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Abstract
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direct extension of Ye’s projective method for linear programming. We also argue that most known interior
point methods for linear programs can be transformed in a mechanical way to algorithms for SDP with proofs
of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study
the significance of these results in a variety of combinatorial optimization problems including the general 0-1
integer programs, the maximum clique and maximum stable set problems in perfect graphs, the maximum &-
partite subgraph problem in graphs, and various graph partitioning and cut problems. As a result, we present
barrier oracles for certain combinatorial optimization problems (in particular, clique and stable set problem for
perfect graphs) whose linear programming formulation requires exponentially many inequalities. Existence of
such barrier oracles refutes the commonly believed notion that in order to solve a combinatorial optimization
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1 Introduction

Consider the following optimization problem which we call the standard semidefinite programming
problem (SDP):
min{fCeX : A;eX =10 fori=1,---,m and X > 0} (1)

where C', A;’s and X are n X n matrices, and X is symmetric; the “e” operation is the inner product of

matrices: A e B:= Zi,j Ai; Bij = trace AT B: and the “inequality” constraint > indicates the Léwner
partial order, that is, for real symmetric matrices A and B, A = B (respectively A = B), whenever
A — B is positive semidefinite (respectively positive definite.)

The semidefinite programming problem is an extension of linear programming (LP). Specifically
if the condition that X is a diagonal matrix is added to the constraint set then (1.1) reduces to
linear programming. Semidefinite programs arise in a wide variety of applications from control theory
(see [VB93] and [Fan93]) to combinatorial optimization (see section 5 below) and even structural
computational complexity theory (see [FL92]). The oldest form of semidefinite programming is the
evaluation of eigenvalues of a symmetric matrix. In fact, one can reformulate the classical theorems
of Rayleigh-Ritz for the largest eigenvalue, and of Fan for the sum of the first few eigenvalues of
a symmetric matrix, as semidefinite programs, see [OW91, OW92] and section 4 below. However,
for these special cases, techniques of this paper do not seem to be appropriate as there exist better
algorithms from both theoretical and practical points of view. Most nontrivial semidefinite programs
(those that are not simply equivalent to evaluation of eigenvalues of a symmetric matrix) arise in the
form of minimizing the largest, or sum of the first few largest eigenvalues of the matrix X subject to
some linear constraints on X. An early example of such problems were studied by Donath and Hoffman
in connection with graph bisection and graph partitioning problems [DH72, DH73]; see section 5 below.
Cullum, Donath and Wolfe studied the problem of minimizing the sum of the first few eigenvalues of a
linearly constrained matrix in [CDW75]. They analyzed this problem from the nonsmooth optimization
point of view. Also Fletcher studied a similar problem from the point of view of nondifferentiable
optimization. In particular, he derives some expressions for the subgradients of the sum of the first
few eigenvalues of a symmetric matrix and formulates optimality conditions for this problem. In
the same spirit as Fletcher, Overton [Ove88] studies the largest eigenvalue of a symmetric matrix
as a convex, but nondifferentiable function. Based on earlier work [FNO87], in [Ove88] he derives a
quadratically convergent algorithm for the problem of minimizing the largest eigenvalue of an affinely
constrained matrix. This work is further extended in [Ove92] where both second order methods based
on sequential quadratic programming, and first order methods based on sequential linear programming
for large scale problems are developed.

The algorithms contained in the above works are in the same spirit as the simplex method for
linear programming in that they are all active set methods and traverse the boundary of the feasible
set to converge to the optimal solution. For that reason their worst case computational complexity is
likely to be at least as bad as that of the simplex method, though in practice they may be quite good.

Semidefinite programs, however, are polynomial time solvable if an a prior: bound on the size of
their solution is known. This point was implicit in [Lov79] for a special instance of the SDP problem. Tt
was proved in the work of Grotschel, Lovasz and Schrijver, [GLS81]. Polynomial time solvability of SDP
is a direct consequence of the general results based on the ellipsoid method for convex programming.
The main point is essentially that optimization of a linear function over a convex set endowed with
a separation oracle and an a prior: bound on the objective can be achieved in polynomial time using
the ellipsoid method; see [GLS88] for a thorough treatment.

The ellipsoid method, however, has not proven practical in most applications, including SDP. A
more recent development 1s the possibility of using interior point methods to obtain polynomial time
algorithms for semidefinite programs. The earliest work in this direction to our knowledge is that of



Nesterov and Nemirovskii [NN90]. In this important work the authors develop a general approach
for using interior point methods for solving convex programming problems which is based on the
concept of p—selfconcordant barrier functions. See the more recent [NN92] for a complete treatment
of this subject. Nesterov and Nemirovskili show that for any convex set K that is endowed with a
p-selfconcordant barrier function, there is an interior point algorithm which optimizes a linear function
on K. Furthermore, every O(,/p) iterations of this algorithm results in an interior point with half
the distance to the optimal solution. As a special case, Nesterov and Nemirovskii show that linear
programs with p inequality constraints, quadratic programs with p convex quadratic constraints and
semidefinite programs over p x p matrices all admit p-selfconcordant barriers. Therefore, the authors
extend the revolutionary result of Karmarkar [[Kar84] to a rather general class of convex programs.

In this article we study interior point methods for semidefinite programs from an alternative point
of view. Our work [Ali91] started somewhat later than, and independent of, that of [NN90]. Nesterov
and Nemirovskii obtain their complexity theorems by specializing their general results to SDP. We,
on the other hand, take a specific interior point algorithm for linear programming (i.e Ye’s projective
potential reduction method [Ye90]) and extend it to SDP. Furthermore, we argue that essentially
any known interior point linear programming algorithm can also be transformed into an algorithm
for SDP in a mechanical way; proofs of convergence and polynomial time computability extend in a
similar fashion. Jarre in [Jar91] and Vandenberghe and Boyd in [VB93] later developed similar interior
point algorithms for special forms of SDP.

Polynomial time interior point methods for SDP have some interesting consequences for combina-
torial optimization problems. In order to solve such a problem by the ellipsoid method, an explicit
listing of all of the inequalities in its linear programming formulation is not needed. Rather, one only
needs a separation oracle and an initial ellipsoid containing its feasible region to start the process.
However, it is generally believed that in order to apply interior point methods to the same combi-
natorial optimization problem one needs to have the explicit listing of all of the inequalities in the
LP formulation, see [GLS88] and [GT89]. For instance, Goldfarb and Todd in their survey article on
linear programming write:

..., 1t appears that its [Karmarkar’s new algorithm] theoretical implications are far more
limited than those of the ellipsoid method. Indeed, Karmarkar’s algorithm requires the
linear programming problem to be given explicitly with all its constraints and variables
listed, and does not appear directly susceptible to column or constraint generation. Thus
it cannot be used to provide polynomial algorithms for several combinatorial optimization
problems that have been successfully analyzed by the ellipsoid method.

In this article we present examples of combinatorial optimization problems whose LP formula-
tions require exponentially many inequalities, and yet one can design interior point algorithms which
solve them in polynomial time. In fact, we should emphasize that the general results of Nesterov
and Nemirovskii imply that in principle one can apply interior point methods to solve combinatorial
optimization problems without explicit knowledge of their LP formulation. All that is required is a
self-concordant barrier oracle with a polynomially bounded parameter. The most interesting example
is the clique and stable set problem in a class of graphs known as perfect graphs. In section 5.2 we
construct such a barrier indirectly by an SDP formulation of the problem due to Lovasz. This is par-
ticularly interesting because presently no linear programming formulation of the stable set and clique
problems for perfect graphs with polynomially bounded number of facets is known.

Linear programming interior point methods have been used by Goldberg et al [GPST91] to derive
sublinear time parallel algorithms for the bounded weight assignment problem. We show that maximum
stable sets for perfect graphs can be computed in randomized sublinear parallel time. Furthermore,
based on the work of Lovasz and Schrijver [LS91], we argue that in a branch and bound scheme for



0-1 programs interior point SDP algorithms may efficiently yield much sharper bounds than possible
from linear programming relaxations of such problems.

In section 2 we review the so called cone duality theory as specialized to semidefinite programs.
This theory, though quite classical, is somewhat forgotten in optimization literature. It turns out
that at least for SDP, cone duality, which is a generalization of linear programming duality, is most
appropriate for interior point methods (this point of view is also expressed in the latest edition of
Nesterov and Nemirovskii [NN92]). In section 3 we develop an interior point algorithm which, as
we mentioned, is a direct extension of Ye’s projective potential reduction method. Furthermore, we
propose a recipe to extend mechanically most known interior point algorithms for LP into similar
algorithms for SDP. In this section we also go over some differences between SDP and LP as far as
interior point methods and polynomial time algorithms in general are concerned. In section 4 we
build on the results of Overton and Womersley [OW91, OW92] and derive semidefinite programming
formulation for various eigenvalue optimization problems. We also state complementary slackness
results for these problems. Finally, in section 5 we study some applications of SDP interior point
methods to various combinatorial optimization problems.

Notation

We use lower case boldface letters to name column vectors, and upper case letters to name matrices.
We sometimes refer to members of R* as n-vectors. for a vector x, x; is its 4t coordinate. 1 and
0 denote vector of all ones and the zero vector, respectively. I and 0 denote the identity and zero
matrices, respectively. R“E" is the set of symmetric n X n matrices. The " largest eigenvalue of
a symmetric matrix X is A;(X) (or sometimes another lower case Greek letter, e.g w;(X)); its ™8
largest eigenvalue absolute-value-wise is A\'(X) or w!(X). The Léwner partial order > and the dot
product “e” were defined above; the symbol “>” is used for component-wise comparison between two
matrices or two vectors. Diag(x) denotes the diagonal matrix made up of the vector x; diag(X) is
the vector made up of diagonal entries of X. For matrices, || X]| and || X||z are the Frobenius and the
spectral norms of X, respectively (recall that in case of symmetric matrices || X||2 equals the spectral
radius p(X) = |A(X)]). For vectors, ||x|| and [|x||s are the Euclidean and the maximum norms of
x; also ||x|[,:=(> |«F Y7 is the p-norm of x. If A is a p x ¢ matrix then vec A is a pg column
vector made up of columns of A stacked on each other. If v is a pg-vector then Mat,, v is a p X ¢
matrix whose i*" column is made up of the entries at (i — 1)p + 1 through ip in v; if p and ¢ are clear
from the context we drop them from the subscript. For instance the set of relations A; ¢ X = b;, for
i = 1,---,m may be rewritten as AvecX = b, where A € pmxn® , that is row i of A is vee! (4;).
Also, Mat(ATy) = S y; A;. A® B is the Kronecker product of matrices: if A € R”X” and B € ®{P¥4
then A® B € R"P*™¢ is an m x n block matrix whose 7, j block is a;; B. We use the following facts
repeatedly:

(A® B)(C @ D)= AC® BD vec(ABC) = (CT @ A)vec(B).

See [Gra81]. If T and J are subsets of integers from 1 to p and from 1 to ¢, respectively, then Ay s
is the submatrix of A whose rows are taken from those rows of A indexed by I, and whose columns
are indexed by J. Ay and A ; indicate rows indexed by I and columns indexed by J, respectively.
Also if A € R™*P and B € R™*? then [A|B] is an m x (p + ¢) matrix whose columns are made up of
columns of A followed by columns of B. In this paper the semidefinite programming problem refers to
any optimization problem with any mixture of (symmetric) matrix and scalar—valued variables which
has a linear objective function and any combination of linear equality or (either component—wise ‘>’
or Lowner ‘") inequality constraints. We use := to define or name the left hand side in terms of the
right hand side; in algorithms := is used for assignment. For any convex cone K, its polar cone K*



is the set {x : for alla € K, a’'x > 0}. Unless otherwise stated, we use P for the cone of positive
semidefinite matrices. Note that P* = P(this fact is direct consequence of Fejer’s theorem in [HI85]).
G = (V,E) is a simple undirected graph without loops or multiple edges. A stable set S in G is a
subset of vertices which are mutually nonadjacent. A cligue K in G is a subset of vertices that are all
mutually adjacent. A k-partite graph is one whose vertices can be partitioned into k& subsets V;, for
J=1,---,k, where each V; is a stable set. A clique covering of G is a collection K;, j =1,---,k of
sets of vertices, where each K; is a clique, and U; ; = V.

2 Duality theory

A duality theory quite similar to that of linear programming may be constructed for the semidefinite
programming problem. In this section we state the theory for the standard form SDP problem. The
result for the more general form follows exactly as in linear programming. This theory has been
developed in a more general context in many works before. It is easy to see that any cone K C R",
which is closed, pointed (that is £ N (=K) = {0}) and convex, induces a partial order >, on R"™:
x > y iff x —y € K. For instance, the nonnegative orthant and the positive semidefinite matrices
induce the component—wise “>" and the Lowner “>” partial orders, respectively. The duality theory
in linear programming can be extended to generalized linear programming problems where “>x”
replaces “>” in the primal problem and “>x«” replaces “>” in the dual problem.

Duffin in [Duf56] was the first one to study such generalized duality theories. Later Hurwicz
[Hurb8], Ben-Israel, Charnes and Kortanek [BICK69], Borwein and Wolkowicz [BW81b, BW81a], and
Wolkowicz [Wol81] among others developed more general formulations of the duality theory. For a
comprehensive treatment of generalized duality theory from the point of view of infinite dimensional
linear programs, see the text of Anderson and Nash [AN87] and for alternative extensions refer to
[BW8&1b, BW81a]. It is worth mentioning that [AN87] study the duality theory from the point of view
of basic feasible solutions and extend the “tableau based” proofs of LP duality. The latest version
of Nesterov and Nemirovskii’s text [NN92] also treats cone duality for the general convex programs.
Papers of Overton and Womersley [OW92] and Fletcher [Fle85] treat duality theory for the eigenvalue
optimization problem from the subdifferential point of view. Such an approach is related to the Kuhn-
Tucker duality theory and relies on derivatives or subgradients. Also Lovdsz in [Lov79], Grotschel,
Lovész and Schrijver [GLS81, GLS84, GLS88], and Shapiro in [Sha85] study more or less the same
duality theory as we do, but their treatment is restricted to special forms of SDP.

It is convenient to assume that C' and A; in are symmetric. There is no loss of generality in this
assumption. If C' is not symmetric, since CT @ X = C o X, we can replace C by 1/2(C + CT). The
same argument holds for the A;’s. These assumptions of symmetry allow us to formulate the pair of
primal and dual standard SDP problems:

Primal Dual

min CeX max bTy 9

s.t. A;eX =0b; fori=1,---,m s.t. C—>" A =0 (2)
X >0

Notice the similarity of primal and dual SDP pair to the corresponding linear programming pair. First
we state the weak duality lemma.

Lemma 1 Let X be any feasible matriz for primal and y any feasible vector for dual. Then C'e X >
bTy.



Proof: We have:

C.X—ibiyi = COX—i(Ai.X)yi
i=1 i=1
= (C—iyiAl)oX
i=1

> 0.

The last inequality is true because the inner product of two positive semidefinite matrices is nonnegative
due to self-polarity of the positive semidefinite cone. [ |

We now state generalizations of Farkas’ lemma. Such generalizations for arbitrary convex cones
have been studied as early as 1958 by Hurwicz, [Hurb8]. See [AN87] for references on the history and
various extensions of Farkas’ lemma to nonpolyhedral cones. Here we study the relevant forms of this
lemma in the special case of SDP.

It is not possible to generalize classical Farkas’ lemma to nonpolyhedral cones without additional
qualifications. The difficulty arises from the fact that affine transformations of closed cones are not
necessarily closed, and therefore the appropriate strong forms of separation theorems cannot be invoked
.(For polyhedral cones however closedness is preserved under affine transformation.) For our purposes
we need to have that the set

Ki:=A(P) = {AvecX : X = 0}

is closed!. One class of sufficient conditions for closedness of K is based on assuming that certain sets
associated with P have nonempty interiors. Such conditions are sometimes referred to as Slater type
constraint qualifications. Though these conditions are not the weakest possible, they are sufficient for
the purposes of this paper. We need in any case to assume nonemptyness of the interior for both primal
and dual problems so that we have a valid interior point algorithm. Furthermore, in section 3 we show
how any pair of primal and dual semidefinite programs may be transformed into an equivalent pair
with nonempty interior in both primal and dual problems. Here is a lemma of Slater type constraint
qualifications:

Lemma 2 If Mat(ATy) > 0 for some y € R™, then K is closed.

(Recall that Mat(ATy) is the same as > y; 4;.)
Proof: Let £:={Mat(A%y): y € ®"}. The condition in the lemma says that

LNIntP #£0

Thus any translate of the linear subspace £ also intersects P and its interior. This is equivalent to
saying that every symmetric n X n matrix can be written as sum of two matrices, one of which is

positive semidefinite and the other belongs to £. Therefore, R =P+ L Taking the polar we have
{0y=Pnct

Here £ is the set {X : AvecX = 0}. Hence we have that X = 0 is the only solution of the system
AvecX =0, and X > 0 and [Roc70], Theorem 9.1, p. 73 implies that K is closed. [ ]

Now we state the most common form of Farkas’ lemma as given in Schrijver’s text [Sch86], and as
extended to the positive semidefinite cone:

T Alternative extensions without closedness assumption are treated in [BW8&1b, BW81a, Wol81]



Lemma 3 Extended Farkas’ lemma: Let b € R™ and A € R™*™ be a matriz such that ils rows
AT = vecA; where A; are symmetric fori = 1,---,m. Furthermore, let there be an m-vector'y such
that Mat(ATy) = 0. Then there exists a symmetric matriz X > 0, with AvecX = b if and only if
yI'b >0 for all y for which Mat(ATy) » 0.

Proof: For the only if part we have,
bTy = (AvecX)Ty = Mat(ATy) e X > 0.

(the last inequality is due to self-polarity of the positive semidefinite cone.) To prove the if part,
Suppose that the system A vecX = b, and X > 0 is infeasible. Then b ¢ K; = {AvecX : X > 0}.
By lemma 2.2 K is a closed cone and thus there must exist a hyperplane, specifically a linear half-
space, that separates b and Ky, i.e. there exists some vector y such that bYy < 0 and (AvecX)Ty >0
for all X > 0, see [Roc70], Theorem 11.7, pp.100. But this means that X e Mat(ATy) > 0 for all
X >0, which is equivalent to Mat(.A”y) > 0, and therefore the if part of the theorem is proved. ®

We may formulate and prove several other variants of Farkas’ lemma in a similar vain, all of which
are extensions of lemmas for the component-wise inequalities, as given for example in Schrijver’s text
[Sch86]. Related extensions for infinite programs have been studied in [Hur58] and [CK77], and in the
case of matrix variables in [CM81]. In all of these extensions we need to assume either some closedness
criteria, or the dual problem must be modified by cones other than P (as in [Wol81], for instance.)
We mention a few more:

Lemma 4 Let A € R7°X™ be a matriz whose columns are linearly independent and are of the form
vecA; for symmetric A;, and B € R, Assume that there exists some symmetric matriz Y > 0
such that (vecY)' A = 0. Then Mat(Ax) < B has a solution in x if and only if BeY > 0 for all
Y = 0 for which (vecY)T A= 0.

Lemma 5 Let A € R™*" and B € R™X™. Suppose there exist some matriz Y such that ATY A > 0.
Then the system AXAT = B and X > 0 has a solution iff for all symmetric matrices Y, ATY A > 0
implies that BeY > 0.

Lemma 6 Let A € R™X" and B € R™X™. Suppose there exist some matriz Y such that ATY A =0
and Y = 0. Then the system AXAT < B has a solution iff for all symmetric matrices Y > 0 and
ATY A = 0 implies that BeY > 0.

Lemma 7 Let A € R™*" and B € R™X™. Suppose there exist some matriz Y such that ATY A > 0.
Then the system AXAT > B and X > 0 has a solution iff for all symmetric matrices Y > 0 and
ATY A = 0 implies that BeY > 0.

A strong duality theorem similar to linear programming holds for SDP. We say the primal problem
in (2.2) is feasible if the set {X € R . AvecX = b, and X = 0} is nonempty, otherwise we say it
is infeasible. Feasibility is defined similarly for the dual in (2.2). Recall that infimum over the empty
set 18 by definition 400 and similarly supremum over the empty set is —oo. Furthermore, the primal
(respectively dual) problem in (2.2) is unbounded if the infimum (respectively supremum) over the
feasible set is —oo (respectively +00).

Theorem 1 Let

z1 = inf{CeX: AvecX =b, and X > 0}
z5 = sup{bly: C—Mat(ATy) > 0}

Assume that there is an m-vector y such that ATy = 0. Then z5 = 2.



Proof: Notice that the dual problem is always feasible, because in the proof of lemma 2.2 we showed
that R“3" = P + £, and in particular there are some y and S >= 0 such that Mat(ATy)+ S =C. If
z1 = —0o (i.e the primal problem is unbounded) then by the weak duality lemma z; = —co, and the
dual problem is infeasible, which is a contradiction. If zo = 400 (i.e the dual problem is unbounded)
then by the weak duality lemma 2.1 z; = 400 (i.e the primal is infeasible) and the theorem is proved.
Conversely, if z1 = 400, then the primal problem is infeasible and the extended Farkas’ lemma 2.3

implies that for some vector y; and some matrix 57 > 0 we have

MatATy, +5; =0 and by, > 0. (3)

But (2.3) implies that the dual problem is unbounded since to any dual-feasible pair (y, .S) one can add
an arbitrarily large positive multiple of (y1,.51) and obtain another feasible pair with larger objective
function value. Therefore, z9 = z; = +o0o. Thus, we may assume that both z; and z5 are finite.
Suppose zs < z1. Then the system

C.X:Zz
AvecX =b
X =0

is infeasible. Therefore, by the extended Farkas’ lemma 2.3, there exists a scalar yy and m-vector y
such that

yC + ZyiAi =0 and zoy0 + by < 0. (4)

i=1
where vecA; is the i™® row of A. Now:
1. If yg = 0, (2.4) is equivalent to
Mat(ATy) > 0 and bTy < 0,

which by extended Farkas’ lemma implies that AvecX = b and X > 0 is infeasible and thus
Z1 = O0.

2. If yo > 0, then dividing both relations in (2.4) by yo we get
C —Mat(A" (—y/y0)) = 0 and z5 — b (=y/yo) < 0
which means z5 is not an optimal solution of the dual problem.
3. If yo < 0, then dividing both relations in (2.4) by —yo we get
—C + Mat(AT (—y/y0)) = 0 and — 25 + bT (—y/yo) < 0
In fact, since we have strict inequality, we must have
—C + Mat(AT (=y/yo)) = 0 and — 2 + bT (—y/yo) < —¢
for some € > 0. But also, by optimality of z; there must exist a y* such that
C —Mat(ATy*) = 0 and zo —bTy* < e
Adding the last two sets of relations we get
Mat(A" (—y/yo — y*) = 0 and b (=y/yo —y*) <0

which again by extended Farkas’ lemma implies that the primal problem is infeasible and z; = co.



Hence the assumption z; < z; results in contradiction. Since by weak duality lemma we have that
29 < z1 we conclude that z5 = 21. [ |

It is also possible to derive a “complementary slackness” theorem. In fact, Grotschel, Lovasz and
Schrijver in [GLS84] and Shapiro in [Sha85] mention the complementary slackness theorem for a more
restricted form of SDP. Note that when the strong duality theorem is true and both primal and dual
problems are bounded and feasible then the duality gap X e S vanishes. However, in SDP| as in linear
programming, a stronger form of complementary slackness results from this observation. First note
the following easy lemma:

Lemma 8 Let A and B be symmetric n x n matrices. If A >0, B> 0, then Ae B =0 if and only 1f
AB =0.

Proof: Let B = UQUY be the eigenvalue decomposition of B, with Q = Diag(w;) and w; > 0 for
i=1,---,n. Set C:=UT AU, thus C > 0, and in particular, its diagonal elements C;; > 0. We only
need to show that C'QQ = 0. From A ¢ B = 0 we have C' o 2 = 0 and therefore, Z?:l Chiw; = 0. Since

all the summands are nonnegative, 1t follows that they are all zero. Thus we have:
1. If w; > 0 then C}; = 0, and by C' > 0, the entire row and column i is zero.
2. If C; > 0, then w; = 0.

Now suppose (C);; # 0 for some 4, j. Then Cjw; # 0, which by 1 above we must have that the
entire column j is zero, and so Cj; = 0, a contradiction.? ]
Now the “complementary slackness” theorem 1s immediate:

Theorem 2 Let X* be a feasible matriz for the primal, and y* a feasible vector for the dual in (2.2).
Define S*:=C — Mat(ATy*). Then X* and y* are primal and dual optimal, respectively, if and only
of

X*S* = 0. ()

Notice that, in contrast with linear programming, component-wise multiplication in the complementary
slackness theorem is replaced by the ordinary matrix multiplication. The complementary slackness
theorem for SDP can be restated in the following way which makes it quite similar to the LP variant:

Corollary 1 Let X* be a feasible matriz for the primal problem in (2.2) with eigenvalues Ay, -+, Ap;
and S*:=C — Mat(ATy*) be feasible for the dual problem with eigenvalues wy,---,w,. Then X* and
S* are primal and dual optimal, respectively, if and only if they commute and there is a permutation
7 of etgenvalues of S* such that

Aiwg, =0 fori=1,--- n.

Recall our convention that A; and w; are the i'" largest eigenvalues of X and S, respectively; this point
necessitates the permutation 7 in the statement of the corollary.

Proof: X* and S* are optimal if and only if X*5* = 0. Thus, X* and S* commute with each other
and therefore, they share a system of eigenvectors. Let columns of U be a joint system of orthonormal
eigenvectors of X* and S*, i.e

X* = UDiag(A1,---,A\n)UT and S* = UDiag(wn,, - - -, wx, ) UT

n

2D. E. Knuth and an anonymous referee suggested the following slightly shorter proof: 0 = Ae B = trace At/2pat/?,
Since Al/2BAl/? > 0 and its trace is zero, the matrix product itself must equal zero, and therefore AB = 0. We
feel, however, that the proof given in the paper better underscores similarity to the proof of the linear programming
complementary slackness theorem.



for some permutation w. The corollary follows immediately by multiplying the right hand sides of
these two identities. ]

One can extend the notion of nondegeneracy in linear programming to SDP, by requiring the strict
complementarity condition. This can be stated by saying that in the preceding corollary ezactly one
of A; or wy, corresponding to eigenvector u; be zero for each ¢ = 1,---, n. Equivalently we may require
that Rank(X™) 4+ Rank(S*) = n. However, unlike standard linear programming, where in the absence
of nondegeneracy one could say that precisely m components of the optimal solution x* is nonzero, it
is not clear in general how to predict Rank(X™) or Rank(S™) before solving the SDP problem. All we
can say 1s that RankX™ < n as the optimum of the primal SDP problem is attained on the boundary
of the semidefinite cone. In section 4 we encounter another negative effect of the unpredictability of
the rank of the optimal solution in the context of interior point methods.

Similar to linear programming, the complementary slackness theorem 2.2 may be used as a basis
for primal-dual algorithms. Indeed in this paper, our interior point algorithm is a primal-dual method
which maintains a primal feasible X; and dual feasible Sj; and each iteration moves X .S, closer to the
zero matrix. The norm || X;Sk|| is an indication of how close our current solution is to the optimum.
In general the set of equations:

AvecX = b
ATy+S = C (6)
XS = 0

is a system of n(n + 1) + m equations in the same number of unknowns. In the absence of degeneracy
one can apply, for instance, Newton’s method, or some quasi-Newton method to solve this system.
Since SDP is a convex program, the real solutions of this system are global optima of the corresponding
SDP problem.

As in linear programming, semidefinite programs may arise in a variety of forms; the standard
form (2.2) is just one type. Sometimes we may have positive semidefinite constraints imposed on
linear combinations of matrices (as in the dual problem in (2.2), for example). Sometimes we may
have component-wise inequalities “>" on scalar or matrix variables in addition to Lowner inequalities.
We may have several several matrix expressions constrained to be positive semidefinite. Finally, we
may have some or all of these. Of course, as in linear programming, it is possible to convert all
such problems to the standard form, usually by introducing new scalar and matrix variables and
new constraints. However, it is more convenient to apply duality directly, as with linear programs in
general form. It i1s easy to show that the rules for obtaining the dual are a straightforward extension
of these rules for the linear programming problem. The main addition is that constraints that involve
semidefinite relations on matrix—valued expressions give rise to matrix—valued dual variables with
semidefinite constraints. These rules are summarized in the table in figure 1; this table is a direct
generalization of a similar table in the text of Bazaraa, Jarvis and Sherali [BJS90].

3 An interior point algorithm.

In this section we develop a potential reduction method for solving the primal problem so that,
within O(y/n|logel) iterations, we get an approximate solution with at least € relative accuracy, if € is
sufficiently small. Our development closely follows Ye’s projective technique for linear programming
[Ye90]. Ye’s complexity analysis is also extended to semidefinite programs.



MIN MAX

matrix or scalar, > 0 — C matrix or scalar, <

Vv matrix or scalar, <0 — 0O matrix or scalar, >
A matrix, = 0 — N matrix <
R matrix, < 0 — S matrix, =

matrix or scalar, unrestricted «—— T matrix or scalar, =
C matrix or scalar, > — matrix or scalar, > 0
O matrix or scalar, < — V matrix or scalar, <0
N matrix, > — A matrix, = 0
S matrix, < — R matrix, < 0
T matrix or scalar, = — matrix or scalar, unrestricted

Figure 1: Duality rules for semidefinite programming.

3.1 Potential functions and projective transformations.

First, recall that the interior of the cone of positive semidefinite matrices is the set of positive-definite
matrices; therefore, all interior points are nonsingular. The boundary of the cone consists of singular
semidefinite matrices and so, some of the eigenvalues of the boundary matrices are zero. In particular,
optimal solutions of the primal problem in (2.2) are singular.

We assume that the primal and the dual problems have non-empty interiors, with given initial
primal and dual points and with finite optimal solutions. Later, in section 3.4, we show how to
transform any primal-dual pair to an equivalent one where an initial interior primal—-dual solution 1s
available. Let ¢ > 0, and z be a given constant known to be a lower bound on the optimal value z* of
the primal problem in (2.2). Let X be an interior primal feasible matrix, y an interior dual feasible
vector, and S:=C' — 7" y; A;; thus, X = 0 and S = 0. Define the primal potential function:

#(X,z) =qIn(C e X — z) —Indet X, (7)
and the primal-dual potential function:
P(X,5) = ¢In(X e.5) — Indet(XS5). (8)

For motivation, one may think of semidefinite constraints X = 0 expressed as A;(X) > 0 for ¢ =
1,---,n. When the standard logarithmic barrier is applied to these constraints we get: 2?21 In A (X) =
In det X.

The strategy of the algorithm is to generate a sequence of interior primal feasible matrices X, and
a sequence of interior dual vector-matrix pairs (y, Sk ), such that the sequence (X%, Sp) decreases at
least like an arithmetic progression. With an appropriate choice of ¢, this would imply that the duality
gap C o X3 —bTy; decreases at least like a geometric progression with k; in particular it becomes a
constant fraction of the original gap after O(y/n) iterations.

Before describing the algorithm we state the following lemma which is a direct generalization of a
similar lemma that appears in the analysis of most interior point linear programming methods. (Recall
that p(X) is the spectral radius of matrix X, which equals its largest eigenvalue when X is positive
semidefinite.)

Lemma 9 Let X be a symmetric n x n matriz. If 0 < X < I, then

trace (X — I)?

Indet X >trace X —n— —m —~—
= 20— (X — 1]
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Proof: In most interior-point linear programming algorithms it is shown that if ||x — 1||oc < 1 then

n ]||2
E Inxz; > Iqx— — ||
j=1

which is easily proved by expanding Inz, (see for example, Karmarkar [Kar84] or Ye [Ye91].) Now to
prove the lemma simply substitute A;(X) for z;. [ ]

We use a projective transformation to bring the current iterate to the center, except that the
center here is the identity matrix (in contrast with linear programming in which the center is 1). An
important point is that the transformation should map the set of symmetric matrices to itself. This
is needed so that the transformed problem remains a meaningful SDP problem. Let Xy = 0 be our
current interior primal feasible point. To find a symmetry preserving projective transformation that
maps Xy to the identity matrix I, let Ly be any n x n matrix such that LoL! = X,. There are
infinitely many choices for L. For instance, it could be a Cholesky factor of Xy, or it could be its

square root, Xé/z. We shall see shortly that it does not matter how we select Ly as it will not affect

nXn nXn

the algorithm’s behavior and performance. Fix integer r. Define 7 : 72~ — ™=~ x R", such that
7(X)=(X,X). Then:
oA nLe Xt (nitf) 1 )
r+ Xy X r+ Xy X
Also, the inverse transformations is given by:
— LoXL{
X =T"X x)=22220 (10)
2T /T
Under 7, the primal SDP problem is transformed into
min CeX +¢(2)'x
st. Avec X + AxX =0
trace X + 1Tx =n 4 r (11)
X0
x>0
where
C:=LtC Ly (12)
c(z)=—(z/r)1 (13)
A;=LT ALy (14)
A:=A(Lo ® Lo) (15)
Ai=(-1/r)b1T (16)

Note that A is an m x r rank one matrix. The transformed problem may be viewed as a mixed linear
and semidefinite program. We may define the following primal potential function for the transformed
problem:
#(X,X,2):=qIn 607+6(§)T§ —Indet X — Zlnfj (17)
ji=1

The following invariant property holds for the potential functions under projective transformations:

11



Lemma 10 If7 = ---=%,, and ¢ = n+ r and X:=T+1(X,X) then

O(X,2) — ¢(Xo,2) = ¢(X,X,2) — ¢(I,1, 2). (18)

Also, the following result is easily proved by expanding ¢ and applying lemma 3.1; later we use it
to prove the reduction in the primal-dual potential function.

Corollary 2 For ¢q =n+ r we have

(19)

FEx2) —BU12) < (ntrn ( CeX +¢(2)fx ) Q(HY_ I+ |k — 1|

trace C' 4 ¢(2)71 || X =I||+|x-1])

3.2 A potential reduction algorithm.

Similar to linear programming, in (3.11) we replace the inequality constraints X > 0and X > 0 by an
inscribed “ball” constraint, except that for the SDP problem the ball is centered at (I,1). Therefore,
(3.11) is replaced by the “ball optimization” problem:

min CeX +¢(2)'x
st. AvecX +Ax =0
trace X + 17X =n+r
X =P +]x-1? < <1

(20)

where [ is a fixed constant between 0 and 1 to be determined shortly. Once we solve this problem
and map the result back to the original space, we get a point that serves as a candidate for the next
iterate. The solution of (3.20) is given by

X P(z
and the candidate for the new primal iterate is given by:
X(2)=T" (X1, %), (22)
where

Po=ra () = (g r ) (23)

vec I)

and P4/(u) is the projection of the (n? 4 r)-vector u to the null space of A’. After expansion the
projection P4/ in (3.23) becomes:

P(z) =

(I [vec” I|117][vec” I|17]T

o R — 171 T Vec@
e ) (- A EmEA e () e

c(2)
Define: .

y@) = (EmEn) mm () )
= (A(Xo ® X0)AT + (1/r)bbT) " [Avec(XoCXo) + (2/r)b]

and

S(2):=C — Mat(ATy(2) (26)

12



S(z) and y(z) serve as candidates for the new dual iterates. In terms of these quantities P(z) may be
written as: .
vec(Ly S(z)1Lo) CeXy—2z [ vecl
P(z) = ( byarlsy |7 Ty ( 1 ) 27)

Observe that X(z), S(z) and y(z) are all independent of Lg; in fact in actual computation we do not
need to have Lg explicitly.

Now we show that either the primal candidate X (z), or the dual candidates S(z) and y(z) reduce
the value of the primal-dual potential function ¥ by a constant amount. First observe that P4 is a
projector, that is P%, = P4s. Therefore, from (3.21) we get:

Co(Xy—I)+e(z) (X~ 1) = —4||P(2)]|
Hence, noting that In(1 4 2) < #, for nonnegative z, corollary 3.1 implies:

Corollary 3 Let g =n+r and X; and X be as in (3.21). Then

P
c(2)T1 + trace C 2(1—9)

A(X,%,2) —d(I,1,2) < —(n+7)p

Let Ay be the size of the duality gap in the current iterate, that is
Ag=CeXy—12z
and let
A;:=S(z) e Xo=Ce Xo—by(z)

Thus A; should be interpreted as the value of duality gap if we choose y(z) as our new dual iterate.
Before deriving the amount of reduction in the potential function we prove the following lemma:

Lemma 11 If there is some real number o with 0 < oo < 1, such that

Ay

P <
1P < o=

then S(z) = 0, and bTy(z) > 2. Furthermore,

Tg n+n?/r
‘L Lo——IH ,/n+n2/r_a2, (28)

n-+rA; 1‘< o
n Ay ~/n+n?/r

Proof: Suppose S(z) % 0. Then LLS(z)Lo is not positive definite and so some of its eigenvalues are
less than or equal to 0. Thus, from (3.27) we have

and

(29)

1Pz o (S - ) 2 2

- n + ’]’”
a contradiction. Also, If bTy(z) < z then from (3.27) we have

Ay bly(z)—z _ Ao
I1P(2)]] > o " Z

13



which is again a contradiction. Now from (3.27) we have

Pla) = [vee(LT S(z)Lo) — A1) — [AT _ %} voel
[2ape - 2]

Since I o [(LYS(2)Lo) — (A1/n)I] = 0, we have
2 2 2
—|—n<A0 _&) +T<A0_A1_ Ao)

n+r n r n+r

2 2 2
n Al Ao
+<n+r)<n_n—|—r) ' (30)
If (3.28) is false then from (3.30) we have

O e e ]

n+4n2/r—ao?

()

(The last inequality is proved by taking the right hand side of the first inequality as a quadratic
function in A;/n and minimizing it.) But (3.31) contradicts the assumption of the lemma, so (3.28)
must be true. Finally, since (3.31) is false, we have:

2 2 2
(o) (B-355) == (555)
r n n—+r - n—+r
from which (3.29) follows. [ |

Now we may prove the potential reduction theorem.

A
1P = |eFsre - S

A
LYS(z)Lo — 711

Theorem 3 Let Xy be any interior feasible matriz for the primal problem (1.1) and yo interior feasible
for the dual. Let also, r:=[\/n] and g:=n +r, So:=C — > y; A;, zo:=bTyq, X(2):=T+4X1,%1),
as in (3.10), y1:=y(zp), and S1:=S5(zy). Then there exist an absolute constant & such that either

P(X(2),50) < ¥(Xo,S) =6,
or
P(Xo,51) < P(Xo, S0) — 6,
Furthermore, if we set « = 0.55 and $:=0.3, then 6 > 0.1.

Proof: If for some constant 0 < o < 1

Ay

P >
1P 2 a2

then

1/)(X(£)a SO) - 1/)(X0a SO) = qj)(X(é)’éO) - ¢(Xl)a£0)

= E(y(é)aila%)_¢(1ala%)
62

I
|
w»
Q
+
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(the last inequality is true by corollary 3.2). Otherwise, the conditions of lemma 3.3 are satisfied. Also
applying lemma 3.1 to (n/A)LL S| Lo, and setting y:=a / % we have:

X X
nlnX,eS5 —Indet Xp57 = nln m —lndetn 051
Ay Ay

nXoS]
1
[nL§S1Lo/Ay —I|)?
(1= ||nL§ S1Lo/Ar = I])

= nlnn—Indet

< 1
< nnn—|—2

< nlnXgeSy—Indet X35 + (32)

2(1—7)’

where the last relation results from applying the arithmetic-geometric mean inequality to the eigen-
values of XSy (which are all real.) By (3.29) of lemma 3.3 we have

A< 1L o a A
! ntr ntr atair)

Thus,
XOOS(é) Ay r? o
h——=rh—< — [ -1+ ———— . 33
r Xo e 5 rnAo_n-l-?“ r+r?/n (33)
Adding (3.32) and (3.33) we get
(X0, 1) — (X0, S0) < — (14 ——2 L (34)
0,91 0,5) S T= Tt 0=

It is easily verified that choice of @« = 0.55, 3 = 0.3 and § = 0.1 is consistent with all the conditions of
the theorem. ]

Based on this result we present the projective version of the algorithm displayed in figure 2. Note
that in this algorithm §* and z* are obtained by line search on the potential function. We justify this
in the next subsection.

3.3 Potential reduction and polynomial-time solvability.

Now we show that starting from any pair of interior primal and dual feasible points, and a tolerance ¢,
we get a pair whose duality gap is less than € by running the algorithm in figure 2 a number of times
that depends polynomiality on Ine, n and the error in the initial pair.

Theorem 4 Let X, yo and So:=C — Mat(ATyq) be given initial interior points for the primal and
dual semidefinite programming problems in (2.2). Let also that v = [\/n| and ¢ = n +r in the
primal-dual potential function ¢, and assume that ¥(Xo,S0) < O(/nE) for some constant E. If
an algorithm generates a sequence of interior primal and dual points X;, y; (and thus S; ) such that
Y(X;,8;) > ¥(Xj41,5541) + 6 for some fized number 6 then, after k = O(\/n|loge|) iterations, for
primal and dual solutions Xy, yr and Sy we have

CeX;— bTyk < 2Fe.
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ALGORITHM SDP:
Input:
An n x n matrix Xg, interior feasible for the primal problem in (2.2);
an m-vector yq interior feasible for the dual problem;
a constant e.
Output:
A primal feasible solution X and dual feasible solution y such that
CeX —bly <e.
Method:
1) Set k = 0 and o = 0.55.
2) Set z; = bly,.
3) Set Sy:=C — Mat(ATyq).
4) While C @ X, —bTy; > ¢ do
begin
Compute S(z;,) from (3.26) and P(z;) from (3.23).
IF][P(z)]| > a(C e Xy — 2,)/(n+7) then
a)Find f*:=argming¢ 51 ¥(Xy — BLi P(zp)LE, Sk),
using a line search procedure.
b) Set (Xk+1’§k+1) = (I’ 1) - B*P(é)’
and set Xk+1::’]'l1(7k+1,§k+1).
c) Set Spy1:=S5k, and z; 1=z,
Else
d) Find z*:=argmin, ¢, ¢(Xg,5(z)) by a line search.
e) Set Spy1 = S(z*).
f) Set Xgpq1 = Xi, and 2, = by (z*).
Set k=k+ 1.
end.

Figure 2: A projective potential reduction algorithm.

Proof: Each iteration reduces the potential function by at least §. Thus, if ¥(Xo,Sp) < O(/nFE)
then after O(y/n|loge|) iterations we have:

DXk, Sk) < (VnE —+/n]logel)
= (Villog2” — |loge]|
< Villog(2%e)|.

Therefore,

Vrln X, eS, < —nlnX; e S; + Indet X3Sy + /7| log(2E€)|
< —nlnn+/n|In(2%6)|
The last inequality comes from applying the arithmetic-geometric inequality to the eigenvalues of
XSy, which are real, as both matrices are positive definite. Thus, In X S < |log(2¥¢)|, and since
Xy S, =CeX, —blyy, the theorem follows. [ |

This theorem essentially says that if we start our potential reduction algorithm at a pair of primal
and dual points where the initial error is such that the value of the potential function is O(y/nE), then
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after O(v/n(E + |loge|)) iterations we will have a solution with duality gap less than e. Therefore for
all ¢ < 2% the term |loge| dominates E and so the number of iterations is bounded by O(y/n|loge|).
Also observe that this proof solely depends on the reduction of the potential function ¢». We have to
guarantee a reduction of at least 6 in each iteration; but larger reductions may speed up the algorithm
without affecting its worst case complexity. Therefore, in steps 4a and 4d of the algorithm in figure 2
we allow a line search to find a step length 5* and z* which maximizes the reduction in the potential
function.

3.4 Feasibility, boundedness and polynomial-time computability.

To complete our analysis we must study feasibility of the SDP problem and bounds on the norms of the
optimal primal and dual solutions. The situation is somewhat different from linear programming. Let
us assume that all entries in the primal and dual problems (2.2) are integers. First, in contrast with
linear programming, the optimal solution of (2.2) is not necessarily a rational number. Therefore we
need to specify an error tolerance, €, and ask for a pair of primal and dual solutions X and S such that
the duality gap X S < ¢.3 If € is also a rational number, define L, the size of the SDP problem, as the
number of bits in the binary representation of ¢ and entries of C', A, and b, see [GLS88] for complete
definition. One might expect that the interior point method developed in the previous sections leads
to an algorithm which runs in time polynomial in m, n and L. However, this is not true in general as
the solution itself may be exponentially large. To see this consider the optimization problem:

min{z, : x> 2, and ; > x7,, fori =2,--- n} (35)

Clearly, x, = 2%" is the solution of this problem which requires exponential number of bits. Now
(3.35) can be written as the following semidefinite program:

min 2z,

st. x> 2
i Yill =0 fore=2,--- n
it 1

This SDP problem can be easily turned into a standard form SDP whose input size (taking ¢ = 1, say)
is polynomial in n and whose output requires more than exponential number of bits. So no algorithm
can solve it in polynomial time?.

In many cases, including all of the combinatorial optimization problems described below, one may
be able to put an a priori bound on the norms of the optimal solutions. For instance in special cases
we may be able to prove that || X|| = O(2"™), and [|y]| = O(2"™). In such cases we can show that the
interior point algorithm developed earlier can produce, in polynomial time, primal and dual solutions
whose duality gap is smaller than e. Notice that in the ellipsoid method such an a prior: bound is
assumed by requiring that an initial ellipsoid containing the feasible solution be supplied. Let L’ be the
number of bits in the binary expansion of some integer known to be a bound on ||X*|| and ||y"||. Then,
similar to linear programming, one can always transform the pair of primal and dual problems (2.2) to
another pair for which initial interior feasible points are readily available. We extend the construction
suggested by Kojima, Mizuno and Yoshise in [KMY89] which in turn is based on Megiddo’s [Meg89].

3Since X, S and y are solution of the algebraic system of equations: XS = 0, AvecX = b and .ATy + S = C, there
are algebraic solutions among all optimal solutions of an SDP problem with integral input.

*T am indebted to Joshi Ramana for bringing to my attention an error in [Ali91, Ali92] where I had claimed that the
norm of the solution to any SDP problem is bounded by 2%. Joshi essentially provided this counter example.
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Consider the following pair of primal and dual problems:

min CeX 4+ Mz,

st.  Avec(X)+ [b— Avec(Xy)]z1 =Db
[Mat(ATyo)+ So —Cle X + x5 = N (36)
X >0
X1,X2 Z 0

and
max bly — Ny
s.t. Mat(.ATy) +S+[C - Mat(.ATyo) —Sojyn =C
[b— Avec(Xo)|Ty +y2 = M (37)
S0
Yi,92 > 0

where Xy and Sy are arbitrary positive definite n X n matrices, yy an arbitrary m-vector, and M and
N are large enough positive numbers to ensure that y, > 0 and x5 > 0. Clearly X:=X, z1:=1 and
z9:=N — (Mat(ATyg) + So — C) @ X; are interior feasible for the primal (3.36) (with large enough N);
and S:=Sp, y:=yo, y1:=1, and y2:=M — (b — Avec(X;))Tyo are interior feasible for the dual problem
in (3.37) (for large enough M). By choosing Xo = Sgp = I, 1 = y1 = 1, yo = 0, it suffices to choose
M and N such that

N > max(n—ZC’”,ZX;}—COX*),
M > maX(O, b’ *—Zy;‘trace (AZ))

For instance we may set N = M = 2L+L" 1t is easy to see that if the optimal value of #; is not
zero, then the original primal is infeasible (the proof is exactly like the one given in Kojima et al. in
[KMY89]). Similarly if the optimal value of y; is not zero, then the original dual is infeasible. Other-
wise, the optimal X* and y* are also optimal for the original primal and dual problems, respectively.
Furthermore, It is easily verified that the value of the primal-dual potential function + at the initial
point is bounded by O(v/n(L + L")). So, for the general SDP problem, any algorithm that reduces
the primal-dual potential function ¢ by a constant amount may find, in O(y/nmax(L, L', |loge|)) it-
erations, a pair of primal and dual feasible solutions whose duality gap is less than ¢; if € < QLLLLI,
then the number of iterations is bounded by O(y/n|In¢|).

3.5 A correspondence between proofs in linear and semidefinite program-
ming.

The remarkable similarity between the algorithm presented here and Ye’s LP algorithm in [Ye90]
suggests that other LP interior point methods may also be extended to SDP problems. All proofs
of convergence and polynomial-time complexity may be extended as well. The correspondence is
summarized in figure 2. Given any interior point algorithm for linear programming we may construct,
in a mechanical way, an algorithm for the SDP problem by replacing any references to the entries
under the LP column, with the corresponding entry under the SDP column. Proofs of convergence or
polynomial time complexity may also be extended mechanically in the same manner. We have already
verified this claim on the approaches of Gonzaga [Gon89], Ye [Ye91] (see [Ali92]), and Monteiro and
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(TP [ SDP

unknown vector: x unknown symmetric matrix: X
inequality constraints: > Lowner constraints: >
dual variable: y dual variable: y
dual slack vector: s dual slack symmetric matrix: .S
1 1
linear scaling: linear scaling:
x — (a4/(x0)i )iy = [Dinglxo)[*x | X — LEXLET = Mat[(LE © LE))veo(X)
projective scaling: projective scaling:
i -1 e L7'XL;”
x = cQ-T-ll[];l[aDgifgc(D))c]D)]iclx X c2+tr1ac0e L;EXL;T
barrier function: barrier function:
S Inay Indet X
norms: norms:
x| 1]
Il 1]l
Ixl, (3 D))

Figure 3: Correspondence between linear programming and semidefinite programming

Adler [MA88]. This table itself may be summarized by the following rule: In any linear programming
algorithm, replace any implicit or explicit reference to x; (or s;) by a reference to A;(X) (or A;(5)).
Furthermore, in any scaling, replace affine or projective transformations by corresponding symmetry
preserving transformation on matrices. Notice that these same rules were implicitly used to derive
various duality and complementary slackness theorems for SDP from the corresponding theorems for
LP.

3.6 Differences between SDP and LP interior point algorithms.

Thus far, we have emphasized the similarity of linear and semidefinite interior point methods. There
are however, important distinctions and some favorable circumstances in LP do not extend to SDP.
We have already seen the differences between LP and SDP when we studied irrationality and a prior:
bounds on the number of bits in the optimal solutions. We list other distinctions which must be studied
carefully before a serious practical implementation of interior point SDP algorithms i1s attempted.

1. In the absence of degeneracy one can predict that precisely m entries of the optimal vector x*
are nonzero in the standard linear program with coefficient matrix A € R™*"”. Recall that in
each iteration of a primal interior point algorithm, the main computational effort is in obtaining
(ADiag(x)2 A7) v, where v is some vector. Therefore, if A is rank m and reasonably well-
conditioned, this computation is fairly straightforward and typically no numerical difficulties
should arise. In SDP however, even if we assume strict complementarity, (i.e Rank(X™) +
Rank(S*) = n,) we still will do not know what Rank(X™) is going to be before solving the SDP
problem. Furthermore, let Rank(X™*) = r. Since the main computational work in SDP interior
point methods is computing (A(X @ X)AT)Llv, even if A is full rank and reasonably well-
conditioned, A(X ®X).,4T may converge to a singular matrix unless m < r?, which by no means
is guaranteed. The same issue arises if we use dual or primal-dual interior point algorithms.

2. The main reason that interior point methods in linear programming are practically competitive—
aside from the small number of iterations—is that if the matrix AA” is sparse, so is ADAT for
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any diagonal matrix D; in fact, ADAT and AAT have precisely the same nonzero structure.
Therefore, once a good order of elimination is obtained for AAT | the same order should work
for all subsequent iterations of the interior point algorithm. This is 1s not the case for SDP. In
general even if AAT is sparse the matrix A(X @ X).AT may not be sparse at all. It is not clear
how factorization of A(Xj @ X;)AT could be of any use in factoring A(Xj 41 @ Xpy1)A”.

3. Karmarkar in [Kar84] gives a nice amortized method for updating factors of ADAT. He develops
a technique where xj, and xj41 differ only in jj entries where >~ ji over all iterations is bounded
by O(y/n). From this observation he manages to reduce the overall number of operations by a
factor of v/n. It is not clear how to extend Karmarkar’s amortized scheme to SDP interior point
algorithms.

4 Eigenvalues as semidefinite programs.

In most cases semidefinite programs arise in the form of minimizing or maximizing a linear combination
of eigenvalues of a symmetric matrix subject to constraints on the matrix. In this section we study
problems of this form, and show that under appropriate assumptions they are indeed special case
semidefinite programs. We give primal and dual characterization of each problem and examine the
complementary slackness theorem as specialized to that problem.

4.1 Minimizing sum of the first few eigenvalues.

First we consider minimizing sum of the first &k eigenvalues of a symmetric matrix subject to linear
constraints on the matrix. We consider two variations, namely

min{ A (X) + -+ Ap(X) : AvecX = b}. (38)
and i
minz Ai(A(x)) where A(x) = Ag + Z x; A; (39)

To show that these problems are indeed semidefinite programs, we use the following elegant charac-

terization by Overton and Womersley [OW91, OW92].

Theorem 5 For the sum of the first k eigenvalues of a symmetric matriz A the following semidefinite
programming characterization holds:

A(A)+ -4+ A (4) = max AeU
st.  trace U =k (40)
0=U=1T
Proof: See Overton and Womersley [OW91, OW92]. [ |

It is worth mentioning that this result is based on a beautiful convex hull characterization which
was known at least as early as 1971, see [FWT71], but unfortunately has remained somewhat obscure.
Here 1s the statement of this result:

Lemma 12 Let
Si={yyT . vy ert vy =1}

and

So:={W: W =W7 trace W=k, 0<W <1I}.
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Then
conv S; = 5o,

and S1 1s exactly the set of extreme points of S;.

For an historical account of this result, its connection to the well-known, but computationally less
useful theorem of Ky Fan, and interesting connections to the theorem of Birkhoff and Von Neumann
concerning the convex hull of doubly stochastic matrices, refer to Overton and Womersley [OW92].

Now to express (4.38) as a semidefinite program we first derive another characterization of sum
of the first k eigenvalues of A, by taking the dual of (4.40). The constraint U < I gives rise to dual
variable V', which by the 3rd line of the table in figure (3) satisfies V' = 0. The variable U, which
satisfies U = 0, by the eight line of the table (3), gives rise to the constraint zI + V = A. Thus we
have:

Theorem 6 For the sum of the first k eigenvalues of a symmetric matriz A the following semidefinite
programming characterization holds:

AM(A)+ -+ (A) = min kz+trace V
st. zI+V=A (41)
V=0

Now, it is easy to incorporate the equality constraints into (4.41) by replacing A with X. So (4.38) is
equivalent to
min kz 4+ trace V
st. AvecX =b
2+ V-X=0
V=0

(42)

and taking the dual again we have the following dual characterization:

max bTy

st. U= Mat(ATy)
trace U = &
0=U=<1T

(43)

The complementary slackness result for primal feasible z*, X* and V*, and dual feasible U* states
that these are optimal if and only if

(I V = XY= (I —U"V* =0

Similarly (4.39) may be expressed by the following primal and dual pair:

min kz + trace V max AgeY
st. 24V =>4 = Ay s.t. trace Y =k (44)
V=0 A;eY =0fore=1,---,m
0<Y =<1

When & = 1, these characterizations become simpler, because in that case the constraint ¥ < 7
(and thus variable V') are redundant. Therefore, the problem

min{A;(X) : AvecX = b}
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may be expressed as the solution of the primal and dual SDP pair:

min z max bTy
st. 2I—-X >0 s.t.  trace Mat(ATy) =1 (45)
AvecX = b Mat(ATy) =0

and the complementary slackness theorem indicates that for X* and y* to be primal and dual optimum
solution for (4.45), they must satisfy—in addition to being primal and dual feasible:

Mat(ATy*) (A (X)) — X*) = 0.

4.2 Minimizing weighted sums of eigenvalues.

In this section we consider the weighted sum of eigenvalues of a matrix. Let mq > ms > -+ > my >
mi4+1 = 0 be a set of fixed real numbers. We are interested in the following problem:

min{mi A (X) + -+ mp A (X) : AvecX = b} (46)

Note that without the condition my > ma > -+ > my > 0 (4.46) is not necessarily a convex program.
To formulate this problem as a semidefinite program, we use a technique originally employed by Donath
and Hoffman in [DH73]. They rewrote the sum as follows:

miAL(A) + mada(A)+ -+ mpAp(4) = (m1 —ma2)Ai(A) +
(ma —mg)[A(A) + Ae(A) + - +
(mri1 —me)[A(A)+ -+ X1 (A)] +
mp[A(A) + -+ Ap(A)] (47)
and observed that the right hand side of (4.47) is a nonnegative combination of convex functions, and
therefore, itself is convex. This formulation also allows us to write (4.46) as a semidefinite programming

problem. For each of the partial sums of eigenvalues in (4.47) we may use the relations in the last
subsection and obtain the primal:

min Zle 1z; + Zle trace V;
st. ZIl4+Vi—(mi—myy)X =0 fori=1,--- k

AvecX =b o
Vi=0 fori=1,--- k
and the dual
max bTy
st. ATy — Zf:l(mi —miy1)Ui = 0 (49)

trace U; = ¢ fori=1,--- k
0<U; =1 fore=1,---k
formulations of (4.46).

The complementary slackness condition for feasible X*, 27, V;* y* and U} for ¢ =1,---, k to be
optimal may be stated as:

(ZT4+Vi—(my —mp ) X)U =T -UV =0 fori=1,--- k

Notice that the primal and dual characterizations (4.48) and (4.49) contain 2k semidefinite constraints
each involving n x n matrices, and therefore, the interior point methods discussed earlier require
O(Vkn) iterations for each new significant digit of accuracy. It would be interesting to improve this

complexity to O(y/n).
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4.3 Minimizing sums of absolute-value-wise largest eigenvalues.

The results of the two preceding sections may be extended to the sum of the k absolute-value-wise
largest eigenvalues as well. Overton and Womersley derived the max characterization similar to (4.40);
applying duality to their result we obtain:

Theorem 7 For a symmetric matriz A the sum [M(A)| + -+ [A(A)] is equal to optimal solution
of the pair of primal and dual semidefinite programs:

max AeY —AeW min kz + trace V + trace U
st.  trace (Y + W)=k st. zI+V —-A»0
0<=Y <1 I+ U+A=0 (50)
0<W=<I U=0
V=0

(Recall that A*(X) is the i*P largest eigenvalue of X in the absolute-value sense.)
Now to solve the optimization problem

min{ [ AY(X)| + -+ [M(X)| : AvecX = b} (51)

we may simply add the equality constraints to the min formulation in (4.50) and then take its dual
and we get the following pair of primal and dual semidefinite programs:

min kz 4 trace V 4 trace U max bTy
st. AvecX =b st. Aly=Y-W
2I+V —-X =0 trace (Y + W) =k (52)
ZI+U4+X =0 0<Y <1
U*20 0=W==<T
V=0

The complementary slackness theorem indicates that primal feasible z*, V* and U*, and dual
feasible Y* and W* are optimal if and only if

(ZI+V = X)W =TI+ U+ X)W =1 =Y ) U =T -W V" =0.

Again these results may be generalized to the weighted sums of absolute-value-wise largest eigen-
values. In other words, the problem

min{m; [AN(X)| + -+ mp A (X)| : AvecX = b} (53)

may be expressed by a primal and dual pair of semidefinite programs. First, let us ignore the equality
constraints AvecX = b, and assume that X is a fixed matrix A. Then, we have

Theorem 8 The sum my|A(A)|+ -+ mg| A\ (A)|, where A is a symmetric matriz equals the optimal
solution of the primal program:

min Zle 1z; + Zle trace (U; + Vi)

st. zIl4+U;—(my—mp)A=0 fori=1,--- k
I+ Vi+(m; —mip)A =0 fori=1,--- k (54)
U =0 fore=1,---k
Vim0 fore=1,--- )k
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and the dual program:
max Zle(mi —my1)(AeY; — Ael¥;)
st.  trace (Y, +W;) =4 fori=1,-- k
0<Y, =<1 fori=1,---,k (55)
0<W; =1 fore=1,--- k

Now we may replace A by X and impose the equality constraints on the min characterization in
(4.54). After taking the dual we will have the following pair of primal and dual formulation of (4.53):

min Zle 1z; + Zle trace (U; + Vi)
st. AvecX =b
zI+U;—(my —mip1)X =0 foréi=1,--- k

I+ Vi+(my—mip1)X =0 fori=1,--- k (56)
U =0 fori=1,--- k
Vim0 fori=1,---k
and,
max bTy
st ATy = 30 (mi —migp)(Yi = W)
trace (Vi +W;)=1d fori=1,--k (57)

0<Y; =1 fori=1,---,k
0<W;, %1 fori=1,---k

Finally, the complementary slackness theorem for problem (4.53) states that primal (4.56) feasible
z¥, Vi, and UF, and dual (4.57) feasible Y;*, and W, for i = 1, -+, k are optimal if and only if

K3 2

(A T+ V7 = (my —mi)XT)Y

K3

=T+ UT A+ (my —mi )XW = (I =Y U7 = (I =WV =0

fore=1,---,k.

The characterization (4.40), and the max part of (4.50) were given in Overton and Womersley
[OW91]. Also, Fletcher in [Fle85] derives a closely related result to (4.40) but the result was incorrect
(Fletcher had 0 < S rather than 0 < .S < I.) The min characterizations as well as the primal and dual
formulation of the variants with equality constraints, we believe are new.

Similar formulations can be derived for maximizing (weighted) sums of the last few smallest eigen-
values of symmetric matrices or the sum of the first few largest singular values of an arbitrary matrix;
we omit these formulations here, see [Sub93]. However, maximizing the last few smallest eigenvalues of
a symmetric matrix absolute-value-wise, or sum of the last few smallest singular values of an arbitrary
matrix cannot be formulated as SDP because these problems are not convex programs.

5 Applications in combinatorial optimization.

The semidefinite programming problem studied in the previous sections has applications in combina-
torial optimization, especially in graph theory. The connection usually i1s the spectral properties of
graphs. In the following sections we first examine a general approach of Lovasz and Schrijver which
applies semidefinite programming to general zero-one integer programming problem. Then we study
other applications such as the maximum stable set, the maximum induced k-partite subgraph, and
graph partitioning (in particular, graph bisection) problems.
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5.1 Nonlinear relaxations of 0-1 programming.

Consider the integer programming problem
max{e’ X : AX>b and T; € {0,1}} (58)

The LP relaxation of (5.58) results from replacing T; € {0,1} with 0 < 7; < 1. This relaxation
serves as a first approximation of the solution of (5.58). In general, this first approximation may be
nonintegral and far from the actual solutions. Most effective methods of integer programming consist
of adding new “cutting planes” to the LP relaxation. It seems however, that little work has been done
in generating “nonlinear” but convex cuts in the feasible region of the LP relaxation. Generally such
cuts may produce far better approximations than planar cuts. An ingenious approach for creating
a class of nonlinear cuts has been proposed by Lovisz and Schrijver in [LS91]. The idea is to “lift”
5. It is convenient to homogenize integer
program by introducing a new variable zy as a multiple of b and then imposing the constraint zy = 1.
After this transformation the homogenized integer programming problem and its linear programming
relaxation can be written as:

the space from vectors in " to n X n symmetric matrices

1P LP

max c’'x max c’'x

st. alx>0 fori=1,---,m st. alx>0 fori=1,---,m (59)
z; € {0,1} fori=20,---,n 0<z; <xg fori=0,---,n
l‘o:l l‘o:l

Let P be the convex cone which is the feasible region of the LP relaxation without the constraint zg = 1,
and (P) its integer hull (that is, S(P) is the convex cone generated by 0-1 vectors with zg = 1.)
First, we decompose the set of constraints into two sets (with possible overlap); then multiply each
inequality in the first set by each inequality in the second set to obtain quadratic constraints, then
replace each occurrence of z;z; by a new variable z;; to get linear constraints again; finally impose on
the matrix X = (z;;) positive semidefinite constraints. If P; and P, are the cones defined by the first
and second sets of constraints, then P = P; N P, and the space of matrices just defined is denoted
by M4 (P1, P2). More formally, let J; and Ja be two subsets that cover the index set of the inequality
constraints in LP. Define Ay:=Ay,, and As:=Ay,, and P; the set {x: A;x > 0} fori = 1,2. We
require that constraints 0 < z; < zg be in both subsets. Then

nXn

My (Py, Py):={X € R

: X =0, Xeg = diag(X), and (4; ® As)vec(X) > 0} (60)
Also, let Ny (P, P3) be the n-space made up of diagonals of matrices in M (P, Ps), that is
Ny (Pr, Po):={diag(X) : X € My (P, P,)}.
The main result of Lovasz and Schrijver—for the purposes of our discussion-is that:
S(P)C Ny(P, P2) CP

It is clear that optimizing a linear function over Ny (Py, P2) is a mixed linear and semidefinite pro-
gramming problem, and interior point techniques may be applied (as long as P is given by an explicit
system of inequalities.) The process just described may be quite powerful in certain combinatorial

. 5The presentation here is more restrictive than given in [LS91]. Lovasz and Schrijver do not assume that the matrix
A is given explicitly. They only assume that the LP relaxation is endowed with a separation oracle.
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optimization problems. For instance in a general branch and bound algorithm, one may use interior
point algorithms to solve the optimization problem

max{c’x :x € Ny (P, P2)}.

The solution then may be used as a bound and the resulting x necessarily satisfies 0 < x < 1. Now
if for some coordinate ¢ we have 0 < #; < 1 then we branch by solving the two subproblems with
additional constraints, respectively #; = 0 and z; = 1. From a practical point of view such subproblems
are all polynomial time solvable by the interior point methods, though they are computationally more
expensive than the classical branch and bound approach based on linear programming relaxations. The
advantage however is that the bounds are sharper (hopefully much sharper) than the corresponding
LP bounds, and therefore the total number of subproblems solved may be considerably smaller.

Lovasz and Schrijver show that applying Ny operator to the LP relaxation of the stable set polytope
of a graph G = (V, E) gives bounds that are already stronger than a combination of several well-known
classes of linear cuts. Recall that a stable set in a graph G = (V| E) is a subset of vertices S where
each pair of vertices ¢ and j in S are nonadjacent. Let w be a weight vector on the vertices of (G, such
that w; 1s the weight of vertex 7. The weighted maximum stable set problem in graphs can now be
formulated as the following 0-1 program:

max WTX

st. w4, <1 forall {i,j}eF (61)
z; €{0,1} forallieV

Now we homogenize (5.61) by adding a new variable zg, then apply the N, operator with
Pi=P={x:z;+z;<zoforalijeF and 0 <xz; <zpforalliecV},

and
Py:={x: x¢—a; >0, and 2; > 0},

Finally intersect the result with hyperplane zq = 1. Let the resulting set be N;(STAB (). Optimiza-
tion over this set is a semidefinite program and can be done in polynomial time using interior point
methods (Lovasz and Schrijver use the ellipsoid method to establish polynomiality). Furthermore, it
is clear that

STAB G C N4 (STAB G) C E-STAB G

where STAB G is the convex hull of all 0-1 vectors that characterize some stable set of G, and
FE-STAB G is the polytope associated with the LP relaxation of (5.61) (that is the polytope ob-
tain by replacing constraints z; € {0,1} by 0 < #; < 1.) The set N;(STAB () is convex, but
generally nonpolyhedral. However, Lovasz and Schrijver show that the set of points in STAB & and
in Ny (STAB G) already satisfy the following classes of well-known valid inequalities for STAB G

1. Clique constraints. Let K be a clique in GG, that is a subset of vertices every pair of which
is adjacent. Let S be a stable set in GG. Then clearly |S N K| < 1, where 1¢ and 1x are
characteristic vectors of S and K, respectively. This observation implies that for all cliques in
G the inequality

15 x<0 (62)

is valid for STAB (G. Set Q-STAB G to the polytope defined by the inequalities in (5.62) and
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2. Odd hole constraints. For every cycle (hole) C' with 2k + 1 edges and every stable set S we
know that |C'N S| < k. Thus, for all cycles C in G the constraint

1lx <k (63)

is valid for STAB G. Set C-STAB G to the polytope defined by all (5.63) induced by all cycles
of G

3. Odd anti-hole constraints. Let C' be a graph whose edge complement set is an odd cycle.
Then the maximum stable set in ¢ has two vertices and therefore, [’ S| < 2 for all stable sets
S. Therefore, for all antiholes C' in GG every inequality

1Lx <2 (64)

is valid for STAB G. Set C-STAB G the polytope defined by all inequalities (5.64) and z; > 0.

4. Odd wheel Constraints. Let W be a graph with 2k vertices such that vertices 1,2,--- 2k —1
induce a cycle and vertex 2k is adjacent to all other vertices. Then W is called an odd wheel. It
can be shown (see [GLS88]) that for all wheels W in G| the inequality

2k11
D wit (k= Do < k—1. (65)
i=1

is valid for STAB . set W-STAB G to the polytope defined by the set of all inequalities (5.65)
and z; > 0.

It turns out that (see [LS91])
STAB G C N1 (STAB G) C Q-STAB GNC-STAB GNC-STAB GNW-STAB G C E-STAB &

and Ny (STAB () already provides sharper relaxation of STAB G than any of the polytopes defined
above. Yet optimization over Ny (STAB () is an SDP problem and the interior point methods devel-
oped in this paper may yield practical ways of achieving strong bounds on the maximum stable set
problem.

Remark: Barriers for polytopes with exponentially many facets.

A strong property of the ellipsoid method for combinatorial optimization problems is that generally
one does not need to have the linear programming formulation of the problem ezplicitly. All that is
required is existence of a separation oracle and an initial ellipsoid to start the process. For instance,
for certain classes of graphs the stable set polytope may be characterized completely by C-STAB G
(such graphs are called ¢-perfect). Other classes may have their stable set polytope characterized
by Q-STAB G (perfect graphs), or by C-STAB G N Q-STAB G (h-perfect graphs), or in general any
combination of the polytopes mentioned in items 1 through 4 above. The stable set polytopes of such
graphs have in general exponentially many facets. However, in [GLS88, LS91] it is shown that one
can construct separation oracles for these polytopes and thus find the maximum stable set for the
corresponding graphs in polynomial time.

It is common belief that in contrast to the ellipsoid method, interior point methods require explicit
knowledge of the facets of the polytope on which we wish to optimize, see for instance [GLS88] and
the quotation from [GT89] in the introduction. However, we can use polynomial time interior point
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methods to optimize over STAB G in the special cases mentioned above, even though the number of
facets in such polytopes may be exponentially large. In fact, the ground breaking work of Nesterov
and Nemirovskii implies that—at least in principle-a listing of all inequality constraints in the LP
formulation is not necessary. One needs—instead of a separation oracle as is required in the ellipsoid
method—a barrier oracle with a polynomially bounded self-concordance parameter. For instance, as
was indicated, we can optimize over Ny (STAB () in polynomial time, and N4 (STAB ) = STAB &
for the classes of graphs mentioned above. In fact, the results of Nesterov and Nemirovskii imply that
one can directly compute a barrier function for Ny (STABG):

Theorem 9 Let b : Int Ny (STAB G) — R be the function defined by:
b(x):=min{—1Indet X : diag(X) =x,X € M4 (STAB G)} (66)

Then there is an interior point algorithm which uses b(x) as its barrier and finds max{wl'x : x €
N4 (STAB G)} in O(y/nmax(||w||,In¢€)) iterations and error at most €.

Proof: Nesterov and Nemirovskii prove that Indet X is n-selfconcordant for the cone of positive
semidefinite n X n matrices. (See [NN90] for definitions). They also show that existence of an n-self-
concordant barrier for a convex set in general implies that one can optimize a linear function over
that set with every O(y/n) iterations yielding a significant bit. Furthermore, in Proposition 1.5, pp.
121 of [NN92] they show that if a convex set K C R" is endowed with an n-self-concordant barrier b,
and A : R — N™ is an affine transformation mapping K on to A(K) then the following function is
n-self-concordant for A(K):

bF(y):=inf{b(x): x € A*(y) N Int K'}

Now the theorem follows immediately from the definition of N;(STAB &) as given in [LS91] with the
affine transformation A replaced by projection of elements of M, (STAB &) onto their diagonals. W

In fact, the result above shows that if a convex set K in R” can be lifted to some convex set in RV
with N > n, such that the lifting is endowed with a polynomial time computable p-self-concordant
barrier then there is a polynomial time computable p-self-concordant barrier for K. In combinatorial
optimization, there are many examples of polytopes with exponentially many facets which nevertheless
can be lifted to polytopes in higher dimensions but fewer (polynomially many) facets. For all such
polytopes one can apply interior point methods and optimize over them in polynomial time. For
a thorough discussion of liftings of polyhedra associated with combinatorial optimization problems
consult [Yan88, LS91] and the references cited in them.

It is an interesting problem to look for easily computable (for instance NC-computable or at
least polynomial time computable) barriers for combinatorial optimization problems whose linear
programming formulation contains exponentially many inequalities. A concrete open problem is to
find an easily computable barrier for the matching polytope with the property that a suitable interior
point algorithm with such barrier requires O(y/m) iterations where m is the number of edges in the
graph. This problem is especially interesting because Yannakakis shows that under certain symmetry
preserving conditions on the lift operator it is impossible to lift the matching polytope to a higher
dimensional polytope with polynomially many facets, [Yan88]. Whether the matching polytope can
be lifted to a convex set endowed with an O(m)-self-concordant barrier remains open.

5.2 Maximum cliques in perfect graphs.

A particularly nice application of semidefinite programming is to the solution of the maximum clique
problem in perfect graphs. A graph G(V, E) is called perfect if for all induced subgraphs G’ of G,

28



the size of the maximum clique, w(G'), equals the size of minimum proper coloring, x(G’). (A proper
coloring of vertices of a graph is an assignment of colors to each vertex such that no two adjacent
vertices have the same color.) Tt is clear that w(G) < x(G) for all graphs, as one needs at least w(G)
colors just to cover the vertices of the maximum clique. Several interesting properties of perfect graphs
should be noted. First, the perfect graph theorem of Lovasz indicates that a graph is perfect if and
only if its complement is perfect, [Lov72]. This statement is equivalent to saying that for all induced
subgraphs G’ of G, a(G") = p(G'), where a(G’) is the size of the largest stable set in G/, and p(G’)
is the size of the smallest number of cliques that cover all vertices of Y. Thus, in effect studying
cliques in perfect graphs is equivalent to studying stables sets and any algorithm for one is valid for
the other one (by simply applying it to the complementary graph.) As a consequence of the perfect
graph theorem one can show that equality of maximum cliques and minimum coloring extends to the
weighted graphs. More precisely, let w € N™ be an integral weight vector defined on the vertices of
G. A proper w-coloring of GG is an assignment of colors to the vertices of G such that each vertex has
at least w; colors and for two adjacent vertices, their color sets are disjoint. x(G, w) is the minimum
number of colors over all proper w-colorings of G. A maximum weighted clique in G is the clique
whose sum of weights of vertices is maximum; this sum is denoted by w(G,w). A graph is perfect if
and only if for all weight vectors w € N" w(G, w) = x(G, w). Restating this for the complements of
graphs, we have that a graph is perfect if and only if a(G, w) = p(G, w), where, (G, w) is the weight
of the maximum weighted stable set in G, and p(G, w) is the minimum number of cliques required to
cover vertices of (G such that each vertex ¢ 1s in at least w; cliques. These results are equivalent to the
following statement:

Theorem 10 A graph G = (V, E) is perfect iff STAB G = Q-STAB G.

(See [GLS88].) Therefore, already the results of the preceding section imply that computing maximum
cliques and maximum independent sets in perfect graphs can be accomplished in polynomial time by
interior point methods. However, in this case one can derive a slightly stronger result.

Lovész in [Lov79] discovered an invariant of graphs, (G, w), which has two desirable properties:
first it is polynomial time computable, and second it is simultaneously an upper bound for w(G, w)
and a lower bound for x(G, w). This invariant can be defined by a pair of primal and dual semidefinite

programs. Let
nXn

M:={X e R

: Xj;=0foralli,je EFori=j}

and
nXn

ME={Y eR= : Yy =0foralli,j ¢ FE}

Then the weighted Lovisz number of G is defined by the following primal-dual SDP pair:

0(G,w) = min{\M(X+W): X € M}

= max{WeY: Y eMt Y >0and trace Y = 1} (67)

where W::\/W\/V_VT and /W is an n-vector whose i®® component is \/w;. This min-max equality is
proved directly in [GLS88], and also follows easily from the duality theory stated earlier, see (4.45).
Lemma 13 For every vertex weighted graph G = (V, E),

w(G,w) <0G, w) < x(G,w)
and

a(G,w) <G, w):=0(G,w) < p(G,w)
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See [GLS88] chapter 9 for a thorough treatment of Lovdsz number of graphs including several other
characterization and many interesting properties. Now our interior point algorithm can compute
0(G,w) in polynomial time; however in case of perfect graphs we have

w(G,w) =0(G,w) = x(G,w)

and

a(G,w) =9(G,w) = p(G,w)

In [GLS88] the ellipsoid method was used to establish the polynomial time computability of max-
imum cliques in perfect graphs. We now show that interior point methods give us a slightly stronger
result than the ellipsoid method. More precisely, we show that computing maximum cliques (and max-
imum stable sets) in perfect graphs can be accomplished in O*(y/n) randomized parallel time using
P-RAM model of computation if ||w||c = O(n®) for some constant ¢®. This is straightforward. First
recall that we showed a standard SDP problem can be solved in O(y/nmax(L, L', |In¢|)) iterations, if
L is the number of bits in the input SDP, L’ is an a priori bound on the norm of the solution, and
€ 18 the accuracy required on the size of the duality gap. In case of perfect graphs we only need to
set ¢ = 1/3; in fact, if zz and Y} are our current primal and dual estimates where there is only one
integer between z; and W e} then we can stop and declare (G, w) = [z;| = |W oY} |. Furthermore,
L = O(logn) since all coefficients in the primal-dual characterization of 6(G,w) in (5.67) are either
zero or one or w;w;. Finally, L' = O(logn) because at most the whole graph may be a clique and
so its weight is > w;. Thus computing 8(G, w) requires O*(\/n) iterations. Each iteration essentially
involves solving a system of linear equations which is already known to be in complexity class NC|
that is requires O*(1) time with polynomial number of processors. Therefore, computing 0(G, w) for
polynomially bounded w requires O*(y/n) operations on a P-RAM model of computation.

It remains to show that computing the maximum clique itself can be accomplished in O*(\/n).
We cannot use the self reducibility process here since it may require O(n) time even on a P-RAM
machine. However, observe that if the maximum clique is unique then we can compute it in O*(\/n)
parallel time. One could remove one vertex i of the graph and compute 6(G\¢, w) for the remaining
graph. The vertex 7 is in the unique maximum clique if and only if w(G\i,w) < w(G, w). Therefore,
testing this simultaneously for all vertices we get the set of vertices in the maximum clique. When we
do not have uniqueness, we may use the randomized perturbation scheme of Mulmuley, Vazirani and
Vazirani, [MVV87]. First recall their isolating lemma:

Lemma 14 Let S = {z1, -, 2,} and F a family of subsetls of S, that is ' = {Sy,---,Sn}. Further,
let elements of S be assigned integer weights chosen uniformly and independently at random from

[1,2n]. Then,

N | —

Pr[There is a unique maximum weight set in F] >

See [MVV8T] for proof.

To get a maximum clique in a perfect graph we follow a procedure similar to the one adopted by
Mulmuley, Vazirani and Vazirani for constructing the minimum weighted perfect matching in graphs.
The idea 1s to assign weights to vertices randomly so that with high probability the maximum clique
with the new weights is unique, but at the same time, this clique is among the maximum cliques with
the original weights.

Let C:=3, w;. First give a weight of 2C%w; to each vertex ¢ so that the weight of maximum
weighted cliques is at least 2C? more than the next largest clique weight. Then perturb weight of each
vertex i by adding integer w; uniformly and independently chosen from integers in [1,2C]. So now

60*(v/n) means O(y/nlog® n) for some constant k.
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each vertex has weight w; = 2C%w; 4 u;. Notice that if a clique was not maximum before, then it is
impossible for it to become maximum after assigning new weights. Therefore, the maximum clique
with respect to new weights is among one of the maximum cliques with respect to the original weights.
The isolating lemma implies that this clique is unique with a probability at least 1/2 and we may use
the scheme mentioned at the beginning of this section to find it in parallel.

We should mention that this scheme, in fact, results in a Las Vegas type randomized algorithm.
No randomization is involved in computing the size oracle, w(G,w); only constructing a maximum
clique involves probabilistic choices. If the weights generated do not result in a unique maximum
weighted clique, the scheme mentioned at the beginning of this section may return a set which is not
even a clique. This can be checked in parallel and the algorithm returns a message of failure; any set
returned by the algorithm is a genuine maximum clique with no possibility of error. We summarize
these results in the following theorem:

Theorem 11 Let G = (V, E) be a perfect graph with an integral weight vector w on its vertices. Let
also that ||wl||eo = O(n1°8° (™)) for some constant c. Then one can compute the mazimum weighted
clique and the mazimum weighted stable set of G in O*(\/n) Las Vegas randomized parallel time using
a P-RAM model of computation.

Finally we remark that at this time no lifting of the stable set polytope of perfect graphs to a
polytope with polynomially many facets is known. Therefore, STAB G for a perfect graph G serves as
an example of a polytope with exponentially many facets on which one can optimize a linear function
in polynomial time using interior point methods. In fact, as mentioned in the last subsection, one can
compute an n-self-concordant barrier for this polytope in polynomial time.

5.3 The maximum induced k-partite subgraph problem.

In [NM90] G. Narasimhan and R. Manber generalized the concept of the Lovasz number of graphs as
follows: Let ap(G) be the size of the largest induced k-partite subgraph in G. Recall that p(G) is the
minimum number of cliques that can cover all vertices of G. Then Narasimhan and Manber show that

ap(G) < 9p(G):= min M(X +T) < kp(G) (68)

where J is the matrix of all 1’s. For & = 1 ¥ reduces to the Lovasz number ¢. It is clear now that
computing U5 (G) is an SDP problem and may be solved by interior point methods. Taking the dual
of (5.68) we get

Ip(G) = max JeV
s.t. traceY =k
Y eM (69)
0<Y =<1

It is not difficult to extend the bound of Narasimhan and Manber to the weighted case. Let w be a
weight vector over the vertices of G and (G, w) the maximum weight k-colorable induced subgraph

of GG.

Theorem 12 Let w € N™ be an integral weight vector on the vertices of G = (V, E), and let W =
(VW) (W) Then ap(G,w) < ¥(G,w), where (G, w) is defined as

IL(G, w) min{F (X + W) X e ML)

= max{WeY:Y eMandtraceY =k, 0 Y < 1T} (70)
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Proof: (This proof is essentially the same as the one given in [GLS84] for the case k = 1.) One can
transform a weighted graph G into an unweighted one Gw by replacing each vertex ¢ with w; mutually
nonadjacent vertices and then connecting all w; vertices arising from vertex ¢ to all w; vertices arising
from vertex j if and only if ¢ and j are adjacent in . Clearly the size of the unweighted maximum
k-partite subgraph of Gw equals oG, w). Tt suffices to show that ¥;(G, w) = ¥5(Gw). Now, in Gw
two vertices ¢ and j (respectively edges uv and kl) are equivalent if there is an automorphism of Gw
mapping ¢ to j (respectively uv to kl). In particular all w; vertices arising from vertex ¢ in G are
equivalent; so are the corresponding edges. Tt is clear that if two vertices ¢ and j (respectively two
edges uv and kl) are equivalent, then in (5.69) the corresponding variables Y;; and Yj; (respectively
Yuv and Yy;) are equivalent in the sense that by exchanging these variables (5.69) does not change at
all. This in turn implies that among all optimal solutions of (5.69) for graph Gw, there are solutions
where equivalent vertices (respectively edges) have identical optimal values for their corresponding
variables. In other words, among all optimal solutions of (5.69) for G'w, there is one solution Yy, with
the following property: Yy can be partitioned into an n X n block matrix, such that the 7, 7 block is a
w; X w; matrix with all its entries equal to, say, y;;. Now, matrix Y* whose ¢, j entry 1s y;"]/\/m 18
feasible for the max problem in the theorem and it is easy to verify that WeY™* = JeVy, = U3 (Gw) and
thus, ¥;(Gw) < 95(G, w). The converse inequality is also easily verified by reversing the construction
given. ]

Let U be the class of graphs for which a(G’) = 9;(G") for all induced subgraphs G’. Then the
sublinear parallel time algorithm of theorem 5.3 may be extended to solve the largest induced k-partite
subgraph problem for graphs in class U. It remains an interesting open problem to fully characterize

0.

5.4 The graph partitioning problem.

An important class of combinatorial NP-hard optimization problems which lend themselves to SDP
methods for finding upper or lower bounds, arise from graph partitioning and cut problems. This class
of problems result in semidefinite programs with only O(n) variables. Therefore, the interior point
methods may be especially efficient as each iteration requires only solving n X n systems of equations.

The first such problem is the general graph partitioning problem into prescribed size blocks. Sup-
pose we are given a set of integers my > mg > - > my, with Z]' m; = n. Denote by m the k-vector
made up of m;’s. Let also that G = (V| E) be a complete edge-weighted graph with n vertices and
each edge {¢,j} with weight w;;. We want to partition the vertices of & into k subsets such that
the j*™ subset has cardinality m;, and that sum of the weights of those edges whose endpoints are in
different subsets is minimized. Let us denote this minimum number by 7y, (G). Computing 7y, (G) is
of course NP-hard. Hoffman and Donath in [DH72] and [DH73] derive the following lower bound on
the size of the minimum partition (see also Barnes and Hoffman [BH84]). Let A be a matrix with
A;; = wi;j (Asi = 0). Then Donath and Hoffman prove the following relation [DHT73]:

k
1
m(G) > ) 1£n)iI:1a ; m; A; (A + Diag x) (71)
where a:= — > w;;. Again it is clear that computing this bound is an SDP problem. Using the

results from section 4 and after some simplification we get the following pair of primal and dual SDP
programs:

min Zle iz +17x + Zle trace V;
st. I+ Vi+ (my —myyr)Diagx = (my — myyp1)A fori=1,--- k . (72)
Vim0 fori=1,---k
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and

max Ae (Zle(ml — mi+1)Ui)

s.t.  trace U; =1 fore=1,---k (73)
Sica(mi —mip)(Ui)y; =1 forj=1,---n
0=U; =1 fori=1,---k

Barnes and Hoffman in [BH84] describe how to use the eigenvectors associated with the & largest
eigenvalues of the optimal matrix A + Diag x* to generate a partition of the nodes of the graph. See
also Barnes [Bar82a] and [Bar82b].

An important special case of the graph partitioning problem is the case when all m;’s are equal.
In that case the graph partitioning problem simplifies to:

min (k/n)lTx + trace V max AeY
st. V4 Diagx = A st. Y= % fori=1,---,n (74)
V0 0<Y <1

Boppana in [Bop87] considers the graph bisection problem (that is when & = 2 and m; = my = n/2)
and derives the following characterization which is always sharper than (5.74):

1 . .

7 max [J o (A + Diag(x)) — nA1(Ps(A4 + Diag(x)))]

where Pg:=(I — 117 /n) is the projection operator on the linear space S:={x : 1¥x = 0}. This
characterization is equivalent to the following primal and dual SDP pair:

min nz+ 17x max A(l+J/n)eY
T T n .
st. ol — Diag(x) _1x 2—|;lxl = A4 JA;;LAJ s.t. Yii + (l/n) Zj:l Yij=1 fori=1,---,n
Y =0

(75)
(Boppana had the min characterization only, the max characterization results by simply taking the
dual.) To find an actual bisection Boppana uses an eigenvector corresponding to the largest eigen-
value of A;(Pg(A + Diag(x™))) and outputs the bisection that has the n/2 largest component of the
eigenvector on one side. Using the primal characterization Boppana shows that in the unweighted case
(i.e the matrix A4 is simply the 0-1 adjacency matrix of graph () one may get the optimal bisection
with high probability. The graph bisection problem has important applications in the VLSI routing
problem. Combining the SDP formulation of Hoffman and Donath, favorable average case analysis
of Boppana, and the interior point technique developed in this paper may result in an effective and
practical method for solving this problem. For generalizations of these ideas see [RW93].

Related to the graph bisection problem is the maximum cut problem: partition the nodes of the
graph into two sets such that the number of edges with endpoints on different sets is maximum. Of
course one obvious way for finding bounds for this problem is to solve the graph partitioning problem
with k =2, my =4, and me =n—iforalli=1,---[n/2] (notice that in graph partitioning problem
max and min characterizations are essentially equivalent by simply changing the weights w; with

> w; —w;). In [DPI0, PRY1] the following SDP bound is proposed:

min{gAl(A + Diag(x)) : 17x = a} > MC(G) (76)
where MC(G) is the size of maximum cut in GG. (5.76) is equivalent to primal-dual pair:
min  z+ (1/n)17x max AeY
s.t. 2zl — Diag(x) = A st. Yiy=1/n (77)
Y =0
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and may be solved by interior point methods. For related treatment of maximum cut and graph
bisection porblems see [PR92].
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