
CustoMalloc:E�cient Synthesized Memory AllocatorsDirk Grunwald Benjamin ZornDepartment of Computer ScienceCampus Box #430University of Colorado, Boulder 80309{0430CU-CS-602-92 July 1992�University of Colorado at BoulderTechnical Report CU-CS-602-92Department of Computer ScienceCampus Box 430University of ColoradoBoulder, Colorado 80309

Copyright c
 1992 byDirk Grunwald Benjamin ZornDepartment of Computer ScienceCampus Box #430University of Colorado, Boulder 80309{0430

CustoMalloc:E�cient Synthesized Memory Allocators �Dirk Grunwald Benjamin ZornDepartment of Computer ScienceCampus Box #430University of Colorado, Boulder 80309{0430July 1992AbstractThe allocation and disposal of memory is a ubiquitous operation in most programs. Rarely doprogrammers concern themselves with details of memory allocators; most assume that memoryallocators provided by the system perform well. Yet, in some applications, programmers usedomain-speci�c knowledge in an attempt to improve the speed or memory utilization of memoryallocators.In this paper, we describe a program (CustoMalloc) that synthesizes a memory allocatorcustomized for a speci�c application. Our experiments show that the synthesized allocators areuniformly faster than the common binary-buddy (Bsd) allocator, and are more space e�cient.Constructing a custom allocator requires little programmer e�ort. The process can usually beaccomplished in a few minutes, and yields results superior even to domain-speci�c allocatorsdesigned by programmers. Our measurements show the synthesized allocators are from two toten times faster than widely used allocators.1 IntroductionThe allocation and disposal of memory is a ubiquitous operation in most programs, yet one largelyignored by most programmers. Some programmers use domain-speci�c knowledge in an attempt toimprove the speed or memory utilization of memory allocators; however, the majority of program-mers use the memory allocator provided in a given programming environment, believing it to bee�cient in time or space. In many virtual memory systems, space e�ciency is usually a secondaryconcern, although important in some applications.In this paper, we describe a program (CustoMalloc) that synthesizes a memory allocatorcustomized for a speci�c application. Our experiments show that the synthesized allocators areuniformly faster than the common binary-buddy (Bsd) allocator, and are more space e�cient.�This material is based upon work supported by the National Science Foundation under Grants No. CCR-9010624,CCR-9121269 and CDA-8922510 1

Constructing a custom allocator requires little programmer e�ort, with the process taking only a fewminutes. The results are typically superior to domain-speci�c allocators designed by programmerswith detailed knowledge of the application. Our measurements show the synthesized allocators arefrom two to ten times faster than widely used allocators.The central idea of CustoMalloc is simple: the allocation pattern of a program is measuredacross multiple input sets, and a customized memory allocator is generated using the informationcollected in the measurement phase. A similar strategy has been used to produce the QuickFitmemory allocator [Weinstock & Wulf 88, Standish 80]; however, the QuickFit algorithms dependson the observation that many programs allocate a large number of small objects and generalizesthat common condition, treating all programs similarly. By comparison,CustoMalloc tailors theallocator design to each application, and can accomodate applications that do not �t this pattern.During a study to determine appropriate models of program allocation [Zorn & Grunwald 92b,Zorn & Grunwald 92a], we noticed a common pattern in many of the programs we examined. Werecorded the frequency of di�erent size classes, or amount of memory requested for each allocationrequest. In most applications, we found that a small number of size classes dominanted the range ofobject allocation sizes. This observation is not unique; indeed, similar observations motivated theQuickFit algorithm[Bozman et al. 84, DeTreville 90, Batson et al. 70, Margolin et al. 71]. How-ever, by examining a broader spectrum of programs, we noted that the occurence of size classes wasvariable; in most applications, very small object sizes were very frequent, while in other applications,other sizes dominated.We also noted that the transition probability between sizes classes was much smaller than thatwithin a class; this meant that once a program allocated a particular object size, it tended toallocate that object size frequently. In e�ect, there was a great degree of temporal locality in thesizes of memory requests. Numerous memory allocation mechanisms have also made use of thisobservation; for example, Oldehoft [Oldehoeft & Allan 85] measured the performance of adaptivecaching strategies for memory allocation. Likewise, numerous programs use this property for ad hocallocation strategies, that is, static caching strategies based on the (commonly misjudged) relativeallocation frequency of objects of di�erent sizes. The CustoMalloc memory allocator also usessuch information using direct measurements of the application across a spectrum of program inputs.In the next section, we describe the design and structure of CustoMalloc. In x3, we showthe accuracy of measuring allocation frequency from multiple program executions. The design ofmemory allocators is often considered to be a prosaic topic; reports of increasing memory e�ciencyby a few percent appear common, and the total bene�t to program execution time is often di�cultto discern. In contrast, in x4 we measure the performance of CustoMalloc in absolute and rela-tive terms with a number of actual applications. We have found that di�erences between memoryallocation strategies can be signi�cant; our CustoMalloc implementation shows signi�cant im-2

provement over widely used algorithms that are considered to be extremely fast. We show how acommercial memory allocator can consume over 20% of total program execution time; by compari-son, the allocator produced by CustoMalloc consumes a tenth that amount. We conclude in x5with observations and future work.2 The Design Of CustoMallocThe CustoMalloc allocator �rst measures the allocator behavior for an application and thengenerates a customized memory allocator using that information.2.1 MeasurementPrior to measurement, the user executes a command that produces a source �le containing themeasurement-based memory allocator. This �le is compiled and linked with the application, re-placing the memory allocator normally provided. The measurement allocator records the frequencyof memory allocations and deallocations (e.g., via the malloc and free functions on UNIX). Infor-mation for each memory request is stored in a list of cached freelists. The measurement allocationpool is structured as a list of lists; each list maintains statistics for objects of a speci�c size and apointer to a freelist of objects at least that large.Although our previous study [Zorn & Grunwald 92b] showed that a plurality of requests werefor a speci�c number of bytes, it also showed that a greater majority could be satis�ed by roundingthe request size to a small R-byte size boundary. A request for B bytes then becomes a requestfor Rb(B + R � 1)=Rc bytes. In any case, the architectures used in our experimentation requiredthat objects be stored on quad-byte boundaries, necessitate rounding of some sort. Thus, we roundall measured memory requests to a number of allocation units. In CustoMalloc, the allocationunit size can be speci�ed by the user, with the default allocation unit being 32 bytes. Allocationrequests fall into a small number of distinct size classes, based on the number of allocation unitsrequested. These size class units are used to partition the freelists in each algorithm examined; forexample, all requests for objects from 96 to 127 bytes fall into the single size class of objects thathave at least 96 bytes allocated.Using the instrumented application, we count the number of allocation and disposal requestsfor each size class; moreover, we measure the maximum and mean number of objects allocated andon the freelist. This provides a coarse summary of the allocation history of the program. We alsomeasure the freelist length each time an item is added to or removed from the freelist to computethe mean freelist length. In e�ect, the number of allocations and releases de�nes a time order formean usage. Our previous study[Zorn & Grunwald 92b] showed this is an accurate approximationto the true mean freelist length. 3

MallocPtrType malloc(MallocArgType bytes){ unsigned int size = size_external_to_internal(bytes);if (size == 32) {if (__customalloc_FreeList[0]) return(__customalloc_unlink(0));else return(__fast_malloc(32));}elseif (size == 64) {if (__customalloc_FreeList[1]) return(__customalloc_unlink(1));else return(__general_malloc(64));}return __general_malloc(size);}; Figure 1: Sample Memory Allocator Code FragmentThe data collected by the measurement allocator is stored in a �le when the program �nishesexecution. Successive runs of the instrumented application update the contents of the �le. Tocapture the typical behavior of the application, the instrumented application should be run withmultiple input sets. Our experience has shown that a small number of executions are su�cient toprovide a \typical" allocation pro�le for a given program. Most object sizes that are allocated arerelated to particular data structures in the application and do not vary between executions. Others,typically strings or bitmaps, are usually small or infrequently allocated. If they are infrequentlyallocated, the time to allocate those objects contributes little to the total execution time of theprogram, and performance does not su�er by missing or ignoring information about those objects.2.2 Synthesized AllocatorOnce the measurement has been completed, a customized allocator is created using the Cus-toMalloc program. The synthesized allocator is composed of freelists and two internal memoryallocators. Objects for speci�c size classes are stored on separate freelists.For each memory request, the request size is rounded to a number of allocation units, afterwhich, we locate the appropriate freelist for that object size. Freelists are examined in order offrequency of occurrence, reducing the mean number of freelists considered when searching for aparticular size class. Figure 1 shows a sample of the synthesized allocator using the C language.We found that explicitly ordering the freelist search based on allocation frequency was faster than4

Cache Size
 Freelists

All Others

General Allocator

Fast Allocator

64 Bytes 128 Bytes 32 Bytes 96 BytesFigure 2: Structure of synthesized memory allocatorusing an equivalent switch or case statement. Switch statements typically consume more cyclescomputing a general index function and require more active registers; by comparison, the codesequence in Figure 1 can take advantage of measured allocation frequency, reducing the meannumber of instructions executed.1When preallocated objects are not found in the appropriate freelist, one of two internal allocatorsare used to create new objects. All objects within a particular size class are allocated by the sameinternal allocator. As Figure 2 suggests, we use both a \fast allocator" and a more general internalallocator. If the recorded statistics suggest that there is little advantage to reclaiming the store ofa particular size class, we use the fast allocator. The fast allocator has no mechanism for coalescingor recovering storage. Objects allocated by the fast allocator must always be returned to thefreelist structure or their storage will be lost. The fast algorithm allocates from contiguous extents;allocation involves updating pointers and possible allocating new contiguous extents.The synthesized allocator must also use a general allocator internally because some object sizesmay not be represented in the freelist. Likewise, some size classes may have their storage reclaimedfrom the freelists, and thus require a more general allocator. We use an e�cient �rst-�t coalescingallocator for the general allocator[Lea]. In x4, we compare the performance of CustoMalloc tothat allocator as well as a number of other allocation algorithms.The decision to use the fast or general allocator is based on the ratio of the mean freelist lengthto the mean number of allocated objects in use. If the mean freelist length for a size class is small,there is little advantage in reclaiming storage from that freelist { there is very little to reclaim.Likewise, if the mean freelist length is large with respect to the mean number of objects in use, thisindicates that the size class undergoes episodic or periodic use. For example, in one applicationwe measured, a large number of objects for a particular size class are allocated in a sparse-matrix1As a side note, our implementation assumed the majority of function calls shown in Figure 1 can be inlined ormacro-expanded. 5

subroutine. The objects are then returned and, although that size class is still the most frequentlyreferenced class, the remainder of the program does not use the large number of objects allocatedby the sparse matrix algorithm. Thus, if storage e�ciency is important, storage from this size classcan be reclaimed. The total number of calls to the allocation and free routines also guide thisstrategy. Some program we measured have size classes where storage is never returned; we alwaysuse the fast allocator for those size classes.The selection criteria for choosing the fast or general allocator can be set by the user. The onlyadvantage of the general allocator is that storage may be returned and later used to allocate otherobjects. When recovering storage, we want to return as little storage as needed to satisfy the currentrequest to the general allocator. For each size class, we compute Pm(s) and Pf (s), the probabilitythat a particular call to malloc or free will concern an object of size s. Likewise, we have alreadyrecorded F̂ (s), the mean size of the freelist during the measurement phase. We examine each freelistthat uses the general allocator, ordered by the prioritization function Pf (s)(1�Pm(s))�sF̂ (s). Theintuition behind this prioritization is that, in a steady state, sF̂ (s) represents the mean number ofbytes that can be recovered from the free list for objects of size s. The term Pf (s) favors size classesthat frequently return objects to the freelist { there is little point in examining a freelist if storageis rarely returned for that size class. Similarly, the term 1� Pm(s) favors size classes that tend tonot allocate storage, because they will simply need to allocate storage again. This prioritization iscomputed when the allocator is synthesized, not during execution time. Storage is reclaimed fromthe freelists until twice the amount requested by the general allocator is returned. If this storagecan not be coalesced into a su�ciently large block, more storage is requested from the operatingsystem.In x4, all synthesized allocators use the standard options to produce an allocate that (usually)combines the fast and general allocator. If allocator speed is particularly important, the user canindicate that all size classes use the fast allocator; however, we have found that the allocator chosenby the heuristics has excellent performance.The structure of the memory deallocation routine, shown in Figure 3, is similar to that forallocation. Each storage object is tagged with it's allocation size and the freelists are examinedin the order of deallocation frequency rather than allocation frequency. We encountered someprograms where the orderings by allocation and deallocation frequencies di�ered. In cases whenthe UNIX realloc function is used, objects allocated by the the fast allocator may not exactlymatch a speci�c size class. In this infrequent case, the objects are returned to the freelist with theclosest suitable size.In general, we do not dedicate a freelist for each size class in the application. In the nextsection, we see that over 95% of all allocation requests can usually be satis�ed by four freelists formost programs we examined. We cull the number of freelists to reduce allocator complexity { the6

FreeRetType free(FreePtrType p){ if (p) {MallocChunk *chunk = external_to_malloc(p);int size = size_malloc_to_internal(malloc_size(chunk) - (2 * SIZE_SZ));if (size == 96) {__customalloc_link(2, p); return;}elseif (size == 64) {__customalloc_link(1, p); return;}elseif (is_fast(p)){ __fast_free(p, size); return;};__general_free(p);};}; Figure 3: Sample Memory Deallocator Code Fragmentsmall number of allocations of the remaining infrequent size classes contribute little to the overallprogram execution time.We also found that frequently allocated sizes classes were usually related to structures or recordsde�ned in the application. A common idiom in the C language isFooPtr *foo = (FooPtr) malloc(sizeof(struct Foo));where the size of the allocation request is known at compile time. To take advantage of this, wealso generated a version of the malloc and free routines that could be \inlined", or compiledwithout procedure calls. Not only does this remove function call overhead (approximately 20% ofthe average CustoMalloc allocator cost), but the computation of the rounded allocation requestsize can be computed by the compiler (approximately 10% of the average call in CustoMalloc).To reduce the chance of potential code explosion from aggressive inlining, we include only themost frequent size classes in the inlined function; the remainder are handled by another routine.Consider an example using the SPARC architecture. If the allocation request is similar to theidiomatic usage shown above, the combination of dead-code elimination and constant propagationin the compiler remove the examination of extraneous freelists, leaving only the following eightinstructions to be executed if items are available on the freelist:7

sethi %hi(___customalloc_FreeList),%o0 ;; load free listld [%o0+%lo(___customalloc_FreeList)],%i0cmp %i0,0 ;; check if emptybe L32or %o0,%lo(___customalloc_FreeList),%o1 ;; if not, removeld [%i0],%o0b L29st %o0,[%o1+0] ;; and link next itemIf the freelist is empty, the fast allocator takes an additional twenty one instructions. Theseresults are similar to those noted by others[Weinstock & Wulf 88].We stress that this is not a contrived or atypical example; the previous code fragment was takenfrom one of the applications we instrumented. The program modi�cations to include the inlinedallocators are fairly simple, again taking a few minutes. The inlined example is illustrative becauseit de�nes an easily achievable lower-bound for memory allocation { basically, any allocation schemethat can reuse storage must take at least this many instructions. As we see in x4, the non-inlinedallocator produced by CustoMalloc takes approximately twice as long as this lower bound.Although the inlined version is easy to use, we do not use it comparisons in this paper.3 Inter-run Allocation Frequency AccuracyThe success of CustoMalloc is predicated on being able to accurately measure the allocationfrequency of di�erent size classes. We also tacitly assume that the size class orders, determinedby allocation frequency, is similar between di�erent runs of the same program, even with di�erentinput data. In this section, we show these assumptions are generally valid.3.1 Sample ProgramsWe used seven allocation intensive programs, listed in Table 1, to compare the similarity of al-location frequency between di�erent inputs and to compare the performance of CustoMallocto other allocators. Previously, we examined numerous synthetic models for comparing memoryallocators[Zorn & Grunwald 92a, Zorn & Grunwald 92b], and considered using one of those mod-els. However, to measure the sensitivity of allocation distribution to the input set, we needed toinstrument actual applications; once this was done, it was as simple to use those applications tocompare performance. The programs were all written in the C programming language. The versionof yacr that we measured did not release much allocated memory by calling free. The empiricalbehavior of these problems is presented in [Zorn & Grunwald 92b].We had limited detailed knowledge about the sample programs; we did not have to concernourselves with the internal structure of the programs because measurement was performed by8

cfrac A program to factor large integers using the continued fraction method. Theinputs are products of two large primes.gs GhostScript, version 2.1, is a publicly available interpreter for the PostScriptpage-description language. The input �les were a variety of small and large�les, including an 126 page user manual. This execution of GhostScript didnot run as in interactive application as it is often used, but instead wasexecuted with the NODISPLAY option that simply forces the interpretationof the Postscript without displaying the results.perl Perl 4.10, is a publicly available report extraction and printing language,commonly used on UNIX systems. A number of input scripts were used.yacr YACR (Yet Another Channel Router), version 2.1, is a channel router forprinted circuit boards. The input �les are provided with the YACR release.gawk Gnu Awk, version 2.11, is a publicly available interpreter for the AWK reportand extraction language. A number of scripts were used.make Gnu-make, version 3.62 is a version of the common `make' utility used onUNIX. Di�erent input sets were provided by using the instrumented maketo build other sample programs.espresso Espresso, version 2.3, is a logic optimization program. The input �les wereprovided with the release code.Table 1: General Information about the Test Programsthe CustoMalloc program. Size classes were rounded to 32-byte boundaries. Table 2 showsthe relative ordering of the four dominant size classes, ordered by the allocation frequencies thatare shown in parentheses. We selected two sample inputs from the suite of available inputs andmeasured each application. We recorded the actual distribution for the �rst (\Input 1") and second(\Input 2") runs, and the distribution from both runs (\Input 1&2").The most notable feature of Table 2 is that a single size class usually dominates all allocationrequests (from 85% to 100% of all allocations, depending on the application) and that 95% of allallocations were matched by no more than four size classes for all input sets in all applications.Secondly, for all applications other than gs, the relative allocation frequency order does notchange signi�cantly across the input �les. We compute allocation frequency relative to the totalnumber of allocations, giving equal weight to allocations occurring in di�erent execution runs. Forgs, the �rst input set had signi�cantly more allocations than the second. Thus, although there wasa substantial di�erence in allocation frequency between the two input sets, the larger input (\Input1") dominated the combined allocation frequency.Even in the gs application, only the relative order of the four most frequent object sizes changes;no new objects sizes appear. Each conditional statement in the allocator adds � 3 instructionsthe execution time; thus, even if the allocation order is not completely accurate, the additional9

cfrac Input 1 32 (100.0%) 288 (0.0%) 160 (0.0%) 64 (0.0%)Input 2 32 (99.9%) 64 (0.1%) 288 (0.0%) 352 (0.0%)Input 1&2 32 (99.9%) 64 (0.1%) 288 (0.0%) 160 (0.0%)gs Input 1 64 (77.9%) 288 (5.9%) 32 (5.9%) 128 (4.5%)Input 2 128 (37.7%) 288 (37.2%) 64 (12.5%) 32 (7.9%)Input 1&2 64 (71.0%) 288 (9.2%) 128 (8.0%) 32 (6.1%)perl Input 1 32 (90.8%) 64 (3.7%) 96 (2.4%) 160 (1.6%)Input 2 32 (94.7%) 96 (4.4%) 64 (0.9%) 1216 (0.0%)Input 1&2 32 (90.8%) 64 (3.7%) 96 (2.4%) 128 (1.5%)yacr Input 1 32 (99.0%) 160 (0.4%) 3488 (0.4%) 1280 (0.3%)Input 2 32 (98.1%) 1696 (1.2%) 928 (0.5%) 96 (0.1%)Input 1&2 32 (98.9%) 160 (0.4%) 3488 (0.4%) 1280 (0.3%)gawk Input 1 32 (86.0%) 256 (7.2%) 64 (6.1%) 96 (0.8%)Input 2 32 (86.4%) 256 (6.9%) 64 (5.9%) 96 (0.8%)Input 1&2 32 (86.3%) 256 (7.0%) 64 (5.9%) 96 (0.8%)make Input 1 32 (96.8%) 64 (2.0%) 224 (0.7%) 128 (0.2%)Input 2 32 (90.8%) 64 (4.8%) 224 (3.7%) 96 (0.2%)Input 1&2 32 (94.5%) 64 (3.1%) 224 (1.8%) 128 (0.2%)espresso Input 1 32 (85.5%) 64 (7.0%) 96 (2.0%) 128 (1.1%)Input 2 32 (84.3%) 64 (6.5%) 96 (3.0%) 544 (2.0%)Input 1&2 32 (85.5%) 64 (7.0%) 96 (2.0%) 128 (1.1%)Table 2: Allocation Frequency With Di�erent Runs(Each entry shows the object size and its allocator frequency)
10

overhead is minimal. If the application is made to use the inlined functions and the idiomatic usageshown at the end of x2 is common, the relative allocation frequency is even less important, becausethe compiler selects the appropriate freelist directly. The gs application is interesting because thedominant size classes are not small; allocation algorithms using allocation frequencies based onheuristics or anecdotal observation, such as QuickFit, may perform poorly for this application.We have examined a large number of applications in addition to those mentioned here, using anumber of input sets, and our experience has shown that the pattern evinced by the data in thissection is representative of most programs:� Programs typically allocate a small number of size classes.� A small subset of the size classes dominate allocation frequency.� Although the relative ordering of the dominant size classes can change between runs of aprogram, the changes are usually minor.4 Performance ComparisonIn this section, we compare the CustoMalloc allocator to implementations of a number of otheralgorithms. In the algorithms we implemented (QuickFit, AdaptiveCache, CustoMalloc)considerable e�ort was taken to optimize the code. For other algorithms (FirstFit, Bsd), e�cient,commonly used implementations were used. Source code was not available for the last algorithm(Cartesian), but it is provided with a widely used operating system, and we assume it has beenextensively optimized.FirstFit This algorithm, described by Knuth, is a straightforward implementation of a �rst-�tstrategy with several optimizations [Knuth 73]. We measured a publicly available implemen-tation of the classic Knuth algorithm written by Doug Lea. This variant uses an array offreelists. In each freelist, free blocks are connected together in a double-linked list. An appro-priate freelist is selected based on the log of the allocation request; this is done to increase theprobability of a better �t. During allocation the selected freelist is scanned for the �rst freeblock that is large enough. The block found is split into two blocks, one of the appropriatesize, and returned. As an optimization, if the extra piece is too small (in this case less than16 bytes), the block is not split.This implementation is used as the \general allocator" in the CustoMalloc allocator. Com-parison to other \�rst-�t" implementations indicates this is very a e�cient implementation.Bsd As an alternative to a more conventional �rst-�t algorithm, Chris Kingsley implemented avery fast buddy algorithm that was distributed with the 4.2 BSD Unix release [Kingsley 82].Kingsley's algorithm allocates objects in a limited number of di�erent size classes, namelypowers of two minus a constant. Allocation requests are rounded up to the nearest size classand a freelist of objects of each size class is maintained. If no objects of a particular size classare available, more storage is allocated. No attempt is made to coalesce objects.11

Because this algorithm is so simple, it is also easy to provide a fast implementation. On theother hand, it also wastes considerable space, especially if the size requests are often slightlylarger than the size classes provided. This algorithm illustrates one extreme of the time/spacetradeo�s possible in dynamic storage management. Interestingly, its widespread use wouldsuggest that users often consider CPU performance more important than memory usage inthese systems (or, perhaps, users are not aware of the penalty).Cartesian This algorithm, sometimes called \better-�t", is provided by the Sun Operating Sys-tem library routines malloc and free[Stephenson 83, Sun 90]. Rather than place the freeblocks in a linear list, they are placed in a Cartesian tree[Vuillemin 80]. Descendents in thetree are ordered both by address (left descendents have lower addresses than right descen-dents), and by size (descendents on the left are smaller than descendents on the right). Thisalgorithm is attractive because the worst-case cost of all operations on the tree (allocation,deallocation, and moving blocks around) is O(d), where d is the depth of the tree.QuickFit This is the quick-�t algorithm described by [Weinstock & Wulf 88, Standish 80], andis somewhat similar to CustoMalloc. Allocation requests less than 32 bytes are groupedinto eight size classes rounded to four byte sizes. Allocations in those size classes use the samefast allocator used in CustoMalloc. All other allocations use the same general allocatorused in CustoMalloc.This algorithm provides a comparison to CustoMalloc that applies the observation thatonly small objects tend to be allocated frequently. The performance of this algorithm isextremely sensitive to the size range selected for coverage by the freelists. In the literature,from four to 16 freelists are used. Our implementation of the QuickFit allocator managesobjects from one to 32 bytes and allocates objects using more precise allocation units, roundingto four rather than 32 bytes.AdaptiveCache This algorithm is similar to CustoMalloc in that it uses freelists for objectsin di�erent size classes. Allocation requests are rounded to 32 bytes. When an allocationis requested, the list of freelists is searched for an appropriate object size. If none is found,or the appropriate freelist is empty, the memory is allocated using the fast allocator usedin CustoMalloc. When an object is deallocated, the list of of freelists entries is againsearched. If a freelist does not exist, a new freelist entry is created. In both allocation anddeallocation, the most recently accessed freelist entry is moved to the front of the list offreelists. Variants on this algorithm have been suggested [Bozman 84, Oldehoeft & Allan 85,Leverett & Hibbard 82], although we were unable to �nd a previous implementation of ourexact algorithm.This allocator takes advantage of temporal locality in object size references; the freelist for thedominant object size will always be near the beginning of the list of freelists. This algorithmprovides a comparison toCustoMalloc, using dynamic rather than pre-computed allocationfrequencies. Although the number of size classes considered by this allocator per allocationrequest may be lower than that for CustoMalloc, the cost of moving entries to the frontof the list can increase the mean time for allocation.12

CustoMalloc This is the CustoMalloc described in this paper, using pro�les from two of theavailable input sets. As mentioned, we did not use the inlined version of CustoMalloc inour measurements.4.1 Experimental DesignEach programwas compiled on a system using the SPARC architecture2. We compiled the programsusing version 2.1 of the the Gnu C compiler with normal (-O) optimization levels enabled.The data in this section is derived using \Input 1" from Table 2. We measured the memorye�ciency of each allocator by recording the amount of dynamic memory requested from the op-erating system via the Unix sbrk function. This is a coarse metric, but does illustrate the peakusage requested by the program.We measured execution time using the qp utility[Ball & Larus 92]. This tool provides a dynamicexecution count for each subroutine in terms of instructions. This removes any variability inmeasuring execution time, greatly simplifying the experimental design. It also provides a moreaccurate and intuitive measure of the allocation time; as we shall see, allocation can take as little assixteen cycles on average { accurately measuring this in a real application is very di�cult. Moreover,the qp tool instruments the same binary used to generate the memory e�ciency comparison.Unfortunately, qp does not account for secondary e�ects such as cache misses caused by poor datalocality; these factors may be considered in a future study.4.2 Performance: CPU TimeFigure 4 shows the number of machine instructions used during the average call to malloc (Fig-ure 4(a)) and free (Figure 4(b)) for each allocation algorithm across the sample programs. Somevalues in Figure 4 are signi�cantly larger than others, and were truncated to avoid obscuring theremaining data. Figure 5 shows the total percentage of executed instructions spent in the mallocand free subroutines for each application.The most notable feature of Figure 4 is the range in the number of instructions needed forthe di�erent allocators. The Cartesian allocator is particular slow; this is surprising becauseit is distributed with a widely used operating system. Surprisingly, allocation using the Bsdalgorithm is often slower than using FirstFit { however, the total allocation time (malloc andfree) is faster when using Bsd (calls to free for Bsd take an average of � 17 cycles across allapplications). Figure 5 shows that the CustoMalloc allocator is consistently faster than Bsd;this is encouraging, because Bsd is widely considered to be a very fast algorithm.2Due to our measurement strategy, we did not have to concern ourselves with the actual machine model.13

Cfrac GS Perl Yacr Gawk Make Espresso
0.0

30.0

60.0

90.0

120.0

150.0

180.0

In
st

ru
nc

tio
ns

 P
er

 R
eq

ue
st

FirstFit
BSD
Cartesian
QuickFit
AdaptiveFit
CustoMalloc

(208)(285)

(a) Allocation Time Per Request Across Sample Programs
Cfrac GS Perl Yacr Gawk Make Espresso

0.0

30.0

60.0

90.0

120.0

150.0

180.0

In
st

ru
nc

tio
ns

 P
er

 R
eq

ue
st

FirstFit
BSD
Cartesian
QuickFit
AdaptiveFit
CustoMalloc

(376) (241) (285) (321)

(b)Deallocation Time Per Request Across Sample ProgramsFigure 4: Allocation and Deallocation Times14

Cfrac GS Perl Yacr Gawk Make Espresso
0.0

10.0

20.0

30.0

40.0
%

 E
xe

cu
tio

n
S

pe
nt

 In
 M

al
lo

c&
F

re
e

FirstFit
BSD
Cartesian
QuickFit
AdaptiveFit
CustoMalloc

Figure 5: Total Percent of Execution Spent in malloc & free.The three allocators with consistently good performance are AdaptiveCache, QuickFit andCustoMalloc. The CustoMalloc allocator is uniformly the fastest allocator across all theapplications. This is particularly evident in the gs application. This application allocates very fewobjects less than 32 bytes (� 7%); thus, the QuickFit algorithm incurs the overhead of QuickFitwith little commensurate advantage. Indeed, even the AdaptiveCache algorithm, with its higheroverhead, is faster for this application. The yacr application does not return much storage viafree. Thus the time to deallocate memory for yacr, shown in Figure 4, is based on a small numberof samples and is not very meaningful. Since every allocation in yacr requires new storage, theFirstFit algorithm has particularly poor performance, because it attempts to recover storagebefore requesting more storage from the system.We found the QuickFit allocator to be extremely sensitive to the pre-selected size rangemanaged by the freelists. Table 3 shows the total percentage of execution time spent in the mallocand free routines for a QuickFit implementation that handles objects of 32 bytes (eight freelists)or less and another that handles objects of 16 bytes or less (four freelists). The total allocationtime is doubled when the smaller number of freelists is used. The number of freelists recommendedin the literature ranges from two to sixteen freelists, with the general exhortation that the span\should cover the most common sizes" allocated by an application. This is clearly a possible, albeit15

Percentage Execution Spent in malloc and freecfrac gs perl yacr gawk make espressoQuickFit(� 32 byte) 6.0% 6.0% 5.7% 2.8% 8.6% 1.3% 4.2%QuickFit(� 16 bytes) 9.3% 11.5% 8.0% 5.3% 14.4% 1.7% 7.7%Table 3: Sensitivity of the QuickFit Allocatorinfrequently exercised, option. In contrast, CustoMalloc always determines the appropriate sizerange. Moreover, CustoMalloc can use additional information to improve on the QuickFitallocator, even in cases where the underlying QuickFit algorithm is a very good choice. Bydesign, CustoMalloc can also handle cases where QuickFit shows little advantage (such as ings). This latter point is particularly important in certain application domains; the CustoMallocallocator is being ported to a Cray system, where we hope to measure improvements on largescienti�c applications such as the Community Climate Weather Model. These applications mayhave allocation distributions that di�er from the applications (compilers and the like) that originallyprovided the the anecdotal evidence to guide the design of QuickFit.4.3 Performance: Memory E�ciencyThe allocator synthesized by CustoMalloc is uniformly the fastest allocator; however, experiencehas shown that fast allocators (e.g., Bsd) typically waste considerable memory. Figure 6 shows themaximum amount of memory needed by each applications when using a particular allocator; thevalues are normalized to the space needed for the FirstFit allocator.As noted, Figure 6 shows that the Bsd allocator takes consistently more memory than otherallocators, and, that the CustoMalloc allocator has good memory e�ciency despite being fasterthan Bsd.The maximum memory request for cfrac and yacr shown in Figure 6 shows one
aw inCustoMalloc { rounding to 32 bytes. The AdaptiveCache allocator, which also rounded to32 byte allocation units has similar problems. Both cfrac and yacr allocate a large numberof very small (8 byte) objects. Furthermore, the yacr application never returns any items viafree. In these cases, the 32 byte rounding used by CustoMalloc (and AdaptiveCache) causessigni�cant memory overhead. However, we note that this is a rare occurrence in the applications wemeasured; generally, the memory demands of CustoMalloc are close to the most space-e�cientallocators. The scaled values used in Figure 6 can also obscure the impact of the memory e�ciency;each allocator in the cfrac application takes less than 82,000 bytes of storage, while the allocatorsfor yacr take over 20,000,000 bytes. Due to the way storage is requested from the system (in8192-bytes units), small di�erences appears signi�cant in cfrac.16

Cfrac GS Perl Yacr Gawk Make Espresso
0.0

2.0

4.0

6.0

8.0

10.0
R

el
at

iv
e

M
ax

. M
em

or
y

R
eq

ue
st

FirstFit
BSD
Cartesian
QuickFit
AdaptiveFit
CustoMalloc

Figure 6: Maximum Memory Requested From Operating System(Normalized to maximum memory needed by FirstFit allocator.)Application Size Allocator Allocations Mean Allocated Deallocations Mean FreelistObjects Lengthmake 32 Fast 17,873 6,652 9,045 102espresso 32 General 1,438,916 572 1,438,916 4,471Table 4: Measured Statistics for Dominant Size Classes in Two ApplicationsAverage Instruction Cycles Spent in malloccfrac gs perl yacr gawk make espressoCustoMalloc (heuristics) 15.0 19.4 17.3 31.3 16.7 24.6 19.8CustoMalloc (always fast) 15.0 19.4 17.0 31.3 16.7 24.6 18.2CustoMalloc (always general) 15.5 22.4 27.7 122.9 18.7 78.0 19.8Table 5: Advantages of Using the Fast Internal Allocator17

In espresso, the AdaptiveCache allocator consumes signi�cantly more space than otherallocators. This application has a large number of distinct size class, and the AdaptiveCacheallocator allocates a freelist for each size class. The AdaptiveCache allocator also returned allitems to freelists, meaning none are reclaimed or coalesced. Our decision to cull the number offreelists appears to be well-chosen; objects not cached in the freelist are available for coalescing,and the overhead for those freelists is obviated. Since these objects have sizes that are outlierson the distribution of allocations, using the general allocator in these cases does not appreciablyincrease the execution time.An important advantage of CustoMalloc is that it measures aspects of an application andadapts an allocator to those characteristics. In particular, we use heuristics to determine if aparticular freelist should use a general or fast internal allocator. The former allows storage to berecovered and used for other object sizes, while the later is signi�cantly faster than the generalallocator.For example, consider the information collected for espresso and make, shown in Table 4. Wereasoned that a program with an average freelist length larger than the average number of allocatedobjects, such as espresso, must undergo episodic allocation { that is, a large number of objectsare allocated, brie
y used and the deallocated. This indicates that this particular size class willeventually have copious amounts of extra storage on a freelist, and we should be able to reclaimit. Thus, this particular size class for espresso uses the general allocator; although this internalallocator is slower, it allows us to reclaim and coalesce storage.By comparison, the dominant freelist in make will rarely contain enough objects to compensatefor the increased overhead of the general allocator. Table 5 shows the di�erence in the number ofinstructions executed per allocation for variants ofCustoMalloc. We synthesized allocators usingour standard heuristics and other allocators using just the fast allocator or just the general allocator.The choice of fast or general allocator only a�ects the allocation time. In most applications, themeasured data was similar to that for make, and the fast internal allocator was chosen. Theespresso application demonstrates the episodic allocation pattern the heuristics attempt to detect.In espresso, using the general allocator and the recovery heuristics described in x2, a maximum of327,680 bytes of storage were needed, compared to 425,984 bytes when using just the fast allocator.The CustoMalloc and FirstFit allocators used the same amount of storage, the least storageof all the allocators, but the CustoMalloc allocator was more than twice as fast.These examples show that the measured data is useful when synthesizing the customized alloca-tor. Experience with the �rst version of CustoMalloc has shown that we can increase the storagee�ciency of CustoMalloc, with little or no increase in allocation time. We are modifying Cus-toMalloc to measure allocation behavior using a �ner storage granularity (eight bytes). Usingthis �ner allocation information, we can automatically select an appropriate aggregation size (e.g.,18

Performance Relative to Cartesian(optimized)Allocator cfrac gawk gs perlCartesian (unoptimized) 1.62 1.22 1.15 1.24Cartesian (optimized) 1.00 1.00 1.00 1.00Bsd (unoptimized) 1.10 0.75 0.85 0.82Bsd (optimized) 1.03 0.73 1.28 0.79Table 6: Comparison of \unoptimized" and \optimized" Memory Allocators16 or 32 bytes) for an application. Larger aggregate sizes speed program execution, because moreallocations fall into the most common case. At times, large aggregate sizes may increase memorye�ciency because previously allocated objects can be reused for other sizes; however, in many cases,larger aggregate sizes decrease memory e�ciency, e.g., in yacr and cfrac. We are developing anheuristic to minimize the total memory wasted, as indicated by the measured allocation frequencies,while maximizing the aggregation size to increase speed.We can also use the measured data to consider other allocation policies. For example, wecurrently use ordered freelists of aggregated sizes; clearly, in some situations, an indexed freelistsimilar to QuickFit may be more appropriate. The choice between these methods depends onthe number of size classes and the frequency of allocation and deallocation. If allocation of severalsize classes is common (e.g., the application is equally likely to allocate 48, 52, 56 or 60 bytes),a QuickFit mechanism may be most appropriate. However, if a single size class dominates, ormeasurements indicate that rounding to a particular size aggregate will not waste considerablespace, then the ordered freelist mechanism is more appropriate.4.4 Comparison to \Optimized" Memory AllocationObviously the optimizations performed by CustoMalloc can be performed manually by program-mers, and, to a large part, are performed in many allocation intensive programs. Programmers usedomain-speci�c knowledge about the (perceived) allocation frequency of various objects, typicallyconstructing a freelist structure similar to that of CustoMalloc.How well do these ad hoc solutions perform compared to CustoMalloc? Surprisingly, suchoptimizations are occasionally \de-optimizations" { they actually slow the program execution.For example, in a previous comparison of di�erent memory allocators and a conservative garbagecollection algorithm, one of us collected the data shown in Table 6[Zorn 92]. The values in thetable are the execution time for each application normalized to that of the optimized Cartesianallocator. Larger values indicate that the program took longer to execute. Three of the applicationsuniformly bene�t from the added ad hoc optimizations, although not to a great extent. The last19

application, gs, bene�ts from the optimization when a slow allocator (Cartesian) is used, but ispenalized when a faster allocator (Bsd) is used. Nonetheless, the largest improvement we see usingthe optimized Bsd allocator is � 7%, while the allocator generated by CustoMalloc is generally� 30% faster than Bsd and uses less storage.5 ConclusionsWe feel the optimization of memory allocators, like the optimization of register allocation, commonsubexpression elimination and the like, is a task best left to automated tools. CustoMalloc isa good �rst step towards a tool for such optimizations. When allocating memory, a large numberof \special cases" exist that advocate construction of customized memory allocators, particularlyif the construction can be easily automated, as in CustoMalloc. Our experiments show thatthe synthesized allocators are uniformly faster than the common binary-buddy (Bsd) allocator,and are more space e�cient. We feel that a general purpose memory allocator will not usually becompetative with synthesized allocators; however, their study and use is important, as they mustbe used within sythensized allocators.As mentioned, we feel that slight improvements on the code generation strategy for the syn-thesized allocator can yield both time and space performance unsurpassable by an algorithm thatattempts to address general allocation pro�les. We also note that these admittedly simple opti-mizations can yield dramatic performance improvements for some applications.Our original interest was in developing a scalable, robust and e�cient memory allocation algo-rithm for parallel programs. Experience has shown that sound parallel algorithms are usually basedon the best available sequential algorithm. In the near future, we hope to extend the measurement-directed code synthesis of CustoMalloc to parallel memory allocation.6 AcknowledgementsWe would like to thank James Larus for development of the qp utility, which greatly simpli�ed ourexperimentation. Likewise, we thank Doug Lea and Chris Kingsley for use of their e�cient memoryallocators. The CustoMalloc software is available via anonymous FTP from cs.colorado.eduin pub/cs/misc/customalloc.tar.Z; contact grunwald@cs.colorado.edu for more information.References[Ball & Larus 92] Ball, T. and Larus, J. R. Optimally pro�ling and tracing programs. In ConferenceRecord of the Nineteenth ACM Symposium on Principles of Programming Languages,pages 59{70, January 1992. 20

[Batson et al. 70] Batson, A. P., Ju, S. M., and Wood, D. C. Measurements of segment size.Communications of the ACM, 13(3):155{159, March 1970.[Bozman 84] Bozman, G. The software lookasize bu�er reduces search overhead with linked lists.Communications of the ACM, 27(3):222{227, March 1984.[Bozman et al. 84] Bozman, G., Buco, W., Daly, T. P., and Tetzla�, W. H. Analysis of free-storagealgorithms|revisited. IBM Systems Journal, 23(1):44{64, 1984.[DeTreville 90] DeTreville, J. Heap usage in the Topaz environment. Technical Report 63, DigitalEquipment Corporation System Research Center, Palo Alto, CA, August 1990.[Kingsley 82] Kingsley, C. Description of a very fast storage allocator. Documentation of 4.2 BSDUnix malloc implementation, February 1982.[Knuth 73] Knuth, D. E. Fundamental Algorithms, volume 1 of The Art of Computer Programming,chapter 2, pages 435{451. Addison Wesley, Reading, MA, 2nd edition, 1973.[Lea] Lea, D. An e�cient �rst-�t memory allocator. (From comments in source and personalcommunication).[Leverett & Hibbard 82] Leverett, B. W. and Hibbard, P. G. An adaptive system for dyanmicstorage allocation. Software { Practice and Experience, 12:543{555, 1982.[Margolin et al. 71] Margolin, B. H., Parmelee, R. P., and Schatzo�, M. Analysis of free-storagealgorithms. IBM Systems Journal, 10(4):283{304, 1971.[Oldehoeft & Allan 85] Oldehoeft, R. R. and Allan, S. J. Adaptive exact-�t storage management.Communications of the ACM, 28(5):506{511, May 1985.[Standish 80] Standish, T. Data Structures Techniques. Addison-Wesley Publishing Company,1980.[Stephenson 83] Stephenson, C. J. Fast �ts: New methods for dynamic storage allocation. InProceedings of the Ninth ACM Symposium on Operating System Principles, pages 30{32,Bretton Woods, NH, October 1983.[Sun 90] Sun Microsystems, Mountain View, CA. Unix Manual Page for malloc, SunOS 4.1 edi-tion, 1990.[Vuillemin 80] Vuillemin, J. A unifying look at data structures. Communications of the ACM,23(4):229{239, April 1980.[Weinstock & Wulf 88] Weinstock, C. B. and Wulf, W. A. Quick�t: An e�cient algorithm for heapstorage allocation. ACM SIGPLAN Notices, 23(10):141{144, October 1988.[Zorn & Grunwald 92a] Zorn, B. and Grunwald, D. Empirical measurements of six allocation-intensive c programs. Technical Report CS-CS-604-92, Department of Computer Science,University of Colorado, Boulder, Boulder, CO, July 1992.21

[Zorn & Grunwald 92b] Zorn, B. and Grunwald, D. Evaluating models of memory allocation. Tech-nical Report CS-CS-603-92, Department of Computer Science, University of Colorado,Boulder, Boulder, CO, July 1992. In preparation.[Zorn 92] Zorn, B. The measured cost of conservative garbage collection. Technical Report CU-CS-573-92, Department of Computer Science, University of Colorado, Boulder, Boulder,CO, February 1992.

22

