unitary and assciative conditions respectively) and to these addb[mU ] for mU:Db = b �mUDb[Du] for Du �m = b �DuDb[Dn] for Dn � bU �DUb �DUdUD = b �DnDquite analogously to the extra equations in 3.3. With these at hand a dualization ofProposition 3.5 gives:



73.8. Proposition. Given monads (D; d;m) and (U; u; n) on an object in a 2-category,there is a bijective correspondence between distributive laws r : UD -DU and D-opalgebras b : DUD - DU satisfying b[mU ], b[Du], and b[Dn]; given by:r - �(r) = (DUD Dr- DDU mU- DU)with inverse given by:b - �(b) = (UD dUD- DUD b - DU)We will sketch below how the U-algebra structures of 3.3 are in bijective correspon-dence with liftings of D to the Eilenbeg-Moore object KU. >From this point of view itis clear that the D-opalgebra structures of 3.7 are in bijective correspondence with ex-tensions of U to the Kleisli object KD. This last observation seems to have been largelyoverlooked but bears on recent work of others, for example [PIS] and [JOH]. Accordingly,we summarize formally:3.9. Theorem. For monads D = (D; d;m) and U = (U; u; n) on an object K in a2-category, the following structures are in bijective correspondence:i) Distributive laws UD -DU ;ii) Monad structures as in 3.2 on DU ;iii) U-algebra structures as in 3.3 on DU ;iv) D-opalgebra structures as in 3.7 on DU ;and, if the 2-category admits Eilenberg-Moore algebras then i) through iv) are in bijectivecorrespondence withv) Liftings of D through KU - K;and, if the 2-category admits Klesili opalgebras then i) through iv) are in bijective corre-spondence withvi) Extensions of U along K -KD.Proof. In view of the discussion above and the account in [BEK], it su�ces to sketch thecorrespondence between iii) and v); that of iv) and vi) being a dual. To give a lifting ofD through KU - K is to prescribe a monad on KU whose structure commutes with thatof D via KU - K, where KU - K (the forgetful functor when the 2-category is CAT)is the arrow part of the universal U-algebraKU K-@@@@@R K?U?



8Thus to give even an arrow ~D : KU - KU withK K-DKU KU-~D? ?is to give aU-algebra structure on KU -K D- K. Such an algebra structure when pre-ceded by the left adjoint to KU - K (whose existence follows from the universal propertyof KU, see [STR]) gives aU-algebra structure onDU , since the compositeK -KU -Kis U . It should be clear now how the required correspondence is constructed.By way of illustration of the use of iii) of 3.9 let us return to the fact stated at the endof 3.2: `IfU is an idempotent monad on an object K in any 2-category then, for any monadD on K, there is at most one distributive law UD -DU '. Proof: For any X : X -Kthere is a U-algebra structure on X if and only if uX : X - UX is invertible, in whichcase it is given by (uX)�1. In particular this holds for X = DU . To illustrate the use ofvi) we note that it would sometimes seem to be desirable to extend a monad T on set,the category of sets and functions, along set - rel, where rel is the category of sets andrelations and the functor interprets a function as the relation given by its graph. Howeverset - rel is the Kleisli opalgebra set - setP, where P is the power-set monad, so itfollows that the desired extensions correspond to distributive laws TP - PT .4. KZ-Doctrines and Distributive Laws4.1. Proposition. For an object K in any ord-cat-category K,i) If U is either a KZ-doctrine or a co-KZ-doctrine on K and D is any monad on Kthen there is at most one distributive law UD -DU ;ii) If D is either a KZ-doctrine or a co-KZ-doctrine on K and U is any monad on Kthen there is at most one distributive law UD -DU .Proof. For i) and the case in which U is co-KZ apply iii) of Theorem 3.9 and recall 2.3.The arrow DU supports a U-algebra structure (not a priori satisfying all the requirementsof iii) of Theorem 3.9) if and only if uDU has a right adjoint, which in this case is thestructure arrow. The other case of i) appeals to existence of left adjoints and ii) is similarexcept that it uses iv) of Theorem 3.9.4.2. It is natural to conjecture that if a distributive law r : UD -DU involves KZ-doctrines or co-KZ-doctrines then the conditions r[m] and r[n] can be derived from r[d]and r[u]. In the diagrams which follow it is convenient to display instances of modi�cationswith unlabelled arrows - rather than inequality symbols �.



94.3. Lemma. For monads D and U and a transformation r : UD -DU ,i) If (D; d;m) is either KZ or co-KZ then r[d] implies r[m];ii) If (U; u; n) is either KZ or co-KZ then r[u] imples r[n].Proof. For i) assume that (D; d;m) is KZ and consider the two modi�cations below whoseconjunction is r[m]. UD DU-rUDD DDU?Um ?mUDUD-rD -Dr- �Using simple instances of mates as in [K&S], we see that existence of the �rst of themodi�cations above follows from the �rst below and similarly for the second.UD DU-rUDD DDU6UDd 6DdUDUD-rD -DrDUd @@@@@I - UD DU-rUDD DDU6UdD 6dDUDUD-rD -DrdUD�������Now to assume r[d] is to assume r�Ud � dU and dU � r�Ud. The �rst of these inequalitiesupon application of D gives Dr � DUd � DdU | the �rst triangle above. The secondinequality applied to D gives dUD � rD � UdD | the second triangle. This completesthe proof of i) in the case (D; d;m) is KZ. The proof when (D; d;m) is co-KZ is entirelysimilar (in fact dual), as is that of ii).In fact, we can do slightly better in reducing the requirements for a distributive lawr : UD - DU in the present context. Of the original two triangles and two pentagonsin 3.1, `one and half triangles su�ce'.4.4. Proposition. For monads D and U and a transformation r : UD -DU :i) If (D; d;m) is KZ and (U; u; n) is either KZ or co-KZ then r : UD -DU is adistributive law if it satis�es r[d] and r � uD � Du;ii) If (U; u; n) is co-KZ and (D; d;m) is either KZ or co-KZ then r : UD - DU is adistributive law if it satis�es r[u] and r � Ud � dU



10Proof. For i) consider the following diagram, in which the triangle surmounting the squareis D applied to r[d]. -DdD DD-dD? DUD-DuD UD DU-r DDU-Dr6dUD 6dDUDdU@@@@@@RDU?DUd DU-mU1DU�������Du�����������*uDHHHHHHHHHHHj 1DUHHHHHHHHHHHHjAll regions commute except for that given by Dd � dD, which we have since (D; d;m)is KZ. So the diagram gives Du � r � uD. This inequality and the given inequalitythen provide r[u], so that invoking Lemma 4.3 we have a distributive law. The secondstatement is dual.In case we have an adjunction l a r : UD -DU , the task of checking that either lor r is a distributive law is facilitated somewhat by the following:4.5. Lemma. For monads (D; d;m) and (U; u; n) on K and l a r : UD - DU ,i) If (D; d;m) is either KZ or co-KZ then l[d] implies r[m];i) If (U; u; n) is either KZ or co-KZ then l[u] implies r[n];i) If (D; d;m) is either KZ or co-KZ then r[d] implies l[m];i) If (U; u; n) is either KZ or co-KZ then r[u] implies l[n].Proof. We prove just the �rst half of the �rst implication. Again, the other calculationsare similar. The equality r[m], see the �rst diagram in the proof of Lemma 4.3, is equiva-lently given as an equality between left adjoints and in the case that (D; d;m) is KZ andl[d] holds we have UD DU� lUDD DDU6UDd 6DdUDUD�lD �DlDUd @@@@@I



115. Ordered Sets5.1. For the rest of the paper D : ord - ord will denote the 2-functor which sends anordered set X to the set of down-sets of X ordered by inclusion and which is de�ned onarrows by down-closure of direct image. Of course DX is naturally isomorphic to [Xop;
],the ordered set of functors fromXop to to the subobject classi�er. To help clarify notation,let f : X -A be an arrow in ord. Here, for S 2 DX we haveDf(S) = ffxjx 2 Sg ?= fa 2 Aj(9x 2 S)(a � fx)g:We will write D = [(�)op;
] : ordcoop - ord. Then, modulo identi�cation of [Xop;
]with DX, Df is given by inverse image. For all f : X - A in ord, we have Df a Df .In the context of D as above we will understand dX : X -DX to be the yoneda functorthat sends x to fyjy � xg. We may write #x for dX(x). It is well known that D = (D; d)is a KZ-doctrine and that the 2-category of D-algebras is sup, the 2-category of completelattices, sup-preserving functors and inequalities.5.2. It is convenient to writeU = (D(�)op)op : ord - ord and U = (D(�)op)op : ord - ordcoop:So UX is the set of up-sets of X ordered by reverse inclusion and is naturally isomorphicto [X;
]op. From this last observation it follows easily that U is the left 2-adjoint of D.For reference later, note that UD : ord - ord is simply double dualization with respectto 
, that is [[�;
];
], which we regard as a 2-monad on ord via the structure of the2-adjunction. For all f : X -A in ord, we have Uf a Uf but note that it is Uf whichis given by inverse image while Uf is up-closure of direct image. In the context of U wewill understand uX : X - UX to be the coyoneda functor that sends x to fyjx � yg.We may write "x for uX(x). Now U = (U; u) is a co-KZ-doctrine, the 2-category ofalgebras for which is inf , the 2-category of complete lattices, inf-preserving functors andinequalities.5.3. The elegant notion of yoneda structure on a 2-category as de�ned in [S&W] hasord together with the yoneda functors dX : X -DX of 5.1 as an important example.Following [S&W] we recall that for any f : X -A in ord we have a diagramX A-fdX@@@@@RDX?A(f; 1)-which is both a left (kan) extension and an absolute left lifting. (Extensions and liftingsare carefully explained in [S&W].) Here it is straightforward to show that A(f; 1) sends



12a to the down-set fx 2 Xjfx � ag. Now taking UdX : UX - UDX for f : X -Aabove and writing rX for UDX(UdX; 1) we have, for each X in ordUX UDX-UdXdUX@@@@@RDUX?rXThe left extension triangle commutes because UdX is fully-faithful, which we have sincedX is so. It is clear that the construction de�nes r : UD - DU , 2-naturally.5.4. Using the description of A(f; 1) in 5.3 we can calculate rX explicitly. Observe �rstthat, for T 2 UX, UdX(T ) = fS 2 DXj(9x 2 T )(#x � Sg= fS 2 DXj(9x 2 T )(x 2 S)g` = ' fS 2 DXjT \ S is non-emptyg;where the last `equation' is intuitively helpful but intuitionistically unhelpful. For T 2UDX, we have rX(T ) = fT 2 UXjUdX(T ) � T g= fT 2 UXj(8S 2 T )(S 2 UdX(T ))g= fT 2 UXj(8S 2 T )(9x 2 T )(x 2 S)g` = ' fT 2 UXj(8S 2 T )(T \ S is non-empty)g:>From the last `equation' above it is clear that r : UD -DU has a left adjointl : DU - UD which, for S 2 DUX, is given bylX(S) = fS 2 DXj(8T 2 S)(9x 2 S)(x 2 T )g` = ' fS 2 DXj(8T 2 S)(T \ S is non-empty)g:It is the case that the lX also arise by consideration of the coyoneda structure on ordgiven by the uX : X - UX and observations dual to those in 5.3.5.5. Proposition. The transformation r : UD -DU : ord - ord is a distributivelaw of U over D and the transformation l : DU - UD : ord - ord is a distributivelaw of D over U.Proof. By construction of r we have r[d], so by Proposition 4.4 it su�ces, for the �rstclaim, to show that r � uD � Du. In other words, we must show that for all S in DX,rX("S) � f"xjx 2 Sg ?. But if T is in rX("S) then for all S 0 which contain S there isan x in T \ S 0. In particular, there is an x in T \ S and now T �"x and x 2 S showsthat T 2 f"xjx 2 Sg ?. The calculations for l are similar but can be shown to follow fromthose above by duality.



135.6. Remark. If we write idl for the bicategory of ordered sets, order ideals and inclu-sions then a down-set S of X can be regarded as an arrow S : 1 -X in idl. Similarly, anup-set T of X can be regarded as an arrow T : X - 1 in idl. A composite TS : 1 - 1of such admits a comparison TS � 11 (because 11 : 1 - 1 is terminal in idl(1; 1)). Tosay that (9x)(x 2 T and x 2 S), the condition which arises in the de�nitions of both rand l in 5.4 is to say that TS � 11 is an equality.5.7. Suppose now that d : 1 -D [u : 1 - U ] factorizes as 1 d0- D0 i- D [1 u0-U 0 j- U ], with i [j] fully-faithful. From the proof of Theorem 3.8 in [RW5] it followsthat if D0- [U 0-] unions (in both cases) of D0- [U 0-] sets are D0- [U 0-] sets then D0 = (D0; d0)[U0 = (U 0; u0)] is also a KZ [co-KZ] doctrine and i [j] is a monad arrow. In this situation,we can attempt to de�ne r0 : U 0D0 - D0U 0 by modifying the description of r in 5.4 so asto have r0X(T ) = fT 2 U 0Xj(8S 2 T )(9x 2 T )(x 2 S)gand similarly for an l0 : D0U 0 - U 0D0. This de�nition of r0 certainly gives an arrowU 0D0 - DU 0 and it factorizes through D0U 0 - DU 0 if the set displayed above is a D0-set. Similarly for l0, the obvious putative de�nition makes sense if the de�ning set isa U 0-set. If r does restrict to give r0 then the general considerations of Section 4 showthat we have a distributive law r0 : U 0D0 - D0U 0 of U0 over D0 (and that this is theonly possibility for such a law). It should be noted that r may restrict to give such anr0 without l restricting to give such an l0. Observe that if D0 = D then the conditionis automatically satis�ed for r0 : U 0D -DU 0 to be a distributive law. In particulartake U 0 to be given by �nitely-generated up-sets. These are closed with respect to �niteunions and the resulting co-KZ-doctrine is well known to be that for which the algebrasare meet-semi-lattices. The algebras for the composite monad DU0 are frames. This isthe law that we attributed to Linton in 1.1. In this case, l does not restrict to give an l0.5.8. In [RW5] there is an extended discussion of the case where D0 is given by boundeddown-sets and U 0 by non-empty up-sets. There it is shown that r0 : U 0D0 - D0U 0 iswell-de�ned. We note here that in this case l0 : D0U 0 - U 0D0 is also well-de�ned.If D0 is given by �nitely-generated down-sets and U 0 by �nitely-generated up-sets thenboth r0 and l0 are well-de�ned.If D0 is given by up-directed down-sets and U 0 by �nitely-generated up-sets then r0 iswell-de�ned.We should point out here that the basic law r is sensitive to the base 2-category ord.In particular, r does not preserve all �nite joins so that it is not possible to considerthe restrictions of such monads D0 and U0 as are under under consideration to, say, the2-category of distributive lattices and obtain a distributive law whose components are therL, where L is a distributive lattice.



146. Complete Distributivity6.1. By DU we will understand the monad on ord constructed on DU with the help ofr. Similarly, UD is the composite monad obtained with the help of l. From [F&W] werecall that a (constructively) completely distributive lattice is an ordered set L for whichdL has a left adjoint which has a left adjoint. We often call such L CCD lattices and anumber of characterizations of these are given in [RW3]. Now to say that Lop is CCD isto say that uL has a right adjoint which has a right adjoint. Here we will call such anL an opCCD lattice. Classically the notions CCD and opCCD coincide but it was shownin [RW1] that relative to a general elementary topos, coincidence of CCD and opCCD isequivalent to booleaness of the topos in question. We write ccd [opccd] for the 2-categoryof CCD [opCCD] lattices, functors that preserve both sups and infs, and inequalities.6.2. Theorem.i) ordDU �= ccdii) ordUD �= opccdProof. It su�ces to give a proof of i); that of ii) is dual to it. From Section 2. of [BEK]we know that a DU-algebra is a U-algebra that carries a D-algebra structure for whichthe D-structure arrow is a U-homomorphism. If L is a U-algebra, that is an object ofinf , it is necessarily an object of sup but its D-algebra structure, that is W : DL - L, isa U-homomorphism i� W preserves in�ma i� W has a left adjoint i� L is CCD. Of courseDU-homomorphisms are just arrows that are both U-homomorphisms (inf-preserving)and D-homomorphisms (sup-preserving).6.3. Consider the adjunction [�;
] a [�;
] : ordop - ord which gives rise to themonad on ord known as double dualization with respect to 
. We are grateful to PaulTaylor for asking us to consider the algebras for this monad. As pointed out in 5.2 thismonad admits the apparently more complicated description DU , which is obtained bycomposing the adjunction above with the isomorphism (�)op a (�)op : ordcoop - ordop.6.4. Lemma. DU = DU : ord - ordProof. Consider an arrow f : X -A in ord. As noted in 5.2, Uf a Uf and since D isa 2-functor, DUf a DUf . On the other hand, for the arrow Uf we have DUf a DUf ,as noted in 5.1. Since DUf and DUf have the same right adjoint they are equal.Lemma 6.4 is at �rst surprising since both D and U are de�ned in terms of direct imagewhile both D and U are given by inverse image. Certainly, for a function f : X -A,P(Pf) 6= 9(9f) : PPX - PPA;where P is the inverse-image power set functor and 9f is direct image (the left adjoint ofPf).6.5. Theorem. The 2-monad arising from the 2-adjunction U a D is DU.



15Proof. After 6.4 we have only to check that the units and multiplications coincide. Theunit � for the monad on DU is the unit for the 2-adjunction U a D. We have �X :X - [[X;
];
] = DUX given by the familiar `evaluation' formula �X(x)(T ) = T (x).In terms of subsets this translates as�X(x) = fT 2 UXjx 2 Tg= fT 2 UXjT �"xg= #"x= dUX(uX(x))= (dU � u)X(x)but dU � u = Du � d is the unit for DU.The multiplication for the monad on DU is D�U , where � : UD - 1ordcoop is thecounit for the adjunction U a D. As an arrow in ord, �X : X - UDX = [[Xop;
];
]opis again given by `evaluation' and arguing as we did for the units we haveU UD-Ud1 D-d?u ?uD�@@@@@RNow for each X in ord, D�UX is by 5.1 the right adjoint of D�UX. From the squareabove then we can write DuDU:DdU = D�U a D�U .>From [BEK] we know that the multiplication for DU is mn �DrU = Dn �mUU �DrU ,wherem is the multiplication forD and n is the multiplication forU. NowDn�mUU �DrUhas a left adjoint given by DlU �DdUU �DuU . So �nally, to show that the multiplicationscoincide we can show DuDU �DdU = DlU �DdUU �DuU . This follows from 2-naturalityof u and l[d] as in the diagram below.DDU DUDU-DuDUDU DDUU?DdU ?DlUDUU-DuU -DdUUDUdUQQQQQQQs6.6. Corollary. The 2-category of algebras for the double dualization with respect to
 monad on ord is ccd.



166.7. Remark. Taking the (�)coop duals of our D and U we can prove that the monadon ord arising from Dcoop a U coop is UD, whence the 2-category of algebras is opccd.6.8. Remark. Mindful of the celebrated theorem of Par�e, saying that 
(�) is monadicover the base topos, see [PAR], one might ask if [�;
];ordop - ord is monadic. Theanswer is `no' and can be deduced from the results in [RW3] about those special CCDlattices of the form DX, for X an ordered set.References[BEK] J. Beck. Distributive laws. Springer Lecture Notes in Math 80:119{140, 1969.[F&W] B. Fawcett and R.J. Wood. Constructive complete distributivity I. Math. Proc. Cam. Phil. Soc.,107:81{89, 1990.[GPS] R. Gordon, A.J. Power and R. Street. Coherence for tricategories Mem. Amer. Math. Soc., Vol. 117,No. 558, 1995.[JOH] P.T. Johnstone. Relational (co)algebras for the power-set monad. Lecture at CT99, Coimbra.[K&S] G.M. Kelly and R. Street. Review of the elements of 2-categories. In Lecture Notes in Math. 420,75{103. Springer-Verlag, 1974.[KOK] A. Kock. Monads for which structures are adjoint to units. Journal of Pure and Applied Algebra,104:41{59, 1995.[MO1] F. Marmolejo. Doctrines whose structure forms a fully-faithful adjoint string. Theory and Applicationsof Category Theory, Vol. 3, No. 2, 24{44, 1997.[MO2] F. Marmolejo. Distributive laws for pseudomonads. Theory and Applications of Categories, Vol. 5, No.5. 91{147. 1999.[MO3] F. Marmolejo. Distributive laws for pseudomonads II, In progress.[PAR] R.Par�e. Colimits in topoi. Bull. Amer. Math. Soc., 80:556{561, 1974.[P&W] M.C. Pedicchio and R.J. Wood. Groupoidal completely distributive lattices. Journal of Pure andApplied Algebra, `Barr volume' to appear.[PIS] C. Pisani. Convergence in exponentiable spaces. Theory and Applications of Categories, Vol. 5, No. 6,148{162, 1999.[RW1] R. Rosebrugh and R.J. Wood. Constructive complete distributivity II. Math. Proc. Cam. Phil. Soc.,110:245{249, 1991.[RW2] R. Rosebrugh and R.J. Wood. Constructive complete distributivity III. Canad. Math. Bull.,Vol.35(4):537{547, 1992.[RW3] R. Rosebrugh and R.J. Wood. Constructive complete distributivity IV. Applied Categorical Structures,2:119-144, 1994.[RW4] R. Rosebrugh and R.J. Wood. Distributive adjoint strings. Theory and Applications of Category Theory,Vol. 1, No. 6, 119{145, 1995.[RW5] R. Rosebrugh and R.J. Wood. Boundedness and complete distributivity. To appear.[STR] R. Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2:149{168, 1972.[S&W] R. Street and R.F.C. Walters. Yoneda structures on 2-categories. J. of Algebra. 50:350{379, 1978.
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