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Abstract

Evidence is given that implication (and its special case, negation) carry
the logical strength of a system of formal logic. This is done by proving
normalization and cut elimination for a system based on combinatory logic
or λ-calculus with logical constants for and, or, all, and exists, but with none
for either implication or negation. The proof is strictly finitary, showing that
this system is very weak. The results can be extended to a “classical” version
of the system. They can also be extended to a system with a restricted set
of rules for implication: the result is a system of intuitionistic higher-order
BCK logic with unrestricted comprehension and without restriction on the
rules for disjunction elimination and existential elimination. The result does
not extend to the classical version of the BCK logic.
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The main aim of this paper is to provide evidence that implication and
implication alone carries the logical strength of a system of formal logic.
By this I mean that if implication and its rules are left out of a system of
formal logic, the system is very weak. This conclusion requires that negation
be treated as a special case of implication by means of the definition of
¬A as A ⊃ ⊥. (The intuitionistic property of ⊥, namely that any formula
follows from it, adds no logical strength to the system, as we shall see below.)
Furthermore, before we are done, we will see that there are some restricted
rules for implication that can be assumed without adding logical strength to
the system.

As an indication of how the argument will go, consider a standard natural
deduction formulation of first-order minimal logic, and drop the rules for
implication. The remaining rules are as follows:

∧I A1 A2

A1 ∧ A2,
∧E A1 ∧ A2

Ai,

∨I Ai

A1 ∨ A2,
∨E

A1 ∨ A2

[A1]

C

[A2]

C
C,

∀I A(a)
(∀x)A(x),

∀E (∀x)A(x)
A(t),

∃I A(t)
(∃x)A(x),

∃E

(∃x)A(x)

[A(a)]

C
C,

where in ∀I and ∃E a is a free variable which does not occur free in any
undischarged assumption and where in ∧E and ∨I, i = 1 or 2.

Now suppose that we transform deductions by modifying each inference
by ∨E or ∃E by placing a copy of the deduction of the major (left) premise
above each assumption discharged by the rule: i.e., change

D1

A1 ∨ A2

1
[A1]

D2

C

2
[A2]

D3

C
∨E − 1 − 2

C
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to

D1

A1 ∨ A2

D1

A1 ∨ A2

∗1
A1

D2

C

D1

A1 ∨ A2

∗2
A2

D3

C
∨E ∗ −1 − 2

C

and

D1

(∃x)A(x)

1
[A(a)]

D2(a)

C
∃E − 1

C

to

D1

(∃x)A(x)

D1

(∃x)A(x)
∗1

A(a)

D2(a)

C
∃E ∗ −1

C.

These changes could be made systemmatically throughout any deduction, say
by proceeding from the top down (so that each transformation is carried out
on an inference by ∨E or ∃E for which there are no untransformed inferences
by either rule above any premise).

Now consider the standard (non-permutative) proof reduction steps. The
steps for ∧-reductions and ∀-reductions are unchanged, and are as follows:

∧-reductions D1

A1

D2

A2

∧I
A1 ∧ A2

∧E
Ai

D3

reduces to Di

Ai

D3,
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where i = 1 or 2, and

∀-reductions D1(a)

A(a)
∀I

(∀x)A(x)
∀E

A(t)

D2

reduces to D1(t)

A(t)

D2.

The steps for ∨-reductions and ∃-reductions are transformed respectively into
the following:

∨*-reductions

D0

Ai

∨I
A1 ∨ A2

D0

Ai

∨I
A1 ∨ A2

∗1
A1

D1

C

D0

Ai

∨I
A1 ∨ A2

∗2
A2

D2

C
∨E ∗ −1 − 2

C

D3

reduces to
D0

Ai

Di

C

D3,

where i = 1 or 2, and

∃*-reductions

D0

A(t)
∃I

(∃x)A(x)

D0

A(t)
∃I

(∃x)A(x)
∗1

A(a)

D1(a)

C
∃I ∗ −1

C

D2

reduces to
D0

A(t)

D1(t)

C

D2.

Note that Each of these reduction steps shortens the deduction. This
means that any sequence of these reduction steps terminates, and this is
proved without any reference to the complexity of the formulas involved. The
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result will still hold if instead of first-order quantifiers we have second- or
higher-order quantifiers. Furthermore, although the normalization is not
complete (in the sense of Prawitz [16], it is sufficient to prove the consistency
of the system.

At first this result seems to contradict Gödel’s Second Theorem, since
the proof is completely finitary but implies the consistency of a system with
higher-order quantifiers. However, the absence of implication and negation
means that we cannot represent this proof within the system. In fact, the
system is so weak that we cannot even represent the famous Aristotelian
premise “All men are mortal.” Furthermore, this proof fails if implication
(or negation) is included in the system. If implication is present, the proof
requires a transformation at each implication cut formula that takes

1
[A]

D1

B
⊃ I − 1

A ⊃ B
D2

A
⊃ E

B

D3

to

D2

A
∗1

A

D1

B
⊃ I − 1

A ⊃ B
D2

A
⊃ E

B

D3,

and these transformations must all be carried out before the reduction process
starts. But since new implication cut formulas can be created as part of the
reduction process, there is no way all of them can be transformed at that
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stage. The problem is that the assumption discharged in the creation of the
cut formula does not occur in the same rule as the part of the deduction to
be duplicated. Hence, this proof cannot be carried out this way if implication
(or its special case, negation) occurs with its usual rules.

However, implication (and negation) can be permitted in the system if
the introduction rule is restricted so that the assumption discharged by the
rule cannot occur more than once (after the transformation that precedes
the reduction).

What Gödel’s Second Theorem really tells us about this proof is that the
system is quite weak, no matter what the order of the quantifiers. This, in
turn, suggests the main theme of this paper, that the strength of a system of
logic is determined by its rules for implication (and negation). The purpose
of this paper is to explore this importance of implication in connection with
systems of logic based on combinatory logic or λ-calculus in the tradition of
H. B. Curry.

There is previous evidence in Curry’s work for the importance of implica-
tion in this regard. It is well known that after Kleene and Rosser [11] proved
inconsistent the original systems of Curry and Church, Curry was the only
one (except for F. B. Fitch) who remained interested in using combinatory
logic or λ-calculus as a basis for logic and mathematics. This story is told
in [19]. Actually, the paradox of Kleene and Rosser did not apply to Curry’s
original system in [3] but to its extension in [4]; however, this extension was
so much a part of Curry’s original objectives that the part of his original sys-
tem dealing with logical connectives and quantifiers was not very interesting
without it. Curry’s first assumption was that the cause of the contradiction
lay in his postulates for the universal quantifier. Later, however, he derived
in [5] a contradiction from the postulates for implication alone.

In [8, Theorem 16C3, p. 441] we claimed to have a proof that if impli-
cation (and its special case, negation) is left out of the system, no further
restrictions are needed to avoid the contradiction. If the proof had been
valid, this result would also have applied to other systems, such as second
order logic, higher order logic (type theory), logic with comprehension terms
for set theory, etc. But Curry found a gap in that proof in 1975. (The proof
was, in fact, my personal responsibility, and originally appeared in [17, The-
orem 5C3, p. 130f]. The error is that Stage 2 case (β) does not go through
as claimed in [8, p. 202].) This paper arose from an attempt to give a new
proof of the same result.
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In Section 1, a system of logic based on combinatory logic or λ-calculus
with conjunction, disjunction, and the universal and existential quantifiers is
defined, first as an L-system and then as a natural deduction system, and re-
duction rules are given for the latter formulation. The system is formalized as
minimal logic, but the quantifiers are essentially of infinite order. In Section
2, the above sketch of a proof of normalization is carried out in detail. This
is done, following a suggestion of G. E. Mints (in private correspondence)
by defining in(D), the index of a deduction, which is the length (number of
formulas) in the tree-form of the deduction obtained from D by carrying out
the transformation suggested above. It is then shown that each reduction
step reduces the index of the deduction, and so normalization follows. It is
then shown that this implies cut-elimination for the L-system. In Section
3, these results are extended to a “classical” version of the system: for the
L-system this means allowing more than one formula on the right-hand side
of the sequent, but without implication a new way of defining the classical
version of the natural deduction formulation is needed. It turns out that this
classical system is essentially a version (without implication or negation) of
the logic of constant domains. Finally, in Section 4, the system with im-
plication restricted as suggested above is considered. This system turns out
to be a variation of intuitionistic higher-order BCK logic with unrestricted
comprehension. BCK logic is a logic in which the postulates for implication
correspond under the formulas-as-types notion [10] to the types of a system
of combinators in which no combinator duplicates an argument or to a sys-
tem of λ-calculus in which λx . M is well-formed only when x occurs free
at most once in M . This particular BCK logic is unlike other formulations
of BCK logic such as that of [20] in that there are no restrictions on the
rules for other connectives and quantifiers. This result does not hold for the
corresponding classical system. The result is stronger than the similar result
of White [20] because in White’s system the rules restricting the number of
occurrences of discharged assumptions for the rule of implication introduc-
tion that characterize BCK logic also apply to disjunction elimination and
existential elimination, whereas in the system considered here, the restruc-
tions apply only to the rule for implication introduction (and its special case
of negation introduction).

The incorrect proof of [8, Theorem 16C3, p. 441] was a minor modification
of another proof for a much simpler system with an operator representing
equality. That proof is also incorrect for the same reason. Hence, this simpler
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system is treated in Appendix A.
Because this paper is a part of the program of H. B. Curry, it is written

in his language. This means that I am following Curry in using ‘Λ’ for ‘∧’,
‘V’ for ‘∨’, ‘Π’ for ‘∀’, and ‘Σ’ for ‘∃’ in the names of rules. Furthermore, I
follow Curry in using ‘i’ and ‘e’ instead of ‘I’ and ‘E’ in the names of natural
deduction rules, and I use an asterisk as in ‘*Λ’ to indicate the L-rule for
conjunction on the left. Except where otherwise specified, the other basic
definitions and conventions are those of [9] and [8]. In particular, as in [9],
conversion will be denoted by ‘ =∗ ’ and reduction by ‘⊲’. The major change
is that, for the reasons given in [18, p. 31, footnote 1], I will not use the
symbol ‘⊢’ in some places where it is used in [8].

A preliminary version of this paper was presented under the title “Nor-
malization for Combinatorially Complete Systems Without Implication” at
the special symposium on proof theory held at the joint annual meeting of
the American Mathematical Society and the Association for Symbolic Logic
in Denver, 5–9 January 1983. I would like to thank G. E. Mints, M. W. Bun-
der, Garrel Pottinger, and Roger Hindley for their helpful comments and
suggestions.

1 The System for Logic without Implication

Let us begin with the system called F33 in [8, §16C2].

Definition 1 The system FL
33 (or, when more precision is needed, FLA

33 ) is
formed from the terms of a system of combinatory logic or λ-calculus with the
following non-redex constants: Λ (conjunction), V (disjunction), Π (universal
quantifier), and Σ (existential quantifier). The provability relation is given
by an L-system with the following axioms and rules, where M and M ′ are
sequences of terms:

Axiom Scheme: X ° X, for each term X.

Rules:

*C M ° Z
M ′

° Z,

*W M, X, X ° Z
M, X ° Z,
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*K M ° Z
M, X ° Z,

*Exp M, Y ° Z
M, X ° Z,

Exp* M ° Y
M ° X

*Λ M, X, Y ° Z
M, ΛXY ° Z,

Λ* M ° X M ° Y
M ° ΛXY,

*V M, X ° N M, Y ° Z
M, VXY ° Z,

V* M ° Xi

M ° VX1X2,

*Π M, XY ° Z
M, ΠX ° Z,

Π* M ° Xx
M ° ΠX,

*Σ M, Xx ° Z
M, ΣX ° Z,

Σ* M ° XY
M ° ΣX,

Cut M ° X M, X ° Z
M ° Z,

where in Π* and *Σ, x is a variable which does not occur free in X, M , or
Z, where in ∨∗, i = 1 or 2, where in rules *Exp*, there is the condition that
X ⊲ Y , and where in *C, M ′ is a permutation of M .

Remark The main departure from the conventions of [8] is that I am not
writing the range of quantification inside the symbol ‘°’ and I am writing ‘⊲’
for reduction.) By [8, Theorem 12C7, p. 193], the rules

*Eq M, Y ° N
M, X ° N,

Eq* M ° Y, L
M ° X, L,

where the convention here is that X =∗ Y , are admissible in the system, and,
indeed, in any other system of this kind; I shall use this fact throughout the
paper without further mention. Of course, in the singular system, rules C*,
W*, and K* are not postulated, but Exp* is, and so Eq* is admissible.

Remark This is not quite the system F33 of [8, §16C2], which has, in addi-
tion, the non-redex constants Q and and P and the rules *Q* of Appendix
A and *P of §4 below. The system presented here will be modified in §4 so
that Q can be defined in such a way as to make rules *Q* of Appendix A
valid, and a natural deduction rule corresponding to *P will be one of the
rules postulated in that modification.

The natural deduction system, which is of more interest to us here, is
defined as follows:
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Definition 2 The system FT
33 (or, to be more precise, FTA

33 ), is defined from
the same terms as FT

33 of Definition 1. Its proof system is a natural deduction
system with the following rules:

Eq X
Y,

Condition: Y =∗ X.

Λe ΛXY
X,

ΛXY
Y,

Λi X Y
ΛXY,

Ve

VXY

[X]

Z

[Y ]

Z
Z,

Vi X
VXY,

Y
VXY,

Πe ΠX
XZ,

Πi Xx
ΠX,

Σe

ΣX

[Xx]

Z
Z,

Σi XZ
ΣX.

Here, in Πi and Σe, x is a variable which does not occur free in X, Z, or any
undischarged assumption.

We are interested in the following proof-reduction steps, where in each
case the deduction on the left reduces to the one on the right:

Λ-reductions For i = 1 or i = 2,

D1

X1

D2

X2
Λi

ΛX1X2

Eq
ΛY1Y2

Λe
Yi

D3

Di

Xi
Eq

Yi

D3.
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V-reductions For i = 1 or i = 2,

D1

Xi
Vi

VX1X2 Eq
VY1Y2

1
[Y1]

D2

Z

2
[Y2]

D3

Z
Ve − 1 − 2

Z

D4

D1

Xi
Eq

Yi

Di+1

Z

D4.

Π-reductions

D1(x)

Xx
Πi

ΠX
Eq

ΠY
Πe

Y Z

D2

D1(Z)

XZ
Eq

Y Z

D2.

Σ-reductions

D1

XU
Σi

ΣX
Eq

ΣY

1
[Y x]

D2(x)

Z
Σe − 1

Z

D3

D1

XU
Eq

Y U

D2(U)

Z

D3.

Note that we do not have the permutative reduction steps of [16]; I know of
no way to extend the normalization proof to cover these rules. This means
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that the standard proof in [16] that normalization implies cut elimination
cannot be applied to this system without modification. Nevertheless, if we
modify the definition of “branch”, then it is true that in a normal deduction
all of the e-rules precede all of the i-rules in a given branch. Here a branch
is the first part of a thread down to the first minor premise for an inference
by Ve or Σe if there is one. (In §4 below it will mean the first part of a
thread down to the first minor premise for an inference by Ve, Σe, or Pe.)
Because of the above property of normal deductions, it is easy to show by
the usual methods than an “atomic formula” (in this case, a term in normal
form which does not convert to one of the forms ΛXY , VXY , ΠX, or ΣX)
cannot be proved without an undischarged assumption

Remark It follows that if ⊥ is taken to be an abbreviation for ΠI (which is
(∀x)x in the usual notation), then there is no proof of ⊥; for if there were,
then there would be the following proof of x for any variable x, which is ruled
out.

ΠI
Πe

Ix
Eq

x.

Note that this is a property of intuitionistic logic not shared by minimal logic.
This is why the name of the system does not refer to minimal logic, but to
what Curry in [6, Chapter 5] calls absolute logic. A different definition of ⊥
would give us a form of minimal logic.

2 The Proof of Normalization

We now come to the definition of in(D) for a deduction D as explained in
the Introduction, where until the end of the proof of Theorem 1, “deduction”
means deduction of FTA

33 . The definition requires first a function of a formula,
an specification of occurrences of that formula as an undischarged assumption
(e.g., by the numbers normally used to indicate where they are discharged),
and a deduction, which tells us how many times that assumption is duplicated
in the transformation described in the introduction.

Definition 3 (Index of an assumption) If D is a deduction, X a term,
and O is a specification of occurrences of X as an undischarged assumption,
then the index of X with respect to O and D, in(X, O, D), is defined by
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induction on the length of D as follows:
(a) if D ≡ X, then in(X, O, D) = 1 if this one occurrence of X is specified
by O and in(X, O, D) = 0 otherwise;
(b) if D ≡ Z 6≡ X, then in(X, O, D) = 0;
(c) if the last inference in D is by any of the rules Eq, Λe, Vi, Πe, Πi, or Σi
(i.e., any of the rules with one premise), if D′ is the result of deleting the last
inference from D, and if O′ specifies the occurrences of X in D′ specified by
O in D, then in(X, O, D) = in(X, O′, D′);
(d) if D is the deduction

D1

Y1

D2

Y2
Λi

ΛY1Y2,
(1)

then in(X, O, D) = in(X, O1, D1) + in(X, O2, D2), where O1 and O2 specify
the occurrences of X in D1 and D2 respectively specified by O in D;
(e) if D is the deduction

D1

VY1Y2

1
[Y1]

D2

Z

2
[Y2]

D3

Z
Ve − 1 − 2

Z,

(2)

then in(X, O, D) = [in(Y1, O
′

1, D2) + in(Y2, O
′

2, D3) + 1] · in(X, O1, D1) +
in(X, O2, D2) + in(X, O3, D3), where, for i = 1, 2, 3, Oi specifies the occur-
rences of X as an undischarged assumption in Di specified by O (which, by
the assumption about O, do not include any of the assumptions discharged
by the rule Ve) and, for j = 1, 2, O′

j specifies the occurrences of Yj in Dj+1

discharged by the inference by the rule Ve; and
(f) if D is the deduction

D1

ΣY

1
[Y x]

D2(x)

Z
Σe − 1

Z,

(3)

then in(X, O, D) = [in(Y x, O′, D2(x))+1] · in(X, O1, D1)+ in(X, O2, D2(x)),
where O′ specifies the occurrences of Y x in D2(x) discharged by the inference
by Σe and where, for i = 1, 2, Oi specifies the occurrences of X in Di specified
by O in D.
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Note that in(X, O, D) 6= 0 if and only if X occurs as an undischarged
assumption in D.

Definition 4 (Index of a deduction) The index of a deduction D, in(D),
is defined by induction on the length of D as follows:
(a) if D ≡ X, then in(D) = 1;
(b) if the last inference in D is by Rule Eq, and if D′ is the result of deleting
the last inference from D, then in(D) = in(D′);
(c) if the last inference in D is by any of the rules with one premise except
Eq, and if the result of deleting the last inference from D is D′, then

in(D) = in(D′) + 1;

(d) if D is the deduction (1), then

in(D) = in(D1) + in(D2) + 1;

(e) if D is the deduction (2), then

in(D) = [in(Y1, O1, D2) + in(Y2, O2, D3) + 1] · in(D1) + in(D2) + in(D3) + 1,

where, for i = 1, 2, Oi specifies the occurrences of Yi in Di+1 discharged by
the inference by Ve; and
(f) if D is the deduction (3), then

in(D) = [in(Y x, O, D2(x)) + 1] · in(D1) + in(D2(x)) + 1,

where O specifies the occurrences of Y x in D2 discharged by the inference
by Σe.

Remark Note that in (e) and (f) of Definition 4, if there are no inferences by
Ve or Σe in D2, D3, or D2(x), then the number by which in(D1) is multiplied
in the formula for in(D) is one more than the total number of occurrences
of the assumptions discharged by the inferences in question. Note also that
in(D) does not count the inferences by Rule Eq in D.

Theorem 1 If D′ is obtained from D by a reduction step, then in(D′) <
in(D).
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The proof requires three lemmas.

Lemma 1 (a) in([Z/x]X, O′, [Z/x]D) = in(X, O, D) if O′ specifies the oc-
currences of [Z/x]X in [Z/x]D corresponding to the occurrences of X speci-
fied by O in D; and
(b) in([Z/x]D) = in(D).

Proof By an easy induction on the length of D.

Lemma 2 Let D1 and D2 be the deductions

D1

X
and

X
D2

Z.

Then if D is

D1

X

D2

Z,

we have in(D) = in(X, O, D2) · [in(D1) − 1] + in(D2), where O specifies
the indicated occurrences of X in D2 (i.e., the occurrences over which D1 is
placed to form D).

Proof By induction on the length of D2.
(a) D2 ≡ X (and Z ≡ X) and the indicated occurrence of X is specified (so
that D1 is placed over it). Then in(D2) = in(X, O, D2) = 1. Also D ≡ D1.
Hence,

in(D) = in(D1)

= in(D1) − 1 + 1

= 1 · [in(D1) − 1] + 1

= in(X, O, D2) · [in(D1) − 1] + in(D2).

(b) X is not an undischarged assumption of D2 or else is an undischarged
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assumption which is not specified (so that D1 is not placed over it to form
D). Then D ≡ D2, in(X, O, D2) = 0, and

in(D) = in(D2)

= 0 + in(D2)

= 0 · [in(D1) − 1] + in(D2)

= in(X, O, D2) · [in(D1) − 1] + in(D2).

(c) The last inference in D2 (and hence also in D) is by Eq. Let D′

2 (D′) be
the result of deleting the last inference from D2 (D). Then in(X, O, D2) =
in(X, O′, D′

2) where O′ specifies the occurrences of X as an undischarged as-
sumption in D′

2 specified by O in D2, in(D2) = in(D′

2), and by the hypothesis
of induction,

in(D′) = in(X2, O
′, D′

2) · [in(D1) − 1] + in(D′

2).

Hence,

in(D) = in(D′)

= in(X2, O
′, D′

2) · [in(D1) − 1] + in(D′

2)

= in(X2, O, D2) · [in(D1) − 1] + in(D2).

(d) The last inference in D2 (and hence also in D) is by one of the one-premise
rules except for Eq. Let D′

2 (D′) be the result of deleting the last inference
from D2 (D). Then in(X, O′, D′

2) = in(X, O, D2) where O′ is as in Case (c),
in(D2) = in(D′

2) + 1, and by the induction hypothesis,

in(D′) = in(X, O′, D′

2) · [in(D1) − 1] + in(D′

2).

Hence,

in(D) = in(D′) + 1

= in(X, O′, D′

2) · [in(D1) − 1] + in(D′

2) + 1

= in(X, O, D2) · [in(D1) − 1] + in(D2).
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(e) D2 is the deduction

X
D3

Z1

X
D4

Z2
Λi

ΛZ1Z2.

Then D is

D1

X

D3

Z1

D1

X

D4

Z2
Λi

ΛZ1Z2.

Let D′

3, D′

4 be

D1

X

D3

Z1,

D1

X

D4

Z2.

If, for i = 2, 3, 4, Oi specifies the occurrences of X in Di specified by O in D,
then

in(X, O2, D2) = in(X, O3, D3) + in(X, O4, D4),

in(D2) = in(D3) + in(D4) + 1,

and, by the induction hypothesis,

in(D′

3) = in(X, O3, D3) · [in(D1) − 1] + in(D3),

in(D′

4) = in(X, O4, D4) · [in(D1) − 1] + in(D4).

Hence,

in(D) = in(D′

3) + in(D′

4) + 1

= in(X, O3, D3) · [in(D1) − 1] + in(D3)

+in(X, O4, D4) · [in(D1) − 1] + in(D4) + 1

= [in(X, O3, D3) + in(X, O4, D4)] · [in(D1) − 1] + in(D3) + in(D4) + 1

= in(X, O2, D2) · [in(D1) − 1] + in(D2).
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(f) D2 is the deduction

X
D3

VY1Y2

1
[Y1], X

D4

Z

2
[Y2], X

D5

Z
Ve − 1 − 2

Z.

Then D is

D1

X

D3

VY1Y2

1
[Y1],

D1

X

D4

Z

2
[Y2],

D1

X

D5

Z
Ve − 1 − 2

Z.

Let D′

3, D′

4, D′

5 be

D1

X

D3

VY1Y2,

Y1,
D1

X

D4

Z,

Y2,
D1

X

D5

Z.

If, for i = 2, 3, 4, 5, Oi specifies the occurrences of X in Di specified by O in
D and, for j = 1, 2, O′

j specifies the occurrences of Yj in Dj+3 discharged by
the inference by Ve, then

in(X, O2, D2) = [in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1] · in(X, O3, D3)

+in(X, O4, D4) + in(X, O5, D5),

in(D2) = [in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1] · in(D3)

+in(D4) + in(D5) + 1,

and, by the induction hypothesis,

in(D′

i) = in(X, Oi, Di) · [in(D1) − 1] + in(Di), i = 3, 4, 5.
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Thus,

in(D) = [in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1] · in(D′

3) + in(D′

4) + in(D′

5) + 1

= [in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1]

·{in(X, O3, D3) · [in(D1) − 1] + in(D3)}

+in(X, O4, D4) · [in(D1) − 1] + in(D4)

+in(X, O5, D5) · [in(D1) − 1] + in(D5) + 1

= {[in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1] · in(X, O3, D3)

+in(X, O4, D4) + in(X, O5, D5)}

·[in(D1) − 1] + [in(Y1, O
′

1, D4) + in(Y2, O
′

2, D5) + 1] · in(D3)

+in(D4) + in(D5) + 1

= in(X, O2, D2) · [in(D1) − 1] + in(D2).

(g) D2 is the deduction

X
D3

ΣY

1
[Y x], X

D4(x)

Z
Σe

Z.

Then D is

D1

X

D3

ΣY

1
[Y x],

D1

X

D4(x)

Z
Σe

Z.

Let D′

3, D′

4 be

D1

X

D3

ΣY,

Y x,
D1

X

D4(x)

Z.
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If, for i = 2, 3, 4, Oi specifies the occurrences of X in Di specified by O in D
and if O′ specifies the occurrences of Y x in D4(x) discharged by the inference
by Σe, then

in(X, O2, D2) = [in(Y x, O′, D4(x)) + 1] · in(X, O3, D3) + in(X, O4, D4(x)),

in(D2) = [in(Y x, O′, D4(x)) + 1] · in(D3) + in(D4(x)) + 1,

and, by the induction hypothesis,

in(D′

i) = in(X, Oi, Di) · [in(D1) − 1] + in(Di), i = 3, 4.

Hence,

in(D) = [in(Y x, O′, D4(x)) + 1] · in(D′

3) + in(D′

4) + 1

= [in(Y x, O′, D4(x)) + 1] · {in(X, O3, D3) · [in(D1) − 1] + in(D3)}

+in(X, O4, D4(x)) · [in(D1) − 1] + in(D4(x)) + 1

= {[in(Y x, O′, D4(x)) + 1] · in(X, O3, D3) + in(X, O4, D4(x))} · [in(D1) − 1]

+[in(Y x, O′, D4(x)) + 1] · in(D3) + in(D4(x)) + 1

= in(X, O2, D2) · [in(D1) − 1] + in(D2).

As an immediate corollary of Lemma 2, we have the following result:

Lemma 3 If D and D′ are the deductions

D1

X

D2

and

D′

1

X

D2,

and if in(D1) < in(D′

1), then in(D) < in(D′).

Proof of Theorem 1 There are four cases, depending on the reduction step.
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Λ-reductions. Let D and D′ be

D1

X1

D2

X2

Λi
ΛX1X2

Eq
ΛY1Y2

Λe
Yi

D3

and

Di

Xi
Eq

Yi

D3

respectively, where by Lemma 3 we may disregard D3. Then

in(D) = in(D1) + in(D2) > in(Di) = in(D′).

V-reductions. Let D and D′ be

D1

Xi

Vi
VX1X2

Eq
VY1Y2

1
[Y1]

D2

Z

2
[Y2]

D3

Z
Ve − 1 − 2

Z

D4

and

D1

Xi
Eq

Yi

Di+1

Z

D4

respectively, where, by Lemma 3, we may disregard D4. If, for i = 1, 2, O′

i

specifies the occurrences of Yi in Di+1 discharged by the inference by Ve, then

in(D) = [in(Y1, O
′

1, D2) + in(Y2, O
′

2, D3) + 1] · [in(D1) + 1]

+in(D2) + in(D3) + 1,

in(D′) = in(Yi, O
′

i, Di+1) · [in(D1) − 1] + in(Di+1),

and clearly in(D′) < in(D).
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Π-reductions. Let D and D′ be

D1(x)

Xx
Πi

ΠX
Eq

ΠY
Πe

Y Z

D2

and

D1(Z)

XZ
Eq

Y Z

D2

respectively, where, by Lemma 3, we may disregard D2. Then

in(D) = in(D1(x)) + 2 = in(D1(Z)) + 2 > in(D1(Z)) = in(D′).

Σ-reductions. Let D and D′ be

D1

XU
Σi

ΣX
Eq

ΣY

1
[Y x]

D2(x)

Z
Σe − 1

Z

D3

and

D1

XU
Eq

Y U

D2(U)

Z

D3

respectively, where, by Lemma 3, we may disregard D3. If O′ specifies the
occurrences of Y x in D2(x) discharged by the inference by Σe and if O′′

specifies the corresponding occurrences of Y U in D2(U), then

in(D) = [in(Y x, O′, D2(x)) + 1] · [in(D1) + 1] + in(D2(x)) + 1

in(D′) = in(Y U, O′′, D2(U)) · [in(D1) − 1] + in(D2(U)),

and since in(Y U, O′′, D2(U)) = in(Y x, O′, D2(x)) and in(D2(U)) = in(D2(x))
by Lemma 1, we clearly have in(D′) < in(D).

Corollary 1.1 Every deduction can be reduced to a normal deduction (a
deduction which is irreducible).
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Proof An easy induction on the index of the deduction.

This normalization result makes it possible to prove cut elimination for
the (singular) L-system introduced in §2.

Theorem 2 The cut elimination theorem holds for FL
33.

The proof consists of two lemmas:

Lemma 4 If
M ° X(4)

is provable in the FL
33, then

M ⊢ X(5)

holds in FT
33.

Proof A straightforward induction on the length of the proof of (4). If (4)
is the conclusion of *Exp or Exp*, then (5) follows by Rule Eq. The other
cases are similar to those in [6, Theorems 5D6 and 7C1 (necessity)].

Lemma 5 If (5) holds in FT
33, then there is a cut-free proof of (4) in FL

33.

Proof By Corollary 1.1, if (5) holds there is a normal deduction of it. Let
this normal deduction be D. The proof is an induction on (in(D), ln(D)),
where ln(D) is the length of D (the number of nodes in the tree diagram of
D) and where the pairs are ordered by the usual lexicographic order, so that
(a, b) < (c, d) if a < c or else a = c and b < d. Note that a proper part of a
deduction has an index no higher than that of the entire deduction. For the
basis of the induction, note that the result is trivial if (5) is is a deduction
consisting of a single formula, since (4) an instance of the axiom scheme. For
the induction step, we have the following cases:

Case 1. The last inference is an i-inference. Let D′ be the result of
deleting the last inference (D′ may consist of two separate deductions). By
applying the corresponding rule on the right to the induction hypothesis
(whose index(es) is (are) lower than in(D)), we obtain a cut-free proof of
(4).

Case 2. The last inference is by Eq. Similar to Case 1, but now in(D′) =
in(D) and ln(D′) < ln(D), and the corresponding rule on the right is Eq*.
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Case 3. The last inference is an e-inference. Then the only inferences
which occur in the left branch of D are e-inferences and inferences by Eq.
Let the top formula of this left branch be Y (note that it is not discharged
in D) and let the first inference be by rule R. If R is Λe, Πe, or Eq, then
deleting the inference results in a deduction of lower index or equal index
and lower length than D, and so we can apply the corresponding rule on the
left to the induction hypothesis to obtain a cut-free proof of (4). The only
cases left are those in which R is Ve and Σe.

If R is Ve, then Y is VY1Y2 and D is

VY1Y2

1
[Y1]

D1

Z

2
[Y2]

D2

Z
Ve − 1 − 2

Z

D3

X.

Now the two deductions

Y1

D1

Z

D3

X

and

Y2

D2

Z

D3

X

have lower indexes than does D. Furthermore, although they may not be
in normal form (because our normalization procedure does not eliminate all
maximum segments but only cut formulas), they can certainly be normalized
by Corollary 1.1, and the resulting normal deductions will have still lower
indexes. Hence, if M ′ is all of M except Y , then by the induction hypothesis
there are cut-free proofs of

M ′, Y1 ° X, M ′, Y2 ° X.

By *V there is a cut-free proof of (4).
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The case for Σe is similar.

Remark This proof is somewhat complicated, since it is necessary to obtain
some of the effects of the permutative reduction steps without having them
as part of the normalization process. It therefore seems worth considering
an example. Let us begin with the following deduction of VY Z, X ⊢ X:

VY Z

1
[Y ] X

Λi
ΛY X

Vi
V(ΛY X)(ΛZX)

2
[Z] X

Λi
ΛZX

Vi
V(ΛY X)(ΛZX)

Ve − 1 − 2
V(ΛY X)(ΛZX)

3
[ΛY X]

Λe
X

4
[ΛZX]

Λe
X

Ve − 3 − 4
X.

This deduction is normal in the sense of this paper (although not in the sense
of Prawitz [16]). If we apply Lemma 5 to this deduction, we are in Case 3,
since the last inference is an e-inference. The top of the main branch is VY Z;
the rest of the main branch consists of V(ΛY X)(ΛZX), X. The subcase is
that for Ve, so we need to look at the following two deductions:

Y X
Λi

ΛY X
Vi

V(ΛY X)(ΛZX)

1
[ΛY X]

Λe
X

2
[ΛZX]

Λe
X

Ve − 1 − 2
X

and
Z X

Λi
ΛZX

Vi
V(ΛY X)(ΛZX)

1
[ΛY X]

Λe
X

2
[ΛZX]

Λe
X

Ve − 1 − 2
X.

Neither of these deductions is normalized, but both can be normalized: in
each case a V-reduction followed by a Λ-reduction leads to a one-step deduc-
tion

X.

Hence, the cut-free proof in FL
33 is

X ° X ∗K
VY Z, X ° X.
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Note that Lemmas 4 and 5 also imply the equivalence of FT
33 and FL

33.
An examination of the proof of Lemma 5 shows that we can, in fact, prove

the following stronger result:

Corollary 2.1 If (5) holds in FT
33, then there is a cut-free proof of (4) in

FL
33 in which rule *W is not used.

Corollary 2.2 Rule *W is redundant in FL
33.

Proof Redefine FL
33 without this rule. Then Lemma 4 is proved as before,

and Lemma 5 holds by Corollary 2.1. Hence, Theorem 2 holds for this
modified FL

33. It is then possible to derive rule *W as follows:

M, X, X ° Z
∗V

M, VXX ° Z
X ° X

V∗
X ° VXX

Cut
M, X ° Z.

3 The Classical Version

Finding a classical version of FL
33 is easy; take the system with more than

one formula on the right of a sequent.

Definition 5 The system FLC
33 is defined by taking the same terms as in

Definition 1 for FLA
33 . The proof system is defined by the following axioms

and rules, where M , N , and L are sequences of terms:

Axiom Scheme: X ° X, for each term X.

Rules:

*C M ° N
M ′

° N,
C* M ° N

M ° N ′,

*W M, X, X ° N
M, X ° N,

W* M ° X, X, L
M ° X, L,

*K M ° N
M, X ° N,

K* M ° L
M ° X, L,
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*Exp M, Y ° N
M, X ° N,

Exp* M ° Y, L
M ° X, L,

*Λ M, X, Y ° N
M, ΛXY ° N,

Λ* M ° X, L M ° Y, L
M ° ΛXY, L,

*V M, X ° N M, Y ° N
M, VXY ° N,

V* M ° X, Y, L
M ° VXY, L,

*Π M, XZ ° N
M, ΠX ° N,

Π* M ° Xx, L
M ° ΠX, L,

*Σ M, Xx ° N
M, ΣX ° N,

Σ* M ° XZ, L
M ° ΣX, L,

Cut M, X ° N M ° X, L
M ° N, L,

where, in rules Π* and *Σ, x is a variable which does not occur free in M ,
X, N , or L, in rules *Exp* there is the condition that X ⊲ Y , and in rules
*C*, M ′ and N ′ are permutations of M and N respectively.

Remark This statement of the rules follows a convention from [8] in that for
a system that is singular (i.e., with only one term on the right of a sequent),
N is to consist of one formula and L is to be void. This makes it possible to
state the rules, except for rule V*, for singular and multiple systems together.

However, for the natural deduction system, it is not so easy, since all of
the usual natural deduction rules which lead to classical logic when added to
intuitionistic logic involve implication or negation. (A rule with implication
alone is Pk of [6].) One way to find such a rule with neither implication nor
negation is to try to prove that if

M ° Y1, Y2, . . . , Yn(6)

holds in FLC
33 , then

M ⊢ VY1(VY2(. . . (VYn−1Yn) . . .))(7)

holds in FTA
33 . If we are trying an induction on the length of the proof of

(6), then the only case that fails is the case in which (6) is the conclusion
of Π*. This reflects the fact that in an L-system for first-order intuitionistic
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logic, the rules which must be singular on the right are Π* and the rules
for implication and negation. To complete this case of the proof here, it is
sufficient to add the rule

ΠV V(Xx)Y
V(ΠX)Y,

where x does not occur free in X, Y , or any undischarged assumption.
Now in first-order predicate calculus, adding this rule to intuitionistic

logic leads to the logic of constant domains, and as Lopez-Escobar shows in
[13], there is no cut-free, complete, and sound L-system for this logic. But
Lopez-Escobar is working in a mixed system in which the rules for implication
and negation must be singular on the right but Π* need not be. Since we are
dealing with a system without implication or negation that is not mixed (all
rules on the right are multiple), we do not have this problem.

Remark One might have thought that cut elimination could be proved for
the mixed system of Lopez-Escobar by the methods of [6, Theorem 5D3, pp.
213–215]. But this is not the case. Curry’s proof works only for systems with
the following property: if the rule for a connective or quantifier on the left
fails to be invertible, then the rule for the same connective or quantifier on
the right must be singular. Since *Π is not invertible, Curry’s proof does not
apply here.

Definition 6 The system FTC
33 is defined by adding rule ΠV to FTA

33 .

For this new rule we take the following reduction steps, where the deduc-
tion on the left reduces to the one on the right:

ΠV1-reductions

D1

U
Vi

VUV
Eq

V(Xx)Y
ΠV

V(ΠX)Y

D2

D1

U
Eq

Xx
Πi

ΠX
Vi

V(ΠX)Y

D2.
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ΠV2-reductions

D1

V
Vi

VUV
Eq

V(Xx)Y
ΠV

V(ΠX)Y

D2

D1

V
Eq

Y
Vi

V(ΠX)Y

D2.

With these reduction rules, we can show that in a normalized deduction
no inference by ΠV will follow an i-inference. Hence, although ΠV may look
like an introduction rule, it behaves like an elimination rule. It differs from
other e-rules in that because of the eigenvariable it cannot be the top inference
in a branch of a deduction.

To extend the definition of index to this system, include ΠV in clause (c)
of Definition 3 and add the following clause to Definition 4:

(c) if the lst inference of D is by ΠV, and if D′ is the result of deleting the
last inference from D, then in(D) = in(D′) + 2.

(This is “in(D′) + 2” rather than “in(D′) + 1” for technical reasons; see the
proof of Theorem 1 below.)

The proofs of Lemmas 1 and 3 for this system are straigntforward. We
can prove Lemma 2 and Theorem 1 as follows:

Proof of Lemma 2 If the last inference in D2 (and hence also in D) is
by ΠV, let D′

2 (D′) be the result of deleting the last inference from D2 (D)
and let O′ specify the occurrences of X in D′

2 specified by O in D. Then
in(X, O′, D′

2) = in(X, O, D2), in(D2) = in(D′

2)+2, and by the hypothesis of
induction

in(D′) = in(X, O′, D′

2) · [in(D1) − 1] + in(D′

2).

Hence

in(D) = in(D′) + 2

= in(X, O′, D′

2) · [in(D1) − 1] + in(D′

2) + 2

= in(X, O, D2) · [in(D1) − 1] + in(D2).

28



  

Proof of Theorem 1 ΠV1-reductions. Let D reduce to D′ by a ΠV1–
reduction where by Lemma 3 we may ignore D2. Then

in(D) = in(D1) + 3 > in(D1) + 2 = in(D′).

ΠV2-reductions. Let D reduce to D′ by a ΠV2–reduction where by Lemma 3
we may ignore D2. Then

in(D) = in(D1) + 3 > in(D1) + 1 = in(D′).

Corollary 1.1 now follows as before.
To extend Theorem 2 to the classical system, note first that rules *Λ*,

*V*, Π*, and *Σ are invertible but *Π and Σ* are not; see [6, Theorem

7B4, p. 329]. To restate Lemma 4 for the multiple system, let NV be
VY1(VY2(. . . (VYn−1Yn) . . .)) where N is Y1, Y2, . . . , Yn−1, Yn. Then the revised
form of the lemma is the following:

Lemma 3.1′ If
M ° Y1, Y2, . . . , Yn(6)

holds in the FLC
33 , then

M ⊢ VY1(VY2(. . . (VYn−1Yn) . . .))(7)

can be deduced in FTC
33 .

The proof is an easy induction on the length of the proof of (6).

In order to prove Lemma 5 for this system, we need a theorem, but first
we need a definition.

Definition 7 1. Suppose A is a formula (term) in the conclusion of an
inference by a rule and suppose that B is a formula in a premise for
the same inference. Then B is an immediate ancestor of A if

(a) A is the principal formula for the inference and B is a side formula,
or
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(b) A and B are corresonding parameters.

2. Suppose A is a formula (term) in the conclusion of an inference by
a rule and suppose that B is a formula in a premise for the same
inference. Then B is an immediate parametric ancestor of A if A and
B are corresonding parameters.

3. Suppose A is a formula (term) in the conclusion of an inference by a rule
and suppose that B is a formula in a premise for the same inference.
Then B is an immediate quasi-parametric ancestor of A if

(a) A is the principal formula for the inference and B is a side formula
and the rule is one of *W*, or

(b) A and B are corresonding parameters.

4. Suppose A is a formula (term) in the conclusion of an inference by a rule
and suppose that B is a formula in a premise for the same inference.
Then B is an immediate semiparametric ancestor of A if

(a) A is the principal formula for the inference and B is a side formula
and the rule is one of *W* or *Exp*, or

(b) A and B are corresonding parameters.

5. A formula B is an ancestor [parametric ancestor, quasi-parametric an-
cestor, semiparametric ancestor] if there is a sequence of formulas A1, . . . , An

such that for each i = 2 to n, Ai is an immediate ancestor [immediate
parametric ancestor, immediate quasi-parametric ancestor, immediate
semiparametric ancestor] of Ai−1.

Remark These definitions are from [8, p. 191]. Note that if B is a parametric
or quasi-parametric ancestor of A, then A and B are identical, and if B is a
semiparametric ancestor of A then A ⊲ B.

Theorem 3 Let D be a normal deduction in FTC
33 of

M ⊢ X.(8)

Let there be for any K and N a cut-free proof in FLC
33 of

K, X ° N.(9)
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Then there is a cut-free proof in FLC
33 of

M, K ° N.(10)

Proof We may assume without loss of generality that no variable which
occurs free in D [in the proof of (9)] is an eigenvariable in the proof of (9)
[in D]. (If necessary, we can change the eigenvariables until this is true.)

The proof is by induction on (in(D), ln(D)) as in Lemma 5. The basis
is immediate, since if D consists only of X, then (10) is just (9). For the
induction step there are three cases:

Case 1. The last inference in D is by an i-rule. If the rule is Λi, then X
is ΛX1X2, and D is

D1

X1

D2

X2
Λi

ΛX1X2.

Now for i = 1, 2, we have that in(Di) < in(D). Also, by (9) and the
invertibility of *Λ, there is a cut-free proof of

K, X1, X2 ° N.

By this, D1, and the induction hypothesis, there is a cut-free proof of

M, K, X2 ° N.

By this, D2, and the induction hypothesis, there is a cut-free proof of

M, M, K ° N,

and (10) follows by *C and *W.
If the rule is Vi or Σi the proof is similar.
If the rule is Πi, then X is ΠX1 and D is

D1(x)

X1x
Πi

ΠX1.

Here in(D1(x)) < in(D). Now let A1, A2, . . . , An be a cut-free proof of (9) in
which each Ai for i < n is used exactly once as the premise of an inference.
Let Ak be

Kk, Uk ° Nk,
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where Uk consists of the semiparametric ancestors of X in Ak (if Y is in any
Uk, then X ⊲ Y , and so Y is ΠY1 where X1 ⊲ Y1). For each k let A′

k be

M, Kk ° Nk.

Then A′

n is (10), and it is sufficient to prove for each k by a secondary
induction on k that there is a cut-free proof of A′

k. There are the following
cases in this secondary induction:

(α) Uk is void. Then A′

k follows from Ak by *K, and there is a cut-free
proof of Ak because it is part of the proof of (9).

(β) Uk is not void and Ak is an axiom. Then Kk is void and Uk and Nk

each consist of one term, ΠY1, where X1 ⊲ Y1. If x is a variable which is not
free in any of the terms of the context, then Y1x ° Y1x is an axiom. By *Exp
we get X1x ° Y1x. Then by D1(x) and the main induction hypothesis, there
is a cut-free proof of M ° Y1x, and A′

k now follows by Π*.
(γ) Uk is not void and Ak is derived from Ai, Aj by a rule R for which all

of the terms in Uk are parametric. By the induction hypothesis on k there
are cut-free proofs of A′

i, A
′

j, and A′

k now follows by R.
(δ) Uk is not void and Ak is derived from Ai by a structural rule (*C,

*K, or *W) or *Exp whose principal formula is in Uk. By the induction
hypothesis on k, there is a cut-free proof of A′

i, and A′

k is identical to A′

i.
(ǫ) Uk is not void and Ak is derived by one of the rules *Λ*, *V*, *Π*, or

*Σ* whose principal formula is in Uk. The only such rule possible is *Π, and
hence there is only one premise, say Ai. The principal formula is ΠY1, where
X1 ⊲ Y1, and Ai is

Kk, Ui, Y1Z ° Nk.

By the argument of (γ) above, there is a cut-free proof of

M, Kk, Y1Z ° Nk.

By *Exp there is a cut-free proof of

M, Kk, X1Z ° Nk.

Now substituting Z for x in D1(x) gives us a deduction D1(Z) of X1Z where
in(D1(Z)) < in(D). Hence, by the main induction hypothesis, there is a
cut-free proof of

M, M, Kk ° Nk,
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and A′

k follows by *W and *C.
Case 2. D ends in an inference by Eq. This case is easy using Eq*.
Case 3. D ends in an e-inference (which may be by ΠV). Then since D is

normalized, the left branch consists entirely of such inferences or inferences
by Eq. Consider the first inference of the branch (which cannot be by ΠV

because of the eigenvariable). If it is by Λe or Eq, then deleting it we get a
deduction with a lower index or an equal index but lower length, and we can
apply the induction hypothesis and the corresponding rule on the left.

If the first inference is by Ve, then M is M1, VY1Y2 and D is

VY1Y2

1
[Y1]

D1

Z

2
[Y2]

D2

Z
Ve − 1 − 2

Z

D3

X.

Now the deductions

Y1

D1

Z

D3

X

and

Y2

D2

Z

D3

X

may not be normalized, but each has index less than in(D), and normalizing
them reduces the indexes still more. Hence, by the induction hypothesis,
there is a cut-free proof of

M1, Yi, K ° N , i = 1, 2,

and then (10) can be obtained by *V.
If the first inference is by Σe the proof is similar.
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If the first inference is by Πe, then M is M1, ΠY and D is

ΠY
Πe

Y Z

D1

X.

There are the following subcases:
(i) No eigenvariable of an inference by ΠV in the main branch of D occurs

free in Z. Then D1 is a valid deduction and in(D1) < in(D). Hence, we can
proceed as in the case for Λe.

(ii) There is an eigenvariable of an inference by ΠV in the main branch
of D which occurs free in Z. Then D1 is not a valid deduction, but D can
be written as follows:

ΠY
Πe

Y Z

D2(x)

V(Ux)W
ΠV

V(ΠU)W

D3

X,

where there are no inferences by ΠV (and hence no eigenvariables) in the
main branch of D3. Now the deductions

ΠY
Πe

Y Z

D2(x)

V(Ux)W

(11)

and

V(ΠU)W

D3

X
(12)
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are valid normal deductions with indexes less than in(D). By (12), (9), the
induction hypothesis, and perhaps *K, there is a cut-free proof of

M1, V(ΠU)W, K ° N.

Because *V is invertible, this implies that there are cut-free proofs of

M1, ΠU, K ° N(13)

and
M1, W, K ° N.(14)

Let A1, A2, . . . An be a cut-free proof of (13) in which each Ai for i < n is
used exactly once as the premise for an inference. Let Ak be

M ′

k, Uk ° Nk,

where, as before, Uk consists of the semiparametric ancestors of ΠU that
occur in Ak. Let A′

k be

M ′

k, M1, ΠY, K ° Nk, N.

Then (10) follows from A′

n by *W* and *C*. As before, we prove by a
secondary induction on k that there is a cut-free proof of A′

k, and as before
we have the following subcases:

(α) Uk is void. Then A′

k follows from Ak by *K*.
(β) Uk is not void and Ak is an axiom. Then M ′

k is void and Uk and Nk

both consist of the same term, which is ΠU ′ where U ⊲ U ′. We have the
following cut-free proof:

U ′x ° U ′x ∗K∗
M1, U

′x, K ° U ′x, N
(14)

K∗
M1, W, K ° U ′x, N

∗V
M1, V(U ′x)W, K ° U ′x, N

∗Exp
M1, V(Ux)W, K ° U ′x, N.

Hence, by (11) and the main induction hypothesis, there is a cut-free proof
of

M1, ΠY, K ° U ′x, N.

Applying Π*, we get a cut-free proof of A′

k.

35



  

(γ) Uk is not void and Ak follows from Ai, Aj by a rule for which all the
terms in Uk are parametric. Then A′

k follows from A′

i, A′

j by the same rule.
(δ) Uk is not void and Ak follows from Ai by a structural rule or *Exp.

Then A′

k is identical to A′

i.
(ǫ) Uk is not void and Ak follows from Ai by *Π and the principal formula

is in Uk. Then the principal formula is ΠU ′ where U ⊲ U ′. Since Uk is
Ui, ΠU ′, Ai is

M ′

k, Ui, U
′V ° Nk.

By the argument of (γ) above, there is a cut-free proof of A′′

k:

M ′

k, M1, ΠY, U ′V, K ° Nk, N.

We now have the following cut-free proof:

A′′

k ∗Exp
M ′

k, M1, ΠY, UV, K ° Nk, N
(14)

∗K∗
M ′

k, M1, ΠY, W, K ° Nk, N
∗V

M ′

k, M1, ΠY, V(UV )W, K ° Nk, N.

If we substitute V for x in (11), we get

ΠY
Πe

Y ([V/x]Z)

D2(V )

V(UV )W,

which has an index less than in(D). Thus, by the main induction hypothesis,
there is a cut-free proof of

M ′

k, M1, ΠY, ΠY, K ° Nk, N,

and A′

k follows from this by *W.
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Remarks

1. Note that rule *W is used in the proof in an essential way. It does not
appear that we can prove Corollary 2.2 for the classical system.

2. Since the theorem is, in a sense, a special case of the cut-elimination
theorem, it is perhaps not surprising that parts of the proof (for Πi in
Case 1 and for Πe in Case 3) resemble part of the proof (Stage 1) of
proofs of the elimination theorem in [6] and [8].

3. This proof cannot be applied to the logic of constant domains because
subcases (β) and (η) of Case 3 fail if there is a rule in the system whose
right-hand side must be singular.

4. This proof is sufficiently complicated that it seems advisable to give an
example. Let a, b, c, and d be distinct non-redex constants, and let x
and y be distinct variables. Let D be the normal deduction:

Π(λy . Π(λx . V(ax)(by)))
Πe, Eq

Π(λx . V(ax)(by))
Πe, Eq

V(ax)(by)
ΠV

V(Πa)(by)
Eq, Πi

Π(λy . V(Πa)(by)),

and let E be the cut-free proof

ac ° ac K∗
ac ° ac, bd

∗Π
Πa ° ac, bd

bd ° bd K∗
bd ° ac, bd

∗V
V(Πa)(bd) ° ac, bd

∗Π
Π(λx . V(Πa)(by)) ° ac, bd.

By Theorem 3, there should be a cut-free proof of

Π(λy . Π(λx . V(ax)(by))) ° ac, bd.(15)

Let us see how to obtain this cut-free proof by following the proof of the
theorem. Since the last step of D is by Πi, we apply Case 1, and since
the last step of E is by *Π, we apply subcase (ǫ). Thus, we need to
look at D1(y), which is obtained from D by deleting the last inference,
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and also at E1, which is obtained from E by deleting the last inference.
To apply subcase (ǫ), we apply the theorem to D1(d) and E1, where
D1(d) is obtained from D1(y) by substituting d for y, and is therefore
as follows:

Π(λy . Π(λx . V(ax)(by)))
Πe, Eq

Π(λx . V(ax)(bd))
Πe, Eq

V(ax)(bd)
ΠV

V(Πa)(bd).

To apply the theorem, since this ends in an e-rule, we use Case 3, and
since there is no occurrence in d of the eigenvariable of the inference by
ΠV, we need subcase (i) of the subcase of Case 3 for Πe. This means
that we delete the first inference from D1(d), giving us D2:

Π(λx . V(ax)(bd))
Πe, Eq

V(ax)(bd)
ΠV

V(Πa)(bd).

We then apply the theorem to this and E1 to get a cut-free proof of

Π(λx . V(ax)(bd) ° ac, bd,(16)

and we then obtain (15) from this by an inference by *Π. Now because
x in D2 is the eigenvariable for the inference by ΠV, we apply Case 3,
subcase (ii) of the case for Πe. Thus, we break D2 into two deductions:
D3(x), which is

Π(λx . V(ax)(bd))
Πe, Eq

V(ax)(bd),

and D4, which consists of the single step V(Πa)(bd). Since D4 consists
of a single step, E1 is itself the result of applying the theorem to D4 and
E1. Next, we note that the use of the invertibility of *V is unnecessary,
since the last inference of E1 is by *V. Hence, we look at the cut-free
proofs of the premises of this last inference in E1. These are E2, which
is

ac ° ac K∗
ac ° ac, bd

∗Π
Πa, ° ac, bd,

and E3, which is
bd ° bd K∗

bd ° ac, bd.
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In particular, we look at E2, and since its last inference is by *Π, we
apply subcase (ǫ). This means that we delete the last inference of E2

in order to get a cut-free proof of A′

k, and when we put this together
with E3 and apply *V, we get E4:

ac ° ac K∗
ac ° ac, bd

bd ° bd K∗
bd ° ac, bd

∗V
V(ac)(bd) ° ac, bd.

Now we take D3(c), which is

Π(λx . V(ax)(bd))
Πe, Eq

V(ac)(bd),

and apply the theorem to it and E4. The result (by Case 3, subcase (i)
for the case for Πe) is the following cut-free proof of (16):

E4 ∗Π
Π(λx . V(ax)(bd) ° ac, bd.

A cut-free proof of (15) can then be obtained by another inference by
*Π.

If in this system we let (9) be the axiom X ° X, then (10) becomes
M ° X; hence Lemma 5 holds, and we have the following result:

Corollary 3.1 Theorem 2 holds for FLC
33 .

Note that as in the case of the intuitionistic system, the proof also implies
the equivalence of FTC

33 and FLC
33 .

Remark It is possible to deduce the cut-elimination theorem directly from
Theorem 3 without using Lemma 5. Thus, suppose we have cut-free proofs
of

M, X ° N(17)

and
K ° X, L.(18)

If L is void, then by (18) and Lemma 3.1′, we have K ⊢ X. The deduction
of this can be normalized, and then by (17) and Theorem 3 there is a cut-free
proof of

M, K ° N.
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If L is not void, then by (18) and Lemma 3.1′,

K ⊢ VXLV.

By using (17), the axiom LV
° LV, and *V, we can get a cut-free proof of

M, VXLV
° N, LV.

Then, by Theorem 3, there is a cut-free proof of

M, K ° N, LV,

and by the invertibility of V* there is a cut-free proof of

M, K ° N, L.

4 Introducing Implication with Restrictions

By the contradiction Curry found in [5], the theory we have developed so
far cannot be applied if implication is added to the system without any
restriction. In order to see if there are any restrictions under which the rules
for implication can be added, it is worth looking for the place at which the
argument of the paper so far breaks down when implication is present in the
system.

On the other hand, as we saw in the introduction to the paper, if the
discharged assumption of the inference by Pi occurs at most once (after all
the duplicating; i.e., occurs at most once and is not duplicated later in the
deduction, which means that it has no descendent in the deduction which is
a major premise for an inference by Ve or Σe), then a P-reduction step will
shorten the proof. This suggests that we adopt the following restriction:

Restriction on Rule Pi The discharged assumption is to occur at most once
and have no descendant which is a major premise for an inference by Ve or
Σe (down to the inference by Pi).

Remark Since we now have implication, we also have negation. ¬X is
defined to be PX(ΠI). However, the rule for negation introduction is a special
case of the rule for implication introduction, so that in this logic implication
and negation do not satisfy all of their usual properties, even in intuitionistic
logic.
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Definition 8 The system FTJ
33 is obtained from FTA

33 by adding the rules Pi
and Pe, where rule Pi is subject to the Restriction on Rule Pi.

To see that this works, extend Definitions 3 and 4 by treating Pi with the
other one-premise rules in case (c) of each definition and treat Pe like Λi in
case (d) of each definition. Lemmas 1–3 can be proved as before. We also
want the following lemmas:

Lemma 6 Let D be a deduction, X a term, and O a specification of oc-
currences of X as an undischarged assumption in D. If the specified occur-
rence(s) of X satisfy the Restriction on Rule Pi, then in(X, O, D) ≤ 1.

The proof is a straightforward induction on the length of D using Defini-
tion 3. Note that if O specifies no occurrences of X in D, then in(X, O, D) =
0. Hence, it is sufficient to suppose that O specifies one occurrence of X in
D and to prove that in(X, O, D) = 1.

Lemma 7 Suppose D and D′ are deductions such that D reduces to D′, and
suppose X is an undischarged assumption in both deductions. If X satisfies
the Restriction on Rule Pi in D, then it satisfies it in D′.

The proof is a straightforward induction on the number of reduction steps
from D to D′, with cases according to the reduction step.

Now to complete the proof of Theorem 1, it remains to consider the case
for P-reductions. Let D be the first and D′ the second deduction in a P-
reduction and disregard D3 (as we can because of Lemma 3). It is easy to
see that if O specifies the occurrences of X in D1 discharged by the inference
by Pe,

in(D) = in(D1) + in(D2) + 2,

in(D′) = in(X, O, D1) · [in(D2) − 1] + in(D2).

By Lemma 6 and the restriction on Rule Pi, in(X, O, D1) ≤ 1. It follows
that in(D′) < in(D).

This proves the following result:

Theorem 4 Theorem 1 holds for FTJ
33 .
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In [8, Corollary 16C3.1, p. 442] a corresponding result was claimed for
the L-formulation, where the rules for P are

*P M ° X M, Y ° Z
M, PXY ° Z,

P* M, X ° Y
M ° PXY,

and where the restriction on P* is that the X in the premise not have any
ancestor which is the principal formula of an operational rule on the left. This
clearly does not correspond to the restriction on the rule Pi stated above.

Instead, let us note that Bunder and da Costa give in [2] a natural de-
duction system with just the above restriction on rule Pi as a formulation of
BCK logic. Furthermore, White [20] gives a natural deduction formulation
for a variant of higher-order BCK logic with comprehension that differs from
the system given here in that his rules for disjunction and existential elimi-
nation satisfy the same restriction on discharged assumptions that we have
here for Pi, so that his system is weaker than this one. Elsewhere, for exam-
ple in [15], [12], and [14], BCK logic is identified with an L-system without
rules *W*. This suggests that we might find an L-formulation equivalent to
our natural deduction formulation by leaving out these rules. But there is a
technical problem with this: consider the following deduction in FTA

33 of the
distributive rule:

ΛX(VY Z)
Λe

VY Z

ΛX(VY Z)
Λe

X
1

[Y ]
Λi

ΛXY
Vi

V(ΛXY )(ΛXZ)

ΛX(VY Z)
Λe

X
2

[Z]
Λi

ΛXZ
Vi

V(ΛXY )(ΛXZ)
Ve − 1 − 2

V(ΛXY )(ΛXZ).

The restriction on Pi prevents us from discharging the assumption ΛX(VY Z)
because there are three occurrences of it and one of them has a descendant
which is a major premise for an inference by Ve. But now consider the
equivalent proof in FLA

33 :

X ° X ∗K
X, Y ° X

Y ° Y ∗K
X, Y ° Y

Λ∗
X, Y ° ΛXY

V∗
X, Y ° V(ΛXY )(ΛXZ)

X ° X ∗K
X, Z ° X

Z ° Z ∗K
X, Z ° Z

Λ∗
X, Z ° ΛXZ

V∗
X, Z ° V(ΛXY )(ΛXZ)

∗V
X, VY Z ° V(ΛXY )(ΛXZ)

∗Λ
ΛX(VY Z) ° V(ΛXY )(ΛXZ).

There is nothing to prevent the use of P* here.
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On the other hand, the occurrence of ΛX(VY Z) on the left of the con-
clusion does have an ancestor which is a principal formula for an inference
by *V. This suggests that we form the L-system by deleting rules *W* and
adding rules *P* with the restriction that no ancestor of X on the left of the
premise is the principal formula for an inference by *V or *Σ. However,
this is still not quite right; there is nothing corresponding to the condition
in the Restriction on Rule Pi that the discharged assumption occur at most
once.

The solution turns out to be to assume rules *W* but take as an restric-
tion on P* that the left side formula (X in *P) not have an ancestor which
is a principal formula for an inference by *W. Also, to make all this work
properly, it is necessary to modify some of the rules.

Definition 9 The system FLJ
33 will be singular. (See below for the reason we

cannot extend the result to the multiple [classical] version of the calculus.)
Its rules are *C, *K, *W, and *Exp* of Definition 1, and

*Λ M, Xi ° Z
M, ΛX1X2 ° Z,

Λ* M1 ° X1 M2 ° X2

M1, M2 ° ΛX1X2,

*V M1, X1 ° Z M2, X2 ° Z
M1, M2, VX1X2 ° Z,

V* M ° Xi

M ° VX1X2,

*P M1 ° X M2, Y ° Z
M1, M2, PXY ° Z,

P* M, X ° Y
M ° PXY,

*Π M, XY ° Z
M, ΠX ° Z,

Π* M ° Xx
M ° ΠX,

*Σ M, Xx ° Z
M, ΣX ° Z,

Σ* M ° XZ
M ° ΣX,

Cut M1 ° X M2, X ° Z
M1, M2 ° Z;

where, in Πi* and *Σ, x does not occur free in M , X, or Z; where in *Λ and
V*, i = 1 or i = 2; and where there is a restriction on P* to be stated below.

To state the restriction on P*, define X to be side-connected to Y if X is
a parametric constituent for the left premise of *P (i.e., is in M1) and Y is
the side formula of the right premise, or else X is a parametric constituent
for the left premise of Cut (i.e., is in M1) and Y is the side formula of the
right premise (i.e., the X in the right premise). Then define X to be chained
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if (i) X has an ancestor which is a principal formula for an inference by *W,
*V, or *Σ; or (ii) X is side-connected to Y and Y is chained.

Restriction on Rule P* The side formula on the left is not chained.

(The “side formula on the left” of Rule P* is the occurrence of X on the
left of the premise.)

Remark Note that in this system there are no provable sequents with void
right-hand sides. This formulation is what Curry in [6] calls an F-formulation,
where his F is ΠI. What in another system would be a sequent with a void
right-hand-side corresponds here to a sequent whose right-hand-side is ΠI.

To prove Theorem 2, we need the following modifications of Lemmas 4
and 5.

Lemma 3.1′′ If
M ° X(4)

is provable in FLJ
33 , then there is a deduction of

M ⊢ X(5)

in FTJ
33 such that for each Y in M , if Y satisfies the Restriction on Rule P*

in the proof of (4), then it satisfies the Restriction on Rule Pi in the deduction
of (5).

Proof A straightforward induction on the proof of (4). In each case of
the induction step, it is necessary to check that satisfying the restriction
on Rule Pi is preserved by the induction step. In this process, note that
*W corresponds to grouping occurrences of an assumption together for the
purpose of discharging them together; the Restriction on Rule Pi precludes
this for that rule, but it can be done for Rules Ve and Σe. One case should
illustrate the way to complete the proof from the proof of Lemma 4: the case
for Λ*. Here X ≡ ΛX1X2, M ≡ M1, M2, and the premises are

M1 ° X1, M2 ° X2.

By the induction hypothesis, there are deductions

D1

X1,
D2

X2,
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where, for i = 1, 2, the undischarged assumptions of Di are in Mi and where,
for each Y in Mi, if Y satisfies the Restriction on Rule P* then Y satisfies
the restriction on Rule Pi in Di. Then

D1

X1

D2

X2
Λi

ΛX1X2

is a deduction of (5) in which each Y satisfies the Restriction on Rule Pi
if it satisfies the restriction on Rule P* in (4). (Note that Y satisfies the
Restriction on Rule P* in (4) if and only if it does in the premise in which it
occurs.)

Lemma 3.2′′ If there is a deduction of (5) in FTJ
33 , then there is a cut-free

proof of (4) in FLJ
33 in which, for each Y in M , if Y satisfies the Restriction

on Rule Pi in the deduction of (5), then it is not chained in the proof of (4).

Proof A straightforward modification of the proof of Lemma 5, in which
a case for Pi is added in Case 1 and a case for Pe is added in Case 3, and
where, in each case, we have to check the condition on not being chained.
One subcase each from Cases 1 and 3 should make clear how the rest of the
proof goes.

Under Case 1, let us consider the case for Λi. Here X ≡ ΛX1X2 and D is

D1

X1

D2

X2
Λi

ΛX1X2.

For i = 1, 2, let Mi be a sequence consisting of the undischarged assumptions
in Di. By the hypothesis of induction, there is a cut-free proof of

M1 ° X1, M2 ° X2

in which, for each Y in one of the Mi which satisfies the Restriction on Rule
Pi in Di satisfies the Restriction on Rule *P. By Λ*, we get a cut-free proof
of

M1, M2 ° ΛX1X2
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in which each Y in one of the Mi which satisfies the Restriction on Rule
Pi satisfies the Restriction on Rule P*. Now if M cannot be obtained from
M1, M2 by adding assumptions (for which we can use Rule *K), it can only
be because there is an assumption Y which is in both M1 and M2; this
assumption is an undischarged assumption in both D1 and D2, and is to be
considered as one undischarged assumption until it is discharged. In this case,
we use *W; the terms which occur as principal formulas of these inferences
by *W, and which do not satisfy the Restriction on Rule P* in (4), do not
satisfy the Restriction on Rule Pi in (5).

Under Case 3, let us consider the case for Pe. Here D is

PY Z
D1

Y
Pe

Z

D2

X.

For i = 1, 2, let Mi be the undischarged assumptions of Di other than the
indicated occurrence of Z in D2. By the hypothesis of induction, there is a
cut-free proof of

M1 ° Y, M2, Z ° X(19)

such that, for each Y in Mi, if Y satisfies the Restriction on Rule in Pi in Di,
then Y satisfies the Restriction on Rule P* in whichever of (19) it occurs on
the left, and the same is true for Z in the second premise (and in D2). Now
by *P we get

M1, M2, PY Z ° X.(20)

If M cannot be obtained from M1, M2, PY Z by adding terms (using *K),
then either there is an overlap between M1 and M2 or there is an overlap
between Mi and PY Z. In either case, we can use *W to get (4) from (20).
Now suppose W in M satisfies in D the Restriction on Rule Pi. Then W is
in Mi or is PY Z, and it is not one of the formulas in an overlap as described
above (since it can occur at most once). Hence, it does not have an ancestor
in the steps from (20) to (4) which is the principal formula for an inference
by *W. If it is in Mi, then it satisfies in Di the Restriction on Rule Pi, and
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hence it satisfies in the proof of (19) the Restriction on Rule P*. If W is
in M2, then it satisfies in the proof of (4) the Restriction on Rule P*. If
W is in M1 then it satisfies the Restriction on Rule Pi in D1. If it satisfies
the Restriction on Rule Pi in D, then the indicated occurrence of Z in D2

must satisfy this restriction in D2, and in this case W will satisfy the Re-
striction on Rule P* in the cut-free proof of (4). Similarly, if PY Z satisfies
the Restriction on Rule Pi in D, then Z satisfies this restriction in D2, and
therefore PY Z satisfies the Restriction on Rule P* in the cut-free proof of
(20) and hence (since there is no overlap) in the cut-free proof of (4).

This proves

Theorem 5 Theorem 3 holds for FLJ
33 .

This intuitionistic variant of BCK logic, FTJ
33 , is strong enough to prove

some interesting results. For example, here are proofs of the implication
formulas (PI), (PK), (PB), and (PC):

(PI):

1
[X]

Pi − 1
PXX.

(PK):

1
[X]

Pi − v
PY X

Pi − 1
PX(PY X).

(PB):

3
[PY Z]

2
[PXY ]

1
[X]

Pe
Y

Pe
Z

Pi − 1
PXZ

Pi − 2
P(PXY )(PXZ)

Pi − 3
P(PY Z)(P(PXY )(PXZ)).
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(PC):

3
[PX(PY Z)]

1
[X]

Pe
PY Z

2
[Y ]

Pe
Z

Pi − 1
PXZ

Pi − 2
PY (PXZ)

Pi − 3
P(PX(PY Z))(PY (PXZ)).

If we define Q by
Q ≡ λxy . P(λz . P(zx)(zy)),

then, using the obvious abbreviations, we have

QXY =∗ (∀z)(zX ⊃ zY ),

and we can interapret the system Q of Appendix A. Finally, if we let X ∼ Y
be an abbreviation for Λ(PXY )(PY X), then we can prove a comprehension
scheme

(∃z)(∀y)(zy ∼ X),

where X is any term in which z does not occur free (but y may occur free):

1
[(λy . X)y]

Eq
X

Pi − 1
P((λy . X)y)X

2
[X]

Eq
(λy . X)y

Pi − 2
PX((λy . X)y)

Λi
(λy . X)y ∼ X

Eq
(λy . (λy . X)y ∼ X)y

Πi
Π(λy . (λy . X)y ∼ X)

Eq
(λz . Π(λy . zy ∼ X))(λy . X)

Σi
Σ(λz . Π(λy . zy ∼ X)).

If we think in terms of formulas-as-types [9, §§14D, 15D] (also known
as the Curry-Howard isomorphism), then the implication fragment of this
system is equivalent to a system of typed combinatory logic in which the
basic combinators are B, I, C, and K, or, equivalently, to a typed λ-calculus
in which λx . X is only defined when x occurs at most once in X. This
system has long been known to be consistent; see [7, Theorem 10C3, p. 364].
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Since I can be defined in terms of B, C, and K (as, e.g., CKB), this shows
something of the origin of the name of BCK logic.

Note that if we define ¬ to be λx . Px⊥, where ⊥ is ΠI, then we get
properties of intuitionistic negation.

It is well known that if we add

(PW) P(PX(PXY ))(PXY )

as a new axiom scheme, then the system becomes inconsistent; see [8, §12B3,
pp. 180-1]. Bunder shows in [1] that we can obtain a contradiction by adding
the scheme

(PS) P(PX(PY Z))(P(PXY )(PXZ))

or, surprisingly, either of the schemes

(Pc) P(P(PXY )X)X

or

(¬V) VX(¬X).

To see this, let Y be any arbitrary term, and define

X ≡ Y(λx . PxY ),

where Y is a fixed-point operator. Then

X =∗ PXY.

Hence, we can prove PXY ⊢ Y :

PXY
PXY Eq

X
Pe

Y.

This means that if we can prove that PXY follows from a scheme, any
arbitrary term can be proved from that scheme and the system is inconsistent.
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The proof that PXY follows from (PS) is

(PS)

P(PX(PXY ))(P(PXX)(PXY ))

1
[X]

Eq
PXY

Pi − 1
PX(PXY )

Pe
P(PXX)(PXY )

(PI)

PXX
Pe

PXY.

The proof that it follows from (Pc) is

2
[X]

Eq
PXY

Pi − 2
PX(PXY )

(Pc)

P(P(PXY )X)X

1
[PXY ]

Eq
X

Pi − 1
P(PXY )X

Pe
X

Pe
PXY.

The proof that it follows from (¬V) is

(¬V)

VX(¬X)

1
[X]

Eq
PXY

2
[¬X]

Eq
PX⊥

3
[X]

Pe
⊥

Eq
ΠI

Πe
IY

Eq
Y

Pi − 3
PXY

Ve − 1 − 2
PXY.

This proves

Theorem 6 Theorem 1 cannot be extended to the classical version of this
variant of BCK logic.
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A The System for Equality

Definition 10 The terms of system QT a system of combinatory logic or
λ-calculus with an atomic constant Q which behaves like a variable with
respect to reduction and conversion (i.e., is a non-redex constant in the sense
of [9] or a C-indeterminate in the sense of [8]). The provability relation is
defined by the following rules:

Eq X
Y,

Condition: Y =∗ X.

Qe QXY ZX
ZY,

Qi [xX]

xY
QXY,

where, in Qi, the variable x does not occur (free) in X, Y , or in any undis-
charged assumption. This system is called the T-formulation of Q in [8,
§12C1].

For this system we define a Q-reduction step as one which takes a deduc-
tion of the form

1
[xX]

D1(x)

xY
Qi − 1

QXY
Eq

QUV
D2

ZU
Qe

ZV

D3

(21)
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to

D2

ZU
Eq

ZX

D1(Z)

ZY
Eq

ZV

D3.

(22)

Note that since Q is a non-redex constant, if QXY =∗ QUV then X =∗ U
and Y =∗ V . The term QXY in (21) is called the cut formula of the reduction
step.

Now ZU in (22) cannot be a cut formula, because if ZX were a major
premise for an inference by Qe in D1(Z), then xX would be such a major
premise in D1(x) in (21), and this is impossible since x is a variable and
Q is a non-redex constant. For the same reason, ZY in (22) is not a cut
formula. (This depends on the fact that if a and b are either variables or non-
redex constants and if aX1X2 . . . Xn =∗ bY1Y2 . . . Ym, then a =∗ b, n = m, and
Xi =∗ Yi for i = 1, . . . m. This follows from [8, p. 143, property C3] and the
Church-Rosser Theorem.) It follows from this that if a Q-reduction step is
applied to a deduction of the form (21) in which there are no cut formulas in
D1(x) or in D2, then the only cut formulas in (22) are those of D3, and the
reduction step has reduced the number of cut formulas. Thus, by induction
on the number of cut formulas in a deduction, we get the following theorem:

Theorem 7 Every deduction in QT can be normalized.

It is not hard to see that this kind of normalization corresponds to the
normalization of Prawitz [16] for classical logic, and that normal deductions
have a structure similar to the normal deductions of Prawitz for the classical
predicate calculus. In particular, if a branch is taken to be an initial part of
a thread which ends in the first minor (right) premise for an inference by Qe
if there is one (see [16, p. 41]), then in any branch of a normal deduction, all
the inferences by Qe precede all those by Qi. From this it is easy to prove
that if ⊢ QXY (with no undischarged assumptions), then X =∗ Y .

A Gentzen L-formulation for this system is given in [8, §12C2, pp. 187ff].
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Definition 11 The system QL has the same terms as system QT of Defini-
tion 10. It has the following axioms and rules:

Axiom Scheme: X ° X, for each term X.

Rules:

*C M ° N
M ′

° N,
C* M ° N

M ° N ′,

*W M, X, X ° N
M, X ° N,

W* M, ° X, X, L
M ° X, L,

*K M ° N
M, X ° N,

K* M ° L
M ° X, L,

*Exp M, Y ° N
M, X ° N,

Exp* M ° Y, L
M ° X, L,

*Q M ° ZX, L M, ZY ° N, L
M, QXY ° N, L,

Q* M, xX ° xY, L
M ° QXY, L.

Cut M, X ° N M ° X, L
M ° N, L,

The general conventions are that M , N , and L are sequences of terms, that
in rules *C*, M ′ and N ′ are permutations of M and N respectively, that in
rules *Exp*, X ⊲ Y , the variable x in Q* does not occur (free) in M , L, X,
or Y , and, if the system is to be singular (on the right) then N has only one
term in it and L is void.

By the standard property of normal natural deduction derivations noted
above, it is possible to use Theorem 7 to prove cut elimination for the sin-
gular version of this L-system in much the same way that Prawitz proves
similar results in [16, Appendix A, §3]. The fact that cut elimination for
this L-system can be proved so easily by proving normalization for the cor-
responding natural deduction system gave me a strong incentive to look for
a similar proof for F33.
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Note, by the way, that in this case the singular and multiple formulations
are equivalent; see [8, Theorem 12C12 and Corollary 12C12.1, pp. 206-207].

Remark An alternative formulation of the L-system, in which rule Q* is
replaced by the axiom scheme ° QXX (for any term X), is presented in
[8, §12C3, pp. 195ff]. This system is closely related to what is called the
A-formulation of Q in the introduction to [8, §12C, p. 186], in which Rule
Qi is replaced by the same axiom scheme. The proof reductions take

Axiom
QXX

Eq
QUV

D1

ZU
Qe

ZV

D2

to

D1

ZU
Eq

ZV

D2;

this works because QUV =∗ QXX implies U =∗ X =∗ V . Furthermore, each
reduction step shortens the deduction. Hence, Theorem 7 holds for the A-
formulation, and we can use this fact to obtain a proof of the cut-elimination
theorem for the corresponding L-formulation.
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