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1 IntroductionConsider the following optimization problem which we call the standard semide�nite programmingproblem (SDP): minfC �X : Ai �X = bi for i = 1; � � � ;m and X � 0g (1)where C, Ai's and X are n�n matrices, and X is symmetric; the \�" operation is the inner product ofmatrices: A �B:=Pi;j AijBij = trace ATB; and the \inequality" constraint � indicates the L�ownerpartial order, that is, for real symmetric matrices A and B, A � B (respectively A � B), wheneverA �B is positive semide�nite (respectively positive de�nite.)The semide�nite programming problem is an extension of linear programming (LP). Speci�callyif the condition that X is a diagonal matrix is added to the constraint set then (1.1) reduces tolinear programming. Semide�nite programs arise in a wide variety of applications from control theory(see [VB93] and [Fan93]) to combinatorial optimization (see section 5 below) and even structuralcomputational complexity theory (see [FL92]). The oldest form of semide�nite programming is theevaluation of eigenvalues of a symmetric matrix. In fact, one can reformulate the classical theoremsof Rayleigh-Ritz for the largest eigenvalue, and of Fan for the sum of the �rst few eigenvalues ofa symmetric matrix, as semide�nite programs, see [OW91, OW92] and section 4 below. However,for these special cases, techniques of this paper do not seem to be appropriate as there exist betteralgorithms from both theoretical and practical points of view. Most nontrivial semide�nite programs(those that are not simply equivalent to evaluation of eigenvalues of a symmetric matrix) arise in theform of minimizing the largest, or sum of the �rst few largest eigenvalues of the matrix X subject tosome linear constraints onX. An early example of such problems were studied by Donath and Ho�manin connection with graph bisection and graph partitioning problems [DH72, DH73]; see section 5 below.Cullum, Donath and Wolfe studied the problem of minimizing the sum of the �rst few eigenvalues of alinearly constrained matrix in [CDW75]. They analyzed this problem from the nonsmooth optimizationpoint of view. Also Fletcher studied a similar problem from the point of view of nondi�erentiableoptimization. In particular, he derives some expressions for the subgradients of the sum of the �rstfew eigenvalues of a symmetric matrix and formulates optimality conditions for this problem. Inthe same spirit as Fletcher, Overton [Ove88] studies the largest eigenvalue of a symmetric matrixas a convex, but nondi�erentiable function. Based on earlier work [FNO87], in [Ove88] he derives aquadratically convergent algorithm for the problem of minimizing the largest eigenvalue of an a�nelyconstrained matrix. This work is further extended in [Ove92] where both second order methods basedon sequential quadratic programming, and �rst order methods based on sequential linear programmingfor large scale problems are developed.The algorithms contained in the above works are in the same spirit as the simplex method forlinear programming in that they are all active set methods and traverse the boundary of the feasibleset to converge to the optimal solution. For that reason their worst case computational complexity islikely to be at least as bad as that of the simplex method, though in practice they may be quite good.Semide�nite programs, however, are polynomial time solvable if an a priori bound on the size oftheir solution is known. This point was implicit in [Lov79] for a special instance of the SDP problem. Itwas proved in the work of Gr�otschel, Lov�asz and Schrijver, [GLS81]. Polynomial time solvability of SDPis a direct consequence of the general results based on the ellipsoid method for convex programming.The main point is essentially that optimization of a linear function over a convex set endowed witha separation oracle and an a priori bound on the objective can be achieved in polynomial time usingthe ellipsoid method; see [GLS88] for a thorough treatment.The ellipsoid method, however, has not proven practical in most applications, including SDP. Amore recent development is the possibility of using interior point methods to obtain polynomial timealgorithms for semide�nite programs. The earliest work in this direction to our knowledge is that of1



Nesterov and Nemirovskii [NN90]. In this important work the authors develop a general approachfor using interior point methods for solving convex programming problems which is based on theconcept of p{selfconcordant barrier functions. See the more recent [NN92] for a complete treatmentof this subject. Nesterov and Nemirovskii show that for any convex set K that is endowed with ap{selfconcordant barrier function, there is an interior point algorithmwhich optimizes a linear functionon K. Furthermore, every O(pp) iterations of this algorithm results in an interior point with halfthe distance to the optimal solution. As a special case, Nesterov and Nemirovskii show that linearprograms with p inequality constraints, quadratic programs with p convex quadratic constraints andsemide�nite programs over p � p matrices all admit p-selfconcordant barriers. Therefore, the authorsextend the revolutionary result of Karmarkar [Kar84] to a rather general class of convex programs.In this article we study interior point methods for semide�nite programs from an alternative pointof view. Our work [Ali91] started somewhat later than, and independent of, that of [NN90]. Nesterovand Nemirovskii obtain their complexity theorems by specializing their general results to SDP. We,on the other hand, take a speci�c interior point algorithm for linear programming (i.e Ye's projectivepotential reduction method [Ye90]) and extend it to SDP. Furthermore, we argue that essentiallyany known interior point linear programming algorithm can also be transformed into an algorithmfor SDP in a mechanical way; proofs of convergence and polynomial time computability extend in asimilar fashion. Jarre in [Jar91] and Vandenberghe and Boyd in [VB93] later developed similar interiorpoint algorithms for special forms of SDP.Polynomial time interior point methods for SDP have some interesting consequences for combina-torial optimization problems. In order to solve such a problem by the ellipsoid method, an explicitlisting of all of the inequalities in its linear programming formulation is not needed. Rather, one onlyneeds a separation oracle and an initial ellipsoid containing its feasible region to start the process.However, it is generally believed that in order to apply interior point methods to the same combi-natorial optimization problem one needs to have the explicit listing of all of the inequalities in theLP formulation, see [GLS88] and [GT89]. For instance, Goldfarb and Todd in their survey article onlinear programming write:..., it appears that its [Karmarkar's new algorithm] theoretical implications are far morelimited than those of the ellipsoid method. Indeed, Karmarkar's algorithm requires thelinear programming problem to be given explicitly with all its constraints and variableslisted, and does not appear directly susceptible to column or constraint generation. Thusit cannot be used to provide polynomial algorithms for several combinatorial optimizationproblems that have been successfully analyzed by the ellipsoid method.In this article we present examples of combinatorial optimization problems whose LP formula-tions require exponentially many inequalities, and yet one can design interior point algorithms whichsolve them in polynomial time. In fact, we should emphasize that the general results of Nesterovand Nemirovskii imply that in principle one can apply interior point methods to solve combinatorialoptimization problems without explicit knowledge of their LP formulation. All that is required is aself-concordant barrier oracle with a polynomially bounded parameter. The most interesting exampleis the clique and stable set problem in a class of graphs known as perfect graphs. In section 5.2 weconstruct such a barrier indirectly by an SDP formulation of the problem due to Lov�asz. This is par-ticularly interesting because presently no linear programming formulation of the stable set and cliqueproblems for perfect graphs with polynomially bounded number of facets is known.Linear programming interior point methods have been used by Goldberg et al [GPST91] to derivesublinear time parallel algorithms for the bounded weight assignment problem. We show that maximumstable sets for perfect graphs can be computed in randomized sublinear parallel time. Furthermore,based on the work of Lov�asz and Schrijver [LS91], we argue that in a branch and bound scheme for2



0-1 programs interior point SDP algorithms may e�ciently yield much sharper bounds than possiblefrom linear programming relaxations of such problems.In section 2 we review the so called cone duality theory as specialized to semide�nite programs.This theory, though quite classical, is somewhat forgotten in optimization literature. It turns outthat at least for SDP, cone duality, which is a generalization of linear programming duality, is mostappropriate for interior point methods (this point of view is also expressed in the latest edition ofNesterov and Nemirovskii [NN92]). In section 3 we develop an interior point algorithm which, aswe mentioned, is a direct extension of Ye's projective potential reduction method. Furthermore, wepropose a recipe to extend mechanically most known interior point algorithms for LP into similaralgorithms for SDP. In this section we also go over some di�erences between SDP and LP as far asinterior point methods and polynomial time algorithms in general are concerned. In section 4 webuild on the results of Overton and Womersley [OW91, OW92] and derive semide�nite programmingformulation for various eigenvalue optimization problems. We also state complementary slacknessresults for these problems. Finally, in section 5 we study some applications of SDP interior pointmethods to various combinatorial optimization problems.NotationWe use lower case boldface letters to name column vectors, and upper case letters to name matrices.We sometimes refer to members of <n as n-vectors. for a vector x, xj is its jth coordinate. 1 and0 denote vector of all ones and the zero vector, respectively. I and 0 denote the identity and zeromatrices, respectively. <n�n2 is the set of symmetric n � n matrices. The ith largest eigenvalue ofa symmetric matrix X is �i(X) (or sometimes another lower case Greek letter, e.g !i(X)); its ithlargest eigenvalue absolute-value-wise is �i(X) or !i(X). The L�owner partial order � and the dotproduct \�" were de�ned above; the symbol \�" is used for component-wise comparison between twomatrices or two vectors. Diag(x) denotes the diagonal matrix made up of the vector x; diag(X) isthe vector made up of diagonal entries of X. For matrices, kXk and kXk2 are the Frobenius and thespectral norms of X, respectively (recall that in case of symmetric matrices kXk2 equals the spectralradius �(X) = j�1(X)j). For vectors, kxk and kxk1 are the Euclidean and the maximum norms ofx; also kxkp:=(P jxpi j)1=p is the p{norm of x. If A is a p � q matrix then vec A is a pq columnvector made up of columns of A stacked on each other. If v is a pq-vector then Matpq v is a p � qmatrix whose ith column is made up of the entries at (i� 1)p+ 1 through ip in v; if p and q are clearfrom the context we drop them from the subscript. For instance the set of relations Ai �X = bi, fori = 1; � � � ;m may be rewritten as AvecX = b, where A 2 <m�n2 , that is row i of A is vecT (Ai).Also, Mat(ATy) =PyiAi. A
B is the Kronecker product of matrices: if A 2 <m�n and B 2 <p�qthen A 
 B 2 <np�mq is an m � n block matrix whose i; j block is aijB. We use the following factsrepeatedly: (A
 B)(C 
D) = AC 
 BD vec(ABC) = (CT 
 A)vec(B):See [Gra81]. If I and J are subsets of integers from 1 to p and from 1 to q, respectively, then AI;Jis the submatrix of A whose rows are taken from those rows of A indexed by I, and whose columnsare indexed by J . AI: and A:J indicate rows indexed by I and columns indexed by J , respectively.Also if A 2 <m�p and B 2 <m�q then [AjB] is an m� (p + q) matrix whose columns are made up ofcolumns of A followed by columns of B. In this paper the semide�nite programming problem refers toany optimization problem with any mixture of (symmetric) matrix and scalar{valued variables whichhas a linear objective function and any combination of linear equality or (either component{wise `�'or L�owner `�') inequality constraints. We use := to de�ne or name the left hand side in terms of theright hand side; in algorithms := is used for assignment. For any convex cone K, its polar cone K�3



is the set fx : for all a 2 K; aTx � 0g: Unless otherwise stated, we use P for the cone of positivesemide�nite matrices. Note that P� = P(this fact is direct consequence of Fejer's theorem in [HJ85]).G = (V;E) is a simple undirected graph without loops or multiple edges. A stable set S in G is asubset of vertices which are mutually nonadjacent. A clique K in G is a subset of vertices that are allmutually adjacent. A k-partite graph is one whose vertices can be partitioned into k subsets Vj , forj = 1; � � � ; k, where each Vj is a stable set. A clique covering of G is a collection Kj , j = 1; � � � ; k ofsets of vertices, where each Kj is a clique, and [jKj = V .2 Duality theoryA duality theory quite similar to that of linear programming may be constructed for the semide�niteprogramming problem. In this section we state the theory for the standard form SDP problem. Theresult for the more general form follows exactly as in linear programming. This theory has beendeveloped in a more general context in many works before. It is easy to see that any cone K � <n,which is closed, pointed (that is K \ (�K) = f0g) and convex, induces a partial order �K on <n:x �K y i� x � y 2 K. For instance, the nonnegative orthant and the positive semide�nite matricesinduce the component{wise \�" and the L�owner \�" partial orders, respectively. The duality theoryin linear programming can be extended to generalized linear programming problems where \�K"replaces \�" in the primal problem and \�K�" replaces \�" in the dual problem.Du�n in [Duf56] was the �rst one to study such generalized duality theories. Later Hurwicz[Hur58], Ben-Israel, Charnes and Kortanek [BICK69], Borwein and Wolkowicz [BW81b, BW81a], andWolkowicz [Wol81] among others developed more general formulations of the duality theory. For acomprehensive treatment of generalized duality theory from the point of view of in�nite dimensionallinear programs, see the text of Anderson and Nash [AN87] and for alternative extensions refer to[BW81b, BW81a]. It is worth mentioning that [AN87] study the duality theory from the point of viewof basic feasible solutions and extend the \tableau based" proofs of LP duality. The latest versionof Nesterov and Nemirovskii's text [NN92] also treats cone duality for the general convex programs.Papers of Overton and Womersley [OW92] and Fletcher [Fle85] treat duality theory for the eigenvalueoptimization problem from the subdi�erential point of view. Such an approach is related to the Kuhn-Tucker duality theory and relies on derivatives or subgradients. Also Lov�asz in [Lov79], Gr�otschel,Lov�asz and Schrijver [GLS81, GLS84, GLS88], and Shapiro in [Sha85] study more or less the sameduality theory as we do, but their treatment is restricted to special forms of SDP.It is convenient to assume that C and Ai in are symmetric. There is no loss of generality in thisassumption. If C is not symmetric, since CT �X = C �X, we can replace C by 1=2(C + CT ). Thesame argument holds for the Ai's. These assumptions of symmetry allow us to formulate the pair ofprimal and dual standard SDP problems:Primalmin C �Xs:t: Ai �X = bi for i = 1; � � � ;mX � 0 Dualmax bTys:t: C �Pmi=1 yiAi � 0 (2)Notice the similarity of primal and dual SDP pair to the corresponding linear programming pair. Firstwe state the weak duality lemma.Lemma 1 Let X be any feasible matrix for primal and y any feasible vector for dual. Then C �X �bTy: 4



Proof: We have: C �X � mXi=1 biyi = C �X � mXi=1(Ai �X)yi= (C � mXi=1 yiAi) �X� 0:The last inequality is true because the inner product of two positive semide�nite matrices is nonnegativedue to self{polarity of the positive semide�nite cone.We now state generalizations of Farkas' lemma. Such generalizations for arbitrary convex coneshave been studied as early as 1958 by Hurwicz, [Hur58]. See [AN87] for references on the history andvarious extensions of Farkas' lemma to nonpolyhedral cones. Here we study the relevant forms of thislemma in the special case of SDP.It is not possible to generalize classical Farkas' lemma to nonpolyhedral cones without additionalquali�cations. The di�culty arises from the fact that a�ne transformations of closed cones are notnecessarily closed, and therefore the appropriate strong forms of separation theorems cannot be invoked.(For polyhedral cones however closedness is preserved under a�ne transformation.) For our purposeswe need to have that the set K1:=A(P) = fAvecX : X � 0gis closed1. One class of su�cient conditions for closedness of K1 is based on assuming that certain setsassociated with P have nonempty interiors. Such conditions are sometimes referred to as Slater typeconstraint quali�cations. Though these conditions are not the weakest possible, they are su�cient forthe purposes of this paper. We need in any case to assume nonemptyness of the interior for both primaland dual problems so that we have a valid interior point algorithm. Furthermore, in section 3 we showhow any pair of primal and dual semide�nite programs may be transformed into an equivalent pairwith nonempty interior in both primal and dual problems. Here is a lemma of Slater type constraintquali�cations:Lemma 2 If Mat(ATy) � 0 for some y 2 <m, then K1 is closed.(Recall that Mat(ATy) is the same as P yiAi.)Proof: Let L:=fMat(ATy) : y 2 <mg. The condition in the lemma says thatL\ Int P 6= ;Thus any translate of the linear subspace L also intersects P and its interior. This is equivalent tosaying that every symmetric n � n matrix can be written as sum of two matrices, one of which ispositive semide�nite and the other belongs to L. Therefore, <n�n2 = P +L. Taking the polar we havef0g = P \ L?Here L? is the set fX : A vecX = 0g. Hence we have that X = 0 is the only solution of the systemA vecX = 0, and X � 0 and [Roc70], Theorem 9.1, p. 73 implies that K1 is closed.Now we state the most common form of Farkas' lemma as given in Schrijver's text [Sch86], and asextended to the positive semide�nite cone:1Alternative extensions without closedness assumption are treated in [BW81b, BW81a, Wol81]5



Lemma 3 Extended Farkas' lemma: Let b 2 <m and A 2 <m�n2 be a matrix such that its rowsATi: = vecAi where Ai are symmetric for i = 1; � � � ;m. Furthermore, let there be an m{vector y suchthat Mat(ATy) � 0. Then there exists a symmetric matrix X � 0, with A vecX = b if and only ifyTb � 0 for all y for which Mat(ATy) � 0.Proof: For the only if part we have,bTy = (A vecX)Ty = Mat(ATy) �X � 0:(the last inequality is due to self-polarity of the positive semide�nite cone.) To prove the if part,Suppose that the system A vecX = b, and X � 0 is infeasible. Then b 62 K1 = fA vecX : X � 0g.By lemma 2.2 K1 is a closed cone and thus there must exist a hyperplane, speci�cally a linear half-space, that separates b and K1, i.e. there exists some vector y such that bTy < 0 and (AvecX)Ty � 0for all X � 0, see [Roc70], Theorem 11.7, pp.100. But this means that X � Mat(ATy) � 0 for allX � 0, which is equivalent to Mat(ATy) � 0, and therefore the if part of the theorem is proved.We may formulate and prove several other variants of Farkas' lemma in a similar vain, all of whichare extensions of lemmas for the component-wise inequalities, as given for example in Schrijver's text[Sch86]. Related extensions for in�nite programs have been studied in [Hur58] and [CK77], and in thecase of matrix variables in [CM81]. In all of these extensions we need to assume either some closednesscriteria, or the dual problem must be modi�ed by cones other than P (as in [Wol81], for instance.)We mention a few more:Lemma 4 Let A 2 <n2�m be a matrix whose columns are linearly independent and are of the formvecAi for symmetric Ai, and B 2 <n�n2 . Assume that there exists some symmetric matrix Y � 0such that (vecY )TA = 0. Then Mat(Ax) � B has a solution in x if and only if B � Y � 0 for allY � 0 for which (vecY )TA = 0.Lemma 5 Let A 2 <m�n and B 2 <m�m. Suppose there exist some matrix Y such that ATY A � 0.Then the system AXAT = B and X � 0 has a solution i� for all symmetric matrices Y , ATY A � 0implies that B � Y � 0.Lemma 6 Let A 2 <m�n and B 2 <m�m. Suppose there exist some matrix Y such that ATY A = 0and Y � 0. Then the system AXAT � B has a solution i� for all symmetric matrices Y � 0 andATY A = 0 implies that B � Y � 0.Lemma 7 Let A 2 <m�n and B 2 <m�m. Suppose there exist some matrix Y such that ATY A � 0.Then the system AXAT � B and X � 0 has a solution i� for all symmetric matrices Y � 0 andATY A � 0 implies that B � Y � 0.A strong duality theorem similar to linear programming holds for SDP. We say the primal problemin (2.2) is feasible if the set fX 2 <n�n2 : AvecX = b; and X � 0g is nonempty, otherwise we say itis infeasible. Feasibility is de�ned similarly for the dual in (2.2). Recall that in�mum over the emptyset is by de�nition +1 and similarly supremum over the empty set is �1. Furthermore, the primal(respectively dual) problem in (2.2) is unbounded if the in�mum (respectively supremum) over thefeasible set is �1 (respectively +1).Theorem 1 Let z1 := inf fC �X : AvecX = b; and X � 0gz2 := sup fbTy : C �Mat(ATy) � 0gAssume that there is an m{vector y such that ATy � 0. Then z2 = z1.6



Proof: Notice that the dual problem is always feasible, because in the proof of lemma 2.2 we showedthat <n�n2 = P + L, and in particular there are some y and S � 0 such that Mat(ATy) + S = C. Ifz1 = �1 (i.e the primal problem is unbounded) then by the weak duality lemma z2 = �1, and thedual problem is infeasible, which is a contradiction. If z2 = +1 (i.e the dual problem is unbounded)then by the weak duality lemma 2.1 z1 = +1 (i.e the primal is infeasible) and the theorem is proved.Conversely, if z1 = +1, then the primal problem is infeasible and the extended Farkas' lemma 2.3implies that for some vector y1 and some matrix S1 � 0 we haveMatATy1 + S1 = 0 and bTy1 > 0: (3)But (2.3) implies that the dual problem is unbounded since to any dual-feasible pair (y; S) one can addan arbitrarily large positive multiple of (y1; S1) and obtain another feasible pair with larger objectivefunction value. Therefore, z2 = z1 = +1. Thus, we may assume that both z1 and z2 are �nite.Suppose z2 < z1. Then the system C �X = z2AvecX = bX � 0is infeasible. Therefore, by the extended Farkas' lemma 2.3, there exists a scalar y0 and m-vector ysuch that y0C + mXi=1 yiAi � 0 and z2y0 + bTy < 0: (4)where vecAi is the ith row of A. Now:1. If y0 = 0, (2.4) is equivalent to Mat(ATy) � 0 and bTy < 0;which by extended Farkas' lemma implies that AvecX = b and X � 0 is infeasible and thusz1 =1.2. If y0 > 0, then dividing both relations in (2.4) by y0 we getC �Mat(AT (�y=y0)) � 0 and z2 � bT (�y=y0) < 0which means z2 is not an optimal solution of the dual problem.3. If y0 < 0, then dividing both relations in (2.4) by �y0 we get�C +Mat(AT (�y=y0)) � 0 and � z2 + bT (�y=y0) < 0In fact, since we have strict inequality, we must have�C +Mat(AT (�y=y0)) � 0 and � z2 + bT (�y=y0) < ��for some � > 0. But also, by optimality of z2 there must exist a y� such thatC �Mat(ATy�) � 0 and z2 � bTy� < �Adding the last two sets of relations we getMat(AT (�y=y0 � y�) � 0 and bT (�y=y0 � y�) < 0which again by extended Farkas' lemma implies that the primal problem is infeasible and z1 =1.7



Hence the assumption z2 < z1 results in contradiction. Since by weak duality lemma we have thatz2 � z1 we conclude that z2 = z1.It is also possible to derive a \complementary slackness" theorem. In fact, Gr�otschel, Lov�asz andSchrijver in [GLS84] and Shapiro in [Sha85] mention the complementary slackness theorem for a morerestricted form of SDP. Note that when the strong duality theorem is true and both primal and dualproblems are bounded and feasible then the duality gap X �S vanishes. However, in SDP, as in linearprogramming, a stronger form of complementary slackness results from this observation. First notethe following easy lemma:Lemma 8 Let A and B be symmetric n� n matrices. If A � 0, B � 0, then A �B = 0 if and only ifAB = 0.Proof: Let B = U
UT be the eigenvalue decomposition of B, with 
 = Diag(!i) and !i � 0 fori = 1; � � � ; n. Set C:=UTAU , thus C � 0, and in particular, its diagonal elements Cii � 0. We onlyneed to show that C
 = 0. From A �B = 0 we have C �
 = 0 and therefore, Pni=1 Cii!i = 0. Sinceall the summands are nonnegative, it follows that they are all zero. Thus we have:1. If !i > 0 then Cii = 0, and by C � 0, the entire row and column i is zero.2. If Cii > 0, then !i = 0.Now suppose (C
)ij 6= 0 for some i; j. Then Cij!j 6= 0, which by 1 above we must have that theentire column j is zero, and so Cij = 0, a contradiction.2Now the \complementary slackness" theorem is immediate:Theorem 2 Let X� be a feasible matrix for the primal, and y� a feasible vector for the dual in (2.2).De�ne S�:=C �Mat(ATy�). Then X� and y� are primal and dual optimal, respectively, if and onlyif X�S� = 0: (5)Notice that, in contrast with linear programming, component-wise multiplication in the complementaryslackness theorem is replaced by the ordinary matrix multiplication. The complementary slacknesstheorem for SDP can be restated in the following way which makes it quite similar to the LP variant:Corollary 1 Let X� be a feasible matrix for the primal problem in (2.2) with eigenvalues �1; � � � ; �n;and S�:=C �Mat(ATy�) be feasible for the dual problem with eigenvalues !1; � � � ; !n. Then X� andS� are primal and dual optimal, respectively, if and only if they commute and there is a permutation� of eigenvalues of S� such that �i!�i = 0 for i = 1; � � � ; n:Recall our convention that �i and !i are the ith largest eigenvalues of X and S, respectively; this pointnecessitates the permutation � in the statement of the corollary.Proof: X� and S� are optimal if and only if X�S� = 0. Thus, X� and S� commute with each otherand therefore, they share a system of eigenvectors. Let columns of U be a joint system of orthonormaleigenvectors of X� and S�, i.eX� = UDiag(�1; � � � ; �n)UT and S� = UDiag(!�1 ; � � � ; !�n)UT2D. E. Knuth and an anonymous referee suggested the following slightly shorter proof: 0 = A�B = trace A1=2BA1=2.Since A1=2BA1=2 � 0 and its trace is zero, the matrix product itself must equal zero, and therefore AB = 0. Wefeel, however, that the proof given in the paper better underscores similarity to the proof of the linear programmingcomplementary slackness theorem. 8



for some permutation �. The corollary follows immediately by multiplying the right hand sides ofthese two identities.One can extend the notion of nondegeneracy in linear programming to SDP, by requiring the strictcomplementarity condition. This can be stated by saying that in the preceding corollary exactly oneof �i or !�i corresponding to eigenvector ui be zero for each i = 1; � � � ; n. Equivalently we may requirethat Rank(X�) +Rank(S�) = n. However, unlike standard linear programming, where in the absenceof nondegeneracy one could say that precisely m components of the optimal solution x� is nonzero, itis not clear in general how to predict Rank(X�) or Rank(S�) before solving the SDP problem. All wecan say is that RankX� < n as the optimum of the primal SDP problem is attained on the boundaryof the semide�nite cone. In section 4 we encounter another negative e�ect of the unpredictability ofthe rank of the optimal solution in the context of interior point methods.Similar to linear programming, the complementary slackness theorem 2.2 may be used as a basisfor primal-dual algorithms. Indeed in this paper, our interior point algorithm is a primal-dual methodwhich maintains a primal feasible Xk and dual feasible Sk and each iteration movesXkSk closer to thezero matrix. The norm kXkSkk is an indication of how close our current solution is to the optimum.In general the set of equations: AvecX = bATy + S = CXS = 0 (6)is a system of n(n+ 1)+m equations in the same number of unknowns. In the absence of degeneracyone can apply, for instance, Newton's method, or some quasi-Newton method to solve this system.Since SDP is a convex program, the real solutions of this system are global optima of the correspondingSDP problem.As in linear programming, semide�nite programs may arise in a variety of forms; the standardform (2.2) is just one type. Sometimes we may have positive semide�nite constraints imposed onlinear combinations of matrices (as in the dual problem in (2.2), for example). Sometimes we mayhave component-wise inequalities \�" on scalar or matrix variables in addition to L�owner inequalities.We may have several several matrix expressions constrained to be positive semide�nite. Finally, wemay have some or all of these. Of course, as in linear programming, it is possible to convert allsuch problems to the standard form, usually by introducing new scalar and matrix variables andnew constraints. However, it is more convenient to apply duality directly, as with linear programs ingeneral form. It is easy to show that the rules for obtaining the dual are a straightforward extensionof these rules for the linear programming problem. The main addition is that constraints that involvesemide�nite relations on matrix{valued expressions give rise to matrix{valued dual variables withsemide�nite constraints. These rules are summarized in the table in �gure 1; this table is a directgeneralization of a similar table in the text of Bazaraa, Jarvis and Sherali [BJS90].3 An interior point algorithm.In this section we develop a potential reduction method for solving the primal problem so that,within O(pnj log �j) iterations, we get an approximate solution with at least � relative accuracy, if � issu�ciently small. Our development closely follows Ye's projective technique for linear programming[Ye90]. Ye's complexity analysis is also extended to semide�nite programs.9



MIN MAXmatrix or scalar, � 0  ! C matrix or scalar, �V matrix or scalar, � 0  ! O matrix or scalar, �A matrix, � 0  ! N matrix �R matrix, � 0  ! S matrix, �matrix or scalar, unrestricted  ! T matrix or scalar, =C matrix or scalar, �  ! matrix or scalar, � 0O matrix or scalar, �  ! V matrix or scalar, � 0N matrix, �  ! A matrix, � 0S matrix, �  ! R matrix, � 0T matrix or scalar, =  ! matrix or scalar, unrestrictedFigure 1: Duality rules for semide�nite programming.3.1 Potential functions and projective transformations.First, recall that the interior of the cone of positive semide�nite matrices is the set of positive-de�nitematrices; therefore, all interior points are nonsingular. The boundary of the cone consists of singularsemide�nite matrices and so, some of the eigenvalues of the boundary matrices are zero. In particular,optimal solutions of the primal problem in (2.2) are singular.We assume that the primal and the dual problems have non-empty interiors, with given initialprimal and dual points and with �nite optimal solutions. Later, in section 3.4, we show how totransform any primal-dual pair to an equivalent one where an initial interior primal{dual solution isavailable. Let q > 0, and z be a given constant known to be a lower bound on the optimal value z� ofthe primal problem in (2.2). Let X be an interior primal feasible matrix, y an interior dual feasiblevector, and S:=C �Pmi=1 yiAi; thus, X � 0 and S � 0. De�ne the primal potential function:�(X; z) = q ln(C �X � z) � ln detX; (7)and the primal-dual potential function: (X;S) = q ln(X � S) � lndet(XS): (8)For motivation, one may think of semide�nite constraints X � 0 expressed as �i(X) � 0 for i =1; � � � ; n. When the standard logarithmic barrier is applied to these constraints we get: Pni=1 ln�i(X) =ln detX:The strategy of the algorithm is to generate a sequence of interior primal feasible matrices Xk, anda sequence of interior dual vector{matrix pairs (yk; Sk), such that the sequence  (Xk ; Sk) decreases atleast like an arithmetic progression. With an appropriate choice of q, this would imply that the dualitygap C �Xk � bTyk decreases at least like a geometric progression with k; in particular it becomes aconstant fraction of the original gap after O(pn) iterations.Before describing the algorithm we state the following lemma which is a direct generalization of asimilar lemma that appears in the analysis of most interior point linear programmingmethods. (Recallthat �(X) is the spectral radius of matrix X, which equals its largest eigenvalue when X is positivesemide�nite.)Lemma 9 Let X be a symmetric n� n matrix. If 0 � X � I, thenln detX � trace X � n� trace (X � I)22[1� �(X � I)]10



Proof: In most interior-point linear programming algorithms it is shown that if kx� 1k1 < 1 thennXj=1 lnxj � (1Tx � n) � kx� 1k22(1� kx� 1k1)which is easily proved by expanding lnx, (see for example, Karmarkar [Kar84] or Ye [Ye91].) Now toprove the lemma simply substitute �j(X) for xj.We use a projective transformation to bring the current iterate to the center, except that thecenter here is the identity matrix (in contrast with linear programming in which the center is 1). Animportant point is that the transformation should map the set of symmetric matrices to itself. Thisis needed so that the transformed problem remains a meaningful SDP problem. Let X0 � 0 be ourcurrent interior primal feasible point. To �nd a symmetry preserving projective transformation thatmaps X0 to the identity matrix I, let L0 be any n � n matrix such that L0LT0 = X0. There arein�nitely many choices for L0. For instance, it could be a Cholesky factor of X0, or it could be itssquare root, X1=20 . We shall see shortly that it does not matter how we select L0 as it will not a�ectthe algorithm's behavior and performance. Fix integer r. De�ne T : <n�n2 ! <n�n2 � <r, such thatT (X) = (X;x). Then: X :=(n+ r)L�10 XL�T0r +X�10 �X and x:=� n+ rr +X�10 �X�1 (9)Also, the inverse transformations is given by:X = T �1(X;x):=L0XLT0Pxj=r (10)Under T , the primal SDP problem is transformed intomin C �X + c(z)Txs:t: AvecX +Ax = 0trace X + 1Tx = n + rX � 0x � 0 (11)where C:=LT0CL0 (12)c(z):=� (z=r)1 (13)Ai:=LT0AiL0 (14)A:=A(L0 
 L0) (15)A:= (�1=r)b1T (16)Note that A is an m� r rank one matrix. The transformed problem may be viewed as a mixed linearand semide�nite program. We may de�ne the following primal potential function for the transformedproblem: �(X;x; z):=q ln hC �X + c(z)Txi� ln detX � rXj=1 lnxj (17)The following invariant property holds for the potential functions under projective transformations:11



Lemma 10 If x1 = � � � = xr, and q = n+ r and X:=T �1(X;x) then�(X; z)� �(X0; z) = �(X;x; z)� �(I;1; z): (18)Also, the following result is easily proved by expanding � and applying lemma 3.1; later we use itto prove the reduction in the primal-dual potential function.Corollary 2 For q = n+ r we have�(X;x; z)� �(I;1; z) � (n + r) ln� C �X + c(z)Txtrace C + c(z)T1�+ kX � Ik2 + kx� 1k22(1� kX � Ik+ kx� 1k) (19)3.2 A potential reduction algorithm.Similar to linear programming, in (3.11) we replace the inequality constraints X � 0 and x � 0 by aninscribed \ball" constraint, except that for the SDP problem the ball is centered at (I;1). Therefore,(3.11) is replaced by the \ball optimization" problem:min C �X + c(z)Txs:t: AvecX +Ax = 0trace X + 1Tx = n + rkX � Ik2 + kx � 1k2 � �2 < 1 (20)where � is a �xed constant between 0 and 1 to be determined shortly. Once we solve this problemand map the result back to the original space, we get a point that serves as a candidate for the nextiterate. The solution of (3.20) is given by� vecX1x1 � :=� vecI1 �� � P (z)kP (z)k ; (21)and the candidate for the new primal iterate is given by:X(z):=T �1(X1;x1); (22)where P (z):=PA0 � vecCc(z) � ; A0:=� A A(vec I)T 1T � ; (23)and PA0(u) is the projection of the (n2 + r)-vector u to the null space of A0. After expansion theprojection PA0 in (3.23) becomes:P (z) = �I � [vecT Ij1T ][vecT Ij1T ]Tn+ r ��I � [AjA]T ([AjA][AjA]T )�1[AjA]�� vecCc(z) � (24)De�ne: y(z) := �[AjA][AjA]T��1 [AjA]� vecCc(z) �= �A(X0 
X0)AT + (1=r)bbT��1 [Avec(X0CX0) + (z=r)b] (25)and S(z):=C �Mat(ATy(z)) (26)12



S(z) and y(z) serve as candidates for the new dual iterates. In terms of these quantities P (z) may bewritten as: P (z) =  vec(LT0 S(z)L0)bTy(z)�zr 1 !� C �X0 � zn+ r � vecI1 � (27)Observe that X(z), S(z) and y(z) are all independent of L0; in fact in actual computation we do notneed to have L0 explicitly.Now we show that either the primal candidate X(z), or the dual candidates S(z) and y(z) reducethe value of the primal-dual potential function  by a constant amount. First observe that PA0 is aprojector, that is P2A0 = PA0 . Therefore, from (3.21) we get:C � (X1 � I) + c(z)T (x � 1) = ��kP (z)kHence, noting that ln(1 + x) � x, for nonnegative x, corollary 3.1 implies:Corollary 3 Let q = n+ r and X1 and x be as in (3.21). Then�(X;x; z)� �(I;1; z) � �(n + r)� kP (z)kc(z)T1+ trace C + �22(1� �)Let �0 be the size of the duality gap in the current iterate, that is�0:=C �X0 � zand let �1:=S(z) �X0 = C �X0 � bTy(z)Thus �1 should be interpreted as the value of duality gap if we choose y(z) as our new dual iterate.Before deriving the amount of reduction in the potential function we prove the following lemma:Lemma 11 If there is some real number � with 0 < � < 1, such thatkP (z)k � � �0n+ rthen S(z) � 0, and bTy(z) > z. Furthermore,



LT0 S(z)L0 � �1n I



 � �1n �s n + n2=rn + n2=r� �2 ; (28)and ����n+ rn �1�0 � 1���� � �pn+ n2=r (29)Proof: Suppose S(z) 6� 0. Then LT0 S(z)L0 is not positive de�nite and so some of its eigenvalues areless than or equal to 0. Thus, from (3.27) we havekP (z)k � �� �0n + r I � LT0 S(z)L0� � �0n+ r ;a contradiction. Also, If bTy(z) � z then from (3.27) we havekP (z)k � �0n + r � bTy(z) � zr � �0n+ r ;13



which is again a contradiction. Now from (3.27) we haveP (z) = 0@ �vec(LT0 S(z)L0)� �1n I� � h �0n+r � �1n ivecIh�0��1r � �0n+r i1 1ASince I � [(LT0 S(z)L0)� (�1=n)I] = 0, we havekP (z)k2 = 



LT0 S(z)L0 � �1n I



2 + n� �0n+ r � �1n �2 + r��0 ��1r � �0n+ r�2= 



LT0 S(z)L0 � �1n I



2 +�n+ n2r ���1n � �0n+ r�2 : (30)If (3.28) is false then from (3.30) we havekP (z)k2 > ��1n �2�2 n+ n2=rn+ n2=r � �2 +�n+ n2r ���1n � �0n+ r�2� �2� �0n+ r�2 (31)(The last inequality is proved by taking the right hand side of the �rst inequality as a quadraticfunction in �1=n and minimizing it.) But (3.31) contradicts the assumption of the lemma, so (3.28)must be true. Finally, since (3.31) is false, we have:�n+ n2r ���1n � �0n+ r�2 � �2� �0n+ r�2 ;from which (3.29) follows.Now we may prove the potential reduction theorem.Theorem 3 Let X0 be any interior feasible matrix for the primal problem (1.1) and y0 interior feasiblefor the dual. Let also, r:=dpn e and q:=n + r, S0:=C �Pmi=1 yiAi, z0:=bTy0, X(z):=T �1(X1;x1),as in (3.10), y1:=y(z0), and S1:=S(z0). Then there exist an absolute constant � such that either (X(z); S0) �  (X0; S0) � �;or  (X0; S1) �  (X0; S0) � �;Furthermore, if we set � = 0:55 and �:=0:3, then � > 0:1.Proof: If for some constant 0 < � < 1 kP (z)k � � �0n+ rthen  (X(z); S0)�  (X0; S0) = �(X(z); z0)� �(X0; z0)= �(X(z);x1; z0)� �(I;1; z0)� ��� + �22(1� �)14



(the last inequality is true by corollary 3.2). Otherwise, the conditions of lemma 3.3 are satis�ed. Alsoapplying lemma 3.1 to (n=�1)LT0 S1L0, and setting 
:=�q n+n2=rn+n2=r��2 we have:n lnX0 � S1 � ln detX0S1 = n ln�nX0 � S1�1 �� ln det nX0S1�1= n lnn� lndet nX0S1�1� n lnn+ knLT0 S1L0=�1 � Ik22(1� knLT0 S1L0=�1 � Ik)� n lnX0 � S0 � ln detX0S0 + 
22(1� 
) ; (32)where the last relation results from applying the arithmetic-geometric mean inequality to the eigen-values of X0S0 (which are all real.) By (3.29) of lemma 3.3 we have�1 <  1� rn+ r � nn+ r �pn+ n2=r!�0:Thus, r ln X0 � S(z)X0 � S0 = r ln �1�0 � r2n+ r  �1 + �pr + r2=n! : (33)Adding (3.32) and (3.33) we get (X0; S1)�  (X0; S0) � r2n+ r  �1 + �pr + r2=n!+ 
22(1� 
) : (34)It is easily veri�ed that choice of � = 0:55, � = 0:3 and � = 0:1 is consistent with all the conditions ofthe theorem.Based on this result we present the projective version of the algorithm displayed in �gure 2. Notethat in this algorithm �� and z� are obtained by line search on the potential function. We justify thisin the next subsection.3.3 Potential reduction and polynomial-time solvability.Now we show that starting from any pair of interior primal and dual feasible points, and a tolerance �,we get a pair whose duality gap is less than � by running the algorithm in �gure 2 a number of timesthat depends polynomiality on ln �, n and the error in the initial pair.Theorem 4 Let X0, y0 and S0:=C �Mat(ATy0) be given initial interior points for the primal anddual semide�nite programming problems in (2.2). Let also that r = dpn e and q = n + r in theprimal-dual potential function  , and assume that  (X0; S0) � O(pnE) for some constant E. Ifan algorithm generates a sequence of interior primal and dual points Xj , yj (and thus Sj) such that (Xj ; Sj) �  (Xj+1; Sj+1) + � for some �xed number � then, after k = O(pnj log �j) iterations, forprimal and dual solutions Xk, yk and Sk we haveC �Xk � bTyk < 2E�:15



Algorithm SDP:Input:An n� n matrix X0, interior feasible for the primal problem in (2.2);an m-vector y0 interior feasible for the dual problem;a constant �.Output:A primal feasible solution X and dual feasible solution y such thatC �X � bTy < �.Method:1) Set k = 0 and � = 0:55.2) Set z0 = bTy0.3) Set Sk:=C �Mat(ATy0).4) While C �Xk � bTyk � � dobeginCompute S(zk) from (3.26) and P (zk) from (3.23).If kP (zk)k � �(C �Xk � zk)=(n+ r) thena)Find ��:=argmin0���1 (Xk � �LkP (zk)LTk ; Sk),using a line search procedure.b) Set (Xk+1;xk+1) = (I;1)� ��P (z),and set Xk+1:=T �1(Xk+1;xk+1).c) Set Sk+1:=Sk, and zk+1:=zk.Elsed) Find z�:=argminz�zk (Xk; S(z)) by a line search.e) Set Sk+1 = S(z�).f) Set Xk+1 = Xk, and zk+1 = bTy(z�).Set k = k + 1.end. Figure 2: A projective potential reduction algorithm.Proof: Each iteration reduces the potential function by at least �. Thus, if  (X0; S0) < O(pnE)then after O(pnj log �j) iterations we have: (Xk; Sk) < �pnE �pnj log �j�= (pn[log 2E � j log �j]� pnj log(2E�)j:Therefore, pn lnXk � Sk < �n lnXk � Sk + lndetXkSk +pnj log(2E�)j< �n lnn+pnj ln(2E�)jThe last inequality comes from applying the arithmetic-geometric inequality to the eigenvalues ofXkSk, which are real, as both matrices are positive de�nite. Thus, lnXk � Sk < j log(2E�)j, and sinceXk � Sk = C �Xk � bTyk, the theorem follows.This theorem essentially says that if we start our potential reduction algorithm at a pair of primaland dual points where the initial error is such that the value of the potential function is O(pnE), then16



after O(pn(E + j log �j)) iterations we will have a solution with duality gap less than �. Therefore forall � < 2�E the term j log �j dominates E and so the number of iterations is bounded by O(pnj log �j).Also observe that this proof solely depends on the reduction of the potential function  . We have toguarantee a reduction of at least � in each iteration; but larger reductions may speed up the algorithmwithout a�ecting its worst case complexity. Therefore, in steps 4a and 4d of the algorithm in �gure 2we allow a line search to �nd a step length �� and z� which maximizes the reduction in the potentialfunction.3.4 Feasibility, boundedness and polynomial{time computability.To complete our analysis we must study feasibility of the SDP problem and bounds on the norms of theoptimal primal and dual solutions. The situation is somewhat di�erent from linear programming. Letus assume that all entries in the primal and dual problems (2.2) are integers. First, in contrast withlinear programming, the optimal solution of (2.2) is not necessarily a rational number. Therefore weneed to specify an error tolerance, �, and ask for a pair of primal and dual solutions X and S such thatthe duality gap X �S � �.3 If � is also a rational number, de�ne L, the size of the SDP problem, as thenumber of bits in the binary representation of � and entries of C, A, and b, see [GLS88] for completede�nition. One might expect that the interior point method developed in the previous sections leadsto an algorithm which runs in time polynomial in m, n and L. However, this is not true in general asthe solution itself may be exponentially large. To see this consider the optimization problem:minfxn : x1 � 2; and xi � x2i�1 for i = 2; � � � ; ng (35)Clearly, xn = 22n is the solution of this problem which requires exponential number of bits. Now(3.35) can be written as the following semide�nite program:min xns.t. x1 � 2� xi xi�1xi�1 1 � � 0 for i = 2; � � � ; nThis SDP problem can be easily turned into a standard form SDP whose input size (taking � = 1, say)is polynomial in n and whose output requires more than exponential number of bits. So no algorithmcan solve it in polynomial time4.In many cases, including all of the combinatorial optimization problems described below, one maybe able to put an a priori bound on the norms of the optimal solutions. For instance in special caseswe may be able to prove that kXk = O(2nm), and kyk = O(2nm). In such cases we can show that theinterior point algorithm developed earlier can produce, in polynomial time, primal and dual solutionswhose duality gap is smaller than �. Notice that in the ellipsoid method such an a priori bound isassumed by requiring that an initial ellipsoid containing the feasible solution be supplied. Let L0 be thenumber of bits in the binary expansion of some integer known to be a bound on kX�k and ky�k. Then,similar to linear programming, one can always transform the pair of primal and dual problems (2.2) toanother pair for which initial interior feasible points are readily available. We extend the constructionsuggested by Kojima, Mizuno and Yoshise in [KMY89] which in turn is based on Megiddo's [Meg89].3Since X, S and y are solution of the algebraic system of equations: XS = 0;AvecX = b and ATy+ S = C, thereare algebraic solutions among all optimal solutions of an SDP problem with integral input.4I am indebted to Joshi Ramana for bringing to my attention an error in [Ali91, Ali92] where I had claimed that thenorm of the solution to any SDP problem is bounded by 2L. Joshi essentially provided this counter example.17



Consider the following pair of primal and dual problems:min C �X +Mx1s:t: Avec(X) + [b� Avec(X0)]x1 = b[Mat(ATy0) + S0 � C] �X + x2 = NX � 0x1; x2 � 0 (36)and, max bTy � Ny1s:t: Mat(ATy) + S + [C �Mat(ATy0) � S0]y1 = C[b�Avec(X0)]Ty + y2 =MS � 0y1; y2 � 0 (37)where X0 and S0 are arbitrary positive de�nite n� n matrices, y0 an arbitrary m-vector, and M andN are large enough positive numbers to ensure that y2 � 0 and x2 � 0. Clearly X:=X0, x1:=1 andx2:=N � (Mat(ATy0)+S0�C) �X0 are interior feasible for the primal (3.36) (with large enough N );and S:=S0, y:=y0, y1:=1, and y2:=M � (b�Avec(X0))Ty0 are interior feasible for the dual problemin (3.37) (for large enough M ). By choosing X0 = S0 = I, x1 = y1 = 1, y0 = 0, it su�ces to chooseM and N such that N > max n�Xi Cii; Xi X�ii �C �X�! ;M > max 0; bTy� �Xi y�i trace (Ai)! :For instance we may set N = M = 2L+L0 . It is easy to see that if the optimal value of x1 is notzero, then the original primal is infeasible (the proof is exactly like the one given in Kojima et al. in[KMY89]). Similarly if the optimal value of y1 is not zero, then the original dual is infeasible. Other-wise, the optimal X� and y� are also optimal for the original primal and dual problems, respectively.Furthermore, It is easily veri�ed that the value of the primal-dual potential function  at the initialpoint is bounded by O(pn(L + L0)). So, for the general SDP problem, any algorithm that reducesthe primal-dual potential function  by a constant amount may �nd, in O(pnmax(L;L0; j log�j)) it-erations, a pair of primal and dual feasible solutions whose duality gap is less than �; if � < 2�L�L0,then the number of iterations is bounded by O(pnj ln �j).3.5 A correspondence between proofs in linear and semide�nite program-ming.The remarkable similarity between the algorithm presented here and Ye's LP algorithm in [Ye90]suggests that other LP interior point methods may also be extended to SDP problems. All proofsof convergence and polynomial-time complexity may be extended as well. The correspondence issummarized in �gure 2. Given any interior point algorithm for linear programming we may construct,in a mechanical way, an algorithm for the SDP problem by replacing any references to the entriesunder the LP column, with the corresponding entry under the SDP column. Proofs of convergence orpolynomial time complexity may also be extended mechanically in the same manner. We have alreadyveri�ed this claim on the approaches of Gonzaga [Gon89], Ye [Ye91] (see [Ali92]), and Monteiro and18



LP SDPunknown vector: x unknown symmetric matrix: Xinequality constraints: � L�owner constraints: �dual variable: y dual variable: ydual slack vector: s dual slack symmetric matrix: S1 Ilinear scaling: linear scaling:x! (xi=(x0)i)ni=1 = [Diag(x0)]�1x X ! L�10 XL�T0 = Mat[(L�10 
 L�10 )vec(X)]projective scaling: projective scaling:x! c1[Diag(x0)]�1xc2+1T [Diag(x0)]�1x X ! c1L�10 XL�T0c2+trace L�10 XL�T0barrier function: barrier function:P lnxi lndetXnorms: norms:kxk kXkkxk1 kXk2kxkp (P j�i(X)jp)1=pFigure 3: Correspondence between linear programming and semide�nite programmingAdler [MA88]. This table itself may be summarized by the following rule: In any linear programmingalgorithm, replace any implicit or explicit reference to xi (or si) by a reference to �i(X) (or �i(S)).Furthermore, in any scaling, replace a�ne or projective transformations by corresponding symmetrypreserving transformation on matrices. Notice that these same rules were implicitly used to derivevarious duality and complementary slackness theorems for SDP from the corresponding theorems forLP.3.6 Di�erences between SDP and LP interior point algorithms.Thus far, we have emphasized the similarity of linear and semide�nite interior point methods. Thereare however, important distinctions and some favorable circumstances in LP do not extend to SDP.We have already seen the di�erences between LP and SDP when we studied irrationality and a prioribounds on the number of bits in the optimal solutions. We list other distinctions which must be studiedcarefully before a serious practical implementation of interior point SDP algorithms is attempted.1. In the absence of degeneracy one can predict that precisely m entries of the optimal vector x�are nonzero in the standard linear program with coe�cient matrix A 2 <m�n. Recall that ineach iteration of a primal interior point algorithm, the main computational e�ort is in obtaining(ADiag(x)2AT )�1v, where v is some vector. Therefore, if A is rank m and reasonably well-conditioned, this computation is fairly straightforward and typically no numerical di�cultiesshould arise. In SDP however, even if we assume strict complementarity, (i.e Rank(X�) +Rank(S�) = n,) we still will do not know what Rank(X�) is going to be before solving the SDPproblem. Furthermore, let Rank(X�) = r. Since the main computational work in SDP interiorpoint methods is computing (A(X 
 X)AT )�1v, even if A is full rank and reasonably well-conditioned, A(X 
X)AT may converge to a singular matrix unless m � r2, which by no meansis guaranteed. The same issue arises if we use dual or primal-dual interior point algorithms.2. The main reason that interior point methods in linear programming are practically competitive{aside from the small number of iterations{is that if the matrix AAT is sparse, so is ADAT for19



any diagonal matrix D; in fact, ADAT and AAT have precisely the same nonzero structure.Therefore, once a good order of elimination is obtained for AAT , the same order should workfor all subsequent iterations of the interior point algorithm. This is is not the case for SDP. Ingeneral even if AAT is sparse the matrix A(X 
X)AT may not be sparse at all. It is not clearhow factorization of A(Xk 
Xk)AT could be of any use in factoring A(Xk+1 
Xk+1)AT .3. Karmarkar in [Kar84] gives a nice amortized method for updating factors of ADAT . He developsa technique where xk and xk+1 di�er only in jk entries whereP jk over all iterations is boundedby O(pn). From this observation he manages to reduce the overall number of operations by afactor of pn. It is not clear how to extend Karmarkar's amortized scheme to SDP interior pointalgorithms.4 Eigenvalues as semide�nite programs.In most cases semide�nite programs arise in the form of minimizing or maximizing a linear combinationof eigenvalues of a symmetric matrix subject to constraints on the matrix. In this section we studyproblems of this form, and show that under appropriate assumptions they are indeed special casesemide�nite programs. We give primal and dual characterization of each problem and examine thecomplementary slackness theorem as specialized to that problem.4.1 Minimizing sum of the �rst few eigenvalues.First we consider minimizing sum of the �rst k eigenvalues of a symmetric matrix subject to linearconstraints on the matrix. We consider two variations, namelyminf�1(X) + � � �+ �k(X) : AvecX = bg: (38)and min kXi=1 �i(A(x)) where A(x) = A0 + mXi=1 xiAi (39)To show that these problems are indeed semide�nite programs, we use the following elegant charac-terization by Overton and Womersley [OW91, OW92].Theorem 5 For the sum of the �rst k eigenvalues of a symmetric matrix A the following semide�niteprogramming characterization holds:�1(A) + � � �+ �k(A) = max A � Us:t: trace U = k0 � U � I (40)Proof: See Overton and Womersley [OW91, OW92].It is worth mentioning that this result is based on a beautiful convex hull characterization whichwas known at least as early as 1971, see [FW71], but unfortunately has remained somewhat obscure.Here is the statement of this result:Lemma 12 Let S1:=fY Y T : Y 2 <n�k; Y TY = Igand S2:=fW : W = W T ; trace W = k; 0 � W � Ig:20



Then conv S1 = S2;and S1 is exactly the set of extreme points of S2.For an historical account of this result, its connection to the well-known, but computationally lessuseful theorem of Ky Fan, and interesting connections to the theorem of Birkho� and Von Neumannconcerning the convex hull of doubly stochastic matrices, refer to Overton and Womersley [OW92].Now to express (4.38) as a semide�nite program we �rst derive another characterization of sumof the �rst k eigenvalues of A, by taking the dual of (4.40). The constraint U � I gives rise to dualvariable V , which by the 3rd line of the table in �gure (3) satis�es V � 0. The variable U , whichsatis�es U � 0, by the eight line of the table (3), gives rise to the constraint zI + V � A. Thus wehave:Theorem 6 For the sum of the �rst k eigenvalues of a symmetric matrix A the following semide�niteprogramming characterization holds:�1(A) + � � �+ �k(A) = min kz + trace Vs:t: zI + V � AV � 0 (41)Now, it is easy to incorporate the equality constraints into (4.41) by replacing A with X. So (4.38) isequivalent to min kz + trace Vs:t: AvecX = bzI + V �X � 0V � 0 (42)and taking the dual again we have the following dual characterization:max bTys:t: U = Mat(ATy)trace U = k0 � U � I (43)The complementary slackness result for primal feasible z�, X�, and V �, and dual feasible U� statesthat these are optimal if and only if(z�I + V � �X�)U� = (I � U�)V � = 0Similarly (4.39) may be expressed by the following primal and dual pair:min kz + trace Vs.t. zI + V �PxiAi � A0V � 0 max A0 � Ys.t. trace Y = kAi � Y = 0 for i = 1; � � � ;m0 � Y � I (44)When k = 1, these characterizations become simpler, because in that case the constraint Y � I(and thus variable V ) are redundant. Therefore, the problemminf�1(X) : AvecX = bg21



may be expressed as the solution of the primal and dual SDP pair:min zs:t: zI �X � 0AvecX = b max bTys:t: trace Mat(ATy) = 1Mat(ATy) � 0 (45)and the complementary slackness theorem indicates that for X� and y� to be primal and dual optimumsolution for (4.45), they must satisfy{in addition to being primal and dual feasible:Mat(ATy�)(�1(X�)I �X�) = 0:4.2 Minimizing weighted sums of eigenvalues.In this section we consider the weighted sum of eigenvalues of a matrix. Let m1 � m2 � � � � � mk >mk+1 = 0 be a set of �xed real numbers. We are interested in the following problem:minfm1�1(X) + � � �+mk�k(X) : AvecX = bg (46)Note that without the condition m1 � m2 � � � � � mk > 0 (4.46) is not necessarily a convex program.To formulate this problem as a semide�nite program, we use a technique originally employed by Donathand Ho�man in [DH73]. They rewrote the sum as follows:m1�1(A) +m2�2(A) + � � �+mk�k(A) = (m1 �m2)�1(A) +(m2 �m3)[�1(A) + �2(A)] + � � �+(mk�1 �mk)[�1(A) + � � �+ �k�1(A)] +mk[�1(A) + � � �+ �k(A)] (47)and observed that the right hand side of (4.47) is a nonnegative combination of convex functions, andtherefore, itself is convex. This formulation also allows us to write (4.46) as a semide�nite programmingproblem. For each of the partial sums of eigenvalues in (4.47) we may use the relations in the lastsubsection and obtain the primal:min Pki=1 izi +Pki=1 trace Vis:t: ziI + Vi � (mi �mi+1)X � 0 for i = 1; � � � ; kAvecX = bVi � 0 for i = 1; � � � ; k (48)and the dual max bTys:t: ATy �Pki=1(mi �mi+1)Ui = 0trace Ui = i for i = 1; � � � ; k0 � Ui � I for i = 1; � � � ; k (49)formulations of (4.46).The complementary slackness condition for feasible X�, z�i , V �i , y�, and U�i for i = 1; � � � ; k to beoptimal may be stated as:(z�i I + Vi � (mi �mi+1)X�)U�i = (I � U�i )V �i = 0 for i = 1; � � � ; kNotice that the primal and dual characterizations (4.48) and (4.49) contain 2k semide�nite constraintseach involving n � n matrices, and therefore, the interior point methods discussed earlier requireO(pkn) iterations for each new signi�cant digit of accuracy. It would be interesting to improve thiscomplexity to O(pn). 22



4.3 Minimizing sums of absolute-value-wise largest eigenvalues.The results of the two preceding sections may be extended to the sum of the k absolute-value-wiselargest eigenvalues as well. Overton and Womersley derived the max characterization similar to (4.40);applying duality to their result we obtain:Theorem 7 For a symmetric matrix A the sum j�1(A)j + � � �+ j�k(A)j is equal to optimal solutionof the pair of primal and dual semide�nite programs:max A � Y � A �Ws:t: trace (Y +W ) = k0 � Y � I0 � W � I min kz + trace V + trace Us:t: zI + V �A � 0zI + U + A � 0U � 0V � 0 (50)(Recall that �i(X) is the ith largest eigenvalue of X in the absolute-value sense.)Now to solve the optimization problemminfj�1(X)j + � � �+ j�k(X)j : AvecX = bg (51)we may simply add the equality constraints to the min formulation in (4.50) and then take its dualand we get the following pair of primal and dual semide�nite programs:min kz + trace V + trace Us:t: AvecX = bzI + V �X � 0zI + U +X � 0U � 0V � 0 max bTys:t: ATy = Y �Wtrace (Y +W ) = k0 � Y � I0 � W � I (52)The complementary slackness theorem indicates that primal feasible z�, V �, and U�, and dualfeasible Y �, and W � are optimal if and only if(z�I + V � �X�)Y � = (z�I + U� +X�)W � = (I � Y �)U� = (I �W �)V � = 0:Again these results may be generalized to the weighted sums of absolute-value-wise largest eigen-values. In other words, the problemminfm1j�1(X)j + � � �+mkj�k(X)j : AvecX = bg (53)may be expressed by a primal and dual pair of semide�nite programs. First, let us ignore the equalityconstraints AvecX = b, and assume that X is a �xed matrix A. Then, we haveTheorem 8 The sum m1j�1(A)j+ � � �+mkj�k(A)j, where A is a symmetric matrix equals the optimalsolution of the primal program:min Pki=1 izi +Pki=1 trace (Ui + Vi)s:t: ziI + Ui � (mi �mi+1)A � 0 for i = 1; � � � ; kziI + Vi + (mi �mi+1)A � 0 for i = 1; � � � ; kUi � 0 for i = 1; � � � ; kVi � 0 for i = 1; � � � ; k (54)23



and the dual program: max Pki=1(mi �mi+1)(A � Yi �A �Wi)s:t: trace (Yi +Wi) = i for i = 1; � � � ; k0 � Yi � I for i = 1; � � � ; k0 � Wi � I for i = 1; � � � ; k (55)Now we may replace A by X and impose the equality constraints on the min characterization in(4.54). After taking the dual we will have the following pair of primal and dual formulation of (4.53):min Pki=1 izi +Pki=1 trace (Ui + Vi)s:t: AvecX = bziI + Ui � (mi �mi+1)X � 0 for i = 1; � � � ; kziI + Vi + (mi �mi+1)X � 0 for i = 1; � � � ; kUi � 0 for i = 1; � � � ; kVi � 0 for i = 1; � � � ; k (56)and, max bTys:t: ATy =Pki=1(mi �mi+1)(Yi �Wi)trace (Yi +Wi) = i for i = 1; � � � ; k0 � Yi � I for i = 1; � � � ; k0 � Wi � I for i = 1; � � � ; k (57)Finally, the complementary slackness theorem for problem (4.53) states that primal (4.56) feasiblez�i , V �i , and U�i , and dual (4.57) feasible Y �i , and W �i , for i = 1; � � � ; k are optimal if and only if(z�i I + V �i � (mi �mi+1)X�i )Y �i = (z�i I + U�i + (mi �mi+1)X�i )W �i = (I � Y �i )U�i = (I �W �i )V �i = 0for i = 1; � � � ; k.The characterization (4.40), and the max part of (4.50) were given in Overton and Womersley[OW91]. Also, Fletcher in [Fle85] derives a closely related result to (4.40) but the result was incorrect(Fletcher had 0 � S rather than 0 � S � I.) The min characterizations as well as the primal and dualformulation of the variants with equality constraints, we believe are new.Similar formulations can be derived for maximizing (weighted) sums of the last few smallest eigen-values of symmetric matrices or the sum of the �rst few largest singular values of an arbitrary matrix;we omit these formulations here, see [Sub93]. However, maximizing the last few smallest eigenvalues ofa symmetric matrix absolute-value-wise, or sum of the last few smallest singular values of an arbitrarymatrix cannot be formulated as SDP because these problems are not convex programs.5 Applications in combinatorial optimization.The semide�nite programming problem studied in the previous sections has applications in combina-torial optimization, especially in graph theory. The connection usually is the spectral properties ofgraphs. In the following sections we �rst examine a general approach of Lov�asz and Schrijver whichapplies semide�nite programming to general zero-one integer programming problem. Then we studyother applications such as the maximum stable set, the maximum induced k-partite subgraph, andgraph partitioning (in particular, graph bisection) problems.24



5.1 Nonlinear relaxations of 0-1 programming.Consider the integer programming problemmaxfcTx : Ax � b and xi 2 f0; 1gg (58)The LP relaxation of (5.58) results from replacing xi 2 f0; 1g with 0 � xi � 1. This relaxationserves as a �rst approximation of the solution of (5.58). In general, this �rst approximation may benonintegral and far from the actual solutions. Most e�ective methods of integer programming consistof adding new \cutting planes" to the LP relaxation. It seems however, that little work has been donein generating \nonlinear" but convex cuts in the feasible region of the LP relaxation. Generally suchcuts may produce far better approximations than planar cuts. An ingenious approach for creatinga class of nonlinear cuts has been proposed by Lov�asz and Schrijver in [LS91]. The idea is to \lift"the space from vectors in <n to n � n symmetric matrices5. It is convenient to homogenize integerprogram by introducing a new variable x0 as a multiple of b and then imposing the constraint x0 = 1.After this transformation the homogenized integer programming problem and its linear programmingrelaxation can be written as:IPmax cTxs:t: aTi x � 0 for i = 1; � � � ;mxi 2 f0; 1g for i = 0; � � � ; nx0 = 1 LPmax cTxs:t: aTi x � 0 for i = 1; � � � ;m0 � xi � x0 for i = 0; � � � ; nx0 = 1 (59)Let P be the convex cone which is the feasible region of the LP relaxation without the constraint x0 = 1,and =(P ) its integer hull (that is, =(P ) is the convex cone generated by 0-1 vectors with x0 = 1.)First, we decompose the set of constraints into two sets (with possible overlap); then multiply eachinequality in the �rst set by each inequality in the second set to obtain quadratic constraints, thenreplace each occurrence of xixj by a new variable xij to get linear constraints again; �nally impose onthe matrix X = (xij) positive semide�nite constraints. If P1 and P2 are the cones de�ned by the �rstand second sets of constraints, then P = P1 \ P2, and the space of matrices just de�ned is denotedby M+(P1; P2). More formally, let J1 and J2 be two subsets that cover the index set of the inequalityconstraints in LP. De�ne A1:=AJ1 , and A2:=AJ2 , and Pi the set fx : Aix � 0g for i = 1; 2. Werequire that constraints 0 � xi � x0 be in both subsets. ThenM+(P1; P2):=fX 2 <n�n2 : X � 0; Xe0 = diag(X); and (A1 
 A2)vec(X) � 0g (60)Also, let N+(P1; P2) be the n-space made up of diagonals of matrices in M+(P1; P2), that isN+(P1; P2):=fdiag(X) : X 2M+(P1; P2)g:The main result of Lov�asz and Schrijver{for the purposes of our discussion{is that:=(P ) � N+(P1; P2) � P:It is clear that optimizing a linear function over N+(P1; P2) is a mixed linear and semide�nite pro-gramming problem, and interior point techniques may be applied (as long as P is given by an explicitsystem of inequalities.) The process just described may be quite powerful in certain combinatorial5The presentation here is more restrictive than given in [LS91]. Lov�asz and Schrijver do not assume that the matrixA is given explicitly. They only assume that the LP relaxation is endowed with a separation oracle.25



optimization problems. For instance in a general branch and bound algorithm, one may use interiorpoint algorithms to solve the optimization problemmaxfcTx : x 2 N+(P1; P2)g:The solution then may be used as a bound and the resulting x necessarily satis�es 0 � x � 1. Nowif for some coordinate i we have 0 < xi < 1 then we branch by solving the two subproblems withadditional constraints, respectively xi = 0 and xi = 1. From a practical point of view such subproblemsare all polynomial time solvable by the interior point methods, though they are computationally moreexpensive than the classical branch and bound approach based on linear programming relaxations. Theadvantage however is that the bounds are sharper (hopefully much sharper) than the correspondingLP bounds, and therefore the total number of subproblems solved may be considerably smaller.Lov�asz and Schrijver show that applyingN+ operator to the LP relaxation of the stable set polytopeof a graph G = (V;E) gives bounds that are already stronger than a combination of several well-knownclasses of linear cuts. Recall that a stable set in a graph G = (V;E) is a subset of vertices S whereeach pair of vertices i and j in S are nonadjacent. Let w be a weight vector on the vertices of G, suchthat wi is the weight of vertex i. The weighted maximum stable set problem in graphs can now beformulated as the following 0-1 program:max wTxs.t. xi + xj � 1 for all fi; jg 2 Exi 2 f0; 1g for all i 2 V (61)Now we homogenize (5.61) by adding a new variable x0, then apply the N+ operator withP1:=P = fx : xi + xj � x0 for all i; j 2 E; and 0 � xi � x0 for all i 2 V g;and P2:=fx : x0 � xi � 0; and xi � 0g;Finally intersect the result with hyperplane x0 = 1. Let the resulting set be N+(STAB G). Optimiza-tion over this set is a semide�nite program and can be done in polynomial time using interior pointmethods (Lov�asz and Schrijver use the ellipsoid method to establish polynomiality). Furthermore, itis clear that STAB G � N+(STAB G) � E-STAB Gwhere STAB G is the convex hull of all 0-1 vectors that characterize some stable set of G, andE-STAB G is the polytope associated with the LP relaxation of (5.61) (that is the polytope ob-tain by replacing constraints xi 2 f0; 1g by 0 � xi � 1.) The set N+(STAB G) is convex, butgenerally nonpolyhedral. However, Lov�asz and Schrijver show that the set of points in STAB G andin N+(STAB G) already satisfy the following classes of well-known valid inequalities for STAB G:1. Clique constraints. Let K be a clique in G, that is a subset of vertices every pair of whichis adjacent. Let S be a stable set in G. Then clearly jS \ Kj � 1, where 1S and 1K arecharacteristic vectors of S and K, respectively. This observation implies that for all cliques inG the inequality 1TK x � 0 (62)is valid for STAB G. Set Q-STAB G to the polytope de�ned by the inequalities in (5.62) andxi � 0. 26



2. Odd hole constraints. For every cycle (hole) C with 2k + 1 edges and every stable set S weknow that jC \ Sj � k. Thus, for all cycles C in G the constraint1TCx � k (63)is valid for STAB G. Set C-STAB G to the polytope de�ned by all (5.63) induced by all cyclesof G3. Odd anti-hole constraints. Let C be a graph whose edge complement set is an odd cycle.Then the maximum stable set in G has two vertices and therefore, jC \Sj � 2 for all stable setsS. Therefore, for all antiholes C in G every inequality1TCx � 2 (64)is valid for STAB G. Set C-STAB G the polytope de�ned by all inequalities (5.64) and xi � 0.4. Odd wheel Constraints. Let W be a graph with 2k vertices such that vertices 1; 2; � � � ; 2k� 1induce a cycle and vertex 2k is adjacent to all other vertices. Then W is called an odd wheel. Itcan be shown (see [GLS88]) that for all wheels W in G, the inequality2k�1Xi=1 xi + (k � 1)x2k � k � 1: (65)is valid for STAB G. set W -STAB G to the polytope de�ned by the set of all inequalities (5.65)and xi � 0.It turns out that (see [LS91])STAB G � N+(STAB G) � Q-STAB G \C-STAB G\ C-STAB G \W -STAB G � E-STAB Gand N+(STAB G) already provides sharper relaxation of STAB G than any of the polytopes de�nedabove. Yet optimization over N+(STAB G) is an SDP problem and the interior point methods devel-oped in this paper may yield practical ways of achieving strong bounds on the maximum stable setproblem.Remark: Barriers for polytopes with exponentially many facets.A strong property of the ellipsoid method for combinatorial optimization problems is that generallyone does not need to have the linear programming formulation of the problem explicitly. All that isrequired is existence of a separation oracle and an initial ellipsoid to start the process. For instance,for certain classes of graphs the stable set polytope may be characterized completely by C-STAB G(such graphs are called t-perfect). Other classes may have their stable set polytope characterizedby Q-STAB G (perfect graphs), or by C-STAB G \Q-STAB G (h-perfect graphs), or in general anycombination of the polytopes mentioned in items 1 through 4 above. The stable set polytopes of suchgraphs have in general exponentially many facets. However, in [GLS88, LS91] it is shown that onecan construct separation oracles for these polytopes and thus �nd the maximum stable set for thecorresponding graphs in polynomial time.It is common belief that in contrast to the ellipsoid method, interior point methods require explicitknowledge of the facets of the polytope on which we wish to optimize, see for instance [GLS88] andthe quotation from [GT89] in the introduction. However, we can use polynomial time interior point27



methods to optimize over STAB G in the special cases mentioned above, even though the number offacets in such polytopes may be exponentially large. In fact, the ground breaking work of Nesterovand Nemirovskii implies that{at least in principle{a listing of all inequality constraints in the LPformulation is not necessary. One needs{instead of a separation oracle as is required in the ellipsoidmethod{a barrier oracle with a polynomially bounded self-concordance parameter. For instance, aswas indicated, we can optimize over N+(STAB G) in polynomial time, and N+(STAB G) = STAB Gfor the classes of graphs mentioned above. In fact, the results of Nesterov and Nemirovskii imply thatone can directly compute a barrier function for N+(STABG):Theorem 9 Let b : IntN+(STAB G)! < be the function de�ned by:b(x):=minf� lndetX : diag(X) = x; X 2M+(STAB G)g (66)Then there is an interior point algorithm which uses b(x) as its barrier and �nds maxfwTx : x 2N+(STAB G)g in O(pnmax(kwk; ln �)) iterations and error at most �.Proof: Nesterov and Nemirovskii prove that ln detX is n-selfconcordant for the cone of positivesemide�nite n � n matrices. (See [NN90] for de�nitions). They also show that existence of an n-self-concordant barrier for a convex set in general implies that one can optimize a linear function overthat set with every O(pn) iterations yielding a signi�cant bit. Furthermore, in Proposition 1.5, pp.121 of [NN92] they show that if a convex set K � <n is endowed with an n-self-concordant barrier b,and A : <n ! <m is an a�ne transformation mapping K on to A(K) then the following function isn-self-concordant for A(K): b+(y):= inffb(x) : x 2 A�1(y) \ IntKgNow the theorem follows immediately from the de�nition of N+(STAB G) as given in [LS91] with thea�ne transformation A replaced by projection of elements of M+(STAB G) onto their diagonals.In fact, the result above shows that if a convex set K in <n can be lifted to some convex set in <Nwith N > n, such that the lifting is endowed with a polynomial time computable p-self-concordantbarrier then there is a polynomial time computable p-self-concordant barrier for K. In combinatorialoptimization, there are many examples of polytopes with exponentially many facets which neverthelesscan be lifted to polytopes in higher dimensions but fewer (polynomially many) facets. For all suchpolytopes one can apply interior point methods and optimize over them in polynomial time. Fora thorough discussion of liftings of polyhedra associated with combinatorial optimization problemsconsult [Yan88, LS91] and the references cited in them.It is an interesting problem to look for easily computable (for instance NC{computable or atleast polynomial time computable) barriers for combinatorial optimization problems whose linearprogramming formulation contains exponentially many inequalities. A concrete open problem is to�nd an easily computable barrier for the matching polytope with the property that a suitable interiorpoint algorithm with such barrier requires O(pm) iterations where m is the number of edges in thegraph. This problem is especially interesting because Yannakakis shows that under certain symmetrypreserving conditions on the lift operator it is impossible to lift the matching polytope to a higherdimensional polytope with polynomially many facets, [Yan88]. Whether the matching polytope canbe lifted to a convex set endowed with an O(m)-self-concordant barrier remains open.5.2 Maximum cliques in perfect graphs.A particularly nice application of semide�nite programming is to the solution of the maximum cliqueproblem in perfect graphs. A graph G(V;E) is called perfect if for all induced subgraphs G0 of G,28



the size of the maximum clique, !(G0), equals the size of minimum proper coloring, �(G0). (A propercoloring of vertices of a graph is an assignment of colors to each vertex such that no two adjacentvertices have the same color.) It is clear that !(G) � �(G) for all graphs, as one needs at least !(G)colors just to cover the vertices of the maximumclique. Several interesting properties of perfect graphsshould be noted. First, the perfect graph theorem of Lov�asz indicates that a graph is perfect if andonly if its complement is perfect, [Lov72]. This statement is equivalent to saying that for all inducedsubgraphs G0 of G, �(G0) = �(G0), where �(G0) is the size of the largest stable set in G0, and �(G0)is the size of the smallest number of cliques that cover all vertices of G0. Thus, in e�ect studyingcliques in perfect graphs is equivalent to studying stables sets and any algorithm for one is valid forthe other one (by simply applying it to the complementary graph.) As a consequence of the perfectgraph theorem one can show that equality of maximum cliques and minimum coloring extends to theweighted graphs. More precisely, let w 2 Nn be an integral weight vector de�ned on the vertices ofG. A proper w-coloring of G is an assignment of colors to the vertices of G such that each vertex hasat least wi colors and for two adjacent vertices, their color sets are disjoint. �(G;w) is the minimumnumber of colors over all proper w-colorings of G. A maximum weighted clique in G is the cliquewhose sum of weights of vertices is maximum; this sum is denoted by !(G;w). A graph is perfect ifand only if for all weight vectors w 2 Nn, !(G;w) = �(G;w). Restating this for the complements ofgraphs, we have that a graph is perfect if and only if �(G;w) = �(G;w), where, �(G;w) is the weightof the maximumweighted stable set in G, and �(G;w) is the minimum number of cliques required tocover vertices of G such that each vertex i is in at least wi cliques. These results are equivalent to thefollowing statement:Theorem 10 A graph G = (V;E) is perfect i� STAB G = Q-STAB G.(See [GLS88].) Therefore, already the results of the preceding section imply that computing maximumcliques and maximum independent sets in perfect graphs can be accomplished in polynomial time byinterior point methods. However, in this case one can derive a slightly stronger result.Lov�asz in [Lov79] discovered an invariant of graphs, �(G;w), which has two desirable properties:�rst it is polynomial time computable, and second it is simultaneously an upper bound for !(G;w)and a lower bound for �(G;w). This invariant can be de�ned by a pair of primal and dual semide�niteprograms. Let M:=fX 2 <n�n2 : Xij = 0 for all i; j 2 E or i = jgand M?:=fY 2 <n�n2 : Yij = 0 for all i; j 62 EgThen the weighted Lov�asz number of G is de�ned by the following primal-dual SDP pair:�(G;w) := minf�1(X +W ) : X 2 Mg= maxfW � Y : Y 2M?; Y � 0 and trace Y = 1g (67)where W :=pwpwT and pw is an n-vector whose ith component is pwi. This min{max equality isproved directly in [GLS88], and also follows easily from the duality theory stated earlier, see (4.45).Lemma 13 For every vertex weighted graph G = (V;E),!(G;w) � �(G;w) � �(G;w)and �(G;w) � #(G;w):=�(G;w) � �(G;w)29



See [GLS88] chapter 9 for a thorough treatment of Lov�asz number of graphs including several othercharacterization and many interesting properties. Now our interior point algorithm can compute�(G;w) in polynomial time; however in case of perfect graphs we have!(G;w) = �(G;w) = �(G;w)and �(G;w) = #(G;w) = �(G;w)In [GLS88] the ellipsoid method was used to establish the polynomial time computability of max-imum cliques in perfect graphs. We now show that interior point methods give us a slightly strongerresult than the ellipsoid method. More precisely, we show that computing maximumcliques (and max-imum stable sets) in perfect graphs can be accomplished in O�(pn) randomized parallel time usingP-RAM model of computation if kwk1 = O(nc) for some constant c6. This is straightforward. Firstrecall that we showed a standard SDP problem can be solved in O(pnmax(L;L0; j ln�j)) iterations, ifL is the number of bits in the input SDP, L0 is an a priori bound on the norm of the solution, and� is the accuracy required on the size of the duality gap. In case of perfect graphs we only need toset � = 1=3; in fact, if zk and Yk are our current primal and dual estimates where there is only oneinteger between zk and W �Yk then we can stop and declare �(G;w) = dzke = bW �Ykc. Furthermore,L = O(logn) since all coe�cients in the primal-dual characterization of �(G;w) in (5.67) are eitherzero or one or wiwj. Finally, L0 = O(logn) because at most the whole graph may be a clique andso its weight isPwi. Thus computing �(G;w) requires O�(pn) iterations. Each iteration essentiallyinvolves solving a system of linear equations which is already known to be in complexity class NC,that is requires O�(1) time with polynomial number of processors. Therefore, computing �(G;w) forpolynomially bounded w requires O�(pn) operations on a P-RAM model of computation.It remains to show that computing the maximum clique itself can be accomplished in O�(pn).We cannot use the self reducibility process here since it may require O(n) time even on a P-RAMmachine. However, observe that if the maximum clique is unique then we can compute it in O�(pn)parallel time. One could remove one vertex i of the graph and compute �(Gni;w) for the remaininggraph. The vertex i is in the unique maximum clique if and only if !(Gni;w) < !(G;w). Therefore,testing this simultaneously for all vertices we get the set of vertices in the maximum clique. When wedo not have uniqueness, we may use the randomized perturbation scheme of Mulmuley, Vazirani andVazirani, [MVV87]. First recall their isolating lemma:Lemma 14 Let S = fx1; � � � ; xng and F a family of subsets of S, that is F = fS1; � � � ; SNg. Further,let elements of S be assigned integer weights chosen uniformly and independently at random from[1; 2n]. Then, Pr[There is a unique maximum weight set in F ] � 12 :See [MVV87] for proof.To get a maximum clique in a perfect graph we follow a procedure similar to the one adopted byMulmuley, Vazirani and Vazirani for constructing the minimumweighted perfect matching in graphs.The idea is to assign weights to vertices randomly so that with high probability the maximum cliquewith the new weights is unique, but at the same time, this clique is among the maximum cliques withthe original weights.Let C:=Piwi. First give a weight of 2C2wi to each vertex i so that the weight of maximumweighted cliques is at least 2C2 more than the next largest clique weight. Then perturb weight of eachvertex i by adding integer ui uniformly and independently chosen from integers in [1; 2C]. So now6O�(pn) means O(pn logk n) for some constant k. 30



each vertex has weight wi = 2C2wi + ui. Notice that if a clique was not maximum before, then it isimpossible for it to become maximum after assigning new weights. Therefore, the maximum cliquewith respect to new weights is among one of the maximumcliques with respect to the original weights.The isolating lemma implies that this clique is unique with a probability at least 1=2 and we may usethe scheme mentioned at the beginning of this section to �nd it in parallel.We should mention that this scheme, in fact, results in a Las Vegas type randomized algorithm.No randomization is involved in computing the size oracle, !(G;w); only constructing a maximumclique involves probabilistic choices. If the weights generated do not result in a unique maximumweighted clique, the scheme mentioned at the beginning of this section may return a set which is noteven a clique. This can be checked in parallel and the algorithm returns a message of failure; any setreturned by the algorithm is a genuine maximum clique with no possibility of error. We summarizethese results in the following theorem:Theorem 11 Let G = (V;E) be a perfect graph with an integral weight vector w on its vertices. Letalso that kwk1 = O(nlogc(n)) for some constant c. Then one can compute the maximum weightedclique and the maximum weighted stable set of G in O�(pn) Las Vegas randomized parallel time usinga P-RAM model of computation.Finally we remark that at this time no lifting of the stable set polytope of perfect graphs to apolytope with polynomially many facets is known. Therefore, STAB G for a perfect graph G serves asan example of a polytope with exponentially many facets on which one can optimize a linear functionin polynomial time using interior point methods. In fact, as mentioned in the last subsection, one cancompute an n-self-concordant barrier for this polytope in polynomial time.5.3 The maximum induced k-partite subgraph problem.In [NM90] G. Narasimhan and R. Manber generalized the concept of the Lov�asz number of graphs asfollows: Let �k(G) be the size of the largest induced k-partite subgraph in G. Recall that �(G) is theminimumnumber of cliques that can cover all vertices of G. Then Narasimhan and Manber show that�k(G) � #k(G):= minX2M? kXi=1 �i(X + J) � k�(G) (68)where J is the matrix of all 1's. For k = 1 #k reduces to the Lov�asz number #. It is clear now thatcomputing #k(G) is an SDP problem and may be solved by interior point methods. Taking the dualof (5.68) we get #k(G) = max J � Ys.t. trace Y = kY 2 M0 � Y � I (69)It is not di�cult to extend the bound of Narasimhan and Manber to the weighted case. Let w be aweight vector over the vertices of G and �k(G;w) the maximumweight k-colorable induced subgraphof G.Theorem 12 Let w 2 Nn be an integral weight vector on the vertices of G = (V;E), and let W =(pw)(pw)T . Then �k(G;w) � #(G;w), where #(G;w) is de�ned as#k(G;w) = minfPk1 �i(X +W ) : X 2M?g= maxfW � Y : Y 2M and trace Y = k; 0 � Y � Ig (70)31



Proof: (This proof is essentially the same as the one given in [GLS84] for the case k = 1.) One cantransform a weighted graph G into an unweighted one Gw by replacing each vertex i with wi mutuallynonadjacent vertices and then connecting all wi vertices arising from vertex i to all wj vertices arisingfrom vertex j if and only if i and j are adjacent in G. Clearly the size of the unweighted maximumk-partite subgraph of Gw equals �(G;w). It su�ces to show that #k(G;w) = #k(Gw). Now, in Gwtwo vertices i and j (respectively edges uv and kl) are equivalent if there is an automorphism of Gwmapping i to j (respectively uv to kl). In particular all wi vertices arising from vertex i in G areequivalent; so are the corresponding edges. It is clear that if two vertices i and j (respectively twoedges uv and kl) are equivalent, then in (5.69) the corresponding variables Yii and Yjj (respectivelyYuv and Ykl) are equivalent in the sense that by exchanging these variables (5.69) does not change atall. This in turn implies that among all optimal solutions of (5.69) for graph Gw, there are solutionswhere equivalent vertices (respectively edges) have identical optimal values for their correspondingvariables. In other words, among all optimal solutions of (5.69) for Gw, there is one solution Y �w withthe following property: Y �w can be partitioned into an n�n block matrix, such that the i; j block is awi �wj matrix with all its entries equal to, say, y�ij . Now, matrix Y � whose i; j entry is y�ij=pwiwj isfeasible for the max problem in the theorem and it is easy to verify thatW �Y � = J�Y �w = #k(Gw) andthus, #k(Gw) � #k(G;w). The converse inequality is also easily veri�ed by reversing the constructiongiven.Let 0 be the class of graphs for which �k(G0) = #k(G0) for all induced subgraphs G0. Then thesublinear parallel time algorithm of theorem 5.3 may be extended to solve the largest induced k-partitesubgraph problem for graphs in class 0. It remains an interesting open problem to fully characterize0.5.4 The graph partitioning problem.An important class of combinatorial NP-hard optimization problems which lend themselves to SDPmethods for �nding upper or lower bounds, arise from graph partitioning and cut problems. This classof problems result in semide�nite programs with only O(n) variables. Therefore, the interior pointmethods may be especially e�cient as each iteration requires only solving n� n systems of equations.The �rst such problem is the general graph partitioning problem into prescribed size blocks. Sup-pose we are given a set of integers m1 � m2 � � � � � mk, withPj mj = n. Denote by m the k-vectormade up of mj 's. Let also that G = (V;E) be a complete edge-weighted graph with n vertices andeach edge fi; jg with weight wij. We want to partition the vertices of G into k subsets such thatthe jth subset has cardinality mj , and that sum of the weights of those edges whose endpoints are indi�erent subsets is minimized. Let us denote this minimum number by �m(G). Computing �m(G) isof course NP-hard. Ho�man and Donath in [DH72] and [DH73] derive the following lower bound onthe size of the minimum partition (see also Barnes and Ho�man [BH84]). Let A be a matrix withAij = wij (Aii = 0). Then Donath and Ho�man prove the following relation [DH73]:�m(G) � �12 min1Tx=a kXj=1mj�j(A +Diag x) (71)where a:= �Pwij. Again it is clear that computing this bound is an SDP problem. Using theresults from section 4 and after some simpli�cation we get the following pair of primal and dual SDPprograms: min Pki=1 izi + 1Tx +Pki=1 trace Vis:t: ziI + Vi + (mi �mi+1)Diagx � (mi �mi+1)A for i = 1; � � � ; kVi � 0 for i = 1; � � � ; k : (72)32



and max A � �Pki=1(mi �mi+1)Ui�s:t: trace Ui = i for i = 1; � � � ; kPki=1(mi �mi+1)(Ui)jj = 1 for j = 1; � � � ; n0 � Ui � I for i = 1; � � � ; k ; (73)Barnes and Ho�man in [BH84] describe how to use the eigenvectors associated with the k largesteigenvalues of the optimal matrix A+ Diag x� to generate a partition of the nodes of the graph. Seealso Barnes [Bar82a] and [Bar82b].An important special case of the graph partitioning problem is the case when all mi's are equal.In that case the graph partitioning problem simpli�es to:min (k=n)1Tx + trace Vs:t: V + Diag x � AV � 0 max A � Ys:t: Yii = kn for i = 1; � � � ; n0 � Y � I (74)Boppana in [Bop87] considers the graph bisection problem (that is when k = 2 and m1 = m2 = n=2)and derives the following characterization which is always sharper than (5.74):14 max[J � (A +Diag(x)) � n�1(PS(A+ Diag(x)))]where PS :=(I � 11T=n) is the projection operator on the linear space S:=fx : 1Tx = 0g. Thischaracterization is equivalent to the following primal and dual SDP pair:min nz + 1Txs.t. zI �Diag(x) � 1xT+x1T2n � A+ JA+AJ2n max A(I + J=n) � Ys.t. Yii + (1=n)Pnj=1 Yij = 1 for i = 1; � � � ; nY � 0 (75)(Boppana had the min characterization only, the max characterization results by simply taking thedual.) To �nd an actual bisection Boppana uses an eigenvector corresponding to the largest eigen-value of �1(PS(A + Diag(x�))) and outputs the bisection that has the n=2 largest component of theeigenvector on one side. Using the primal characterization Boppana shows that in the unweighted case(i.e the matrix A is simply the 0-1 adjacency matrix of graph G) one may get the optimal bisectionwith high probability. The graph bisection problem has important applications in the VLSI routingproblem. Combining the SDP formulation of Ho�man and Donath, favorable average case analysisof Boppana, and the interior point technique developed in this paper may result in an e�ective andpractical method for solving this problem. For generalizations of these ideas see [RW93].Related to the graph bisection problem is the maximum cut problem: partition the nodes of thegraph into two sets such that the number of edges with endpoints on di�erent sets is maximum. Ofcourse one obvious way for �nding bounds for this problem is to solve the graph partitioning problemwith k = 2, m1 = i, and m2 = n� i for all i = 1; � � �bn=2c (notice that in graph partitioning problemmax and min characterizations are essentially equivalent by simply changing the weights wi withPwj �wi). In [DP90, PR91] the following SDP bound is proposed:minfn4�1(A+ Diag(x)) : 1Tx = ag �MC(G) (76)where MC(G) is the size of maximum cut in G. (5.76) is equivalent to primal-dual pair:min z + (1=n)1Txs.t. zI � Diag(x) � A max A � Ys.t. Yii = 1=nY � 0 (77)33
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