
KDD-99 Workshop on Web Usage Analysis and User Pro�ling (to appear)A non-invasive learning approach to building web user pro�lesPhilip K. Chan (pkc@cs.fit.edu)Computer Science, Florida Institute of Technology, Melbourne, FL 329011 IntroductionRecently researchers have started to make web browsers more adaptive and personalized. A personalized webbrowser caters to the user's interests and an adaptive one learns from the users' (potentially changing) accessbehavior. The goal is to help the user navigate the web. Lieberman's Letizia [13] monitors the user's browsingbehavior, develops a user pro�le, and searches for potentially interesting pages for recommendations. Theuser pro�le is developed without intervention from the user (but the details of how that is performed isnot clear in [13]). While the user is reading a page, Letizia searches, in a breadth-�rst manner, from thatlocation, pages that could be of interest to the user. Pazzani et al.'s Syskill & Webert [18, 19] asks the userto rank pages in a speci�c topic. Based on the content and ratings of pages, the system learns a user pro�lethat predicts if pages are of interest to the user. They investigated a number of topics and a di�erent userpro�le is learned for each topic. Pages are recommended from preselected web sites. Similar to Syskill &Webert, Balabanovic's Fab [2] requires the user to rank pages and learns a user pro�le based on the rankingsand content of pages. However, Fab considers recommendations based on pro�les of all the other users on thesystem (though Fab does not identify users of similar interests). Fab's collection agent performs an o�-linebest-�rst search of the web for interesting pages.Our approach toward an adaptive personalized web browser does not require the user to explicitly provideinformation to the browser. Instead, it monitors the user's access behavior and captures his/her interestsin a user pro�le. We developed a metric for estimating interestingness of each visited page. A user pro�leconsists of two components: a Web Access Graph (WAG) and a Page Interest Estimator (PIE). A webaccess graph summarizes the web page access patterns by a user. Based on the content of web pages, apage interest estimator, learned from the user's access behavior, characterizes the interests of a user. Toprovide personaized on-line search, our search engine consults multiple existing search engines ([25, 26]),collates the returned records, and ranks them according to the user pro�le. Using similar search techniques,recommendation and prefetching of interesting pages are performed o�-line at night.In this extended abstract we focus on PIE's (Section 2), and investigate how a user's interest of a pagecan be approximated without asking the user (Section 2.1) and how phrases can be identi�ed to enrich thecommon bag-of-words representation for documents (Section 2.2). We discuss our preliminary empiricalresults on data from our web site in Section 3. Finally, we conclude in Section 4 with some remarks on thechallenging issues that PIE learning exhibits.2 Page Interest Estimator (PIE)We can identify patterns in pages that constitute the user's interest. For example, certain words or phases,are of interest to the user. Given a set of labeled (interesting or not interesting) pages, we can apply learningalgorithms (for example, C4.5 [21]) to induce classi�ers that predict if a page is of interest to the user. Theseclassi�ers are called Page Interest Estimators (PIE's). More concretely,Interest PIEuser(Page)and PIE can be learned:PIEuser  MachineLearningAlgorithm(Page; Interest):In addition, PIE's are learned, stored, and used at the individual users' sites, hence privacy is maintained.



Related work in this area usually requires user involvement in providing ranking (for example, [2, 19]).However, as we will discuss in the next section (Section 2.1), the user interest of each visited page can beapproximated without any user involvement. Also, how can a page be represented so that machine learningalgorithms can be applied? We discuss page representation in Section 2.2.2.1 User Interest of a PageHow do we �nd out if a user is interested in a page? One way is to ask the user directly (e.g., [19]). This isthe common approach, but it is invasive and, in most cases, requires the user to provide some ad hoc rankingscore (e.g., 0 to 10 or bad to good). Furthermore, the user may provide inconsistent rankings across pagesand the process is time consuming. Another way is to monitor the user's behavior and evaluate the user'sinterest. This approach is non-invasive and the user is not subject to ad hoc ranking.Throughout the course of web browsing, a user leaves behind a trail of information that can be used tomodel his or her interests. Four general sources of information are available: history, bookmarks, content ofpages, and access logs.A web browser usually maintains a history of the user's requests in the current session and in the past.The history of the current session allows the user to go back and forth between the pages he/she has visited.In addition, a global history maintains the timestamp of the last time each page is visited (this allows linksto expire after a speci�ed amount of time and be displayed as if they have not been visited). In Netscape'sNavigator [17], the title, URL, �rst visit timestamp, last visit timestamp, expiration timestamp, and visitcount of each visited URL is stored in the global history. We conjecture that a higher frequency and morerecent visits of an URL indicate stronger user interest of that URL.Bookmarks serve as a quick access point for interesting URL's chosen by the user. With a few mouseclicks, a user can easily jump to URL's in his/her bookmarks. It seems natural to assume that pages thatare bookmarked are of strong interest to the user.Each page usually contains links to other pages. If the page is interesting to the user, he/she is likelyto visit the links referenced by the page (Lieberman [13] made a similar observation). Hence, a higherpercentage of links visited from a page indicates a stronger user interest in that page. This is particularlyimportant for index pages, which contain a lot of related links and on which the users spend less time thanpages with real content.Each entry in an access log corresponds to an HTTP request, which typically contains the client IPaddress, timestamp, access method, URL, protocol, status, and �le size. A sample entry is:maelstrom.cs.�t.edu - - [19/Jun/1998:19:02:15 -0400] "GET /toc.html HTTP/1.0" 200 2540From these entries, time spent on each page can be calculated. The longer a user spent on a page, thelikelier the user is interested in the page. If a page is not interesting, a user usually jumps to another pagequickly. Experimental studies in [15, 11] con�rm this observation. However, a quick jump might be causedby the short length of the page, hence the user's interest might be more appropriately approximated bythe time spent on a page normalized by the page's length. We note that activities other than sur�ng theweb (e.g., answering a phone call) can inadvertently be included in the time spent on a page. We cannotavoid this problem without a more complicated way of obtaining time statistics. However, to reduce theproblem, we impose an upper limit on time (e.g., 15 minutes) spent on a page and time intervals of morethan the upper limit are considered as separate sessions. Unfortunately, browsers usually have a history,but not an access log (which is essentially a more detailed history) since a history is su�cient for traversingpages in a session and maintaining timestamps for link expiration. Access logs are usually found in HTTPservers. In order to maintain an access log for the browser client, one can modify the source code of thebrowser (e.g., [16]). However, this requires changes to a complex piece of software and is browser-dependent.A simpler approach is to use a web proxy server that logs HTTP requests (e.g., [27]). A proxy serves asa relay between the browser client and the Web|it is usually used for security (clients behind �rewalls),performance (system-wide caching of external pages), and/or �ltering (blocking out undesirable sites).Given the above four sources of information, we can devise a measure for approximating the interest ofa page to a user. One simple measure is:Interest(Page) = Frequency(Page);



where Frequency(Page) is the frequency of Page visited by the user. We consider the number of visits a pri-mary indicator of interest. A more sophisticated measure uses Frequency(Page) as a base and incorporatesall the factors discussed above:Interest(Page) = Frequency(Page)� (1 + IsBookmark(Page)+Duration(Page) +Recency(Page) + LinkV isitPercent(Page)); (1)where IsBookmark(Page) = � 1 if page is a bookmark0 otherwise ;Duration(Page) = TotalDuration(Page)=Size(Page)maxPage2V isitedPages(TotalDuration(Page)=Size(Page));Recency(Page) = T ime(LastV isit)� T ime(StartLog)T ime(Now)� T ime(StartLog) ; andLinkV isitPercent(Page) = NumberOfLinksV isited(Page)NumberOfLinks(Page) :The maximum value of Interest(Page) is Frequency(Page)� 5. Based on the frequency of visits, in thismeasure, we value each factor equally. Some weighted scheme will likely be more appropriate after weperform some experiments to validate this model.All the visited pages can be considered interesting to various degrees since the user accessed them.However, how do we �nd pages that are not interesting to the user? It is easier if the user is required to rankpages, but the user is not actively involved in our case. Furthermore, we cannot assume any page not visitedon the web is of no interest to the user because he or she might not know of its existence (not to mentionthe staggering number of pages on the web). Since pages usually contain links to other pages and, in mostcases, not all of them are followed by the user, one approach to identifying pages not interesting to the useris to consider links in visited pages that are not followed by the user. Related work is in text categorization,where documents are mapped into categories using learned models [1, 12, 28]. Usually, the documents aregrouped into many categories and all the documents are known in advance. Our task, however, is to groupthe pages into two categories (interesting or not interesting) and cannot assume that all the pages on theweb are known in advance.2.2 Page representationVarious representations of a web page have been widely studied. Most researchers use the vector-space modelpioneered by Salton [24]. In this model each document is represented by a vector of weights, each of whichcorresponds to a feature, a word in most cases. The word ordering information in the document is usuallynot retained and hence the name \bag-of-words."However, much research focuses on single words (unigrams) as features. This is partly due to the largecombination of possible multi-word phrases. Another reason is that earlier results from \syntactic" and\statistical" phrases were mixed [7]. We suspect that the ad hoc way of constructing statistical phrasesmight have been a problem [9]. Much of the statistical work in building multi-word features focuses onco-occurrence (e.g., [5]), that is, if two words appear frequently together, they are probably phrases. Oneco-occurrence metric is mutual information. Consider a and b are two words within a window of some size,the mutual information: MI(a; b) = log P (a; b)P (a)P (b) (2)measures the reduction of uncertainty in knowing b's presence in the window if a's presence is known (or viceversa, the metric is symmetric). However, this metric does not consider the e�ect of the absence of either orboth words in the window. Note that if two words always appear together or not at all, they are more likelyto be a phrase than other situations. Expected (or average) mutual information [22, 23] (or information gain[21]) captures the e�ects of word absences.EMI(A;B) = Xa;a2A Xb;b2B P (A;B) log P (A;B)P (A)P (B) (3)



measures the expected mutual information of the four combinations of the presence and absence of a and b.Although larger MI(a; b) and MI(a; b) provide more evidence for \ab" to be a phrase, larger MI(a; b) andMI(a; b) supply more counter evidence. Therefore, we introduce augmented expected mutual information(AEMI) which appropriately incorporates the counter-evidence:AEMI(A;B) = X(A=a;B=b);(A=a;B=b)P (A;B) log P (A;B)P (A)P (B) � X(A=a;B=b);(A=a;B=b)P (A;B) log P (A;B)P (A)P (B)(4)In essence supporting evidence is summed, while damaging evidence is subtracted. Furthermore, we de�neA as the event of the �rst word, and B as the event in the words (of some window size W ) following the �rstword. That is, a higher value of AEMI indicates a is likely followed by b and one is less likely to be presentwhen the other is absent. Moreover, window size W allows exibility in the number of gaps between wordsin a phrase.Using AEMI with a threshold, we can �nd highly probable two-word phrases (bigrams) from a trainingcorpus. n-word phrases (n-grams) can be found using the same method|event A is the �rst n � 1 wordsand event B is a word in the followingW (window size) words. However, the memory requirement of storingthe necessary statistics to �nd n-grams is O(sn), where s is the number of unique words in the corpus; thiscould be prohibitive even for locating trigrams. Consider that s is 1,000 (a relatively small number) andeach counter takes 1 byte, one gigabytes are needed to �nd trigrams! However, to reduce the combinatorialexplosion, one can safely consider only a small number of bigrams with high AEMI values as event A.Though this scheme is memory e�cient, it requires a second pass of the corpus, which incurs disk I/O time,since the AEMI values can only be calculated at the end of one pass. This scheme requires n� 1 passes foridentifying n-grams.We propose an approximate approach to �nding n-grams without requiring a lot of storage and multiplepasses on the disk-resident corpus. For each bigram with AEMI above some threshold T , a directed edgeis inserted into a graph, whose vertices are the words. A trigram, \abc," is identi�ed if the edges a ! b,b ! c, and a ! c exist. Similarly, a quadgram, \abcd," is located if, in addition to the three edges fortrigram \abc," the edges a ! d, b ! d, and c ! d also exist. Our scheme needs O(s2) storage (O(s2) forthe counters plus O(s2) for the graph, which is sparse and requires much less than s2 storage) and a singlepass on the corpus. Formally, n-gram is de�ned as:ngram(w1; w2; :::; wn) = � edge(w1; w2) if n = 2ngram(w1; w2; :::; wn�1) ^Vn�1i=1 edge(wi; wn) if n > 2where edge(wi; wj) = � true if AEMI(wi; wj) > Tfalse otherwiseWindow size W plays a role in our method of building n-grams. Given a W , our scheme allows largergaps in shorter phrases and smaller gaps in longer phrases. This notion stems from the observation thatshorter phrases might have additional intervening words but longer phrases usually do not. For instance,when W is set to 2 for building n-grams upto trigrams, we allow an additional word between the words inbigrams but none in trigrams.3 Preliminary ExperimentsExperiments were conducted on data obtained from our departmental web server. By analyzing the serveraccess log from January to April 1999, we identi�ed hosts that accessed at least 50 times in the �rst twomonths and also in the second two months. We use data from the �rst two months for training and thelast two months for testing. We �ltered out proxy, crawler, and our computer lab hosts, and identi�ed\single-user" hosts, which are at dormitory rooms and a local company.For each text web document (.html or .txt), we �rst extracted words, then applied a stop list to removecommon articles, prepositions, and verbs, and �nally stemmed the words according to Porter's stemmingalgorithm [20, 10]. Bigrams and trigrams were identi�ed using our scheme described in Section 2.2. The



Table 1: Accuracy performance of PIE's learned from four algorithms and �fteen usersTrain Test Words and Phrases Words OnlyUser size size C4.5 CART BAYES RIPPER C4.5 CART BAYES RIPPER1 102 114 67.5 73.7 58.8 73.7 69.3 73.7 57.0 73.72 148 162 77.2 74.7 67.3 74.7 80.2 71.6 72.8 74.13 106 76 80.3 77.6 54.0 78.9 82.9 84.2 57.9 78.94 68 96 67.7 58.3 57.3 64.6 70.8 61.5 58.3 66.75 52 64 60.9 64.1 59.4 67.2 60.9 59.4 54.7 65.66 80 62 58.1 58.1 59.7 58.1 74.2 67.7 59.7 58.17 86 150 54.7 65.3 54.0 65.3 60.0 65.3 53.3 65.38 42 70 58.6 48.6 54.3 64.3 55.7 48.6 54.3 64.39 44 46 65.2 69.6 65.2 69.6 71.7 69.6 54.3 69.610 128 80 82.5 76.2 60.0 77.5 76.2 77.5 66.2 70.011 38 36 75.0 80.6 72.2 69.4 83.3 75.0 58.3 69.412 64 116 69.0 67.2 53.5 70.7 65.5 56.0 51.7 52.613 46 196 83.7 84.2 54.1 84.2 82.7 84.2 55.1 84.214 44 112 59.8 66.1 65.2 67.0 61.6 60.7 58.0 67.015 76 76 80.3 80.3 64.5 80.3 80.3 80.3 63.2 80.3Avg. 74.9 97.1 69.4 69.6 60.0 71.0 71.7 69.0 58.3 69.3threshold T was .0025 and the window size W was 2 (i.e., the words in a bigram might not be next to eachother, but those in a trigram must be adjacent to each other in the text). Two hundred and �fty Booleanfeatures of the presence and absence of words/phrases were selected based on expected mutual information(Equation 3) [29] and ties were broken with preference to features with higher document frequency ininteresting documents and features from longer phrases. Moreover, accessed pages were considered interestingto the user and pages not accessed were not interesting. For simplicity, we randomly picked unaccessed pagesto be included in training and testing. The number of unaccessed pages is the same as accessed pages, hencethe class ratio is 1:1 in the training and test sets.We ran C4.5 [21], CART [3], naive BAYES [8], and RIPPER [6] on the data set. Table 1 has two groupsof columns on the right: one for results from features with words and phrases and the other for featureswith words only. The two groups are for comparing the utility of adding phrases into the feature sets (inboth groups, only 250 selected features were used in training and testing). For all four algorithms, based onthe paired t-test with 95% con�dence, the di�erence in accuracy is signi�cant|adding phrases led to higheraccuracy in CART, BAYES, and RIPPER, but lower accuracy in C4.5. For User 12, phrases improved theperformance of CART and RIPPER by more than 10%. This provides empirical evidence that phrases canimprove the accuracy performance of learned PIE's. Among the algorithms, RIPPER achieved signi�cantlyhigher accuracy in the �rst group and C4.5 in the second group (paired t-test with 95% con�dence), whileBAYES was consistently less accurate than the other algorithms. The overall top performer was C4.5 withword-only features. On average, except for BAYES, 70% (signi�cantly higher than the default 50%) accuracycan be obtained. Finally, we would like to point out that the success of our approach largely depends on theuser's behavior pattern. For instance, although User 13 has one of the smallest training sets and the largesttest set, many of the algorithms achieved the highest accuracy on this user. Inspection of the generated treesand rules reveals that the user has a consistent appetite in pages that contain the word \java."4 Concluding RemarksWe discussed a non-invasive approach to estimating the user's interest of a web page and a time and spacee�cient method for locating multi-word phrases to enrich the common bag-of-words representation for textdocuments. Page Interest Estimators are learned to build web user pro�les. The reported preliminaryempirical results of our approach indicate that it can predict, with an average accuracy of 70% (signi�cantlyhigher than the default 50%), whether a page will be visited by a user. Also, including phrases as featurescan improve predictive accuracy.Most machine learning tasks (including text categorization) assume all the features are known before handand are applicable to both the training and test sets. However, in PIE learning, words in the documentschange over time, and so does the user's preferences. A monolithic classi�er/regressor with a �xed set offeatures will not be able to adapt to these changes. We plan to investigate a multi-classi�er approach witha di�erent feature set for each classi�er that is learned in a particular time period. The ensemble can then
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