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Abstract

Evidence is given that implication (and its special case, negation) carry
the logical strength of a system of formal logic. This is done by proving
normalization and cut elimination for a system based on combinatory logic
or A\-calculus with logical constants for and, or, all, and exists, but with none
for either implication or negation. The proof is strictly finitary, showing that
this system is very weak. The results can be extended to a “classical” version
of the system. They can also be extended to a system with a restricted set
of rules for implication: the result is a system of intuitionistic higher-order
BCK logic with unrestricted comprehension and without restriction on the
rules for disjunction elimination and existential elimination. The result does
not extend to the classical version of the BCK logic.
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The main aim of this paper is to provide evidence that implication and
implication alone carries the logical strength of a system of formal logic.
By this I mean that if implication and its rules are left out of a system of
formal logic, the system is very weak. This conclusion requires that negation
be treated as a special case of implication by means of the definition of
—A as A D L. (The intuitionistic property of L, namely that any formula
follows from it, adds no logical strength to the system, as we shall see below.)
Furthermore, before we are done, we will see that there are some restricted
rules for implication that can be assumed without adding logical strength to
the system.

As an indication of how the argument will go, consider a standard natural
deduction formulation of first-order minimal logic, and drop the rules for
implication. The remaining rules are as follows:

Al A A AE AL N Ay
A1 VAN A27 Az’7
VI A, VE [A4] [As]
AV A, AV Ay C C
C,
VI Aa) VE (Vz)A(z)
(Va)A(z), Alt),
= A(t) JE [A(a)]
() A(), (3x)A(z) C
C,

where in VI and JE a is a free variable which does not occur free in any
undischarged assumption and where in AE and VI, i =1 or 2.

Now suppose that we transform deductions by modifying each inference
by VE or JE by placing a copy of the deduction of the major (left) premise
above each assumption discharged by the rule: i.e., change

1 2

[Ai]  [Ag]

D1 D2 D3
AV A, C C




to

and

to

Dy D,
A1V Ay A1V A
x1 *2
Ay Ao
D1 D2 D3
A v A, ¢ CVEx-1-2
C
1
[A(a)
D, Ds(a)
(Fz)A(x) C
c JE -1
D,
(Fz)A(x)
*1
A(a)
Dy Dy(a)
(Fz)A(x) C
c JdE x —1

These changes could be made systemmatically throughout any deduction, say
by proceeding from the top down (so that each transformation is carried out
on an inference by VE or JE for which there are no untransformed inferences
by either rule above any premise).
Now consider the standard (non-permutative) proof reduction steps. The
steps for A-reductions and V-reductions are unchanged, and are as follows:

A-reductions

D, D, reduces to
A As
— Al
Al A As
AE
A;
D3



where ¢ = 1 or 2, and

V-reductions Di(a) reduces to Di(t)
Ala Alt
(a) o D( )
(Vz)A(x) 2
—F—FVE
Alt)
D,

The steps for V-reductions and F-reductions are transformed respectively into
the following:

V*-reductions reduces to
DO D() DO
A, A; A;
VI VI D,
Al V AQ ] Al V A2 5 ¢
* * C
Dy A Ay n
A Vil D D )
AV As C C
VE*x —1 -2
C
D3
where 1 = 1 or 2, and
F*-reductions reduces to
Dy Dy
AW A1)
GoAR) ! Dyt
Do Aa) C
( A>(j1)< S o
dx)A(x
Al x —1
D,

Note that Fach of these reduction steps shortens the deduction. This
means that any sequence of these reduction steps terminates, and this is
proved without any reference to the complexity of the formulas involved. The
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result will still hold if instead of first-order quantifiers we have second- or
higher-order quantifiers. Furthermore, although the normalization is not
complete (in the sense of Prawitz [16], it is sufficient to prove the consistency
of the system.

At first this result seems to contradict Godel’s Second Theorem, since
the proof is completely finitary but implies the consistency of a system with
higher-order quantifiers. However, the absence of implication and negation
means that we cannot represent this proof within the system. In fact, the
system is so weak that we cannot even represent the famous Aristotelian
premise “All men are mortal.” Furthermore, this proof fails if implication
(or negation) is included in the system. If implication is present, the proof
requires a transformation at each implication cut formula that takes

1
[A]
D,
B
OI-1 Dy
ADB A
O F
B
D3
to
D,
A
— x1
A
D,
B
SI—1 Dy
ADB A
O FE
B
D37

and these transformations must all be carried out before the reduction process
starts. But since new implication cut formulas can be created as part of the
reduction process, there is no way all of them can be transformed at that
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stage. The problem is that the assumption discharged in the creation of the
cut formula does not occur in the same rule as the part of the deduction to
be duplicated. Hence, this proof cannot be carried out this way if implication
(or its special case, negation) occurs with its usual rules.

However, implication (and negation) can be permitted in the system if
the introduction rule is restricted so that the assumption discharged by the
rule cannot occur more than once (after the transformation that precedes
the reduction).

What Gddel’s Second Theorem really tells us about this proof is that the
system is quite weak, no matter what the order of the quantifiers. This, in
turn, suggests the main theme of this paper, that the strength of a system of
logic is determined by its rules for implication (and negation). The purpose
of this paper is to explore this importance of implication in connection with
systems of logic based on combinatory logic or A-calculus in the tradition of
H. B. Curry.

There is previous evidence in Curry’s work for the importance of implica-
tion in this regard. It is well known that after Kleene and Rosser [11] proved
inconsistent the original systems of Curry and Church, Curry was the only
one (except for F. B. Fitch) who remained interested in using combinatory
logic or A-calculus as a basis for logic and mathematics. This story is told
in [19]. Actually, the paradox of Kleene and Rosser did not apply to Curry’s
original system in [3] but to its extension in [4]; however, this extension was
so much a part of Curry’s original objectives that the part of his original sys-
tem dealing with logical connectives and quantifiers was not very interesting
without it. Curry’s first assumption was that the cause of the contradiction
lay in his postulates for the universal quantifier. Later, however, he derived
in [5] a contradiction from the postulates for implication alone.

In [8, Theorem 16C3, p. 441] we claimed to have a proof that if impli-
cation (and its special case, negation) is left out of the system, no further
restrictions are needed to avoid the contradiction. If the proof had been
valid, this result would also have applied to other systems, such as second
order logic, higher order logic (type theory), logic with comprehension terms
for set theory, etc. But Curry found a gap in that proof in 1975. (The proof
was, in fact, my personal responsibility, and originally appeared in [17, The-
orem 5C3, p. 130f]. The error is that Stage 2 case () does not go through
as claimed in [8, p. 202].) This paper arose from an attempt to give a new
proof of the same result.



In Section 1, a system of logic based on combinatory logic or A-calculus
with conjunction, disjunction, and the universal and existential quantifiers is
defined, first as an L-system and then as a natural deduction system, and re-
duction rules are given for the latter formulation. The system is formalized as
minimal logic, but the quantifiers are essentially of infinite order. In Section
2, the above sketch of a proof of normalization is carried out in detail. This
is done, following a suggestion of G. E. Mints (in private correspondence)
by defining in(D), the index of a deduction, which is the length (number of
formulas) in the tree-form of the deduction obtained from D by carrying out
the transformation suggested above. It is then shown that each reduction
step reduces the index of the deduction, and so normalization follows. It is
then shown that this implies cut-elimination for the L-system. In Section
3, these results are extended to a “classical” version of the system: for the
L-system this means allowing more than one formula on the right-hand side
of the sequent, but without implication a new way of defining the classical
version of the natural deduction formulation is needed. It turns out that this
classical system is essentially a version (without implication or negation) of
the logic of constant domains. Finally, in Section 4, the system with im-
plication restricted as suggested above is considered. This system turns out
to be a variation of intuitionistic higher-order BCK logic with unrestricted
comprehension. BCK logic is a logic in which the postulates for implication
correspond under the formulas-as-types notion [10] to the types of a system
of combinators in which no combinator duplicates an argument or to a sys-
tem of A-calculus in which Ax . M is well-formed only when x occurs free
at most once in M. This particular BCK logic is unlike other formulations
of BCK logic such as that of [20] in that there are no restrictions on the
rules for other connectives and quantifiers. This result does not hold for the
corresponding classical system. The result is stronger than the similar result
of White [20] because in White’s system the rules restricting the number of
occurrences of discharged assumptions for the rule of implication introduc-
tion that characterize BCK logic also apply to disjunction elimination and
existential elimination, whereas in the system considered here, the restruc-
tions apply only to the rule for implication introduction (and its special case
of negation introduction).

The incorrect proof of [8, Theorem 16C3, p. 441] was a minor modification
of another proof for a much simpler system with an operator representing
equality. That proof is also incorrect for the same reason. Hence, this simpler
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system is treated in Appendix A.

Because this paper is a part of the program of H. B. Curry, it is written
in his language. This means that I am following Curry in using ‘A’ for ‘A’
‘V? for V7, ‘T1" for V', and ‘Y’ for ‘4’ in the names of rules. Furthermore, I
follow Curry in using ‘i’ and ‘e’ instead of ‘I’ and ‘E’ in the names of natural
deduction rules, and I use an asterisk as in ‘“*A’ to indicate the L-rule for
conjunction on the left. Except where otherwise specified, the other basic
definitions and conventions are those of [9] and [8]. In particular, as in [9],
conversion will be denoted by ¢ =, ’ and reduction by ‘>". The major change
is that, for the reasons given in [18, p. 31, footnote 1], I will not use the
symbol ‘" in some places where it is used in [§].

A preliminary version of this paper was presented under the title “Nor-
malization for Combinatorially Complete Systems Without Implication” at
the special symposium on proof theory held at the joint annual meeting of
the American Mathematical Society and the Association for Symbolic Logic
in Denver, 5-9 January 1983. I would like to thank G. E. Mints, M. W. Bun-
der, Garrel Pottinger, and Roger Hindley for their helpful comments and
suggestions.

1 The System for Logic without Implication
Let us begin with the system called Fs3 in [8, §16C2].

Definition 1 The system FX& (or, when more precision is needed, F&1) is
formed from the terms of a system of combinatory logic or A-calculus with the
following non-redex constants: A (conjunction), V (disjunction), I (universal
quantifier), and ¥ (existential quantifier). The provability relation is given
by an L-system with the following axioms and rules, where M and M’ are
sequences of terms:

Axiom Scheme: XFX, for each term X.
Rules:
* M- Z
¢ M+ Z,
W MX XW+Z
M, X+ Z,



*K M- Z

M, X IF Z,
£\ M, X, Y+ Z A O MIEX MY
M,AXY I+ Z, M- AXY,
xy M, XN MY v Z Vi M- X;
MNVXY I Z, M IF VX, X,
1 M, XY W+ Z * Mk Xz
M.NX I Z, M IFTX,
3y M, Xz - Z 5 Mk XY
MYXX I Z, MIFYLX,
Cut MIFX M, X+ Z
M Z,

where in [T* and *X, z is a variable which does not occur free in X, M, or
Z, where in Vx, ¢ = 1 or 2, where in rules *Exp*, there is the condition that
X > Y, and where in *C, M’ is a permutation of M.

Remark The main departure from the conventions of [8] is that I am not
writing the range of quantification inside the symbol ‘I-" and I am writing ‘>’
for reduction.) By [8, Theorem 12C7, p. 193], the rules

*Eq MY IF N Eq* MIFY,L
M, X IF N, MIFX, L,
where the convention here is that X =, Y, are admissible in the system, and,
indeed, in any other system of this kind; I shall use this fact throughout the
paper without further mention. Of course, in the singular system, rules C*,
WH*, and K* are not postulated, but Exp* is, and so Eq* is admissible.

Remark This is not quite the system Fz3 of [8, §16C2], which has, in addi-
tion, the non-redex constants Q and and P and the rules *Q* of Appendix
A and *P of §4 below. The system presented here will be modified in §4 so
that Q can be defined in such a way as to make rules *Q* of Appendix A
valid, and a natural deduction rule corresponding to *P will be one of the
rules postulated in that modification.

The natural deduction system, which is of more interest to us here, is
defined as follows:



Definition 2 The system FL (or, to be more precise, F&4), is defined from
the same terms as FJ; of Definition 1. Its proof system is a natural deduction
system with the following rules:

Eq % Condition: ¥ =, X.
AXY AXY . X Y
he X, Y, A AXY,
: X Y
Ve [X] Y] Vi VXY VXY,
VXY A Z

Z,

NnXx : Xz
e X7 Mi 10e
Xe (X ] Yi %

X Z
Z,

Here, in i and Xe, x is a variable which does not occur free in X, Z, or any
undischarged assumption.

We are interested in the following proof-reduction steps, where in each
case the deduction on the left reduces to the one on the right:

A-reductions For i =1 or 7 = 2,

Dl D2 Dz
X1 Xy . X
ALY, M o Ha
Eq i
AY1Y5 Ds.
Ne
Y;
Dy



V-reductions For i =1 or i = 2,

D, 1 9
X, .. Ml V5]
VX1X2 \]él D2 D3
VY, 1oz Z
- Ve —1-—-2
D,

[M-reductions

Y -reductions

Dy 1
v el
Y X & Dy(z)

sy B4y
Ye—1

Ds

Note that we do not have the permutative reduction steps of [16]; I know of
no way to extend the normalization proof to cover these rules. This means
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that the standard proof in [16] that normalization implies cut elimination
cannot be applied to this system without modification. Nevertheless, if we
modify the definition of “branch”, then it is true that in a normal deduction
all of the e-rules precede all of the i-rules in a given branch. Here a branch
is the first part of a thread down to the first minor premise for an inference
by Ve or Xe if there is one. (In §4 below it will mean the first part of a
thread down to the first minor premise for an inference by Ve, Xe, or Pe.)
Because of the above property of normal deductions, it is easy to show by
the usual methods than an “atomic formula” (in this case, a term in normal
form which does not convert to one of the forms AXY, VXY MX, or LX)
cannot be proved without an undischarged assumption

Remark It follows that if L is taken to be an abbreviation for Ml (which is
(Vz)z in the usual notation), then there is no proof of L; for if there were,
then there would be the following proof of x for any variable z, which is ruled
out.

Note that this is a property of intuitionistic logic not shared by minimal logic.
This is why the name of the system does not refer to minimal logic, but to
what Curry in [6, Chapter 5] calls absolute logic. A different definition of L
would give us a form of minimal logic.

2 The Proof of Normalization

We now come to the definition of in(D) for a deduction D as explained in
the Introduction, where until the end of the proof of Theorem 1, “deduction”
means deduction of FE4. The definition requires first a function of a formula,
an specification of occurrences of that formula as an undischarged assumption
(e.g., by the numbers normally used to indicate where they are discharged),
and a deduction, which tells us how many times that assumption is duplicated
in the transformation described in the introduction.

Definition 3 (Index of an assumption) If D is a deduction, X a term,

and O is a specification of occurrences of X as an undischarged assumption,
then the index of X with respect to O and D, in(X,0, D), is defined by
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induction on the length of D as follows:
(a) if D = X, then in(X,0, D) = 1 if this one occurrence of X is specified
by O and in(X,0, D) = 0 otherwise;
(b) if D = Z # X, then in(X,0, D) = 0;
(c) if the last inference in D is by any of the rules Eq, Ae, Vi, Me, Mi, or ¥i
(i.e., any of the rules with one premise), if D’ is the result of deleting the last
inference from D, and if O’ specifies the occurrences of X in D’ specified by
O in D, then in(X,0,D) = in(X,0', D');
(d) if D is the deduction

D, D,

1 Y1 Yy .
(1) ST
then in(X, 0, D) = in(X, Oy, Dy) + in(X, Oq, Dy), where O; and O specify
the occurrences of X in Dy and D, respectively specified by O in D;

(e) if D is the deduction

1 2
Y] Y3
(2) D1 D2 D3
VY, 4 Z\e—1-2

Z?
then in(X,0,D) = [in(Y1,01, D2) + in(Ya, Oy, D3) + 1] - in(X, Oy, Dy) +
in(X, 0y, Dy) + in(X, Os, D3), where, for i = 1,2,3, O; specifies the occur-
rences of X as an undischarged assumption in D; specified by O (which, by
the assumption about O, do not include any of the assumptions discharged
by the rule Ve) and, for j = 1,2, O} specifies the occurrences of Y; in Djy

discharged by the inference by the rule Ve; and
(f) if D is the deduction

1
[Yz]
(3) Dy Dy(z)
Y Zs 4

Z,
then in(X, 0, D) = [in(Yx,O', Dy(x))+ 1] -in(X, O1, D1) +in(X, Oq, Da(x)),
where O’ specifies the occurrences of Yo in Dy(z) discharged by the inference

by Xe and where, for ¢ = 1, 2, O; specifies the occurrences of X in D; specified
by O in D.
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Note that in(X,0, D) # 0 if and only if X occurs as an undischarged
assumption in D.

Definition 4 (Index of a deduction) The index of a deduction D, in(D),
is defined by induction on the length of D as follows:

(a) if D = X, then in(D) = 1,

(b) if the last inference in D is by Rule Eq, and if D’ is the result of deleting
the last inference from D, then in(D) = in(D');

(c) if the last inference in D is by any of the rules with one premise except
Eq, and if the result of deleting the last inference from D is D’, then

in(D) =in(D") + 1;

(d) if D is the deduction (1), then

in(D) = in(Dy) +in(Ds) + 1;

(e) if D is the deduction (2), then
in(D) = [in(Y1, 01, D3) +in(Ys, O, Ds) + 1] - in(Dy) +in(Dy) +in(Ds) + 1,

where, for ¢+ = 1,2, O; specifies the occurrences of Y; in D;,, discharged by
the inference by Ve; and
(f) if D is the deduction (3), then

in(D) = [in(Yz,O0,Dy(x)) + 1] - in(D1) + in(Ds(x)) + 1,

where O specifies the occurrences of Yz in Dy discharged by the inference
by Xe.

Remark Note that in (e) and (f) of Definition 4, if there are no inferences by
Ve or Xe in Dy, D3, or Dy(x), then the number by which in(D;) is multiplied
in the formula for in(D) is one more than the total number of occurrences
of the assumptions discharged by the inferences in question. Note also that
in(D) does not count the inferences by Rule Eq in D.

Theorem 1 If D’ is obtained from D by a reduction step, then in(D') <
in(D).
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The proof requires three lemmas.

Lemma 1 (a) in([Z/z]X,0',[Z/z]D) = in(X,0, D) if O specifies the oc-
currences of [Z /x| X in [Z/x]D corresponding to the occurrences of X speci-
fied by O in D; and

(b) in([Z/x]D) = in(D).

Proof By an easy induction on the length of D. m

Lemma 2 Let Dy and Dy be the deductions

X
l))(l and Ds
Z.
Then if D is
D,
X
D,
Z,

we have in(D) = in(X,0,Dy) - [in(Dy) — 1] + in(D3), where O specifies
the indicated occurrences of X in Do (i.e., the occurrences over which Dy is
placed to form D).

Proof By induction on the length of Ds.

(a) Dy = X (and Z = X) and the indicated occurrence of X is specified (so
that D is placed over it). Then in(Ds) = in(X,0, Dy) = 1. Also D = D;.
Hence,

in(D) = in(Dy)
ZTL(D1) —1+1

1-[in(Dy) —1]+1

in(X,0,Dsy) - [in(Dy) — 1] + in(Ds).

(b) X is not an undischarged assumption of Dj or else is an undischarged
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assumption which is not specified (so that D; is not placed over it to form
D). Then D = Dy, in(X,0, D) =0, and

in(D) = in(Dy)
= 04 in(Ds)
= 0-[in(Dy) — 1] +in(Dy)
= in(X,0,Dy) - [in(Dy) — 1] + in(Ds).

(c) The last inference in Dy (and hence also in D) is by Eq. Let D} (D’) be
the result of deleting the last inference from Dy (D). Then in(X, 0, Dy) =
in(X, 0, D) where O’ specifies the occurrences of X as an undischarged as-
sumption in D) specified by O in Dy, in(Ds) = in(D}), and by the hypothesis
of induction,

in(D") = in(Xy,0', Dj) - [in(Dy) — 1] + in(D5).
Hence,

in(D) = in(D")
in(Xy, O, D}) - [in(Dy) — 1] + in(Dj)

(d) The last inference in Dy (and hence also in D) is by one of the one-premise
rules except for Eq. Let D} (D’) be the result of deleting the last inference
from Dy (D). Then in(X, 0, D) = in(X, O, D) where O is as in Case (c),
in(Dy) =in(D}) + 1, and by the induction hypothesis,

in(D") = in(X,0', Dj) - [in(Dy) — 1] + in(Ds).
Hence,

in(D) = in(D')+1
= in(X,0, D) - [in(Dy) — 1] +in(Djy) + 1
= in(X,0,Dy) - [in(D1) — 1] 4+ in(Dy).
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(e) Dy is the deduction

X X
Dy Dy
Z Zy .
A Zy M
Then D is
D, D,
X X
Ds Dy
Zy Zy .
ANz, N
Let D}, D be
D, D,
X X
D3 D4
7 7y,

If, for i = 2, 3,4, O; specifies the occurrences of X in D; specified by O in D,
then

m(X, 02, Dg) = Z?’L(X, 03, Dg) + m(X, 04, D4),
and, by the induction hypothesis,

in(D}) = in(X,04, Dy) - [in(Dy) — 1] +in(Dy).
Hence,
in(D) = in(Djy)+in(Dy) +1

+m(X, 04, D4) . [m(Dl) — 1] -+ m(D4) +1
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(f) Dy is the deduction

1 2
X W], X [Yo], X
D5 Dy Ds
VY1Ys Z
7 Ve—-—1-2
Then D is
D, 1 D1 2 D
X W], X [Yo], X
D5 Dy Ds
VN, 4 4 Ve—-—1-2
Z.
Let D, D}, Di be
D, D, D,
X Y1, X Yy, X
D5 D, Ds
VY1Ys, Z, Z.

If, for i = 2,3,4,5, O; specifies the occurrences of X in D; specified by O in
D and, for j = 1,2, O;» specifies the occurrences of Y; in D, 3 discharged by
the inference by Ve, then

in(X,0y,Dy) = [in(Y1,0}, Dy) + in(Ys, Oy, Ds) 4 1] - in(X, Os, Ds)
+in(X, Oy, Dy) + in(X, Os, Ds),
in(Dy) = [in(Y1, 01, Dy) + in(Ya, Oy, D) + 1] - in(Ds)
+in(Dy) +in(Ds) + 1,

and, by the induction hypothesis,

(2
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Thus,

in(D) = [in(Y1,01, Dy) +in(Ya, Oy, Ds) + 1] -
— [in(V4, 0}, Dy) + in(Yy, 0}, Ds) + 1]
{in(X, 03, Ds3) - [in(Dy) — 1] +in(D3)}
+in(X, Oy, Dy) - [in(Dy) — 1] + in(Dy)
+in(X, Os, Ds) - [in(Dy) — 1] +in(D5) + 1

= {[in(Y1,01, Dy) + in(Y2, Oy, D5) 4+ 1] - in(X, O3, D3)
+in(X, Oy, Dy) + in(X, O, D5) }
[in(Dy) — 1]+ [in(Y:, O, D) + in(¥s, 04, Dy)
+in(Dy) +in(Ds) + 1

= in(X, Oq, Dy) - [in(Dy) — 1] +in(Dy).

in(Ds) +in(Dy) +in(D5) + 1

+1] - in(Ds)

(g) D, is the deduction

1
x Yo X
Dy Da(x)
XY
Z. Ze
Then D is
Dl 1 Dl
X [Yal.X
D3 Dy(x)
XY A
—z
Let Dj, D} be
D, D,
X Y, X
D3 D4($)
2Y, 7
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If, for ¢ = 2, 3,4, O; specifies the occurrences of X in D; specified by O in D

and if O’ specifies the occurrences of Yz in D,(z) discharged by the inference

by Xe, then

ZTZ(X, 02, Dg) == [m(Yx, O/, D4(ZL‘)) + 1] . Z’I’L(X, 03, Dg) + Z?’L(X, 04, D4(ZE)),
in(Dy) = [in(Yx,O', Dy(z))+ 1] - in(Ds) + in(Dy(z)) + 1,

and, by the induction hypothesis,
Hence,

in(D) = [in(Yx,0', Dy(x)) + 1] -in(D35) + in(D}) + 1
= [in(Yx,0', Dy(x)) + 1] - {in(X, O3, D3) - [in(D;) — 1] +in(D3)}
+in(X, Oy, Dy(z)) - [in(D1) — 1] +in(Dy(z)) + 1
= {[in(Yx,0', Dy(z)) + 1] - in(X, O3, D3) + in(X, Oy, Dy(x))} - [in(D1) — 1]
+in(Yz,O', Dy(x)) + 1] - in(D3) + in(Dy(z)) + 1
— in(X, 09, Dy) - [in(Ds1) — 1] + in(Ds).

As an immediate corollary of Lemma 2, we have the following result:

Lemma 3 If D and D’ are the deductions

D, 2
X and X
.D2 D27

and if in(Dy) < in(D}), then in(D) < in(D').

Proof of Theorem 1 There are four cases, depending on the reduction step.
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N-reductions. Let D and D’ be

Dy Dy
X, X N
Ai !
AX1 X2 Xz

Eq and — Eq
AY1Y, Yi
v, Ds
D,

respectively, where by Lemma 3 we may disregard D3. Then
in(D) = in(Dy) +in(Ds) > in(D;) = in(D").

V-reductions. Let D and D’ be

Dl D
1
X, 1 2 X‘

vi (Y] [Y2] "' Eq
VXXep Dy Dy Y,
VY1 Y, Z Z and Diy

Ve — 1 — 2 Z
7
D, D,

respectively, where, by Lemma 3, we may disregard D,. If, for i = 1,2, O
specifies the occurrences of Y; in D, discharged by the inference by Ve, then

+in(Dy) +in(Ds) + 1,
in(D") = in(Y;,0;, D;i1) - [in(Dy) — 1] + in(D;11),

and clearly in(D') < in(D).
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M-reductions. Let D and D’ be

Dl(.f)

Xz

ﬁ I'Ii Dl(Z)
— Eq and g E
ny vz 4
—[le

YZ Dy

D,

respectively, where, by Lemma 3, we may disregard Dy. Then
in(D) =in(Dy(x)) +2=1in(Dy(2)) + 2 > in(D(Z)) = in(D").

Y -reductions. Let D and D’ be

D1 1 l)1

g vi [Vl g Eq

X By D2(@) and YU

Y Z Dy (U)
Dy Dy

respectively, where, by Lemma 3, we may disregard D3. If O specifies the
occurrences of Yz in Dy(x) discharged by the inference by Ye and if O”
specifies the corresponding occurrences of YU in Dy(U), then
in(D) = [in(Yx,0', Dy(x)) + 1] - [in(Dy) + 1] + in(Dy(x)) + 1
in(D") = (YU, 0" Dy(U)) - [in(Dy) — 1] + in(Dy(U)),

and since in(Y'U, 0", Dy(U)) = in(Yx,O', Dy(x)) and in(Dy(U)) = in(Dy(x))
by Lemma 1, we clearly have in(D’) < in(D). m

Corollary 1.1 Every deduction can be reduced to a normal deduction (a
deduction which is irreducible).

21



Proof An easy induction on the index of the deduction. m

This normalization result makes it possible to prove cut elimination for
the (singular) L-system introduced in §2.

Theorem 2 The cut elimination theorem holds for Fk.

The proof consists of two lemmas:

Lemma 4 If
(4) MIFX

is provable in the Fi;, then
(5) MFE X

holds in Fi.

Proof A straightforward induction on the length of the proof of (4). If (4)
is the conclusion of *Exp or Exp*, then (5) follows by Rule Eq. The other
cases are similar to those in [6, Theorems 5D6 and 7C1 (necessity)]|. m

Lemma 5 If (5) holds in Fi, then there is a cut-free proof of (4) in Fk.

Proof By Corollary 1.1, if (5) holds there is a normal deduction of it. Let
this normal deduction be D. The proof is an induction on (in(D),In(D)),
where [n(D) is the length of D (the number of nodes in the tree diagram of
D) and where the pairs are ordered by the usual lexicographic order, so that
(a,b) < (¢,d) if a < c or else a = ¢ and b < d. Note that a proper part of a
deduction has an index no higher than that of the entire deduction. For the
basis of the induction, note that the result is trivial if (5) is is a deduction
consisting of a single formula, since (4) an instance of the axiom scheme. For
the induction step, we have the following cases:

Case 1. The last inference is an i-inference. Let D’ be the result of
deleting the last inference (D’ may consist of two separate deductions). By
applying the corresponding rule on the right to the induction hypothesis
(whose index(es) is (are) lower than in(D)), we obtain a cut-free proof of
(4).

Case 2. The last inference is by Eq. Similar to Case 1, but now in(D’) =
in(D) and In(D’) < In(D), and the corresponding rule on the right is Eq*.
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Case 3. The last inference is an e-inference. Then the only inferences
which occur in the left branch of D are e-inferences and inferences by Eq.
Let the top formula of this left branch be Y (note that it is not discharged
in D) and let the first inference be by rule R. If R is Ae, le, or Eq, then
deleting the inference results in a deduction of lower index or equal index
and lower length than D, and so we can apply the corresponding rule on the
left to the induction hypothesis to obtain a cut-free proof of (4). The only
cases left are those in which R is Ve and Xe.

If Ris Ve, then Y is VY Y, and D is

1 2
Y] [
D, D,y
VY1Ys Z Z
Ve—1-2
Z
Ds
X.
Now the two deductions
Y1 Y,
Dy D,
Z and Z
D5 D3
X X

have lower indexes than does D. Furthermore, although they may not be
in normal form (because our normalization procedure does not eliminate all
maximum segments but only cut formulas), they can certainly be normalized
by Corollary 1.1, and the resulting normal deductions will have still lower
indexes. Hence, if M’ is all of M except Y, then by the induction hypothesis
there are cut-free proofs of

M. Y, FX, MY, F X.

By *V there is a cut-free proof of (4).
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The case for Xe is similar. m

Remark This proof is somewhat complicated, since it is necessary to obtain
some of the effects of the permutative reduction steps without having them
as part of the normalization process. It therefore seems worth considering
an example. Let us begin with the following deduction of VY Z, X + X:

1 2
[Y] X . [Z] X .
wxo M azx M 3 4
VYZ VIAYX)AZX) ' VINVX)(AZX) vl Lo X)) AZX]
VINY X)(AZX) D G D G
X Ve—3—4

This deduction is normal in the sense of this paper (although not in the sense
of Prawitz [16]). If we apply Lemma 5 to this deduction, we are in Case 3,
since the last inference is an e-inference. The top of the main branch is VY Z;
the rest of the main branch consists of V(AY X)(AZX), X. The subcase is

that for Ve, so we need to look at the following two deductions:

Y X A 1 2
AY X vi IWX] ) [AZX]
VIAYX)(AZX) ' x " ©
Ve—1-2
X
and
Z X p 1 2
NZX 1V- AYX] [NZXT
VAYX)(AZX) V' X "¢ ¢
e Ve—1-2

Neither of these deductions is normalized, but both can be normalized: in
each case a V-reduction followed by a A-reduction leads to a one-step deduc-

tion
X.
Hence, the cut-free proof in Fk is
XIFEX
VYZ X F XK
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Note that Lemmas 4 and 5 also imply the equivalence of Fj; and Fi;.
An examination of the proof of Lemma 5 shows that we can, in fact, prove
the following stronger result:

Corollary 2.1 If (5) holds in FJ;, then there is a cut-free proof of (4) in
Fi in which rule *W is not used.

Corollary 2.2 Rule *W is redundant in Fi.

Proof Redefine F% without this rule. Then Lemma 4 is proved as before,
and Lemma 5 holds by Corollary 2.1. Hence, Theorem 2 holds for this
modified Fi;. It is then possible to derive rule *W as follows:

MX, X IFZ XX
VXX FZ®Y XrVXX \é*t
M, X I Z. b

3 The Classical Version

Finding a classical version of F% is easy; take the system with more than
one formula on the right of a sequent.

Definition 5 The system FZC is defined by taking the same terms as in
Definition 1 for FZ*. The proof system is defined by the following axioms
and rules, where M, N, and L are sequences of terms:

Axiom Scheme: XFX, for each term X.
Rules:
*( M- N C* M- N
M+ N, M+ N,
W M, X, XIFN W MIFX, X, L
M, X IF N, MIFX, L,
*K M- N K* M- L
M, X IFN, M X, L,
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Exp M,Y IF N Fxp* MY, L

M, X IF N, MIFX,L,
= M,X,Y F N Ax MIEX L MIFY,L
M,AXY F N, MIFAXY, L,
sy M, XIFN MY F N V MK X,Y,L
M,VXY I N, MIFVXY,L,
M M,XZ N i MW Xz, L
M,NX IF N, MIFNX, L,
- M,XzF N s MK XZ,L
M,EX IF N, MFTX,L,
Cut M, XN M X, L
MIFN,L,

where, in rules [M* and *X¥, x is a variable which does not occur free in M,
X, N, or L, in rules *Exp* there is the condition that X > Y, and in rules
*C*, M' and N’ are permutations of M and N respectively.

Remark This statement of the rules follows a convention from [8] in that for
a system that is singular (i.e., with only one term on the right of a sequent),
N is to consist of one formula and L is to be void. This makes it possible to
state the rules, except for rule V*, for singular and multiple systems together.

However, for the natural deduction system, it is not so easy, since all of
the usual natural deduction rules which lead to classical logic when added to
intuitionistic logic involve implication or negation. (A rule with implication
alone is Pk of [6].) One way to find such a rule with neither implication nor
negation is to try to prove that if

(6) MIY,Ys;,....Y,
holds in FEC, then
(7) M F VYi(VYy(... (VY,1Y,) .. 0)

holds in FLA. If we are trying an induction on the length of the proo