
The Revised Reporton theSyntactic Theories of Sequential Control and StateMatthias FelleisenDepartment of Computer ScienceRice UniversityHouston, TX 77251-1892Robert HiebComputer Science DepartmentIndiana UniversityBloomington, IN 47405Rice University Technical Report # 100-89to appear in: Theoretical Computer Science 1991

The Revised Reporton theSyntactic Theories of Sequential Control and StateMatthias Felleisen�Department of Computer Science, Rice University, Houston, TX 77251-1892Robert HiebyComputer Science Department, Indiana University, Bloomington, IN 47405AbstractThe syntactic theories of control and state are conservative extensions of the�v-calculus for equational reasoning about imperative programming facilities inhigher-order languages. Unlike the simple �v-calculus, the extended theories aremixtures of equivalence relations and compatible congruence relations on theterm language, which signi�cantly complicates the reasoning process. In thispaper we develop fully compatible equational theories of the same imperativehigher-order programming languages. The new theories subsume the originalcalculi of control and state and satisfy the usual Church-Rosser and Standard-ization Theorems. With the new calculi, equational reasoning about imperativeprograms becomes as simple as reasoning about functional programs.1 The syntactic theories of control and stateMost �-calculus-based programming languages provide imperative programming facilitiessuch as assignment statements, exceptions, and continuations. Typical examples areML [16],Scheme [19], and Common Lisp [20]. While these additions add expressive power and in-crease the e�ciency of programs, they also appear to invalidate the simple reduction rulesand equational reasoning of the �-calculus that make functional programming so appeal-ing. In two previous papers [8, 9], we have shown that there are conservative extensions ofPlotkin's �v-calculus [18] for such programming languages, and that it is possible to reasonabout programs in extended functional languages in an equational style.The main di�erence between the simple lambda-calculi and its extended versions isa distinction between two classes of equations: equations for ordinary expressions andequations for whole programs . The reason for this distinction is the need to arrange thee�ects of assignments and jumps in the appropriate order. For example, a program like�Supported in part by NSF grants CCR 88-07520 and 89-17022, and DARPA/NSF grant CCR 87-20277.ySupported in part by NSF grant CCR 88-03432. 1

x := 3; y := x+ 1 is equivalent to the program y := 4, yet the subexpression x := 3; y :=x + 1 cannot be replaced by y := 4 because the context in which the former expressionoccurs may contain further references to x and these references must be able to perceive theassignment to x . Still, the calculi satisfy relatively simple variants of the Church-Rosser andStandardization properties. Most importantly, they satisfy most of Plotkin's [18] criteriafor a correspondence between a programming language and a reduction-based calculus:(1) the standard derivations of the calculi yield the same value for a program as theoperational semantics, and(2) a subset of the calculi equations for ordinary expressions are operationally sound.The �rst property is important because a programmer can use the relatively simple reduc-tion system to determine the value of an imperative higher-order program by rewriting theprogram until it becomes a value. The second property is a basis for program transfor-mations and program correctness proofs. However, as the restriction in (2) indicates, thecalculi are complicated equational theories because some equivalences are not equations inthe usual sense. This distinction is unnatural and leads to problems in reasoning aboutequational properties of programs.One way to simplify the equational theories for an imperative programming language isto modify the programming language. For example, we recently showed that by adding acontrol delimiter facility to the �-calculus extended with control operators, we can simplifythe calculus and get a more elegant relationship between the language and its calculus [6].But, although this proposal provides a good example of how calculus design can inuenceand improve language design, it does not alleviate the need for better techniques for rea-soning about existing languages. Languages such as Scheme, ML, and Common Lisp havegrown through practical experiences and support practical applications, and they need cal-culi that are tuned towards their speci�c needs.The solution to the problem is to relax Plotkin's �rst correspondence criterion. Moreprecisely, we no longer require that the standard derivation of the programming languagecalculi terminate in a value when the machine produces a value for a program. Instead, weallow the standard derivation to produce some other kind of term that is recognizable asa �nal answer. For both kinds of imperative extensions, i.e., control operators and assign-ments, the result is a simple equational calculus for imperative, higher-order programminglanguages that can prove the same set of observational equivalences as the old calculus butwith an elegant axiomatic basis. Indeed, reasoning with the new calculi is as simple asreasoning with the traditional �-calculus.In the next section, we briey summarize Plotkin's work on the �v-calculus since itconstitutes the basis of our research. Sections 3 and 4 present our new theories of controland state, respectively. These sections begin by briey introducing our old calculi, whichprovide machine-independent semantics for the languages and standards against which tomeasure the new theories. Next, these sections introduce the new calculi and analyze therelationships between the old and new calculi. The �fth section describes the merger ofthe two theories. Finally we discuss related work and some implications of our work for analternative denotational semantics for extended functional languages.2

2 The �-value-calculusThe expression language � of the �-calculus and the �v-calculus [2, 3, 18] is the union of aset of values and expression juxtapositions:e ::= v j (e e):The set of values is the collection of basic constants (b 2 BConsts) and functional constants(f 2 FConsts), variables (x 2 Vars) and �-abstractions:v ::= b j f j x j �x:e:Constants correspond to built-in algebraic language primitives like numbers and booleansand (mathematical) functions on them; identi�ers are placeholders for values; and �-abstractions are call-by-value procedures. Expression juxtaposition denotes function ap-plication.The only binding construct in the programming language is �-abstraction. The set ofclosed expressions, �0, is the set of all expressions with no free variables; Values0 is the set ofclosed values. We adopt Barendregt's [2] conventions on bound variables and abstractions:� Bound variables are always distinct from free variables in the various expressions ofmathematical de�nitions and claims.� Abstractions that only di�er by a renaming of bound variables are identi�ed, e.g.,�x:x � �y:y:The expression e[x e1] is the result of substituting the expression e1 for a free variable xin the expression e.An important parameter of the language de�nition is the set of constants and its inter-pretation. Following Plotkin [18], we assume that the behavior of constants is speci�ed bya partial function from functional and basic constants to closed values:� : FConsts � BConsts ! Values0:In the mid-60's, Landin [11, 12] illustrated in a series of papers that � is an interestingand powerful programming language. Most importantly, he showed how a simple stack-based calculator for algebraic expressions could be extended to the abstract SECD-machinefor evaluating complete �-programs. From a programmer's perspective, the SECD-machineis an interpreter that implements a partial function from programs to answers, where theformer are closed expressions and the latter are closed values:evalSECD : �0 ! Values0:The use of � as a programming language with an operational semantics and as theterm language for Church's �-calculus [3] raises the natural question of how the two con-cepts correspond to each other. Plotkin [18] provided the answer by de�ning the �v-calcu-lus, which matches the evaluation function evalSCED, and by providing a modi�ed SECD-machine, which implements the �-calculus correctly in the above sense of a Landin-style3

interpreter. The original SECD-semantics and the �v-calculus precisely model the call-by-value parameter-passing technique that is now predominant in the functional subsetsof programming languages. Besides being easy to implement, call-by-value provides anobvious order of evaluation, which facilitates the addition of imperative features. Thereis, however, no theoretical reason for choosing one over the other, even in the presence ofcontrol operators and assignments.The �v-calculus is an equational theory about �. More precisely, it is a set of equationsthat is based on a set of term relations on �. The two basic relations, notions of reduction,are: fa �! �(f; a) (�)(�x:e)v �! e[x v]: (�v)The equational theory �v is the smallest congruence relation generated from the aboverelations. For the formal de�nition, we rely on the concept of a term context, which areexpressions with a hole ([]) at the place of a subexpression:C ::= [] j (e C) j (C e) j (�x:C):The expression C[e] stands for the result of putting the expression e into the hole of thecontext C , which may bind free variables in e .Given the notions of reduction and the de�nition of contexts, the de�nition of �v isstraightforward.De�nition 2.1. (�v) The basic notion of reduction isv = � [�v:The one-step v-reduction �!v is the compatible closure of v: e �!v e0 if (p; q) 2 v; e �C[p]; and e0 � C[q] for some expressions p and q and context C: The v-reduction is de-noted by �!�!v and is the reexive, transitive closure of �!v ; =v is the smallest equivalencerelation generated by �!v . If e1 =v e2, we write �v ` e1 = e2.The �v-calculus has the same characteristic properties as Church's original �-calculus.First, the de�ning notion of reduction, v, is Church-Rosser, i.e., the v-reduction satis�esthe diamond property.Theorem 2.2 (Plotkin) If e�!�!v e1 and e�!�!v e2, then there exists an expression e0 suchthat e1 �!�!v e0 and e2 �!�!v e0.Second, for every sequence of (single) reduction steps from one term to another, thereis a canonical sequence of steps between the same terms that can be found algorithmically.This idea is important for an analysis of the correspondence between a calculus and anabstract machine. While it is easy to see that e �!�!v v if evalSECD(e) = v, the inverse isnot correct. If e �!�!v v and v is a �-abstraction, then there are possibly many di�erentvalues to which e reduces, yet evalSECD, the interpreter, can only yield one value for e.To determine this value via a sequence of reductions, we need canonical reductions and analgorithm to compute them. 4

To describe the basis of the algorithm and to state the corresponding theorem, weneed some de�nitions. An evaluation context is a special kind of context. The hole of anevaluation context is in such a position that a �- or �v-redex inserted in the hole is theleftmost-outermost redex that is not inside of a �-abstraction. We let E range over the setof evaluation contexts and de�ne it with the following grammar:E ::= [] j (v E) j (E e):Given the de�nition of an evaluation context, we say that e standard reduces to e0 if thereduction occurs in an evaluation context. In other words, a standard reduction functionalways picks the leftmost-outermost v-redex outside the scope of a �-expression. It isunde�ned on values.De�nition 2.3. (Standard Reduction Function) The standard reduction function maps eto e0, e 7�!v e0, if for some evaluation context E , e � E[p], e0 � E[q] and (p; q) 2 v. We use7�!�v to denote the transitive closure of the standard reduction function.The concept of standard reduction sequences generalizes the idea of a standard reductionfunction such that standard reductions become applicableto arbitrary term positions. Astandard reduction sequence also permits incomplete reduction sequences that may choosenot to reduce a leftmost-outermost redex for the rest of the sequence.De�nition 2.4. (Standard Reduction Sequences) The set of standard reduction sequencesis de�ned as follows:1. Every constant and variable is a standard reduction sequence.2. If e1; . . . ; en is a standard reduction sequence, then so is �x:e1; . . . ; �x:en.3. If p1; . . . ; pn and q1; . . . ; qm are standard reduction sequences, then so isp1q1; p2q1; . . . ; pnq1; pnq2; . . . ; pnqm:4. If e1; . . . ; en is a standard reduction sequence and e 7�!v e1, then e; e1; . . . ; en is astandard reduction sequence.We can now formalize a Curry-Feys-style Standardization Theorem.Theorem 2.5 (Plotkin) e �!�!v e0 if and only if there is a standard reduction sequencee; . . . ; e0.Together, the Church-Rosser and Standard Reduction Theorems show that there is aperfect correspondence between the SECD-evaluation function and the standard reductionfunction.Theorem 2.6 (Plotkin) Let e; v be closed terms in �. Then, e 7�!�v v if and only ifevalSECD(e) = v. 5

In other words, the SECD-machine terminates and returns a value for a program if andonly if the program standard reduces to the same value. It is therefore possible to de�ne theevaluation function via the standard reduction function, ignoring the details of the actualmachine: evalv(e) df� v i� e 7�!�v v:After determining that reductions in the calculus correspond to evaluations on a ma-chine, the question remains what equations on the calculus mean for a programmer. Tounderstand this relationship, we recall that a programmer can only observe the e�ects ofentire programs via the evaluator. Thus, to compare expressions as black boxes, a pro-grammer must rely on those equivalences that the evaluation function can validate for allprograms in which the expression can occur. This argument naturally leads to the de�nitionof the operational equivalence relation.De�nition 2.7. (Operational Equivalence) Two terms, e and e0, are operationally equiv-alent, e 'v e0, if and only if they are indistinguishable in all program contexts C :evalv(C[e]) terminates i� evalv(C[e0]) terminatesand evalv(C[e]) = b i� eval(C[e0]) = bfor some basic constant b.Plotkin [18] showed that the �v-calculus is sound with respect to operational equivalence.Theorem 2.8 (Plotkin) If �v ` e = e0 then e 'v e0. The inverse direction does not hold.Theorems 2.5 and 2.8 are the basis of a formal correspondence relation between pro-gramming languages and calculi. They stipulate that1. a calculus can evaluate a program in the same way as an independently given opera-tional semantics; and2. the equations of a calculus imply the interchangeability of expressions in arbitrarycontexts.These two criteria are the basis for any further development of programming languagecalculi.3 Theories of controlThe language �c for programming with procedural and control abstractions is an extensionof � with a set of C-applications of the form (Ce):e ::= v j (ee) j (Ce):A C-application applies its subexpression to an abstraction of the current control context,the continuation . The application takes place in the empty control context, the halt contin-uation. A continuation has the same �rst-class status as a �-abstraction; upon invocation,6

it discards the control context of the application and resumes the abstracted control contextwith its argument.This notion of control abstraction is derived from the treatment of continuations inthe programming language Scheme [19]. However, although the continuation created by aC-application acts just like a continuation created by the Scheme continuation constructorcall/cc, a C-application di�ers from a call/cc application in that the former aborts thecurrent control context, whereas the latter leaves the current control context intact. Thisabortive a�ect allows us to de�ne an abort abstraction as an abbreviation of a C-applicationwhose subexpression is a procedure that ignores its argument:A e df� C(�d:e) where d 62 FV (e):The e�ect of (A e) is an abort of the program evaluation. It discards the current controlcontext and returns the value of its subexpression as the �nal value of the program. Thisabbreviation is used to simplify the reduction rules for C-applications.Other than the introduction of C-applications, the syntax of � is adopted mutatis mu-tandis. The de�nition of the set of values retains its shape, even though subexpressions arein the extended language �c: v ::= b j f j x j �x:e:Similarly, the speci�cation of the set of evaluation contexts stays the same:E ::= [] j (v E) j (E e);but it now denotes the set of evaluation contexts whose subexpressions are in the extendedlanguage �c.The following subsection briey presents our original theory of control abstractionswith an emphasis on the set of safe equations; for a more complete description, we referthe reader to the earlier report [9]. The second subsection contains the development ofa �nite axiomatization of the theory of safe equations. The Plotkin-style correspondencetheorem relies on a proof of equivalence between the two calculi and on the idea that the oldcalculus is an acceptable speci�cation of the semantics of �c. The �nal subsection presentstwo interesting extensions of the equational theory.3.1 A syntactic theory of control abstractionsOriginally we derived the syntactic theory of control from an abstract operational semanticsbased on Landin's SECD-machine [7]. Eliminating all non-program text components fromthe machine shows that the concept of \current continuation" is equivalent to the notion ofevaluation context. The machine transition rules for abstracting a control state naturallylead to two term relations that gradually lift a C-application to the top of an evaluationcontext while encoding the context as an abstraction.When the C-expression, Ce, occurs as the function part of an application, (Ce)e0, itsimmediate continuation is the application of a yet-unknown function f to the expression e0.The rest of the continuation, k , is the continuation of the entire application. Composingthe two pieces, k(fe0), yields the functional part of the continuation of Ce, which in turnis the argument for e. Since this continuation must abort its context upon invocation, we7

wrap this expression in an A-application. To obtain the outer part of the continuation, weuse another C-application: (C e)e0 �! C(�k:e (�x:A(k (xe0)))):Similarly, when the control expression occurs as the argument part of an application, theabstraction of the control context applies the known function to an unknown argument,passing the result to the continuation of the entire application:v(C e) �! C(�k:e (�x:A(k (vx)))):The assumption that the left part of the application is a value reects the left-to-rightevaluation order of the underlying language.To facilitate the formal de�nition and future reference to the above rules, we introducethe notion of a singular evaluation context:Es ::= (v []) j ([] e):Using singular evaluation contexts, one de�nition schema su�ces for specifying both of theabove reduction relations for �c:Es[C e] �! C(�k:e (�x:A(k Es[x]))): (Clift)The relation for lifting C-applications gives rise to an extended notion of reduction:c = � [�v [Clift : (c)This notion of reduction de�nes a full reduction relation and a congruence relation in theusual way. It is Church-Rosser and has Curry-Feys-style standard reduction sequences. Thesymbol 7�!c denotes the standard reduction function for c. The respective theorems andproofs are straightforward adaptations of the proofs of Plotkin's corresponding theorems.We use �v-C(c) ` e = e0 if e =c e0.For a complete simulation of an abstract machine for �c, the reduction based on cis insu�cient because C-applications get stuck at the top of the program. We thereforeintroduce a computation rule that maps a C-application at the top of the program into anapplication of its subterm to the halt continuation (�x:Ax):C e . e(�x:Ax): (CT)Together with the extended reduction �!�!c, the computation rule forms a computationrelation .c = �!�!c [CT :The computation relation satis�es the diamond property, i.e., if e .c e1 and e .c e2, then forsome e0, e1 .c e0 and e2 .c e0. But, since CT only applies to entire programs, the computa-tion relation cannot satisfy the full Church-Rosser property. Similarly, there are standardcomputation sequences, which are weak forms of standard reduction sequences. The com-putation relation generates an equivalence relation on programs, which we refer to as .=c.We also write �v-C. ` e = e0 if e .=c e0. Based on the diamond property of the computation8

relation and the Church-Rosser property of the reduction c, it is easy to show that thetheory �v-C. is a conservative extension of �v.The standard computation function is a generalization of the notion of a standard re-duction function and always performs the leftmost-outermost computation step. Like thestandard reduction function, it is unde�ned on values.De�nition 3.1. (c-Standard Computation Function) The standard computation functionmaps a program e to a program e0, e .7�!c e0, if e standard reduces to e0 or if e computes toe0: .7�!c = 7�!c [CT .The standard computation function faithfully simulates evaluation on a machine for �c,i.e., we can use it to de�ne a semantics instead of a machine with complex states:evalc(e) = v if e .7�!�c v:This, in turn, gives rise to an operational equivalence relation in the usual manner. A�c-expression e is operationally equivalent to e0, e 'c e0, if and only if the two are indistin-guishable in the sense of De�nition 2.7 relative to all �c-program contexts.From the design of the control calculus, it follows that congruences generated by c-reduction are operationally sound, but, due to their context-sensitivity, equations based onthe computation relation are not.Theorem 3.2 ([9]) Let e and e0 be in �C.(i) If �v-C(c) ` e = e0 then e 'c e0.(ii) �v-C. ` e = e0 does not imply e 'c e0.Fortunately, it is possible to factor out a large subset of equations in �v-C. that areoperationally sound: the safe equations.De�nition 3.3. (C-Safe Equations) An equation e .=c e0 is safe if and only if it holds inall evaluation contexts: �v-C. ` E[e] = E[e0] for all E.Operationally, the two terms of a safe equation have the same control e�ects. In orderto enrich the set of safe equations we also permit the use of safe equations in the safenessproof of an equation. We use �v-C-safe to refer to the equational theory generated by safeequations. The safe theory is again a conservative extension of �v and, more importantly,reduces reasoning about operational equivalence from the set of all contexts to the set ofevaluation contexts.Theorem 3.4 ([9]) If �v-C-safe ` e = e0 then e 'c e0.In summary, the calculus of control abstractions is like an ordinary �-calculus withChurch-Rosser and Standardization Theorems. Moreover, it closely corresponds to theprogramming language de�nition for �c. If we need to evaluate a program, the standardcomputation will produce the correct value; for proving operationally sound equations, weoften must work in the theory of safe equations. In general, we will be more interested in9

the latter than the former because most interesting properties of programs are characterizedby safe equations. Unfortunately, working with the theory of safe equations is not as easyas working with the �-calculus since it is not a simple axiomatic theory with a �nite set ofaxioms or axiom schemas but a theory based on a �ltered subset of another theory, �v-C..We introduce a simple axiomatic characterization of safeness in the next subsection.3.2 An axiomatic basis for safe equationsThe disturbing element in the calculus of control abstractions is the rule CT . The purposeof the rule is to replace a C-application (Ce) at the root of a program with an application ofe to the halt continuation. For an axiomatic characterization of safe equations, we must �nda way of replacing this special relation with simple notions of reduction that approximateits e�ect.1A partial solution is to leave C-applications at the root of the program alone and tocontinue with the evaluation of the subexpression. More precisely, when a C-applicationreaches the root of the program after a number of Clift reductions, it has the shape (C�k:e),and an evaluation may continue with e. But this clearly leads to an accumulation ofC-applications at the root of a program. By observing that the outermost C-applicationremoves the current continuation and that therefore the next C-application's continuationis the halt continuation, we are led to a rule that captures the idempotency of the abortaction of C-applications: C(�k:C e) �! C(�k:e(�x:Ax)): (Cidem)The only exception to this reasoning is the case where the program is already a C-applicationand the subexpression is not an abstraction. We therefore need a rule for transforming anarbitrary subexpression of a C-application into a �-abstraction. The task of this abstractionis to receive a continuation and to apply the subexpression to it. A �rst attempt at the rulecould be C e �! C(�k:e k):Unfortunately, this version is not strong enough. If, for example, e is a �-abstraction thateventually causes an application of k to some value, the reduction would be stuck and nofurther evaluation would be possible. The solution is to replace k by (�x:A(kx)) so that anapplication of the continuation can initiate a program abort. Putting things together, theadditional rule becomes C e �! C(�k:e (�x:A(k x))): (Ctop)Although a Cidem redex is also a Ctop redex, this ambiguity causes no problem: by imposingan appropriate condition on the standard reduction function (see below), it is still possibleto emulate a deterministic machine.Together, the two new relations, Cidem and Ctop , can closely simulate the top-level ruleof �v-C.. Indeed, the entire system of c-reduction, Cidem , and Ctop su�ces for simulating1Tim Gri�n independently and simultaneously discovered another solution while studying the connectionbetween a typed variant of the control calculus and classical logic [10]. He proposes to restrict the set ofprograms to expressions of the form C(�k:ke) and to use Cidem as a replacement for CT .10

a complete evaluation. To begin, we introduce the notion of reductiond = c [Cidem [Ctop :As usual, we let �!d and �!�!d stand for the respective one-step reduction and its tran-sitive closure. Furthermore, we write �v-C(d) ` e = e0 if e =d e0. Next we characterizethe relationship between standard computation and the new reduction system with threelemmas. Clearly, the new system subsumes the standard computations that are entirelybased on c-reductions.Lemma 3.5 If e .7�!�c e0 without use of CT then e �!�!d e0.Proof. Suppose e .7�!�c e0 without use of CT . Then e 7�!�c e0 and therefore e�!�!d e0. 2Given the operational motivation behind the introduction of Cidem , it should also beobvious that once a C-application is at the root of the program the evaluation proceeds asbefore.Lemma 3.6 If e .7�!�c e0 then C(�k:e)�!�!d C(�k:e0).Proof. Since Cidem is essentially an instance of CT inside of the context C(�k:[]), everycomputation step in the old derivation is a reduction step inside of C(�k:[]) in the revisedcalculus. The rest follows by transitivity. 2Finally, if an evaluation in �v-C. uses a top-level step, there is no equivalent step inthe new reduction system. However, based on the above lemmas, we can show that the restof the evaluation in �v-C. can be simulated, and that there is always a close relationshipbetween the respective terms in the two sequences.Lemma 3.7 If e .7�!�c e0 with at least one CT -step, then e�!�!d C(�k:e0k), where e0k may beconverted to e0 by replacing all occurrences of (ku) with u for arbitrary values u.Proof. By assumption, the derivation for e .7�!�c e0 must contain a �rst step using CT :e 7�!�c Ce1 . (e1(�x:Ayx)) .7�!�c e0:We tag this �rst, newly-created halt continuation with a dagger y so that we can track itthrough the rest of the computation and distinguish its occurrence in the �nal answer.By Lemma 3.5, the �rst part of the above derivation is easily simulated in the newsystem: e �!�!d Ce1 �!d C(�k:e1(�x:Ay(k x))):Since replacing (kx) with x in the underlined term yields the underlined term in the previousderivation, the underlined terms satisfy the desired relationship.To complete the proof, it su�ces to show that the invariant is preserved by all stepsfollowing the �rst top-level step. For this, we consider two cases.1. Assume that the tagged continuation is not applied to a value during the rest of thecomputation. It is easy to see that in �v-C. the second half of the derivation,e1(�x:Ayx) .7�!�c e0;11

can be transformed into the derivatione1y .7�!�c e0y where e0 � e0y [y (�x:Ayx)]:By Lemma 3.6, it follows thatC(�k:e1y)�!�!d C(�k:e0y);and, by replacing free y with (�x:Ay(k x)),C(�k:e1(�x:Ay(k x)))�!�!d C(�k:e0y[y (�x:Ay(k x))]):Again, a replacement of (kx) with x throughout e0y [y (�x:Ay(k x))] yields e0y [y (�x:Ayx)], which is e0.2. Assume that the tagged continuation is applied to a value for a �rst, and last, time:e1(�x:Ayx) .7�!�c E[(�x:Ayx)v] .7�!c E[Ayv] .7�!�c e0:By the same reasoning as in the �rst case, there must be an evaluation context Eyand a value vy such thatC(�k:e1(�x:Ay(k x))) �!�!d C(�k:Ey[yvy][y (�x:Ay(k x))])�!d C(�k:Ey[Ay(kvy)][y (�x:Ay(k x))]);where E � Ey [y (�x:Ayx)] and v � vy[y (�x:Ayx)]. Substituting vy for(kvy) and x for (kx) in the underlined term yields Ey[(Ayvy)][y (�x:Ayx)], whichis the underlined term E[Ayv] above. The corresponding terms in the two derivationsequences still satisfy the desired invariant.The rest of the standard computation sequence in �v-C. can only eliminate some orall of the evaluation context E. These steps are easily mimicked in the new calculuswithout violating the desired relationship. 2fa �! �(f; a) (�)(�x:e)v �! e[x v] (�v)Es[C e] �! C(�k:e (�x:A(k Es[x]))) (Clift)C e �! C(�k:e (�x:A(k x))) (Ctop)C(�k:(C e)) �! C(�k:e(�x:Ax)) (Cidem)Figure 1: The revised syntactic theory of controlIn summary, Lemmas 3.5 through 3.7 show that if a program has a value according toevalc, then the new calculus can reduce the program to a recognizably equivalent expression.The essential di�erence is that the reductions in �v-C(d) \remember" whether or not the12

computation used any control operations. Thus, the answer in the new theory may be asimple value, v , a C-application that abstracts over a value, C(�k:v), or a C-application thatabstracts over the application of a continuation variable to a value, C(�k:k v). In the �rstcase, v is the same answer the evaluation function evalc would produce; in the latter twocases, the body of the C-application may be converted to the expected answer by replacingall occurrences of (kv) with v .More importantly, the proofs of the above lemmas also show that the new calculusbasically reduces programs to answers with standard reduction steps. More precisely, anevaluation with the new rules begins with standard reduction steps based on the relation c.If this yields a value, the evaluation is �nished. If not, it reaches a C-application, in whichcase it employs a single Ctop-step, followed by a number of standard reduction steps basedon c possibly intermingled with Cidem reductions on the complete program . If this yields aC-application of the above form, the evaluation stops and produces an answer. We abstractthis process in an evaluation function.De�nition 3.8. (d-Evaluation) Let C(�k:e) 7�!idem C(�k:e0) if (C(�k:e);C(�k:e0)) 2 Cidemor e 7�!c e0. Let v and vy be values such that v � vy [y (�x:Ax)].A program e in �c evaluates to the value v , evald(e) � v, if and only if� e 7�!�c v, or� e 7�!�c Ce0 �!d C(�k:e0(�x:Ay(k x))) 7�!�idem C(�k:kvy [y (�x:Ay(k x))]), or� e 7�!�c Ce0 �!d C(�k:e0(�x:Ay(k x))) 7�!�idem C(�k:vy [y (�x:Ay(k x))]).Note: Once again we tag the �rst halt continuation in the above de�nition to distinguishits occurrences in the last term of the reduction.Based on the above lemmas, it is easy to prove that the two evaluation functions, eval cand evald, are equivalent.Theorem 3.9 For e 2 �c, eval c(e) � evald(e).Proof. By Lemmas 3.5 and 3.7, �v-C(d) can simulate standard computations. A simplecheck of their proofs shows that the reduction steps in the new system indeed conform toDe�nition 3.8. | For the other direction, assume that evald(e) = v. Then, either e 7�!�c e0,in which case the conclusion is obviously true. Or,e 7�!�c Ce0 �!d C(�k:e0(�x:Ay(k x))) 7�!�idem C(�k:kvy [y (�x:Ay(k x))])or e 7�!�c Ce0 �!d C(�k:e0(�x:Ay(k x))) 7�!�idem C(�k:vy[y (�x:Ay(k x))])for an appropriate vy . It is easy to see that in both cases,e 7�!�c Ce0 .7�!c e0(�x:Ayx) .7�!�c vy[y (�x:Ayx)]:Hence, e .7�!�c v and eval c(e) = v as desired. 2More importantly, we can show that the theory �v-C(d) can also prove all safe equationsin the old theory of control. To establish the claim, we need a lemma for each direction.The safeness of the new proof rules can be established by straightforward calculations.13

Lemma 3.10 �v-C-safe ` Cidem ; Ctop.Proof. The safeness of Cidem follows from a simple calculation. Let E be an arbitraryevaluation context. Then,�v-C. ` E[C(�k:Ce)] = (�k:Ce)K for some term K determined by E= Ce[k K]= (e[k K])(�x:Ax)= (�k:e(�x:Ax))K= E[C(�k:e(�x:Ax))]:Veri�cation of the safeness of Ctop is slightly more complicated:�v-C. ` E[Ce] = eK for some term K determined by E= e(�x:A(Kx)) (y)= (�k:e(�x:A(kx)))K= E[C(�k:e(�x:A(kx)))]:Since the continuation K is an abstraction of the form �x:Ae, the step (y) is a consequenceof the following safe equality:�v-C. ` (�x:A(Kx)) = (�x:A(Ae)) = (�x:Ae) = K:The equation A(Ae) = Ae follows from the safeness of Cidem . 2Every safe equation is also an equation in the new theory �v-C(d).Lemma 3.11 If �v-C-safe ` e = e0, then �v-C(d) ` e = e0.Proof. The proof requires several lemmas about the shape of proofs for safe equations.Since it only contributes insight into the old theory, the proof is explained in the appendix.2 The two preceding lemmas show that adding the two axioms Cidem and Ctop to thetheory �v-C(c) provides an axiomatic characterization of the theory of safe equations.Theorem 3.12 (Safeness) �v-C(d) ` e1 = e2 i� �v-C-safe ` e1 = e2Proof. The theorem follows from Lemmas 3.10 and 3.11. 2An immediate consequence of this theorem is that all equations in the revised theory ofcontrol are operationally sound. In other words, two equal expressions are indistinguishablevia evald with respect to all �C-contexts (in the sense of De�nition 2.7).Corollary 3.13 If �v-C(d) ` e1 = e2 then e1 'c e2.As to the classical properties of the new reduction d, we can show that it is Church-Rosser, which provides an alternative proof of �v-C(d)'s soundness. The Church-Rosserproperty moreover shows that �v-C(d) (and, by the proceeding theorem, �v-C-safe) is aconservative extension of �v.Theorem 3.14 (Consistency) The notion of reduction d is Church-Rosser. If e�!�!d e1and e �!�!d e2, then there is e0 such that e1 �!�!d e0 and e2 �!�!d e0.Proof. 2 The proof requires some generalizations of standard techniques. First, we de�ne2We gratefully acknowledge Erik Crank's help with this proof.14

an alternative set of reduction rules:fa �! �(f; a) (�)(�x:e)v �! e[x v] (�v)Es[C(�m:e)] �! C(�k:e[m (�x:A(k Es[x])))]) (C0lift)C(�k:(C(�m:e))) �! C(�k:e[m (�x:Ax)]) (C 0idem)C(�m:e) �! C(�k:e[m (�x:A(kx))]) (C0top)C e �! C(�k:e (�x:A(k x))) (Ctop)We refer to the new set of reductions as d0. It is easy to show that d and d0 are equivalentreduction relations, i.e., �!�!d ` d0 and �!�!d0 ` d. Second, we show in several steps thatthe new system is Church-Rosser. The proof forc0 = � [� [C 0liftis a simple adaptation of the Church-Rosser proof for c [9]. It is also straightforward toprove that C 0idem , Ctop and C 0top each directly satisfy the diamond property, and that theyare therefore Church-Rosser. Next we combine the relations and use the Hindley-Rossenmethod [2:64{66] for proving the Church-Rosser property of the larger relations. This isstraightforward for the union of c0 and C0idem , of �v and C 0top , and of �v [C0top and Ctop .The �nal step requires us to show that the reductions based on c0 [C 0idem and Ctop [C 0topcommute. For this we use Barendregt's commutation lemma [2:65] for the transitive closureof relations and apply it to c0 [C0idem and a parallel one-step reduction relation based onCtop [C 0top . Based on this, it is easy to show that the reductions based on c0 [C 0idemand �v [Ctop [C 0top commute. Hence, the union, which is the reduction based on d0 isChurch-Rosser because both sub-relations are Church-Rosser. Since d and d0 are equivalentas reductions, d is also Church-Rosser. 2The new theory of control also has standard reduction sequences, albeit non-traditionalones. To allow both Ctop and other d-reductions in standard reduction sequences, we mustextend the set of evaluation contexts to a set of d-evaluation contexts such that c standardreduction steps can take place after a C-application reaches the top of the entire term. Therest of the de�nition is conventional.De�nition 3.15. (d-Standard Reduction Relation; d-Standard Reduction Sequences) Letthe set of d-evaluation contexts (Ed) be de�ned as follows:Ed ::= E j C(�k:E):The standard reduction relation maps e to e0, e 7�!d e0, if there is a d-standard evaluationcontext Ed such that e � Ed[p], e0 � Ed[q] for some (p; q) 2 d.By adding the following clause to the de�nition of standard reduction sequences of the�v-calculus (De�nition 2.4), we get the set of standard reduction sequences for �v-C(d):� If e1; . . . ; en is a standard reduction sequence, then so is C e1; . . . ;C en.Clearly, the standard reduction for d generalizes the standard reduction for v but is arelation instead of a function. The reduction theory based on d satis�es the same standard-ization theorem as conventional �-calculi. 15

Theorem 3.16 (Standardization) e�!�!d e0 if and only if there is a standard reductionsequence e; . . . ; e0.Proof. The proof is an adaptation of Plotkin's corresponding proof. 2Finally, we can show that the evaluation function is again determined by the transitiveclosure of the standard reduction relation based on d. Since the latter determines a relationbut not a function, the statement of the theorem takes on a slightly peculiar form.Theorem 3.17 (Evaluation) evald � f(e; v) j e 7�!�d v; or e 7�!�d C(�k:kv0); or e 7�!�dC(�k:v0); where v � v0[y (�x:Ax)]gProof. The standard reduction relation obviously extends the relations 7�!c and 7�!idemfrom De�nition 3.8. 2With this last theorem, we have explored all the conventional aspects of the connectionbetween programming languages and calculi.3.3 Extensions of the equational theoryIt is not immediately obvious from the preceding discussion why the reduction Clift mustbe restricted to capturing only singular evaluation contexts. Combined with Ctop , whiche�ectively captures empty evaluation contexts, the two relations serve to capture arbitraryevaluation contexts. Consequently, the following generalization of Clift would seem to be anatural uni�cation of Clift and Ctop :E[C e] �! C(�k:e (�x:A (k E[x]))): (CE)This rule captures an arbitrary evaluation context in a single step and applies the subtermof the C-application to an appropriate continuation.The notion of reduction CE subsumes Clift and Ctop as sub-relations, but the inverse isnot true. Consider the term u(v (C e)). Two uses of Clift yield the termC(�k:e (�x:A ((�y:A (k (u y)))(v x))));but a single application of CE with E � u (v []) producesC(�k:e (�x:A (k (u (v x))))):Both terms are in normal form and it is thus impossible to prove their equivalence in either�v-C(d) or �v-C(d) modi�ed with CE. In short, although CE adds equational power tothe calculus, it destroys the Church-Rosser property.A second extension of the theory �v-C(d) is based on the observation that the safetheory cannot simulate the evaluation in a perfect manner. In �v-C(d), there are threedi�erent types of answers. First, an evaluation may simply yield a value. Second, anevaluation may abort some part of a computation and produce the answer (C�k:v) (with vpossibly containing k), which basically is an exceptional answer. Finally, the answer mayhave the shape (C�k:kv). In this case, the program discovered the answer at some pointin the evaluation and used a continuation to escape from the rest of the evaluation. If the16

answer does not contain any references to the captured continuation, it is uninterestingfrom an observational perspective that the program used a continuation for escaping fromthe evaluation process.We could avoid the third kind of answer for an evaluation in �v-C(d) by introducingan additional reduction that eliminates C-applications when they have become superuous:C(�k:k e) �! e if k 62 FV (e) (Celim)Unfortunately d [Celim is not Church-Rosser. A counterexample is the Celim -redex itself,which is also a Ctop-redex. Whereas a Celim -step yields e , a reduction with Ctop followedby a �v-step leads to C�k:((�x:A (k x)) e). Since e does not necessarily have a value, wecannot continue the reduction as necessary.We leave unsolved the problem of �nding an extended theory that includes CE or Celimand still satis�es the classical properties of reduction theories.4 Theories of stateThe extension of the �v-calculus to a theory of procedural abstraction and assignmentrequires two new syntactic constructs for the underlying term language. First, there isa need for assignable variables|also called state variables|that denote di�erent values atdi�erent times. To distinguish the set of assignable variables from the set of binding variablesof the simple �v-calculus, we rename the latter set Vars� and refer to the former as Vars�,annotating elements according to their set-membership: x� 2 Vars� and x� 2 Vars�. Sinceassignable variables do not denote �xed values, we do not use them as values.Second, the extended language needs a construct for altering the value, or state, ofan assignable variable. For this purpose we use the �-capability, which is a new formof value, (�x�:e). A �-capability is similar to a �-abstraction, but instead of binding avariable in some expression, it represents the right to assign the variable a new value. Uponinvocation, it globally alters the value of its variable and then continues with the evaluationof its subexpression or body . We refer to the extended language as ��.The notions of substitution, contexts and evaluation contexts are adapted appropriately.The latter de�nition has the same shape as in the �v- and the �v-C-calculus framework,but denotes a subset of contexts over ��.In the following subsection, we introduce the calculus of procedural abstraction andstate [8]. Like the original calculus of control, the state calculus requires two kinds of termrelations and, moreover, relies on further extensions of the language ��. We show in thesecond subsection that both program-level term relations as well as additional languageextensions are superuous. In addition, our new theory of state is a proper extension of theexisting one.4.1 A syntactic theory of stateAccording to �v, the application of a procedural abstraction to an argument value is equiva-lent to the evaluation of the procedure body with all occurrences of the procedure parameterreplaced by the argument. Given this, it is reasonable to expect that a reduction relation forprocedures with assignable parameters replaces the assignable parameter with something17

that corresponds to the argument value. The traditional solution is to maintain an addi-tional function that maps a parameter name to a value: a store. In our earlier report [8],we demonstrated that the store and its management can be incorporated into the termstructure of the program. The key is to keep track of the substituted values via a uniquelabel that is attached to the value before substitution. Based on this labeling scheme, anassignment can be simulated by replacing all values that are tagged with the same label bya di�erent labeled value. The use of the value of an assignable variable requires stripping o�the label of the labeled value. The deallocation (or garbage collection) of unusable storagehappens automatically.A complicating fact for the de�nition of the extended term language is the potential forcircular (self-referential) values. For example, the expression (�x:(�x:x)(�y:x))0 evaluatesto a recursive function that returns itself upon application. To achieve canonicity in therepresentation of such values, we add labeled bullets of the shape �x for all labels x . Forconvenience, we add �-capabilities with labeled bullets in the variable position (� �x :e),which represent the result of substituting labeled values for free variables.Following these preliminary remarks, we de�ne the extension of �� to �S with thefollowing abstract syntax:e ::= v j (ee) j x� j vx j �xv ::= c j x� j (�x�:e) j (�x�:e) j (�x� :e) j (� �x :e)The set of labels is the set of assignable variables (used without subscript). When thedistinction between assignable and binding variables is irrelevant or deducible from context,we omit the subscripts � and � from variables. As indicated above, the substitution of freevariables in terms is adapted mutatis mutandis with one exception: (�x:e)[x vl] =(� �l :e[x vl]).Since the labeling strategy is a textual representation of a store, we need to ensure thatprograms describe consistent stores. For example, every label should be attached to onlyone value and labeled bullets should be used only to indicate self-references; typical termsthat violate these conditions are (�x:1)y(�x:0)y and �l. To eliminate such terms without acorresponding store con�guration, we impose three context-sensitive conditions on the termlanguage and use the resulting language as the basis of the calculus:(C1) an x -labeled bullet (�x) can only occur as a sub-term of an x -labeled value or in thevariable-position of a �-capability, and an x -labeled value must not contain x -labeledvalues, only x -labeled bullets;(C2) the bound variable of a �-abstraction must not occur as a sub-term in a labeled value;(C3) the labeling of the two subexpressions in an application must be consistent: if vx isa subterm of e and ux is a subterm of e0 where (e e0) is an application, then v and umust be identical after replacing labeled values in them by the labels.Equipped with the notion of labeled terms, we introduce labeled -value substitution, e[�x vx], which replaces all x -labeled values in an expression e by vx such that the resultingexpression respects the above conditions. This may involve replacing labeled subvalues bylabeled bullets in v. 18

Next, we can turn to the question of how to simulate the execution of a �� programthrough reductions of �S-terms. For an example, we consider the application of an abstrac-tion with an assignable parameter to a value. We would like to model this e�ect with asubstitution of the parameter by a labeled value. Since the label must be unique for everyreduction of such an application, it is impossible to perform several reductions in parallelin di�erent parts of the term.The coordination of the e�ects of labeled-value substitutions becomes possible by en-suring that only one such contraction is applicable. Since the only unique point in a termis the root, the calculus again coordinates imperative e�ects of transition steps by splittingthe set of term relations into a set of simple notions of reduction and computation rules.The reductions lift a redex to the top of the program where the computation rules performthe appropriate action. There are three kinds of redexes that require unique actions:1. the application of a procedural abstraction with an assignable variable to a value,(�x�:e)v;2. the application of a �-capability to a value, (� �x :e)v, which must proceed with theevaluation of the body after replacing all occurrences of ux with vx in the entireprogram; and3. the use of a labeled value, vx, which produces the value v[�x vx].According to the above reasoning, such redexes must be lifted to the top of the programjust before they are evaluated. Consequently, the reductions must lift the redexes out ofevaluation contexts, and, after applying the appropriate computation rule, the evaluationmust continue with the expression in the hole of the original evaluation context. Putting allof this together, we introduce the following notions of reductions where the meta-variables Xranges over assignable variables, labeled values and labeled bullets (depending on context):E[((�x�:e)v)] �! (�x�:E[e])v (�E)E[((�X:e)v)] �! (�X:E[e])v (�E)E[X] �! (�v:E[v])X (DE)In accord with the variable assumptions in Section 2, we assume in these equations thatvariables are renamed as necessary to avoid conicts.Once redexes reach the top of the program, the appropriate action must take place. Forthe simulation of these in a term rewriting system, we de�ne the following computationrules: (�x�:e)v . e[x� vy] where y 62 FV (e; v) (�T)(� �x :e)v . e[�x vx] (�T)(uvx) . u(v[�x vx]) (DT)Notice that (�x:e)v is a redex for the reduction relations but not for the computationrelations: in �� assignments can only be made to bound variables (which are replaced bylabeled variables in time). 19

We de�ne the calculus of state in the same way as the calculus of control. The basicnotion of reduction is s = v [�E [�E [DE :When terms are equal according to s, e =s e0, we write �v-S(s) ` e = e0. As usual, �!s and�!�!s denote the one-step reduction and its transitive closure. The computation relation isde�ned by: .s = �!�!s [�T [�T [DT :The relation .=s is the smallest equivalence relation generated by the computation relation.s. We denote equivalences in this theory by �v-S. ` e = e0.The syntactic theory of state satis�es the same variants of the classical properties asthe syntactic theory of control. Its sub-theory based on the relation s is Church-Rosserand the computation relation satis�es the diamond property. There are standard reductionsequences for the reduction relation and standard computation sequences for the compu-tation relation. As above, we denote the standard reduction function with .7�!s. Mostimportantly, a subset of the standard computation mapping de�nes an evaluation function.De�nition 4.1. (s-Standard Computation Function) The standard computation functionmaps a program e to a program e0, e .7�!s e0, if e standard reduces to e0 or if e computes toe0: .7�!s = 7�!s [�T [�T [DT .Now the evaluation function on �� (and �S), eval s, can again be de�ned as the transitiveclosure of the standard computation relation:evals(e) = v if e .7�!�s v:Mutatis mutandis, this de�nition induces an operational equivalence relation for �� ('�)(along the lines of De�nition 2.7). Most importantly, we can prove that equations between�� terms in the calculus are safe and imply operational equivalence.Theorem 4.2 ([8]) Let e and e0 be in ��. If �v-S. ` e = e0 then e '� e0.Unfortunately, the theory �v-S. is not compatible with respect to equations over ��terms. For example, �v-S. ` (�x:(�x:2)1)0 = 2;yet, �v-S. 6` �y:(�x:(�x:2)1)0 = �y:2:In the second equation, the top-level steps that are crucial for evaluating assignments canno longer be performed because the expressions are embedded inside of �-abstractions. Wecould solve this problem by introducing an extended theory of safe equations as in the oldtheory of control, but fortunately, there is a better solution for this problem.20

4.2 The revised syntactic theory of stateThe crucial insight that leads to an improved theory of state originates from a simpleobservation about the context-sensitive restrictions of the language �S . The motivationfor the restrictions is the existence of terms in the unconstrained language that do notrepresent an intermediate consistent store in the evaluation of a ��-term. The context-sensitive restrictions eliminate such terms.Lemma 4.3 For every term e 2 �S there is a term e0 2 �� such that e0 .�s e.Proof. By the context-sensitive restrictions on �S , for every term e 2 �S with labelsx1; . . . ; xn, there is a term e00 2 �� with free assignable variables x1; . . . ; xn and valuesu1; . . . ; un in �� such thate � e00 . . . [xi (�x:x)xi] . . . [�xi (ui . . . [xi (�x:x)xi] . . .)xi] . . .First, for every label xi in e , there is a unique value ui that corresponds to the collection ofxi-labeled values. By condition (C3), we can construct this value by replacing all labeledvalues with their labels in an arbitrary x -labeled value (not a bullet!). This algorithm pro-duces the values u1 through un. Second, we can also obtain e00 by replacing all occurrencesof a labeled value with its label. By construction, the terms e00; u1; . . . ; un satisfy the abovecondition. We can now takee0 � (�x1 . . . xn:(�x1 . . .xn:e00)u1 . . .un)(�x:x) . . . (�x:x);which proves the proposition. 2In order to simplify the presentation of terms like e0 in the preceding lemma, we introducea simpli�ed version of Landin's [11] letrec-abbreviation: the �-application.3 A �-applicationis a combination of a �nite function from assignable variables to values, represented as a set� = f(x1; v1); . . . ; (xn; vn)g, and an expression e; it expands according to the constructionin the lemma:�f(x1; u1); . . . ; (xn; un)g:e df� (�x1 . . .xn:(�x1 . . .xn:e)u1 . . . un)(�x:x) . . . (�x:x):The set notation is justi�ed since all expansions corresponding to some linear arrangementof the set clearly reduce to the same term in �v-S.. When we write �� [�0:e, we assumethat � [�0 is a �nite function. Finally, we de�ne �;:e � e. We use Dom(�) to denote theset of de�ned variables, fx1; . . . ; xng, in the function �.It also follows from the above Lemma that every theorem e1 = e2 in �v-S. for e1; e2 2 �Simplies the existence of a theorem ��1:e01 = ��2:e023Recently, Abadi et al. [1] proposed and studied a variant of the �-calculus that incorporates explicitsubstitutions. Our �-applications correspond to their closures: in the notation of Abadi et al. ��:e would bethe term e[�] for a non-recursive �. In other words, our �-applications generalize their notion of closure tothe more common notion of Scheme- and ML-like closures whose lexical variables may be bound to recursivevalues. 21

for some ��1:e01; ��2:e02 2 ��. This holds, in particular, for the computation rules, which wewould like to eliminate. Assuming that no labeled value gets lost during a transition, thereformulation of the top-level relations yields the following set of term relations:��:((�x�:e)v) �! �� [f(x; v)g:e�� [f(x;v)g:(ux) �! �� [f(x; v)g:(uv)�� [f(x; u)g:((�x:e)v) �! �� [f(x; v)g:eThe �rst rule says that a �T -transition creates a new entry in the �-application. The secondrule speci�es that the use of an assignable variable corresponds to a lookup of the variablein the �-application-set. And �nally, the assignment is a modi�cation of one pair in the set.In short, the set of the (global) �-application acts like a store, and the translation of thecomputation rules have the appropriate e�ects on the �nite store. More importantly, theserules are completely independent of the context in which they occur. They do not rely onthe uniqueness of new variables, have no e�ect on the context, and the lookup is relative tothe closest (part of the) store in the term. Hence, there is no further need for coordinatingthese rules, and we may as well take these relations as notions of reduction.Unfortunately, the above rules are not quite strong enough to replace the computationrules in the preceding subsection. The assumption that a transition does not loose labeledvalues is too strong. If, for example, a bound assignable variable does not occur in theprocedure body, the corresponding instance of �T would translate as��:((�x�:e)v) �! ��:e;or even ��:((�x�:e)v) �! ��0:e; �0 � �if v contains the last reference to some other assignable variables. In general, the right handside of the new reductions may contain variables in the store of the �-application that areno longer relevant to the evaluation of the body. These variables and their associated valuesare garbage and can be discarded. Whereas garbage collection is automatic in �v-S., weneed to introduce an explicit garbage collection rule for the new system:��0 [�1:e �! ��1:e if �0 6= ; and Dom(�0) \ FV (��1:e) = ;: (gc)We have summarized the revised theory of state in Figure 2. The rules in the �gureslightly di�er from the rules developed above. In order to reduce the number of reductions,we have merged the �E-, �E- and DE-rules with the replacements for the computationrules. This also requires a new term relation, �[, for merging two �-applications, whichwould otherwise be the e�ect of the lifting rules. The basic reduction relation for the newcalculus is t = v [�� [D [� [gc [�[:The new theory is referred to as �v-S(t). With Lemma 4.3 and the garbage collection rule,we can show that the new set of rules is a complete replacement for the computation rules.Lemma 4.4 Let e1; e2 2 �S and let ��1:e01; ��2:e02 2 �� be their counterparts according toLemma 4.3. If �v-S. ` e1 .s e2 then �v-S(t); �E;DE ; �E ` ��1:e01 �!�! ��2:e02.22

fa �! �(f; a) (�)(�x�:e)v �! e[x� v] (�v)(�x�:e)v �! �f(x�; v)g:e (��)�� [f(x;v)g:E[x] �! �� [f(x;v)g:E[v] (D)�� [f(x; u)g:E[(�x:e)v] �! �� [f(x;v)g:E[e] (�)��0 [�1:e �! ��1:e if �0 6= ; and Dom(�0) \ FV (��1:e) = ; (gc)��:E[��0:e] �! �� [�0:E[e] if �0 6= ; and ��:E 6= [] (�[)Figure 2: The revised syntactic theory of stateProof. The proof relies on two facts about the construction in Lemma 4.3:1. The algorithm for converting e to ��:e0 does not alter the structure of the term eexcept for replacing labeled values by labels. In particular, values remain values andnon-values remain non-values.2. The labeled values in e that are moved into the store of the program ��:e0 preservetheir structure in the same way.As a consequence, a redex in e1 not inside of a labeled value becomes a redex at thehomologous position in e01. More speci�cally, s-redexes becomes s-redexes and �T -, �T -,and DT -redexes become instances of ��-, �-, and D-redexes, respectively. Similarly, s-redexes inside of labeled values in e1 become s-redexes inside of the values in the store of��1:e01 that directly contain the redex (a labeled value directly contains a subexpression ifthere is not a labeled sub-value that contains the subexpression).Given these preliminaries, it is easy to see that, given a reduction in �v-S., a reductionin �v-S(t) of the corresponding redex in ��1:e01 leads to a term ���:e02. Clearly, neither s- nort-redexes create new free variables but the substitution process associated with s-redexesmay eliminate some labels by vacuous substitutions. On the other hand, the correspondingt-redexes will eliminate the corresponding variables. Hence,���:e02 � ��2 [�:e02such that, by the construction of ��2:e02,Dom(�)\ FV (��2:e02) = ;:This permits an application of the garbage collection rule, gc, and we get��1:e01 �! ���:e02 �! ��2:e02: 2The lemma implies that the new theory, extended with the lifting reductions, can proveall the equations on �� that the old theory can prove.Theorem 4.5 Let e; e0 2 ��. 23

(i) If �v-S. ` e = e0 then �v-S(t); �E;DE ; �E ` e = e0.(ii) The converse does not hold.Proof. (i) By the diamond property, �v-S. ` e = e0 implies that there is a term e� such that�v-S. ` e .�s e� and �v-S. ` e0 .�s e�. It follows from Lemma 4.4 that �v-S(t); �E ; �E ;DE `e�!�! e� and �v-S(t); �E; �E ;DE ` e0 �!�! e�. Therefore, �v-S(t); �E;DE ; �E ` e = e0.(ii) Here is a simple proof in �v-S(t):�v-S(t) ` �y:(�x:(�x:2)1)0 = �y:�f(x;0)g:(�x:2)1 = �y:�f(x;1)g:2 = �y:2As explained at the end of the previous subsection, the resulting theorem is not provablein the old theory. 2A second important consequence of Lemma 4.4 is that the reduction theory based on talone can simulate the evaluation of ��-programs.Lemma 4.6 Let e 2 ��. If evals(e) = v for some value v 2 �S then e �!�!t ��:v0 where��:v0 2 �� is the counterpart of v according to Lemma 4.3.Proof. If eval s(e) = v for some value v 2 �S , then e .7�!�s v. In such a series of standardcomputation steps, subsequences of standard reduction steps according to �E, �E , andDE are always followed by standard computation steps according to �T , �T , and DT ,respectively; the latter always precedes a �v step, which puts the de-labeled value into theoriginal evaluation context. In other words, �E , �E, and DE in standard computationsonly occur in clusters that, by Church-Rosser and diamond property, are equivalent to thefollowing three cases:1. E[(�x:e)v] 7�!s (�x:E[e])v .s E[e[x vl]]2. E[vl] 7�!s (�x:E[x])vl .s (�x:E[x])v[�l vl] 7�!s E[v[�l vl]]3. E[(�x:e)v] 7�!s (�x:E[e])v .s E[e][�l vl]Translating these kinds of sequences into the new calculus according to Lemma 4.4, mergesthem as ��/�[, D, and � steps:1. ��:E[(�x:e)v]�!t ��:E[�f(x;v)g:e]�!t �� [f(x; v)g:E[e]2. ��:E[l]�!t ��:E[�(l)]3. �� [f(x; u)g:E[(�x:e)v]�!t �� [f(x;v)g:E[e]In short, the translation incorporates preliminary lifting reductions into the simulated top-level steps. But then the derivation in the extended theory no longer uses any lifting steps,i.e., �v-S(t) ` e�!�! ��:v0. 2Based on this lemma, we can now de�ne an evaluation function using only t reductions.The main idea behind the de�nition is that programs can maintain a textual representationof the store in the form of a �-application at the root of the program.24

De�nition 4.7. (t-Evaluation) Let e 7�!t1 e0 if1. e � ��:M , M 7�!v M 0, and e0 � ��:M 0, or2. (e; e0) 2 (�[D[gc[(�[���)), where (�[���) is the composition of �� and �[, i.e.,a ��-step followed by a �[-step.A program e in �� evaluates to the answer ��:v, eval t(e) � ��:v, if e 7�!�t1 ��:v andthere is no e0 such that ��:v 7�!t1 e0.The single-step evaluation relation (7�!t1) is a proper relation because of its non-deterministic use of garbage collection. On the other hand, by demanding complete garbagecollection, eval t becomes a (partial) function on �� programs. Moreover, it is equivalent tothe old evaluation function.Theorem 4.8 Let e; ��:v 2 ��, v0 2 �S, and assume that ��:v0 .7�!�s v. Then, evals(e) = v0if and only if eval t(e) = ��:v.Proof. A simple check of Lemma 4.6 shows that the left to right direction is built intoDe�nition 4.7, and that the arguments are invertible. 2Since, unlike in the case of control, the new theory extends the old theory, we cannotprove the soundness of the new theory via the old one. Instead, we must assert someclassical properties �rst.First, the theory is Church-Rosser.Theorem 4.9 (Consistency) The notion of reduction t is Church-Rosser. If e �!�!t e1and e �!�!t e2, then there is e0 such that e1 �!�!t e0 and e2 �!�!t e0.Proof. The classical methods for Church-Rosser proofs for untyped �-calculi apply. 2Second, we can de�ne a standard reduction relation and a set of standard reductionsequences for �v-S(t).De�nition 4.10. (t-Standard Reduction Relation; Standard Reduction Sequences) Thede�nition of 7�!t is based on a set of t-standard evaluation contexts, E:E ::= E j ��:E:The standard reduction relation maps e to e0, e 7�!t e0, if there is a t-standard evaluationcontext E such that e � E[p], e0 � E[q] for some (p; q) 2 t.By adding the following clause to the de�nition of standard reduction sequences of the�v-calculus (De�nition 2.4), we get the set of standard reduction sequences for �v-S(t):� If e1; . . . ; en is a standard reduction sequence, then so is �x:e1; . . . ; �x:en.Third, the new theory of state satis�es the usual standardization theorem.25

Theorem 4.11 (Standardization) e �!�!t e0 if and only if there is a standard reductionsequence e; . . . ; e0.Proof. The proof is an adaptation of Plotkin's corresponding proof. 2Finally, we are ready to prove that the new theory is sound. We do this in two steps.Theorem 4.12 (Evaluation) Let e; ��:v be in ��.(i) If eval t(e) = ��:v, then e 7�!�t ��:v.(ii) If e 7�!�t ��:v, then there exists ��0:v0 such that eval t(e) = ��0:v0.Proof. (i) The relation 7�!t1 is clearly a subset of the standard reduction relation, in whichall non-v steps are restricted to the root of the program.(ii) The relation 7�!t generalizes 7�!t1 such that all reductions can be performed insideof a program as well as at its root. Moreover, it disconnects the relation �[� �� such that�[- and ��-reductions can be separated. However, it is also easy to see that a sequenceof 7�!t steps can be rearranged so that all �-applications are merged with the top-level�-applications as soon as they occur in an evaluation context. Clearly, such rearrangedsequences are still standard reduction sequences, and more importantly, they are also se-quences of 7�!t1 -steps. The di�erence between the two answers is that a standard reductionsequence does not assume that all garbage is eliminated whereas the evaluation functioninsists on this. 2Now, recall that two �� expressions e and e0 are operationally equivalent, e '� e0, ifand only if they are indistinguishable relative to all �� program contexts (in the sense ofDe�nition 2.7). The �nal theorem says that the new calculus is operationally sound inthe sense that two expressions are equivalent in the calculus only if they are operationallyequivalent.Theorem 4.13 If �v-S(t) ` e = e0 then e '� e0.Proof. Since �v-S(t) is a conventional calculus, �v-S(t) ` e = e0 implies �v-S(t) ` C[e] =C[e0] for all contexts C . Now assume that for some context C , eval t(C[e]) terminates. Bythe Standardization Theorem 4.11, C[e] 7�!�t ��:v and therefore �v-S(t) ` C[e0] = C[e] = v.By the Consistency Theorem 4.9 and the Evaluation Theorem 4.12, C[e0] 7�!�t1 ��0:v0 andtherefore eval t(C[e0]) is de�ned too. By symmetry, C[e] terminates if and only if C[e0]terminates.For the second condition, assume that eval t(C[e]) = c and eval t(C[e0]) = d for constantsc and d . Then, by Lemma 4.6, �v-S(t) ` C[e] �!�! c and �v-S(t) ` C[e0] �!�! d. Hence,c = C[e] = C[e0] = d. Again by the Consistency Theorem, c = d, which proves that e '� e0.2 In summary, the new theory of state based on the reduction t is the essential calculusof state. It can evaluate programs (4.8); it is consistent (4.9); it has standard reductionsequences whose standard reduction relation is an evaluation mechanism (4.12); and it issound (4.13). Finally, it also extends the old theory (4.5).26

Note: The nature of variablesFrom Scheme's [19, 21] practical point of view, the new theory only contains one disturbingelement, namely, the partitioning of the variable set into binding and assignable variables.The reason for this separation is the desire to use variables as values as in �v. However, in alanguage with assignments variables no longer stand for one value but for a series of values.Consequently, they should not be considered as values but as expressions that always havea value. By excluding the set of variables from values, the distinction between the twovariable sets becomes superuous and the language becomes Scheme-like:e ::= x j v j (e e)v ::= �x:e j �x:e:A revised calculus only requires a single axiom for parameter-passing, namely, �� . The onlyloss of this modi�ed theory is that it is no longer a conservative extension of the original�v-calculus.On the other hand, such a revised calculus easily accommodates another reduction thatsimpli�es work with the calculus. In the revised calculus a variable is said to be assignableif it occurs in the variable position of a �-capability. When a variable in a �-set is no longerassignable, the new calculus can replace the variable with its recursive value:�� [f(x;v)g:e �! (��:e)[x v[x Y(�x:v)]] (�Y)if x is not assignable in e, v , and �and where Y df� (�fy:(�x:xx)(�x:f(�y:(xx)y))y):A restricted version of �v can be derived from �Y .5 Uni�ed theories of control and stateThe original theories of control and state are completely orthogonal to each other [5]. Thesum of the extended notions of reduction yields a theory for a language with facilitiesfor both control and state manipulation; indeed, the shape of the reduction relations aspattern-matching rules stays the same. As a result, the larger theory contains the theoriesof procedural abstraction, control and state as sub-sets.In our new framework, a simple merger is insu�cient, since a C-application may blockvariable references and assignments. Thus we must introduce an additional notion of re-duction to move C-applications outside of �-applications:��:Ce �! C��:e (�C)Let �C� stand for the merged language:e ::= v j (e e) j (C e) j x�v ::= b j f j x� j �x:e j �x:eFurthermore, let d0 and t0 stand for the extension of the notions of reduction d and t to�C�. The new theory of control and state is based on the union of these reductions with�C: cs = d0 [t0 [�C:27

Most importantly, the new notion of reduction is syntactically consistent.Theorem 5.1 The extended notion of reduction cs is Church-Rosser.Proof. All three parts of the relation satisfy the Church-Rosser property. The proof thatthe union does is a straightforward generalization of the Hindley-Rossen method [2:ch3]. 2As a consequence, the larger theory contains the theories �v-C(d) and �v-S(t) assubsets. Evaluation can be de�ned for the larger theory. A program p evaluates to q in thenew theory if and only if p evaluates to a value v in the old theory, where q is of the formv0 or C�k:v0k, v0k can be converted to v0 by replacing all occurrences of (ku) with u as inLemma 3.7, and v0 may be constructed from v using the algorithm of Lemma 4.3.6 Towards a better understanding of imperative languagesThe most closely related research on reasoning with continuations and assignments is thework by Mason and Talcott. Over the past few years, they have developed equationaltheories for a �rst-order version of Lisp with destructive cell operations [13], for a �C-like language on control [22, 23], and, most recently, for a higher-order imperative versionof Lisp without control abstractions [14]. For a fragment of �rst-order destructive Lispwithout arithmetic and recursion, they have also shown that it is possible to obtain acomplete theory [15].Mason and Talcott's equational proof systems are essentially ad hoc approximations tothe operational equivalences of the respective languages. They �nd the axioms of these the-ories by extracting and generalizing frequently used laws from example correctness proofsof programs. From a high-level perspective, the axioms are related to our notions of reduc-tion, but the two frameworks strongly di�er in the details. Mason and Talcott have not yetaddressed the questions of how their theories relate to the underlying theory of proceduralabstraction and of how the various theories relate to each other.An early e�ort in the direction of equational theories for proving the correctness ofhigher-order imperative programs is due to Demers and Donahue [4]. The focus of theirresearch is Russell, an extension of the higher-order typed �-calculus with cells and de-structive cell operations; their major result is a proof system for Russell with several dozenaxioms, quite unlike our reductions or the Mason-Talcott axioms. Besides equational asser-tions, the theory also has statements for expressing the purity and legality of expressionsas well as their imperative e�ect. There are no formal results on the equational theory norits relationship to the original �-calculus.Neither Mason and Talcott's research nor the work by Demers and Donahue provides ananalysis of the equational theories from the perspective of a reduction theory. Both theoriesare clearly intended for practical use with a particular programming language and proofsystem.The principal motivation for our work is a better understanding of the essence of im-perative extensions of higher-order programming languages based on the �-calculus. Ournew theories rely on minimal sets of notions of reduction, which provide a simple opera-tional semantics for the respective languages. The �v-calculus is the core of all theories; thevarious theories are conservative extensions of the respective subtheories. In this sense, our28

operational semantics is modular : the semantics of an extended language is an extensionof the semantics for the simpler language. The advantage of this approach is that resultson evaluation and proof systems automatically lift to richer languages; the disadvantageis a certain weakness of the proof systems. We believe that recent work by Moggi [17] onthe computational �-calculus|motivated by similar concerns|and our own work are thecorrect starting point for developing modular proof systems for large, powerful languages.The development of a good proof system will require the development of an inductionprinciple and other mathematical tools in order to strengthen the power of the system. Onepossible solution is to work with the underlying operational approximation relation and toaxiomatize its use [14]. The more popular direction relies on the ideas of denotational se-mantics. Currently, however, denotational semantics provides di�erent models for di�erentlanguages, especially in the realm of the imperative, higher-order language family. It is con-sequently di�cult to relate results on a language to results on its extensions. Our approachto operational semantics should lead to a collection of denotational models for imperativehigher-order languages in which a model for an extended language contains the model forthe core language as a projection. Such a denotational theory would provide an improvedunderstanding of control and state in programming languages and their relationship to otherlanguage facilities.Acknowledgement Both Udday Reddy and Carolyn Talcott independently suggested tolook for simpler, congruent versions of our calculi. Tim Gri�n read an early draft of thispaper and proposed clari�cations of several opaque points in our discussions. Erik Crankcame up with large number of counter-examples to the Church-Rosser property of variousextensions of our control theory; he also pointed out a aw in an early draft of the proof forthe Soundness Theorem of the new state theory. We also appreciate the referees's e�orts,leading to the elimination of a number of mistakes and a greatly improved presentation ofour results.A Appendix: Proof of Lemma 3.11Before we can sketch the proof of Lemma 3.11, we need to collect some facts about thegeneral shape of proofs of safe equations. We know from the de�nition of safeness that if e .=ce0 is safe then E[e] .=c E[e0] is a theorem for every evaluation contexts E. Consequently, bythe Church-Rosser and the Standardization Theorems, there must be standard computationsequences from E[e] and E[e0] to some term p. The proof of Lemma 3.11 relies on the factthat these two standard computation sequences have certain properties.De�nition A.1. (Standard Computation Sequences) Standard reduction sequences basedon the relation c are de�ned just like standard reduction sequences for the relation d: seeDe�nition 3.15. We extend standard reduction sequences for c to standard computationsequences for the theory �v-C. as follows:1. All standard reduction sequences are standard computation sequences.2. If e .7�!c e1 and e1; . . . ; en is a standard computation sequence, then e; e1; . . . ; en is astandard computation sequence. 29

For the following lemmas, we use the terminology grabbing a continuation, by whichwe mean a sequence of applications of Clift followed by a top-level transition CT , whichcreates a new abstraction of the form (�x:Ax) and provides access to an abstraction of theevaluation context E. We represent such a continuation with (A+E). The following lemmaprovides the justi�cation for this notation by connecting the invocation of the continuationto the reduction of the encoded evaluation context. Again, we label instances of A in orderto keep track of continuations.Lemma A.2 ([9]) ((A+ E)v) .7�!�c Au if and only if E[v]�!�!c u.Furthermore, the de�nition of a standard computation sequence implies that all top-level transitions in a standard computation sequence are part of the series of standardcomputation steps at the front-end of the sequence. In particular, if a sequence grabs andinvokes a continuation, then there is a standard mapping between the two points.Lemma A.3 If E[C e] .7�!�c e(Ay + E) and e(Ay + E); . . . ;Ayv is a standard computationsequence (for some value v), then E[C e] .7�!�c Ayv.Proof. Obvious: (Ayv) can only get to the root of the program by computation rules. ByDe�nition A.1 such transitions can only take place within the series of standard computationsteps at the front-end of the term sequence. 2The two preceding lemmas lead to the �rst crucial property of the standard computationsequences for safe equations. If both sequences grab a continuation, the continuation isinvoked if and only if both sequences invoke it.Lemma A.4 Let Ce .=c Ce0 be a safe equation. Let E be an arbitrary evaluation contextand let p be such that E[Ce] 7�!�c e(Ay + E); . . . ; pand E[Ce0] 7�!�c e0(Ay +E); . . . ; pwhere e(A +E); . . . ; p and e0(A+ E); . . . ; p are standard computation sequences.Then, e(Ay+E) .7�!�c Ayv if and only if e0(Ay+E) .7�!�c Ayu for some values v and u.Proof. By Lemma A.3, it su�ces to look at the front-end of the standard computationsequence. Thus assume that e invokes the continuation but e0 does not. Since the computa-tion sequences are in standard form, the decision to invoke or not to invoke the continuationdoes not depend on the evaluation context E . Hence, we may consider a less arbitrary con-text, say, E � (�x:c)[] for some constant c not in e or e0. By Lemma A.3, this impliesp � c.The second derivation sequence, on the other hand, may or may not discard the newlycreated continuation. If it does not, p must still contain the corresponding new A-applica-tion. On the other hand, if e0 throws away its continuation, p can no longer contain any partof the evaluation context, i.e., the unique constant c. In either case, the second derivationsequence places inconsistent requirements on the term p. This contradiction proves ourclaim. 2A second property of standard computation sequences for safe equations is that if onlyone of the derivation sequences grabs the evaluation context, then the common term is anA-application and the continuation is never invoked.30

Lemma A.5 Let Ce .=c e0 be a safe equation. Let E be an arbitrary evaluation context andlet p be such that E[Ce] 7�!�c e(Ay + E); . . . ; pwhere e(Ay + E); . . . ; p is a standard computation sequence. Moreover, letE[e0]�!�!c pand let E[e0]; . . . ; p be the corresponding standard computation sequence.Then, p � Aq for some q. Moreover, it is impossible that e(Ay + E) invokes thecontinuation (Ay +E), i.e., it is impossible that p � Ayq.Proof. It is easy to see that the evaluation context in this continuation must not occur inp because the second term, e0, cannot construct (Ay+E) for arbitrary contexts E. Conse-quently, the �rst derivation must eliminate all pieces of E including the labeled continuation(Ay + E), and p cannot contain any pieces of the evaluation context. As a result, the sec-ond derivation sequence must abort the entire evaluation context E without performing atop-level step. Consequently, the term p is of the shape Aq for some term q . By the aboveargument that p does not contain a tagged abort application, we also know that p 6� Ayq.2 With Lemmas A.4 and A.5, we can now prove Lemma 3.11.Lemma 3.11 If �v-C-safe ` e = e0, then �v-C(d) ` e = e0.Proof. The proof is an analysis of the derivations of the equations E[e] .=c E[e0]. Asdiscussed, there must be two standard computation sequences that start in the two distinctterms and end in a common term:E[e]; . . . ; p and E[e0]; . . . ; p:There are three major cases:1. Neither standard computation sequence uses top-level rules. Then the standard com-putation sequences are such thatE[e]�!�!c p and E[e0]�!�!c p:Since �!�!c � �!�!d, these reductions also hold in d, and �v-C(d) ` E[e] = E[e0].2. Both sequences grab the continuation. According to Lemma A.4, we must now dis-tinguish two subcases:(a) Both sequences invoke the continuation:E[e] 7�!�c q(Ay+ E) .7�!�c E0[(Ay +E)v].7�!�c Ayu[y (Ay +E)]and E[e0] 7�!�c q0(Ay +E) .7�!�c E00[(Ay +E)v0].7�!�c Ayu0[y (Ay +E)]:31

By Lemmas 3.5 through 3.7, we know that the following holds in �v-C(d):E[e] 7�!�d C(�k:q(Ay + k +E))�!�!d C(�k:ku[y (Ay + k + E)])and E[e0] 7�!�d C(�k:q0(Ay + k + E))�!�!d C(�k:ku0[y (Ay + k +E)]):Since u and u0 are values, the rest of the standard computation sequence mustbe provable in �v-C(c):�v-C(c) ` u[y (Ay + E)] = u0[y (Ay+ E)]By this we directly have that�v-C(d) ` u[y (Ay + k +E)] = u0[y (Ay + k +E)]:But then we also get that�v-C(d) ` C(�k:ku[y (Ay + k +E)]) =C(�k:ku0[y (Ay + k + E)])and hence �v-C(d) ` E[e] = E[e0].(b) Neither sequence invokes the continuation. The analysis of case 2a applies againwith the exception that the intermediate termsC(�k:ku[y (Ay + k +E)])and C(�k:ku0[y (Ay + k +E)])look like C(�k:u[y (Ay+ k + E)])and C(�k:u0[y (Ay + k +E)]);respectively.3. Finally, it may be the case that one sequence grabs the continuation and the otherdoes not: E[e] 7�!�c q(Ay +E); . . . ; p and E[e0]�!�!c p:It follows from Lemma A.5 that p has the shape Ar, that r does not contain the taggedcontinuation, and that q does not invoke the continuation. Again by Lemmas 3.5through 3.7 E[e]�!�!d C(�k:q(Ay + k +E))32

and, given that (Ay + k + E) does not occur in p,E[e]�!�!d C(�k:q(Ay + k +E))�!�!d C(�k:p); k 62 FV (p):Since we know from Lemma A.5 that p is of the shape Ar � C�d:r for some r with dnot in r , we can derive the rest with a simple calculation:�v-C(d) ` C�k:p = C�k:(C�d:r)= C�k:(�d:r)(�x:A(k x))= C�k:r� p:These are all possible cases and now we know that �v-C(d) ` E[e] = E[e0] for all E .This holds in particular for E � [] and therefore �v-C(d) ` e = e0. 2References1. Abadi, M., L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit substitution. InProc. 17th ACM Symposium on Principles of Programming Languages, 1990, 31{46.2. Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics. Revised Edition.Studies in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,1984.3. Church, A. Introduction to Mathematical Logic. Princeton University Press, Prince-ton, New Jersey, 1956.4. Demers, A. and J. Donahue. Making variables abstract: an equational theory forRussell. In Proc. 10th ACM Symposium on Principles of Programming Languages,1983, 59{72.5. Felleisen, M. The Calculi of Lambda-v-CS-Conversion: A Syntactic Theory of Con-trol and State in Imperative Higher-Order Programming Languages. Ph.D. dissertation,Indiana University, 1987.6. Felleisen, M. The theory and practice of �rst-class prompts. In Proc. 15th ACMSymposium on Principles of Programming Languages, 1988, 180{190.7. Felleisen, M. and D.P. Friedman. Control operators, the SECD-machine, and the�-calculus. In Formal Description of Programming Concepts III , edited by M. Wirsing.Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, 193{217.8. Felleisen, M. and D.P. Friedman. A syntactic theory of sequential state. Theor.Comput. Sci. 69(3), 1989, 243{287. Preliminary version in: Proc. 14th ACM Sympo-sium on Principles of Programming Languages, 1987, 314-325.9. Felleisen, M., D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactictheory of sequential control. Theor. Comput. Sci. 52(3), 1987, 205{237. Preliminaryversion in: Proc. Symposium on Logic in Computer Science, 1986, 131{141.10. Griffin, T. A formulae-as-types notion of control. In Proc. 17th ACM Symposiumon Principles of Programming Languages , 1990, 47{58.33

11. Landin, P.J. The next 700 programming languages. Commun. ACM 9(3), 1966,157{166.12. Landin, P.J. The mechanical evaluation of expressions. Comput. J. 6(4), 1964, 308{320.13. Mason, I.A. Equivalences of �rst-order Lisp programs. In Proc. Symposium on Logicin Computer Science , 1986, 105{117.14. Mason, I.A. and C. Talcott. Programming, transforming, and proving with func-tion abstractions and memories. In Proc. International Conference on Automata, Lan-guages and Programming . Springer Lecture Notes in Computer Science, Berlin, 1989,574-588.15. Mason, I.A. and C. Talcott. A sound and complete axiomatization of operationalequivalence between programs with memory. In Proc. Symposium on Logic in ComputerScience, 1989, 284{293.16. Milner, R., M. Tofte, and R. Harper. The De�nition of Standard ML. The MITPress, Cambridge, Massachusetts and London, England, 1990.17. Moggi, E. Computational lambda-calculus and monads. In Proc. Symposium onLogic in Computer Science, 1989, 14{23.18. Plotkin, G.D. Call-by-name, call-by-value, and the �-calculus. Theor. Comput. Sci.1, 1975, 125{159.19. Rees, J. and W. Clinger (Eds.). The revised3 report on the algorithmic languageScheme. SIGPLAN Notices 21(12), 1986, 37{79.20. Steele, G.L., Jr. Common Lisp|The Language. Digital Press, 1984.21. Sussman, G.J. and G.L. Steele Jr. Scheme: An interpreter for extended lambdacalculus. Memo 349, MIT AI Lab, 1975.22. Talcott, C. Rum: An intensional theory function and control abstractions. In Proc.1987 Workshop on Foundations of Logic and Functional Programming. Springer LectureNotes 306, 1988.23. Talcott, C. The Essence of Rum|A Theory of the Intensional and ExtensionalAspects of Lisp-type Computation. Ph.D. dissertation, Stanford University, 1985.
34

