CusToMALLOC:
Efficient Synthesized Memory Allocators

Dirk Grunwald Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CU-CS-602-92 July 1992

&

University of Colorado at Boulder

Technical Report CU-CS-602-92
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright © 1992 by
Dirk Grunwald Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CusToMALLOC:
Efficient Synthesized Memory Allocators *

Dirk Grunwald Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

July 1992

Abstract

The allocation and disposal of memory is a ubiquitous operation in most programs. Rarely do
programmers concern themselves with details of memory allocators; most assume that memory
allocators provided by the system perform well. Yet, in some applications, programmers use
domain-specific knowledge in an attempt to improve the speed or memory utilization of memory
allocators.

In this paper, we describe a program (CusTOMALLOC) that synthesizes a memory allocator
customized for a specific application. Our experiments show that the synthesized allocators are
uniformly faster than the common binary-buddy (BsD) allocator, and are more space efficient.
Constructing a custom allocator requires little programmer effort. The process can usually be
accomplished in a few minutes, and yields results superior even to domain-specific allocators
designed by programmers. Our measurements show the synthesized allocators are from two to
ten times faster than widely used allocators.

1 Introduction

The allocation and disposal of memory is a ubiquitous operation in most programs, yet one largely
ignored by most programmers. Some programmers use domain-specific knowledge in an attempt to
improve the speed or memory utilization of memory allocators; however, the majority of program-
mers use the memory allocator provided in a given programming environment, believing it to be
efficient in time or space. In many virtual memory systems, space efficiency is usually a secondary
concern, although important in some applications.

In this paper, we describe a program (CusToMALLOC) that synthesizes a memory allocator
customized for a specific application. Our experiments show that the synthesized allocators are

uniformly faster than the common binary-buddy (BsD) allocator, and are more space efficient.

*This material is based upon work supported by the National Science Foundation under Grants No. CCR-9010624,
CCR-9121269 and CDA-8922510

Constructing a custom allocator requires little programmer effort, with the process taking only a few
minutes. The results are typically superior to domain-specific allocators designed by programmers
with detailed knowledge of the application. Our measurements show the synthesized allocators are
from two to ten times faster than widely used allocators.

The central idea of CUSTOMALLOC is simple: the allocation pattern of a program is measured
across multiple input sets, and a customized memory allocator is generated using the information
collected in the measurement phase. A similar strategy has been used to produce the QUICKFIT
memory allocator [Weinstock & Wulf 88, Standish 80]; however, the QUICKFIT algorithms depends
on the observation that many programs allocate a large number of small objects and generalizes
that common condition, treating all programs similarly. By comparison, CUSTOMALLOC tailors the
allocator design to each application, and can accomodate applications that do not fit this pattern.

During a study to determine appropriate models of program allocation [Zorn & Grunwald 92b,
Zorn & Grunwald 92a], we noticed a common pattern in many of the programs we examined. We
recorded the frequency of different size classes, or amount of memory requested for each allocation
request. In most applications, we found that a small number of size classes dominanted the range of
object allocation sizes. This observation is not unique; indeed, similar observations motivated the
QUICKFIT algorithm[Bozman et al. 84, DeTreville 90, Batson et al. 70, Margolin et al. 71]. How-
ever, by examining a broader spectrum of programs, we noted that the occurence of size classes was
variable; in most applications, very small object sizes were very frequent, while in other applications,
other sizes dominated.

We also noted that the transition probability between sizes classes was much smaller than that
within a class; this meant that once a program allocated a particular object size, it tended to
allocate that object size frequently. In effect, there was a great degree of temporal locality in the
sizes of memory requests. Numerous memory allocation mechanisms have also made use of this
observation; for example, Oldehoft [Oldehoeft & Allan 85] measured the performance of adaptive
caching strategies for memory allocation. Likewise, numerous programs use this property for ad hoc
allocation strategies, that is, static caching strategies based on the (commonly misjudged) relative
allocation frequency of objects of different sizes. The CusTOMALLOC memory allocator also uses
such information using direct measurements of the application across a spectrum of program inputs.

In the next section, we describe the design and structure of CusToMALLOC. In §3, we show
the accuracy of measuring allocation frequency from multiple program executions. The design of
memory allocators is often considered to be a prosaic topic; reports of increasing memory efficiency
by a few percent appear common, and the total benefit to program execution time is often difficult
to discern. In contrast, in §4 we measure the performance of CusTOMALLOC in absolute and rela-
tive terms with a number of actual applications. We have found that differences between memory

allocation strategies can be significant; our CUSTOMALLOC implementation shows significant im-

provement over widely used algorithms that are considered to be extremely fast. We show how a
commercial memory allocator can consume over 20% of total program execution time; by compari-
son, the allocator produced by CusTOMALLOC consumes a tenth that amount. We conclude in §5

with observations and future work.

2 The Design Of CusToMALLOC

The CusToMALLOC allocator first measures the allocator behavior for an application and then

generates a customized memory allocator using that information.

2.1 Measurement

Prior to measurement, the user executes a command that produces a source file containing the
measurement-based memory allocator. This file is compiled and linked with the application, re-
placing the memory allocator normally provided. The measurement allocator records the frequency
of memory allocations and deallocations (e.g., via the malloc and free functions on UNIX). Infor-
mation for each memory request is stored in a list of cached freelists. The measurement allocation
pool is structured as a list of lists; each list maintains statistics for objects of a specific size and a
pointer to a freelist of objects at least that large.

Although our previous study [Zorn & Grunwald 92b] showed that a plurality of requests were
for a specific number of bytes, it also showed that a greater majority could be satisfied by rounding
the request size to a small R-byte size boundary. A request for B bytes then becomes a request
for R|(B + R — 1)/R| bytes. In any case, the architectures used in our experimentation required
that objects be stored on quad-byte boundaries, necessitate rounding of some sort. Thus, we round
all measured memory requests to a number of allocation units. In CusToMALLOC, the allocation
unit size can be specified by the user, with the default allocation unit being 32 bytes. Allocation
requests fall into a small number of distinct size classes, based on the number of allocation units
requested. These size class units are used to partition the freelists in each algorithm examined; for
example, all requests for objects from 96 to 127 bytes fall into the single size class of objects that
have at least 96 bytes allocated.

Using the instrumented application, we count the number of allocation and disposal requests
for each size class; moreover, we measure the maximum and mean number of objects allocated and
on the freelist. This provides a coarse summary of the allocation history of the program. We also
measure the freelist length each time an item is added to or removed from the freelist to compute
the mean freelist length. In effect, the number of allocations and releases defines a time order for
mean usage. Our previous study|[Zorn & Grunwald 92b] showed this is an accurate approximation

to the true mean freelist length.

MallocPtrType malloc(MallocArgType bytes)
{

unsigned int size = size_external_to_internal(bytes);

if (size == 32) {
if (__customalloc_FreelList[0]) return(__customalloc_unlink(0));
else return(__fast_malloc(32));

}

else
if (size == 64) {
if (__customalloc_Freelist[1]) return(__customalloc_unlink(1));
else return(__general_malloc(64));

}

return __general_malloc(size);

};

Figure 1: Sample Memory Allocator Code Fragment

The data collected by the measurement allocator is stored in a file when the program finishes
execution. Successive runs of the instrumented application update the contents of the file. To
capture the typical behavior of the application, the instrumented application should be run with
multiple input sets. Our experience has shown that a small number of executions are sufficient to
provide a “typical” allocation profile for a given program. Most object sizes that are allocated are
related to particular data structures in the application and do not vary between executions. Others,
typically strings or bitmaps, are usually small or infrequently allocated. If they are infrequently
allocated, the time to allocate those objects contributes little to the total execution time of the

program, and performance does not suffer by missing or ignoring information about those objects.

2.2 Synthesized Allocator

Once the measurement has been completed, a customized allocator is created using the Cus-
TOMALLOC program. The synthesized allocator is composed of freelists and two internal memory
allocators. Objects for specific size classes are stored on separate freelists.

For each memory request, the request size is rounded to a number of allocation units, after
which, we locate the appropriate freelist for that object size. Freelists are examined in order of
frequency of occurrence, reducing the mean number of freelists considered when searching for a
particular size class. Figure 1 shows a sample of the synthesized allocator using the C language.

We found that explicitly ordering the freelist search based on allocation frequency was faster than

Fast Allocator

- I

Cache Size ‘ 64 Bytes ‘128 Bytes ‘ 32 Bytes ‘ 96 Bytes ‘AII Others ‘

Freelists \ /

General Allocator

Figure 2: Structure of synthesized memory allocator

using an equivalent switch or case statement. Switch statements typically consume more cycles
computing a general index function and require more active registers; by comparison, the code
sequence in Figure 1 can take advantage of measured allocation frequency, reducing the mean
number of instructions executed.?

When preallocated objects are not found in the appropriate freelist, one of two internal allocators
are used to create new objects. All objects within a particular size class are allocated by the same
internal allocator. As Figure 2 suggests, we use both a “fast allocator” and a more general internal
allocator. If the recorded statistics suggest that there is little advantage to reclaiming the store of
a particular size class, we use the fast allocator. The fast allocator has no mechanism for coalescing
or recovering storage. Objects allocated by the fast allocator must always be returned to the
freelist structure or their storage will be lost. The fast algorithm allocates from contiguous extents;
allocation involves updating pointers and possible allocating new contiguous extents.

The synthesized allocator must also use a general allocator internally because some object sizes
may not be represented in the freelist. Likewise, some size classes may have their storage reclaimed
from the freelists, and thus require a more general allocator. We use an efficient first-fit coalescing
allocator for the general allocator[Lea |. In §4, we compare the performance of CusToMALLOC to
that allocator as well as a number of other allocation algorithms.

The decision to use the fast or general allocator is based on the ratio of the mean freelist length
to the mean number of allocated objects in use. If the mean freelist length for a size class is small,
there is little advantage in reclaiming storage from that freelist — there is very little to reclaim.
Likewise, if the mean freelist length is large with respect to the mean number of objects in use, this
indicates that the size class undergoes episodic or periodic use. For example, in one application

we measured, a large number of objects for a particular size class are allocated in a sparse-matrix

! As a side note, our implementation assumed the majority of function calls shown in Figure 1 can be inlined or
macro-expanded.

subroutine. The objects are then returned and, although that size class is still the most frequently
referenced class, the remainder of the program does not use the large number of objects allocated
by the sparse matrix algorithm. Thus, if storage efficiency is important, storage from this size class
can be reclaimed. The total number of calls to the allocation and free routines also guide this
strategy. Some program we measured have size classes where storage is never returned; we always
use the fast allocator for those size classes.

The selection criteria for choosing the fast or general allocator can be set by the user. The only
advantage of the general allocator is that storage may be returned and later used to allocate other
objects. When recovering storage, we want to return as little storage as needed to satisfy the current
request to the general allocator. For each size class, we compute P,,(s) and P¢(s), the probability
that a particular call to malloc or free will concern an object of size s. Likewise, we have already
recorded F(s), the mean size of the freelist during the measurement phase. We examine each freelist
that uses the general allocator, ordered by the prioritization function P¢(s)(1— Py (s)) x sF(s). The
intuition behind this prioritization is that, in a steady state, 313’(3) represents the mean number of
bytes that can be recovered from the free list for objects of size s. The term Py (s) favors size classes
that frequently return objects to the freelist — there is little point in examining a freelist if storage
is rarely returned for that size class. Similarly, the term 1 — P,,(s) favors size classes that tend to
not allocate storage, because they will simply need to allocate storage again. This prioritization is
computed when the allocator is synthesized, not during execution time. Storage is reclaimed from
the freelists until twice the amount requested by the general allocator is returned. If this storage
can not be coalesced into a sufficiently large block, more storage is requested from the operating
system.

In §4, all synthesized allocators use the standard options to produce an allocate that (usually)
combines the fast and general allocator. If allocator speed is particularly important, the user can
indicate that all size classes use the fast allocator; however, we have found that the allocator chosen
by the heuristics has excellent performance.

The structure of the memory deallocation routine, shown in Figure 3, is similar to that for
allocation. Each storage object is tagged with it’s allocation size and the freelists are examined
in the order of deallocation frequency rather than allocation frequency. We encountered some
programs where the orderings by allocation and deallocation frequencies differed. In cases when
the UNIX realloc function is used, objects allocated by the the fast allocator may not exactly
match a specific size class. In this infrequent case, the objects are returned to the freelist with the
closest suitable size.

In general, we do not dedicate a freelist for each size class in the application. In the next
section, we see that over 95% of all allocation requests can usually be satisfied by four freelists for

most programs we examined. We cull the number of freelists to reduce allocator complexity — the

FreeRetType free(FreePtrType p)

{
if (p) {
MallocChunk *chunk = external_to_malloc(p);
int size = size_malloc_to_internal(malloc_size(chunk) - (2 * SIZE_SZ));
if (size == 96) {
__customalloc_link(2, p); return;
}
else
if (size == 64) {
__customalloc_link(1l, p); return;
}
else
if (is_fast(p)){ __fast_free(p, size); return;};
__general_free(p);
};
};

Figure 3: Sample Memory Deallocator Code Fragment

small number of allocations of the remaining infrequent size classes contribute little to the overall
program execution time.
We also found that frequently allocated sizes classes were usually related to structures or records

defined in the application. A common idiom in the C language is

FooPtr *foo = (FooPtr) malloc(sizeof(struct Foo));

where the size of the allocation request is known at compile time. To take advantage of this, we
also generated a version of the malloc and free routines that could be “inlined”, or compiled
without procedure calls. Not only does this remove function call overhead (approximately 20% of
the average CusToMALLOC allocator cost), but the computation of the rounded allocation request
size can be computed by the compiler (approximately 10% of the average call in CusToMALLOC).

To reduce the chance of potential code explosion from aggressive inlining, we include only the
most frequent size classes in the inlined function; the remainder are handled by another routine.
Consider an example using the SPARC architecture. If the allocation request is similar to the
idiomatic usage shown above, the combination of dead-code elimination and constant propagation
in the compiler remove the examination of extraneous freelists, leaving only the following eight

instructions to be executed if items are available on the freelist:

sethi %hi(___customalloc_FreeList), %00 ;3 load free list
1d [%00+%1lo(___customalloc_FreeList)],%i0

cmp %10,0 ;3 check if empty

be L32

or %00,%lo(___customalloc_Freelist),%ol ;; if not, remove

1d [%i0],%00

b L29

st %00, [fo1+0] ;; and link next item

If the freelist is empty, the fast allocator takes an additional twenty one instructions. These
results are similar to those noted by others[Weinstock & Wulf 88].

We stress that this is not a contrived or atypical example; the previous code fragment was taken
from one of the applications we instrumented. The program modifications to include the inlined
allocators are fairly simple, again taking a few minutes. The inlined example is illustrative because
it defines an easily achievable lower-bound for memory allocation — basically, any allocation scheme
that can reuse storage must take at least this many instructions. As we see in §4, the non-inlined
allocator produced by CusTOMALLOC takes approximately twice as long as this lower bound.

Although the inlined version is easy to use, we do not use it comparisons in this paper.

3 Inter-run Allocation Frequency Accuracy

The success of CusTOMALLOC is predicated on being able to accurately measure the allocation
frequency of different size classes. We also tacitly assume that the size class orders, determined
by allocation frequency, is similar between different runs of the same program, even with different

input data. In this section, we show these assumptions are generally valid.

3.1 Sample Programs

We used seven allocation intensive programs, listed in Table 1, to compare the similarity of al-
location frequency between different inputs and to compare the performance of CusToMALLOC
to other allocators. Previously, we examined numerous synthetic models for comparing memory
allocators[Zorn & Grunwald 92a, Zorn & Grunwald 92b], and considered using one of those mod-
els. However, to measure the sensitivity of allocation distribution to the input set, we needed to
instrument actual applications; once this was done, it was as simple to use those applications to
compare performance. The programs were all written in the C programming language. The version
of YACR that we measured did not release much allocated memory by calling free. The empirical
behavior of these problems is presented in [Zorn & Grunwald 92b].

We had limited detailed knowledge about the sample programs; we did not have to concern

ourselves with the internal structure of the programs because measurement was performed by

CFRAC A program to factor large integers using the continued fraction method. The
inputs are products of two large primes.

GS GhostScript, version 2.1, is a publicly available interpreter for the PostScript
page-description language. The input files were a variety of small and large
files, including an 126 page user manual. This execution of GhostScript did
not run as in interactive application as it is often used, but instead was
executed with the NODISPLAY option that simply forces the interpretation
of the Postscript without displaying the results.

PERL Perl 4.10, is a publicly available report extraction and printing language,
commonly used on UNIX systems. A number of input scripts were used.
YACR YACR (Yet Another Channel Router), version 2.1, is a channel router for
printed circuit boards. The input files are provided with the YACR release.

GAWK Gnu Awk, version 2.11, is a publicly available interpreter for the AWK report
and extraction language. A number of scripts were used.

MAKE Gnu-make, version 3.62 is a version of the common ‘make’ utility used on
UNIX. Different input sets were provided by using the instrumented MAKE
to build other sample programs.

ESPRESSO | Espresso, version 2.3, is a logic optimization program. The input files were
provided with the release code.

Table 1: General Information about the Test Programs

the CusToMALLOC program. Size classes were rounded to 32-byte boundaries. Table 2 shows
the relative ordering of the four dominant size classes, ordered by the allocation frequencies that
are shown in parentheses. We selected two sample inputs from the suite of available inputs and
measured each application. We recorded the actual distribution for the first (“Input 1”) and second
(“Input 2”) runs, and the distribution from both runs (“Input 1&2”).

The most notable feature of Table 2 is that a single size class usually dominates all allocation
requests (from 85% to 100% of all allocations, depending on the application) and that 95% of all
allocations were matched by no more than four size classes for all input sets in all applications.

Secondly, for all applications other than Gs, the relative allocation frequency order does not
change significantly across the input files. We compute allocation frequency relative to the total
number of allocations, giving equal weight to allocations occurring in different execution runs. For
Gs, the first input set had significantly more allocations than the second. Thus, although there was
a substantial difference in allocation frequency between the two input sets, the larger input (“Input
1”) dominated the combined allocation frequency.

Even in the Gs application, only the relative order of the four most frequent object sizes changes;
no new objects sizes appear. Each conditional statement in the allocator adds &~ 3 instructions

the execution time; thus, even if the allocation order is not completely accurate, the additional

Input 1 2 (100.0% 64 (0.0%)
CFRAC Input 2 2 (99.9%) 352 (0.0%)
Input 1&2 2 (99.9%) 160 (0.0%)
Input 1 4 (77.9%) 128 (4.5%)
GS Input 2 (37.7%) 32 (7.9%)
Input 1&2 (71.0%) 32 (6.1%)
Input 1 2 (90.8%) 160 (1.6%)
PERL Input 2 2 (94.7%) 1216 (0.0%)
Input 1&2 2 (90.8%) 128 (1.5%)
Input 1 2 (99.0%) 1280 (0.3%)
YACR Input 2 2 (98.1%) 96 (0.1%)
Input 1&2 2 (98.9%) 1280 (0.3%)
Input 1 2 (86.0%) 96 (0.8%)
GAWK Input 2 2 (86.4%) 96 (0.8%)
Input 1&2 2 (86.3%) 96 (0.8%)
Input 1 2 (96.8%) 128 (0.2%)
MAKE Input 2 2 (90.8%) 96 (0.2%)
Input 1&2 2 (94.5%) 128 (0.2%)
Input 1 2 (85.5%) 128 (1.1%)
ESPRESSO Input 2 2 (84.3%) 544 (2.0%)
Input 1&2 2 (85.5%) 128 (1.1%)

Allocation Frequency With Different Runs
Table 2: (Each entry shows the object size and its allocator frequency)

overhead is minimal. If the application is made to use the inlined functions and the idiomatic usage
shown at the end of §2 is common, the relative allocation frequency is even less important, because
the compiler selects the appropriate freelist directly. The Gs application is interesting because the
dominant size classes are not small; allocation algorithms using allocation frequencies based on
heuristics or anecdotal observation, such as QUICKFIT, may perform poorly for this application.
We have examined a large number of applications in addition to those mentioned here, using a
number of input sets, and our experience has shown that the pattern evinced by the data in this

section is representative of most programs:

e Programs typically allocate a small number of size classes.
e A small subset of the size classes dominate allocation frequency.

e Although the relative ordering of the dominant size classes can change between runs of a
program, the changes are usually minor.

4 Performance Comparison

In this section, we compare the CusToMALLOC allocator to implementations of a number of other
algorithms. In the algorithms we implemented (QUICKFIT, ADAPTIVECACHE, CUSTOMALLOC)
considerable effort was taken to optimize the code. For other algorithms (FirRsTF1T, Bsp), efficient,
commonly used implementations were used. Source code was not available for the last algorithm
(CARTESIAN), but it is provided with a widely used operating system, and we assume it has been

extensively optimized.

FirsTF1T This algorithm, described by Knuth, is a straightforward implementation of a first-fit
strategy with several optimizations [Knuth 73]. We measured a publicly available implemen-
tation of the classic Knuth algorithm written by Doug Lea. This variant uses an array of
freelists. In each freelist, free blocks are connected together in a double-linked list. An appro-
priate freelist is selected based on the log of the allocation request; this is done to increase the
probability of a better fit. During allocation the selected freelist is scanned for the first free
block that is large enough. The block found is split into two blocks, one of the appropriate
size, and returned. As an optimization, if the extra piece is too small (in this case less than
16 bytes), the block is not split.

This implementation is used as the “general allocator” in the CusToMALLOC allocator. Com-
parison to other “first-fit” implementations indicates this is very a efficient implementation.

BsD As an alternative to a more conventional first-fit algorithm, Chris Kingsley implemented a
very fast buddy algorithm that was distributed with the 4.2 BSD Unix release [Kingsley 82].
Kingsley’s algorithm allocates objects in a limited number of different size classes, namely
powers of two minus a constant. Allocation requests are rounded up to the nearest size class
and a freelist of objects of each size class is maintained. If no objects of a particular size class
are available, more storage is allocated. No attempt is made to coalesce objects.

11

Because this algorithm is so simple, it is also easy to provide a fast implementation. On the
other hand, it also wastes considerable space, especially if the size requests are often slightly
larger than the size classes provided. This algorithm illustrates one extreme of the time/space
tradeoffs possible in dynamic storage management. Interestingly, its widespread use would
suggest that users often consider CPU performance more important than memory usage in
these systems (or, perhaps, users are not aware of the penalty).

CARTESIAN This algorithm, sometimes called “better-fit”, is provided by the Sun Operating Sys-
tem library routines malloc and free[Stephenson 83, Sun 90]. Rather than place the free
blocks in a linear list, they are placed in a Cartesian tree[Vuillemin 80]. Descendents in the
tree are ordered both by address (left descendents have lower addresses than right descen-
dents), and by size (descendents on the left are smaller than descendents on the right). This
algorithm is attractive because the worst-case cost of all operations on the tree (allocation,
deallocation, and moving blocks around) is O(d), where d is the depth of the tree.

QuickFIT This is the quick-fit algorithm described by [Weinstock & Wulf 88, Standish 80], and
is somewhat similar to CusToMALLOC. Allocation requests less than 32 bytes are grouped
into eight size classes rounded to four byte sizes. Allocations in those size classes use the same
fast allocator used in CusToOMALLOC. All other allocations use the same general allocator
used in CusToMALLOC.

This algorithm provides a comparison to CUsTOMALLOC that applies the observation that
only small objects tend to be allocated frequently. The performance of this algorithm is
extremely sensitive to the size range selected for coverage by the freelists. In the literature,
from four to 16 freelists are used. Our implementation of the QUICKFIT allocator manages
objects from one to 32 bytes and allocates objects using more precise allocation units, rounding
to four rather than 32 bytes.

ADAPTIVECACHE This algorithm is similar to CUSTOMALLOC in that it uses freelists for objects
in different size classes. Allocation requests are rounded to 32 bytes. When an allocation
is requested, the list of freelists is searched for an appropriate object size. If none is found,
or the appropriate freelist is empty, the memory is allocated using the fast allocator used
in CusToMALLOC. When an object is deallocated, the list of of freelists entries is again
searched. If a freelist does not exist, a new freelist entry is created. In both allocation and
deallocation, the most recently accessed freelist entry is moved to the front of the list of
freelists. Variants on this algorithm have been suggested [Bozman 84, Oldehoeft & Allan 85,
Leverett & Hibbard 82], although we were unable to find a previous implementation of our
exact algorithm.

This allocator takes advantage of temporal locality in object size references; the freelist for the
dominant object size will always be near the beginning of the list of freelists. This algorithm
provides a comparison to CUSTOMALLOC, using dynamic rather than pre-computed allocation
frequencies. Although the number of size classes considered by this allocator per allocation
request may be lower than that for CusToMALLOC, the cost of moving entries to the front
of the list can increase the mean time for allocation.

12

CusToMALLOC This is the CusTOMALLOC described in this paper, using profiles from two of the
available input sets. As mentioned, we did not use the inlined version of CUSTOMALLOC in
our measurements.

4.1 Experimental Design

Each program was compiled on a system using the SPARC architecture?. We compiled the programs
using version 2.1 of the the Gnu C compiler with normal (-O) optimization levels enabled.

The data in this section is derived using “Input 1” from Table 2. We measured the memory
efficiency of each allocator by recording the amount of dynamic memory requested from the op-
erating system via the Unix sbrk function. This is a coarse metric, but does illustrate the peak
usage requested by the program.

We measured execution time using the QP utility[Ball & Larus 92]. This tool provides a dynamic
execution count for each subroutine in terms of instructions. This removes any variability in
measuring execution time, greatly simplifying the experimental design. It also provides a more
accurate and intuitive measure of the allocation time; as we shall see, allocation can take as little as
sixteen cycles on average — accurately measuring this in a real application is very difficult. Moreover,
the QP tool instruments the same binary used to generate the memory efficiency comparison.
Unfortunately, QP does not account for secondary effects such as cache misses caused by poor data

locality; these factors may be considered in a future study.

4.2 Performance: CPU Time

Figure 4 shows the number of machine instructions used during the average call to malloc (Fig-
ure 4(a)) and free (Figure 4(b)) for each allocation algorithm across the sample programs. Some
values in Figure 4 are significantly larger than others, and were truncated to avoid obscuring the
remaining data. Figure 5 shows the total percentage of executed instructions spent in the malloc
and free subroutines for each application.

The most notable feature of Figure 4 is the range in the number of instructions needed for
the different allocators. The CARTESIAN allocator is particular slow; this is surprising because
it is distributed with a widely used operating system. Surprisingly, allocation using the BsD
algorithm is often slower than using FIRSTFIT — however, the total allocation time (malloc and
free) is faster when using Bsp (calls to free for Bsp take an average of ~ 17 cycles across all
applications). Figure 5 shows that the CusToMALLOC allocator is consistently faster than Bsp;

this is encouraging, because BsD is widely considered to be a very fast algorithm.

?Due to our measurement strategy, we did not have to concern ourselves with the actual machine model.

13

Instrunctions Per Request

Instrunctions Per Request

(285) (208)

180.0 - FirstFit |
r BSD 1
| Cartesian i i
QuickFit M
150.0 - AdaptiveFit B
H CustoMalloc 1
120.0 - a
90.0 i
60.0 a
30.0 i
0.0
Cfrac GS Perl Yacr Gawk Make Espresso

(a) Allocation Time Per Request Across Sample Programs

(376) (241) (285) (321)
180.0 a
FirstFit]
BSD
Cartesian o]
150.0 QuickFit - m
AdaptiveFit
CustoMalloc M i
120.0 ~ a
90.0 il
60.0 - a
30.0 il
0.0
Cfrac GS Perl Yacr Gawk Make Espresso

(b)Deallocation Time Per Request Across Sample Programs

Figure 4: Allocation and Deallocation Times

14

FirstFit
BSD
40.0 - Cartesian N
QuickFit
AdaptiveFit —
CustoMalloc

30.0 ~ - -

20.0 - M -

% Execution Spent In Malloc&Free

10.0 +~ -

I

Cfrac GS Perl Yacr Gawk Make Espresso

Figure 5: Total Percent of Execution Spent in malloc & free.

The three allocators with consistently good performance are ADAPTIVECACHE, QUICKFIT and
CusToMALLOC. The CusToMALLOC allocator is uniformly the fastest allocator across all the
applications. This is particularly evident in the Gs application. This application allocates very few
objects less than 32 bytes (=~ 7%); thus, the QUICKFIT algorithm incurs the overhead of QUicKFIT
with little commensurate advantage. Indeed, even the ADAPTIVECACHE algorithm, with its higher
overhead, is faster for this application. The YACR application does not return much storage via
free. Thus the time to deallocate memory for YACR, shown in Figure 4, is based on a small number
of samples and is not very meaningful. Since every allocation in YACR requires new storage, the
FirsTFI1T algorithm has particularly poor performance, because it attempts to recover storage
before requesting more storage from the system.

We found the QUICKFIT allocator to be extremely sensitive to the pre-selected size range
managed by the freelists. Table 3 shows the total percentage of execution time spent in the malloc
and free routines for a QUICKFIT implementation that handles objects of 32 bytes (eight freelists)
or less and another that handles objects of 16 bytes or less (four freelists). The total allocation
time is doubled when the smaller number of freelists is used. The number of freelists recommended
in the literature ranges from two to sixteen freelists, with the general exhortation that the span

“should cover the most common sizes” allocated by an application. This is clearly a possible, albeit

15

Percentage Execution Spent in malloc and free
CFRAC GS PERL | YACR | GAWK | MAKE | ESPRESSO
QuickF1T(< 32 byte) 6.0% | 6.0% | 5.7% | 2.8% | 8.6% | 1.3% 4.2%
QuickFIT(< 16 bytes) | 9.3% | 11.5% | 8.0% | 5.3% | 14.4% | 1.7% 7.7%

Table 3: Sensitivity of the QuickFI1T Allocator

infrequently exercised, option. In contrast, CUSTOMALLOC always determines the appropriate size
range. Moreover, CUSTOMALLOC can use additional information to improve on the QUICKFIT
allocator, even in cases where the underlying QUICKFIT algorithm is a very good choice. By
design, CusTOMALLOC can also handle cases where QUICKFIT shows little advantage (such as in
Gs). This latter point is particularly important in certain application domains; the CusToMALLOC
allocator is being ported to a Cray system, where we hope to measure improvements on large
scientific applications such as the Community Climate Weather Model. These applications may
have allocation distributions that differ from the applications (compilers and the like) that originally

provided the the anecdotal evidence to guide the design of QUickFIT.

4.3 Performance: Memory Efficiency

The allocator synthesized by CusTOMALLOC is uniformly the fastest allocator; however, experience
has shown that fast allocators (e.g., BsD) typically waste considerable memory. Figure 6 shows the
maximum amount of memory needed by each applications when using a particular allocator; the
values are normalized to the space needed for the FIRSTFIT allocator.

As noted, Figure 6 shows that the BsD allocator takes consistently more memory than other
allocators, and, that the CusToMALLOC allocator has good memory efficiency despite being faster
than Bsb.

The maximum memory request for CFRAC and YACR shown in Figure 6 shows one flaw in
CusToMALLOC — rounding to 32 bytes. The ADAPTIVECACHE allocator, which also rounded to
32 byte allocation units has similar problems. Both cFrAcC and vacr allocate a large number
of very small (8 byte) objects. Furthermore, the YACR application never returns any items via
free. In these cases, the 32 byte rounding used by CusToMALLOC (and ADAPTIVECACHE) causes
significant memory overhead. However, we note that this is a rare occurrence in the applications we
measured; generally, the memory demands of CUSTOMALLOC are close to the most space-efficient
allocators. The scaled values used in Figure 6 can also obscure the impact of the memory efficiency;
each allocator in the cFRAC application takes less than 82,000 bytes of storage, while the allocators
for YACR take over 20,000,000 bytes. Due to the way storage is requested from the system (in

8192-bytes units), small differences appears significant in cFrRAcC.

16

10.0

8.0 -
7
4 i
>
o
o}
o
> 6.0+
S}
=
5}
2 i
3
= 40 -
[
=
= I
o}
o

20 -

0.0

-

FirstFit

BSD
Cartesian
QuickFit
AdaptiveFit
CustoMalloc

|

Yacr

Gawk

Make

Figure 6: Maximum Memory Requested From Operating System
(Normalized to maximum memory needed by FIRSTFIT allocator.)

Espresso

Application | Size | Allocator | Allocations | Mean Allocated | Deallocations | Mean Freelist
Objects Length

MAKE 32| TFast 17,873 6,652 9,045 102

ESPRESSO 32 | General | 1,438,916 572 1,438,916 4,471

Table 4: Measured Statistics for Dominant Size Classes in Two Applications

Average Instruction Cycles Spent in malloc
CFRAC GS PERL | YACR | GAWK | MAKE | ESPRESSO
CusToMaALLOC (heuristics) 15.0 | 19.4 | 17.3 | 31.3 16.7 | 24.6 19.8
CusToMaALLOC (always fast) 15.0 | 19.4 | 17.0 | 31.3 16.7 | 24.6 18.2
CusToMALLOC (always general) 15.5 | 22.4 | 27.7 | 122.9 18.7 | 78.0 19.8

Table 5: Advantages of Using the Fast Internal Allocator

17

In ESPRESSO, the ADAPTIVECACHE allocator consumes significantly more space than other
allocators. This application has a large number of distinct size class, and the ADAPTIVECACHE
allocator allocates a freelist for each size class. The ADAPTIVECACHE allocator also returned all
items to freelists, meaning none are reclaimed or coalesced. Our decision to cull the number of
freelists appears to be well-chosen; objects not cached in the freelist are available for coalescing,
and the overhead for those freelists is obviated. Since these objects have sizes that are outliers
on the distribution of allocations, using the general allocator in these cases does not appreciably
increase the execution time.

An important advantage of CUSTOMALLOC is that it measures aspects of an application and
adapts an allocator to those characteristics. In particular, we use heuristics to determine if a
particular freelist should use a general or fast internal allocator. The former allows storage to be
recovered and used for other object sizes, while the later is significantly faster than the general
allocator.

For example, consider the information collected for ESPRESSO and MAKE, shown in Table 4. We
reasoned that a program with an average freelist length larger than the average number of allocated
objects, such as ESPRESSO, must undergo episodic allocation — that is, a large number of objects
are allocated, briefly used and the deallocated. This indicates that this particular size class will
eventually have copious amounts of extra storage on a freelist, and we should be able to reclaim
it. Thus, this particular size class for ESPRESSO uses the general allocator; although this internal
allocator is slower, it allows us to reclaim and coalesce storage.

By comparison, the dominant freelist in MAKE will rarely contain enough objects to compensate
for the increased overhead of the general allocator. Table 5 shows the difference in the number of
instructions executed per allocation for variants of CusToOMALLOC. We synthesized allocators using
our standard heuristics and other allocators using just the fast allocator or just the general allocator.
The choice of fast or general allocator only affects the allocation time. In most applications, the
measured data was similar to that for MAKE, and the fast internal allocator was chosen. The
ESPRESSO application demonstrates the episodic allocation pattern the heuristics attempt to detect.
In ESPRESSO, using the general allocator and the recovery heuristics described in §2, a maximum of
327,680 bytes of storage were needed, compared to 425,984 bytes when using just the fast allocator.
The CusTtoMALLOC and FIRSTFIT allocators used the same amount of storage, the least storage
of all the allocators, but the CusToMALLOC allocator was more than twice as fast.

These examples show that the measured data is useful when synthesizing the customized alloca-
tor. Experience with the first version of CuSTOMALLOC has shown that we can increase the storage
efficiency of CusToMALLOC, with little or no increase in allocation time. We are modifying Cus-
TOMALLOC to measure allocation behavior using a finer storage granularity (eight bytes). Using

this finer allocation information, we can automatically select an appropriate aggregation size (e.g.,

18

Performance Relative to CARTESIAN(optimized)
Allocator CFRAC GAWK GS PERL
CARTESIAN (unoptimized) 1.62 1.22 1.15 1.24
CARTESIAN (optimized) 1.00 1.00 1.00 1.00
Bsp (unoptimized) 1.10 0.75 0.85 0.82
Bsp (optimized) 1.03 0.73 1.28 0.79

Table 6: Comparison of “unoptimized” and “optimized” Memory Allocators

16 or 32 bytes) for an application. Larger aggregate sizes speed program execution, because more
allocations fall into the most common case. At times, large aggregate sizes may increase memory
efficiency because previously allocated objects can be reused for other sizes; however, in many cases,
larger aggregate sizes decrease memory efficiency, e.g., in YACR and CFRAC. We are developing an
heuristic to minimize the total memory wasted, as indicated by the measured allocation frequencies,
while maximizing the aggregation size to increase speed.

We can also use the measured data to consider other allocation policies. For example, we
currently use ordered freelists of aggregated sizes; clearly, in some situations, an indexed freelist
similar to QUICKFIT may be more appropriate. The choice between these methods depends on
the number of size classes and the frequency of allocation and deallocation. If allocation of several
size classes is common (e.g., the application is equally likely to allocate 48, 52, 56 or 60 bytes),
a QUICKFIT mechanism may be most appropriate. However, if a single size class dominates, or
measurements indicate that rounding to a particular size aggregate will not waste considerable

space, then the ordered freelist mechanism is more appropriate.

4.4 Comparison to “Optimized” Memory Allocation

Obviously the optimizations performed by CusTOMALLOC can be performed manually by program-
mers, and, to a large part, are performed in many allocation intensive programs. Programmers use
domain-specific knowledge about the (perceived) allocation frequency of various objects, typically
constructing a freelist structure similar to that of CusToMALLOC.

How well do these ad hoc solutions perform compared to CusTOMALLOC? Surprisingly, such
optimizations are occasionally “de-optimizations” — they actually slow the program execution.
For example, in a previous comparison of different memory allocators and a conservative garbage
collection algorithm, one of us collected the data shown in Table 6[Zorn 92]. The values in the
table are the execution time for each application normalized to that of the optimized CARTESIAN
allocator. Larger values indicate that the program took longer to execute. Three of the applications

uniformly benefit from the added ad hoc optimizations, although not to a great extent. The last

19

application, Gs, benefits from the optimization when a slow allocator (CARTESIAN) is used, but is
penalized when a faster allocator (Bsp) is used. Nonetheless, the largest improvement we see using
the optimized BsD allocator is ~ 7%, while the allocator generated by CusTOMALLOC is generally

~ 30% faster than BsD and uses less storage.

5 Conclusions

We feel the optimization of memory allocators, like the optimization of register allocation, common
subexpression elimination and the like, is a task best left to automated tools. CUsTOMALLOC is
a good first step towards a tool for such optimizations. When allocating memory, a large number
of “special cases” exist that advocate construction of customized memory allocators, particularly
if the construction can be easily automated, as in CusTOMALLOC. Our experiments show that
the synthesized allocators are uniformly faster than the common binary-buddy (Bsp) allocator,
and are more space efficient. We feel that a general purpose memory allocator will not usually be
competative with synthesized allocators; however, their study and use is important, as they must
be used within sythensized allocators.

As mentioned, we feel that slight improvements on the code generation strategy for the syn-
thesized allocator can yield both time and space performance unsurpassable by an algorithm that
attempts to address general allocation profiles. We also note that these admittedly simple opti-
mizations can yield dramatic performance improvements for some applications.

Our original interest was in developing a scalable, robust and efficient memory allocation algo-
rithm for parallel programs. Experience has shown that sound parallel algorithms are usually based
on the best available sequential algorithm. In the near future, we hope to extend the measurement-

directed code synthesis of CuUSTOMALLOC to parallel memory allocation.

6 Acknowledgements

We would like to thank James Larus for development of the QP utility, which greatly simplified our
experimentation. Likewise, we thank Doug Lea and Chris Kingsley for use of their efficient memory
allocators. The CusTOMALLOC software is available via anonymous FTP from cs.colorado.edu

in pub/cs/misc/customalloc.tar.Z; contact grunwald@cs.colorado.edu for more information.

References

[Ball & Larus 92] Ball, T. and Larus, J. R. Optimally profiling and tracing programs. In Conference
Record of the Nineteenth ACM Symposium on Principles of Programming Languages,
pages 59-70, January 1992.

20

[Batson et al. 70] Batson, A. P., Ju, S. M., and Wood, D. C. Measurements of segment size.
Communications of the ACM, 13(3):155-159, March 1970.

[Bozman 84] Bozman, G. The software lookasize buffer reduces search overhead with linked lists.
Communications of the ACM, 27(3):222-227, March 1984.

[Bozman et al. 84] Bozman, G., Buco, W., Daly, T. P., and Tetzlaff, W. H. Analysis of free-storage
algorithms—revisited. IBM Systems Journal, 23(1):44-64, 1984.

[DeTreville 90] DeTreville, J. Heap usage in the Topaz environment. Technical Report 63, Digital
Equipment Corporation System Research Center, Palo Alto, CA, August 1990.

[Kingsley 82] Kingsley, C. Description of a very fast storage allocator. Documentation of 4.2 BSD
Unix malloc implementation, February 1982.

[Knuth 73] Knuth, D. E. Fundamental Algorithms, volume 1 of The Art of Computer Programming,
chapter 2, pages 435-451. Addison Wesley, Reading, M A, 2nd edition, 1973.

Lea Lea, D. An eflicient first-fit memory allocator. (From comments in source and personal
s y p
communication).

[Leverett & Hibbard 82] Leverett, B. W. and Hibbard, P. G. An adaptive system for dyanmic
storage allocation. Software — Practice and FExperience, 12:543—-555, 1982.

[Margolin et al. 71] Margolin, B. H., Parmelee, R. P., and Schatzoff, M. Analysis of free-storage
algorithms. IBM Systems Journal, 10(4):283-304, 1971.

[Oldehoeft & Allan 85] Oldehoeft, R. R. and Allan, S. J. Adaptive exact-fit storage management.
Communications of the ACM, 28(5):506-511, May 1985.

[Standish 80] Standish, T. Data Structures Techniques. Addison-Wesley Publishing Company,
1980.

[Stephenson 83] Stephenson, C. J. Fast fits: New methods for dynamic storage allocation. In
Proceedings of the Ninth ACM Symposium on Operating System Principles, pages 30-32,
Bretton Woods, NH, October 1983.

[Sun 90] Sun Microsystems, Mountain View, CA. Uniz Manual Page for malloc, SunOS 4.1 edi-
tion, 1990.

[Vuillemin 80] Vuillemin, J. A unifying look at data structures. Communications of the ACM,
23(4):229-239, April 1980.

[Weinstock & Wulf 88] Weinstock, C. B. and Wulf, W. A. Quickfit: An efficient algorithm for heap
storage allocation. ACM SIGPLAN Notices, 23(10):141-144, October 1988.

[Zorn & Grunwald 92a] Zorn, B. and Grunwald, D. Empirical measurements of six allocation-
intensive ¢ programs. Technical Report CS-CS-604-92, Department of Computer Science,
University of Colorado, Boulder, Boulder, CO, July 1992.

21

[Zorn & Grunwald 92b] Zorn, B. and Grunwald, D. Evaluating models of memory allocation. Tech-
nical Report CS-CS-603-92, Department of Computer Science, University of Colorado,
Boulder, Boulder, CO, July 1992. In preparation.

[Zorn 92] Zorn, B. The measured cost of conservative garbage collection. Technical Report CU-

CS-573-92, Department of Computer Science, University of Colorado, Boulder, Boulder,
CO, February 1992.

22

