
OpenJIT Frontend System: an implementation

of the reflective JIT compiler frontend

Hirotaka Ogawa1, Kouya Shimura2, Satoshi Matsuoka1,
Fuyuhiko Maruyama1, Yukihiko Sohda1, and Yasunori Kimura2

1 Tokyo Institute of Technology
2 Fujitsu Laboratories Limited

Abstract. OpenJIT is an open-ended, reflective JIT compiler frame-
work for Java being researched and developed in a joint project by
Tokyo Inst. Tech. and Fujitsu Ltd. Although in general self-descriptive
systems have been studied in various contexts such as reflection and in-
terpreter/compiler bootstrapping, OpenJIT is a first system we know to
date that offers a stable, full-fledged Java JIT compiler that plugs into
existing monolithic JVMs, and offer competitive performance to JITs
typically written in C or C++. We propose an architecture for a re-
flective JIT compiler on a monolithic VM, and describe the details of
its frontend system. And we demonstrate how reflective JITs could be
useful class- or application specific customization and optimization by
providing an important reflective “hook” into a Java system.

1 Introduction

Programming Languages with high-degree of portability, such as Java, typi-
cally employ portable intermediate program representations such as bytecodes,
and utilize Just-In-Time compilers (JITs), which compile (parts of) programs
into native code at runtime. However, all the Java JITs today as well as those
for other languages such as Lisp, Smalltalk, and Self, only largely focuses on
standard platforms such as Workstations and PCs, merely stress optimizing for
speeding up single-threaded execution of general programs, usually at the ex-
pense of memory for space-time tradeoff. This is not appropriate, for example,
for embedded systems where the tradeoff should be shifted more to memory
rather than speed. Moreover, we claim that JITs could be utilized and exploited
more opportunely in the following situations:

– Platform-specific optimizations: Execution platforms could be from
embedded systems and hand-held devices all the way up to large servers and
massive parallel processors (MPPs). There, requirements for optimizations
differ considerably, not only for space-time tradeoffs, but also for particular
class of applications that the platform is targeted to execute. JITs could be
made to adapt to different platforms if it could be customized in a flexible
way.

2 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

– Platform-specific compilations: On related terms, some platforms re-
quire assistance of compilers to generate platform- specific codes for exe-
cution. For example, DSM (Distributed-Shared Memory) systems and per-
sistent object systems require specific compilations to emit code to detect
remote or persistent reference operations. Thus, if one were to implement
such systems on Java, one not only needs to modify the JVM, but also the
JIT compiler. We note that, as far as we know, representative work on Java
DSM (cJVM[2] by IBM) and persistent objects (PJama[3] at University of
Glasgow) lack JIT compiler support for this very reason.

– Application-specific optimizations: One could be more opportunistic
by performing optimizations that are specific to a particular application or a
data set. This includes techniques such as selection of compilation strategies,
runtime partial evaluation, as well as application-specific idiom recognition.
By utilizing application-specific as well as run-time information, the com-
piled code could be made to execute substantially faster, or with less space,
etc. compared to traditional, generalized optimizations. Although such tech-
niques have been proposed in the past, it could become a generally-applied
scheme and also an exciting research area if efficient and easily customizable
JITs were available.

– Language-extending compilations: Some work stresses on extending
Java for adding new language features and abstractions. Such extensions
could be implemented as source-level or byte-code level transformations, but
some low-level implementations are very difficult or inefficient to support
with such higher-level transformations in Java. The abovementioned DSM is
a good example: Some DSMs permit users to add control directives or storage
classifiers at a program level to control the memory coherency protocols,
and thus such a change must be done at JVM and native code level. One
could facilitate this by encoding such extensions in bytecodes or classfile
attributes, and customizing the JIT compilers accordingly to understand
such extensions.

– Environment- or Usage-specific compilations and optimizations:

Other environmental or usage factors could be considered during compila-
tion, such as adding profiling code for performance instrumentation, debug-
ging etc. 1

Moreover, with Java, we would like these customizations to occur within
an easy framework of portable, security-checked code downloaded across the
network. That is to say, just as applets and libraries are downloadable on-the-
fly, we would like the JIT compiler customization to be downloaded on-the-fly
as well, depending on the specific platform, application, and environment. For
example, if a user wants to instrument his code, he will want to download the
(trusted) instrumentation component from the network on-the-fly to customize
the generated code accordingly.

1 In fact we do exactly that in the benchmarking we will show in [21], which for the
first time characterizes the behavior of a self-descriptive JIT compiler.

OpenJIT Frontend System 3

Unfortunately, most JITs today, especially those for Java, are architected to
be closed and monolithic, and do not facilitate interfaces, frameworks, nor pat-
terns as a means of customization. Moreover, JIT compilers are usually written in
C or C++, and live in a completely separate scope from normal Java programs,
without enjoying any of the language/systems benefits that Java provides, such
as ease of programming and debugging, code safety, portability and mobility,
etc. In other words, current Java JIT compilers are “black boxes”, being in a
sense against the principle of modular, open-ended, portable design ideals that
Java itself represents.

In order to resolve such a situation, the collaborative group between Tokyo
Institute of Technology and Fujitsu Limited have been working on a project
OpenJIT[19] for almost the past two years. OpenJIT itself is a “reflective” Just-
In-Time open compiler framework for Java written almost entirely in Java itself,
and plugs into the standard JDK 1.1.x and 1.2 JVMs. All compiler objects
coexist in the same heap space as the application objects, and are subject to
execution by the same Java machinery, including having to be compiled by it-
self, and subject to static and dynamic customizations. At the same time, it is a
fully-fledged, JCK (Java Compatibility Kit) compliant JIT compiler, able to run
production Java code. In fact, as far as we know, it is the ONLY Java JIT com-
piler whose source code is available in public, and is JCK compliant other than
that of Sun’s. And, as the benchmarks will show, although being constrained by
the limitations of the “classic” JVMs, and still being in development stage lack-
ing sophisticated high-level optimizations, it is nonetheless equal to or superior
to the Sun’s (classic) JIT compiler on SpecJVM benchmarks, and attains about
half the speed of the fastest JIT compilers that are much more complex, closed,
and requires a specialized JVM. At the same time, OpenJIT is designed to be
a compiler framework in the sense of Stanford SUIF[28], in that it facilitates
high-level and low-level program analysis and transformation framework for the
users to customize.

OpenJIT is still in active development, and we have just started distribut-
ing it for free for non-commercial purposes from http://www.openjit.org/. It
has shown to be quite portable, thanks in part to being written in Java—the
Sparc version of OpenJIT runs on Solaris, and the x86 version runs on differ-
ent breeds of Unix including Linux, FreeBSD, and Solaris. We are hoping that
it will stem and cultivate interesting and new research in the field of compiler
development, reflection, portable code, language design, dynamic optimization,
and other areas.

The purpose of the paper is to describe our experiences in building OpenJIT,
as well as presenting the following technical contributions:

1. We propose an architecture for a reflective JIT compiler framework on a
monolithic “classic” JVM, and identify the technical challenges as well as
the techniques employed. The challenges exist for several reasons, that the
JIT compiler is reflective, and also the characteristics of Java, such as its
pointer-safe execution model, built-in multi-threading, etc.

4 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

2. We demonstrate how reflective JITs could be useful class- or application
specific customization and optimization by providing an important reflec-
tive “hook” into a Java system, with the notion of compilets. Although the
current examples are small, we nevertheless present a possibility of larger-
scale deployment of OpenJIT for uses in the abovementioned situations.

2 Overview of the OpenJIT Framework

Although there have been reflective compilers and OO compiler frameworks,
OpenJIT has some characteristic requirements and technical challenges that were
previously not seen in traditional reflective systems as well as JIT compilers.
In order to better describe the technical challenges, we will first overview the
OpenJIT framework.

2.1 OpenJIT: The Conceptual Overview

OpenJIT is a JIT compiler written in Java to be executed on “classic” VM sys-
tems such as Sun JDK 1.1.x and 1.2. OpenJIT allows a given Java code to be
portable and maintainable with compiler customization. With standard Java,
the portability of Java is effective insofar as the capabilities and features pro-
vided by the JVM (Java Virtual Machine); thus, any new features that has to
be transparent from the Java source code, but which JVM does not provide,
could only be implemented via non-portable means. For example, if one wishes
to write a portable parallel application under multi-threaded, shared memory
model, then some form of distributed shared memory (DSM) would be required
for execution under MPP and cluster platforms. However, JVM itself does not
facilitate any DSM functionalities, nor provide any software ‘hooks’ for incor-
porating the necessary read/write barriers for user-level DSM implementation.
As a result, one must either modify the JVM, or employ some ad-hoc prepro-
cessor solution, neither of which are satisfactory in terms of portability and/or
performance. With OpenJIT, the DSM class library implementor can write a
set of compiler metaclasses so that necessary read/write barriers, etc., would be
appropriately inserted into critical parts of code.

Also, with OpenJIT, one could incorporate platform-, application-, or usage-
specific compilation or optimization. For example, one could perform various
numerical optimizations such as loop restructuring, cache blocking, etc. which
have been well-studied in Fortran and C, but have not been well adopted into
JITs for excessive runtime compilation cost. OpenJIT allows application of such
optimizations to critical parts of code in a pinpointed fashion, specified by either
the class-library builder, application writer, or the user of the program. Further-
more, it allows optimizations that are too application and/or domain specific to
be incorporated as a general optimization technique for standard compilers, as
has been reported by [15].

In this manner, OpenJIT allows a new style of programming for optimiza-
tions, portability, and maintainability, compared to traditional JIT compilers,

OpenJIT Frontend System 5

Standard JIT Compiler
- Ad-hoc construction
- Limited/overspec optim
- restricted portability

Native
Code
(exec)

Java
Classfile
(methods)

OpenJIT Compiler
- Reflective/OI
construction (JIT in Java)
- Flexible custom/optim
- high portability

Native
Code
(exec)

Java
Classfile
(methods

+
Compiler
metacode) Self-application

(compile)

Just-in-time JIT customization

Fig. 1. Comparison of Traditional JITs and OpenJIT

by providing separations of concerns with respect to optimization and code-
generation for new features. That is to say, with traditional JIT compilers, we
see in the upper half of Figure 1, the JIT compilers would largely be transparent
from the user, and users would have to maintain code which might not be tangled
to achieve portability and performance. OpenJIT, on the other hand, will allow
the users to write clean code describing the base algorithm and features, and
by selecting the appropriate compiler metaclasses, or even by writing his own
separately, one could achieve optimization while maintaining appropriate sep-
aration of concerns. Furthermore, compared to previous open compiler efforts,
OpenJIT could achieve better portability and performance, as source code is not
necessary, and late binding at run-time allows exploitation of run-time values,
as is with run-time code generators.

2.2 Architectural Overview of OpenJIT

The OpenJIT architecture is largely divided into the frontend and the backend
processors. The frontend takes the Java bytecodes as input, performs higher-
level optimizations involving source-to-source transformations, and passes on
the intermediate code to the backend, or outputs the transformed bytecode.
The backend is effectively a small JIT compiler in itself, and takes either the
bytecode or the intermediate code from the frontend as input, performs lower-
level optimizations including transformation to register code, and outputs the
native code for direct execution. The reason why there is a separate frontend and
the backend is largely due to modularity and ease of development, especially for
higher-level transformations, as well as defaulting to the backend when execution
speed is not of premium concern. In particular, we strive for the possibility of
the two modules being able to run as independent components.

OpenJIT will be invoked just as a standard Java JIT compiler would, using
the standard JIT API on each method invocation. A small OpenJIT C runtime
is dynamically linked onto the JVM, disguised as a full-fledged C-based JIT com-
piler. Upon initialization, it will have set the CompiledCodeLinkVector within
the JVM so that it calls the necessary OpenJIT C stub routines. In particular,

6 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

when a class is loaded, JVM calls the OpenJIT_InitializeForCompiler() C
function, which redirects the invoker functions for each method within the loaded
class to to OpenJIT_invoke(). OpenJIT_invoke, in turn upcalls the appropri-
ate Java compile() method in the org.OpenJIT.Compile class, transferring
the necessary information for compilation of the specific method. It is possi-
ble to specify, for each method, exactly which portion of the compiler is to be
called; by default, it is the OpenJIT backend compiler, but for sophisticated
compilation OpenJIT frontend is called. After compilation, the upcall returns
to OpenJIT_invoke(), which calls the just compiled code through mb->invoker

(mb = method block). Thus, the heart of OpenJIT compiler is written in Java,
and the C runtime routines merely serve to “glue” the JVM and the Java portion
of OpenJIT. The details will be presented in [21].

Upon invocation, the OpenJIT frontend system processes the bytecode of the
method in the following way: The decompiler recovers the AST of the original
Java source from the bytecode, by recreating the control-flow graph of the source
program. At the same time, the annotation analysis module will obtain any
annotating info on the class file, which will be recorded as attribute info on the
AST2.

Next, the obtained AST will be subject to optimization by the (higher-level)
optimization module. Based on the AST and control-flow information, we com-
pute the data & control dependency graphs, etc., and perform program transfor-
mation in a standard way with modules such as flowgraph construction module,
program analysis module, and program transformation module using template
matching. The result from the OpenJIT frontend will be a new bytecode stream,
which would be output to a file for later usage, or an intermediate representation
to be used directly by the OpenJIT backend.

The OpenJIT backend system, in turn, performs lower-level optimization over
the output from the frontend system, or the bytecodes directly, and generates
native code. It is in essence a small JIT compiler in itself.

Firstly, when invoked as an independent JIT compiler bypassing the fron-
tend, the low-level IL translator analyzes and translates the bytecode instruction
streams to low-level intermediate code representation using stacks. Otherwise the
IL from the frontend is utilized. Then, the RTL Translator translates the stack-
based code to intermediate code using registers (RTL). Here, the bytecode is
analyzed to divide the instruction stream into basic blocks, and by calculating
the depth of the stack for each bytecode instruction, the operands are generated
with assumption that we have infinite number of registers. Then, the peephole op-
timizer would eliminate redundant instructions from the RTL instruction stream,
and finally, the native code generator would generate the target code of the CPU,
allocating physical registers. Currently, OpenJIT supports the SPARC and the
x86 processors as the target, but could be easily ported to other machines. The
generated native code will be then invoked by the Java VM, as described earlier.

2 In the current implementation, the existence of annotation is a prerequisite for fron-
tend processing; otherwise, the frontend is bypassed, and the backend is invoked
immediately.

OpenJIT Frontend System 7

3 Oveview of the OpenJIT Backend System

As a JIT compiler, the high-level overview of the workings of OpenJIT backend
is standard. The heart of the low-level IL translator is the parseBytecode()

method of the ParseBytecode class, which parses the bytecode and produces an
IL stream. The IL we defined is basically an RISC-based, 3-operand instruction
set, but is tailored for high affinity with direct translation of Java instructions
into IL instruction set with stack manipulations for later optimizations. There are
36 IL instructions, to which each bytecode is translated into possibly a sequence
of these instructions. Some complex instructions are translated into calls into
run-time routines. We note that the IL translator is only executed when the
OpenJIT backend is used in a standalone fashion; when used in conjunction
with the frontend, the frontend directly emits IL code of the backend.

Then, RTL converter translates the stack-based IL code to register based
RTL code. The same IL is used, but the code is restructured to be register-based
rather than encoded stack operations. Here, a dataflow analyzer is then run to
determine the type and the offset of the stack operands. We assume that there
are infinite number of registers in this process. In practice, we have found that
24–32 registers are sufficient for executing large Java code without spills when no
aggressive optimizations are performed[24]. Then, the peephole optimizer would
eliminate redundant instructions from the RTL instruction stream.

Finally, the native code generator would generate the target code of the CPU.
It first converts IL restricting the number of registers, inserting appropriate spill
code. Then the IL sequence is translated into native code sequence, and ISA-
specific peephole optimizations are performed. Currently, OpenJIT supports the
SPARC and x86 processors as the target, but could be easily ported to other
machines3. The generated native code will be then invoked by the Java VM,
upon which the OpenJIT runtime module will be called in a supplemental way,
mostly to handle Java-level exceptions.

The architectural outline of the OpenJIT backend is illustrated in Figure 2.
Further details of the backend system can be found in [23].

4 Details of the OpenJIT Frontend System

As described in Section 2, the OpenJIT frontend system provides a Java class
framework for higher-level, abstract analysis, transformation, and specialization
of Java programs which had already been compiled by javac: (1) The decompiler
translates the bytecode into augmented AST, (2) analysis, optimizations, and
specialization are performed on the tree, and (3) the AST is converted into
the low-level IL of the backend system, or optionally, a stream of bytecodes is
generated.

3 Our experience has been that it has not been too difficult to port from SPARC to
x86, save for its slight peculiarities and small number of registers, due in part being
able to program in Java. We expect that porting amongst RISC processors to be
quite easy.

8 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

Bytecode

IL translator

Intermediate Language(IL)

Dataflow analyzer

Intermediate Language(RTL)

Optimizer

Intermediate Language(RTL)

Code generator

Native code

Fig. 2. Overview of the OpenJIT Backend System

Transformation over AST is done in a similar manner to Stanford SUIF,
in that there is a method which traverses the tree and performs update on a
node or a subtree when necessary. There are a set of abstract methods that are
invoked as a hook. The OpenJIT frontend system, in order to utilize such a hook
functionality according to user requirements, extends the class file (albeit in a
conformable way so that it is compatible with other Java platforms) by adding
annotation info to the classfile. Such an info is called “classfile annotation”.

The overall architecture of the OpenJIT frontend system is as illustrated in
Fig. 3, and consists of the following four modules:

1. OpenJIT Bytecode Decompiler

Translates the bytecode stream into augmented AST. It utilizes a new algo-
rithm for systematic AST reconstruction using dominator trees.

2. OpenJIT Class Annotation Analyzer

Extracts classfile annotation information, and adds the annotation info onto
the AST.

3. OpenJIT High-level Optimizer Toolkit

The toolkit to construct “compilets”, which are modules to specialize the
OpenJIT frontend for performing customized compilation and optimizations.

4. Abstract Syntax Tree Package

Provides construction of the AST as well as rewrite utilities.

We first describe the classfile annotation, which is a special feature of Open-
JIT, followed by descriptions of the four modules.

OpenJIT Frontend System 9

Compilets
(user defined)

Flowgraph
Generator

Flowgraph
Analyzer

Program TransformerModified AST

Annotated AST Call-back

transform

OpenJIT Bytecode
Decompiler

OpenJIT Class
Annotation Analyzer

Java bytecode
of the method

AST

Discompile

Embed call-back functions

Low-level
bytecode

for backend

OpenJIT High-level
Optimizer Toolkit

Fig. 3. Overview of OpenJIT Frontend System

4.1 Classfile Annotation

Classfile annotation in OpenJIT is additional info or directive added to the
classfile to direct OpenJIT to perform classfile-specific (or application-specific,
platform-specific) optimization and customization. Here are examples of direc-
tives possible with classfile annotations:

– Support for User-defined Optimizers and Specializers
– Support for Memory Models e.g., DSM
– Optimizing Numerical Code

Support for User-defined Optimizers and Specializers OpenJIT allows user-
level definitions and customizations of its optimizer and specializer classes
in the frontend. The classfile annotation allows the user to specify which of
the classes the user-defined compiler classes to employ, by means of naming
the class directly, or encoding the classfile itself as an annotation.

Support for Memory Models e.g., DSM As mentioned in Section 1, the
support for various memory models including DSM requires insertion of ap-
propriate Read/Write barriers for access to shared objects. However, there
are algorithms to statically determine that objects are immutable or do not
escape such as [8, 4, 5, 32], which allow such barriers to be compiled away,
eliminating runtime overhead.

Optimizing Numerical Optimizations Numerical performance of Java is known
to suffer due to array bounds checks, non-rectangular multidimensional stor-
age allocation, etc. By marking the loops that can be statically determined
to use the array in regular ways, we can apply traditional Fortran-style op-
timizations such as loop transformation, cache blocking, etc.

In order to implement the classfile annotation feature, we employ the at-
tribute region of of each method in the classfile. According to the JVM specs,
any attributes that the JVM does not recognize are simply ignored; thus, class-
files with OpenJIT annotations can be executed on platforms without OpenJIT,

10 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

achieving high portability (save for the programs that do not work without Open-
JIT). One caveat is that there is no simple way to add extra information in the
attribute field of classes themselves, due to the lack of appropriate JIT interface
in the JVM; thus, one must employ some convention, say, defining a “dummy”
null method that is called by the constructor, whose sole purpose is to supply
class-wide annotation info that would be cached in the OpenJIT compiler.

In order to create a classfile with annotation information, we either employ
an extended version of source-to-bytecode compilers such as javac; for classfiles
without source, we could use a tool to add such annotation in an automated way;
in fact the tool we are currently testing is a modified version of the OpenJIT
frontend system.

4.2 OpenJIT Bytecode Decompiler Module

OpenJIT Bytecode Decompiler inputs the bytecode stream from the classfile,
and converts it into an augmented AST. The module processes the the bytecode
in the following way:

1. Converts the bytecode stream into an internal representation of JVM in-
struction, and marks the instructions that become the leading instruction of
basic blocks.

2. Construct a control flow graph (CFG) with basic block nodes.
3. Construct a dominator tree that corresponds to the CFG.
4. Reconstruct the Java AST by symbolic execution of the instructions within

the basic block.
5. Discover the control flow that originated from the short-circuit optimizations

of the Java conditional expressions such as && or || and (x ? a * b), and
recover the expressions.

6. Reconstruct the Java control structure using the algorithm described in [16].
7. Output the result as an AST, augmented with control-flow and dominator

information.

All the above steps except (6) are either simple, or could be done with ex-
isting techniques, such as that described in [20]. Step (6), is quite difficult; most
previous techniques published so far analyzed the CFG directly, and used pat-
tern matching to extract valid Java control structures [20, 26]. Instead, we have
proposed an algorithm which walks over the dominator tree, and enumerates
over every possible patterns of dominance relation, which has a corresponding
Java control structure. Compared to existing techniques such as Krakatoa[26],
our method was shown to be faster, and more robust to code obfuscation. Some
preliminary details can be found in [16].

4.3 OpenJIT Class Annotation Analyzer Module

The OpenJIT Class Annotation Analyzer module extracts the class annotation
from a classfile, and adds the annotation info to the AST. The added annotations
are typically compilets that modify the compiler more concretely, it processes the
annotation in the following way:

OpenJIT Frontend System 11

1. First, it access the attribute region of the method. This is done by parsing
the method block region extracted from the JVM.

2. We process this byte array assuming that the annotation object has been
serialized with writeObject(), constructing an annotation object.

3. we attach the annotation object to the AST as annotation information.

Because what kind of information is to be embodied in the classfile anno-
tation differs according to its usage, the OpenJIT_Annotation is actually an
abstract class, and the user is to subclass a concrete annotation class. The ab-
stract superclass embodies the identifier of the annotation, and the AST node
where it is to be attached. This is similar in principle to SUIF, except that the
annotation must be extracted from the classfile instead of being given a priori
by the user.

4.4 OpenJIT High-level Optimizer Toolkit

OpenJIT High-level Optimizer Toolkit is used to construct OpenJIT compilets,
that are a set of classes that customizes the compiler. The toolkit provides means
of utilizing the augmented AST for implementing traditional compiler optimiza-
tions, and is largely composed of the following three submodules: 4

1. Flowgraph Constructor
Flowgraph Constructor creates various (flow) graphs from the augmented
AST, such as dataflow graph, FUD chains, control dependence graph, etc.
The Flowgraph class is an abstract class, and Factory Method pattern is
employed to construct user-defined flowgraphs.

2. Flowgraph Analyzer
The Flowgraph Analyzer performs general computation over the flowgraph,
i.e., dataflow equation solving, handling merges, fix point calculation, etc.
We employ the Command Pattern to subclass the Analyzer class for each
algorithm, and each subclass triggers its own algorithm with the execute()

method. The user can subclass the Analyzer class to add his own flowgraph
algorithm.

3. Program Transformer
The Program Transformer employs declarative pattern matching and rewrite
rules to transform the augmented AST. One registers the rule using the
following API:
– register_pattern(Expression src, Expression dst)

– register_pattern(Statement src, Statement dst)

Registers the transformation rule that transforms the src pattern to the
dst pattern. The pattern can be constructed using the Abstract Syntax
Tree Package described next.

4 In the current version, compilets are not downloadable; this is primarily due to the
fact OpenJIT itself is not yet entirely downloadable due to a few restrictions in the
JVM. We are currently working to circumvent the restrictions, and a prototype is
almost working. Meanwhile, the Toolkit itself is available, and a custom version of
OpenJIT can be created with “static” compilets using standard inheritance.

12 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

– Node
• Expression

∗ BinaryExpression
· AddExpression
· SubtractExpression
· MultiplyExpression
· ...

∗ UnaryExpression
∗ ConstantExpression
∗ ...

• Statement
∗ IfStatement
∗ ForStatement
∗ WhileStatement
∗ CaseStatement
∗ ...

Fig. 4. Class Hierarchy of The Abstract Syntax Tree Package

– substitution(Expression root)

– substitution(Statement root)

Searches the subtree with the designated root node depth-first, and if
a match is found with the registered patterns, we perform the transfor-
mation.

Initial use of the current pattern matching technique proved to be somewhat
too low-level; in particular, generation and registration of the transformation
rule is still cumbersome. The next version of OpenJIT will have APIs to
generate patterns and transformation rules from higher-level specifications,
in particular for well-known program transformations (such as code motion,
loop transformation, etc.)

4.5 Abstract Syntax Tree Package

The Abstract Syntax Tree Package is a utility package called from other parts
of the OpenJIT frontend to implement low-level construction of the augmented
AST, patterns for transformation rules, etc. The AST essentially implements the
entire syntactic entities of the Java programming language. Each node of the
AST corresponds to the expression or a statement in Java. The class hierarchy
for the package is organized with appropriate subclassing of over 100 classes:
(Fig. 4). We show typical Expression and Statement classes in Fig. 5 and Fig.
6, respectively.

A typical Expression subclass for a binary operator (MultiplyExpression
in the example) consists of the operator ID, left-hand and right-hand expressions,
and reference to an annotation object. The code() method either generates the
low-level IL for the backend, or a Java bytecode stream. The code() method
walks over the left- and right-hand expressions in a recursive manner, generating

OpenJIT Frontend System 13

public class MultiplyExpression extends BinaryExpression {

int op; // Construct ID

Expression left; // LHS expression

Expression right; // RHS expression

Type type; // Type of this expression

Annotation ann; // Embedded Annotation (default: null)

void code() { // Convert AST to backend-IR form

// (or bytecodes)

if (ann) ann.execute(this); // call-back for metacomputation

left.code(); // generate code for LHS

right.code(); // generate code for RHS

add(op); // generate code for "operator"

}

Expression simplify() {} // Simplify expression form

// (e.g. convert "a * 1" to "a")

...

}

Fig. 5. An Expression Class for A Typical Binary Expression (Multiply)

code. When a node has non-null reference to an annotation object, it calls the
execute() method of the annotation, enabling customized transformations and
compilations to occur.

As a typical Statement subclass, IfStatement recursively generates code for
the conditional in a similar manner to Expressions.

As such, the current OpenJIT is structured in a similar manner to OpenC++[6],
in that syntactic entities are recursively compiled. The difference is that we pro-
vide annotation objects that abstracts out the necessary hook to the particular
syntax node, in addition to customization of the syntax node themselves. Thus,
it is possible to perform similar reflective extensions as OpenC++ in an encap-
sulated way. On the other hand, experience has shown that some traditional
optimizations are better handled using SSA, such as dataflow analysis, constant
propagation, CSE, loop transformation, code motion. In the next version of
OpenJIT, we plan to support SSA directly by translating the augmented AST
into SSA, and providing the necessary support packages.

5 Reflective Programming with OpenJIT—A Preliminary

Example

As a preliminary example, we tested loop transformation of the program in Fig.
8 into an equivalent one as shown in Fig. 9 5. In this example, we have added

5 Note that although we are using the Java source to represent the program, in reality
the program is in bytecode form, and transformation is done at the AST level.

14 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

public class IfStatement extends Statement {

int op; // Construct ID

Expression cond; // Condition expression

Statement ifTrue; // Statement of Then-part

Statement ifFalse; // Statement of Else-part

Annotation ann; // Embedded Annotation (default: null)

void code() { // Convert AST to backend-IR form

// (or bytecodes)

if (ann) ann.execute(this); // call-back for metacomputation

codeBranch(cond); // generate code for Condition

ifTrue.code(); // generate code for Then-part

ifFalse.code(); // generate code for Else-part

addLabel(); // add label for "Break" statement

}

Statement simplify() {} // Simplify statement form

// (e.g. if (true) S1 S2 => S1)

...

}

Fig. 6. A Example Statement Class for the “If” Statement

a compilet called LoopTransformer using the class annotation mechanism in
the attribute region of the matmul() method by using a tool mentioned in Sec-
tion 4.1. The execute() method of the LoopTransformer class searches the
AST of the method it is attached to for the innermost loop of the perfect tri-
nested loop. There, if it finds a a 2-dimensional array whose primary index is
only bound to the loop variable of the outermost loop, it performs the necessary
transformation. The overview of the LoopTransformer is shown in Fig. 7; the
real program is actually about 200 lines, and is still not necessarily easy to pro-
gram due to relatively low level of abstraction that the tree package provides, as
mentioned earlier. We are working to provide a higher level API by commonizing
some of the operations as a compilet class library.

Also, one caveat is that the IL translator is still incomplete, and as such we
have generated the bytecode directly, which is fed into the OpenJIT backend.
Thus we are not achieving the best performance, due to the compilation over-
head, and the information present in the frontend is not utilized in the backend.
Nevertheless, we do demonstrate the effectiveness to some degree.

For OpenJIT, we compared the results of executing Fig. 8 directly, and also
transforming at runtime using the OpenJIT frontend into Fig. 9. For sunwjit, we
performed the transformation offline at source level, and compiled both programs
with javac. The size of the matrices (SIZE) are set to 200×200 and 600×600.
Table 1 shows the results, before and after the transformation, and the setup
time required for JIT compilation. (The overhead of for sunwjit is zero as it had
been done offline.)

OpenJIT Frontend System 15

public class LoopTransformer extends Annotation {

int loop_nest = 0;

LocalField index;

LoopTransformer() {}

boolean isRegularForm(Statement init, Expression cond, Expression inc) {

// Check the initializer and the conditions of the For statement

// to verify that it is in a normal form.

}

void execute(Node root) {

if (root instanceof CompoundStatement) {

for (int i = 0; i < root.args.length; i++) { execute(root.args[i]); }

}

// Test whether the loop is a perfect tri-nested loop

else if (root instanceof ForStatement &&

root.body instanceof ForStatement &&

root.body.body instanceof ForStatement) {

if (isRegularForm(root.init, root.cond, root.inc) &&

isRegularForm(root.body.init, root.body.cond, root.body.inc) &&

isRegularForm(root.body.body.init, root.body.body.cond, root.body.body.inc)) {

// Record the loop variable of the root

// Verify that root.body.body does not include a ForStatement

// If it doesn’t then scan the RHS for a 2-dimensional

// array of the form ([] ([] index) _)

// If found then perform the appropriate transformation

} } }

else return;

} }

Fig. 7. Overview of LoopTransformer

public int[][] matmul(int[][] m1, int[][] m2) {

for (int i = 0; i < SIZE; ++i) {

for (int j = 0; j < SIZE; j++) {

for (int k = 0; k < SIZE; k++) {

T[i][j] += m1[i][k] * m2[k][j];

}

}

}

return T;

}

Fig. 8. Matrix Multiply Method (Original)

16 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

public int[][] matmul(int[][] m1, int[][] m2) {

for (int i = 0; i < SIZE; ++i) {

int tmp[] = m1[i];

for (int j = 0; j < SIZE; j++) {

for (int k = 0; k < SIZE; k++) {

T[i][j] += tmp[k] * m2[k][j];

}

}

}

return T;

}

Fig. 9. Matrix Multiply Method (Transformed)

We see that the execution time of OpenJIT and sunwjit are within 10% of
each other. This similar to SpecJVM98 where OpenJIT and sunwjit for SPARCs.
So, for the purposes of this benchmark, we can regard both systems to be essen-
tially equivalent, and thus the benefits of reflection can be judged in a straight-
forward way.

The setup time for OpenJIT without frontend transformation is approxi-
mately 1.09 seconds, compared to 0.49 seconds for sunwjit. This verifies our
benchmarks in the previous section where the compiler bootstrap overhead was
quite small. The 1.59 seconds difference between the original and transformed
is the overhead of frontend execution. The overhead consists of the process de-
scribed in Section 4. We believe we can improve this overhead substantially, as
the frontend has not been tuned as much as the backend, especially regarding
generation of numerous small objects.

Still we see that, although when the matrix size is small (200 × 200), the
overhead of frontend processing with a compilet exceeds that of the speed gain,
for larger problem (600 × 600) this overhead is amortized for 7% improvement.
Moreover, we expect to further amortize this as the transformation is done only
once, and as a result, multiple execution of the same method will not pay the
overhead allowing us to essentially ignore the setup overhead for 9% gain.

We are in the process of running larger benchmarks, with more interesting
compilet examples. Still, we have been able to some preliminary demonstra-
tion that run-time reflective customization of OpenJIT frontend with compilets
can be beneficial for compute-intensive tasks, by achieving more gains than the
overhead added to the JIT compilation process.

6 Related Work

We know of only two other related efforts paralleling our research, namely
MetaXa[11] and Jalapeño[1]. Metaxa overall is a comprehensive Java reflec-
tive system, constructing a fully reflective system whereby many language fea-
tures could be reified, including method invocations, variable access, and locking.

OpenJIT Frontend System 17

Table 1. Results of OpenJIT Frontend Optimization (All times are seconds)

matrix size 200 600
before after before after

OpenJIT 2.52 2.26 85.22 77.74
OpenJIT setup-time 1.09 2.68 1.09 2.67
sunwjit 2.34 2.06 80.19 73.55
sunwjit setup-time 0.49 0.49 0.49 0.49

MetaXa has built its own VM and a JIT compiler; as far as we have commu-
nicated with the MetaXa group, their JIT compiler is not full-fledged, and is
specific to their own reflective JVM. Moreover, their JIT is not robust enough
to compile itself6.

Jalapeño[1] is a major IBM effort in implementing a self-descriptive Java
system. In fact, Jalapeño is an aggressive effort in building not only the JIT
compiler, but the entire JVM in Java. The fundamental difference stems from
the fact that Jalapeño rests on its own customized JVM with completely shared
address space, much the same way the C-based JIT compilers are with C-based
JVMs. Thus, there is little notion of separation of the JIT compiler and the
VM for achieving portability, and the required definition of clean APIs, which is
mandated for OpenJIT. For example, the JIT compilers in Jalapeño can access
the internal objects of the JVM freely, whereas this is not possible with OpenJIT.
So, although OpenJIT did not face the challenges of JVM bootstrapping, this
gave rise to investigation of an effective and efficient way of interfacing with a
monolithic, existing JITs, resulting in very different technical issues as have been
described in [21].

OpenJIT is architected to be a compiler framework, supporting features such
as decompilation, various frontend libraries, whereas it is not with Jalapeño.
No performance benchmarks have been made public for Jalapeño, whereas we
present detailed studies of execution performance validating the effectiveness of
reflective JITs, in particular memory profiling technique which directly exploits
the ‘openness’ of OpenJIT.

Still, the Jalapeño work is quite impressive, as it has a sophisticated three-
level compiler system, and their integrated usage is definitely worth investigating.
Moreover, there is a possibility of optimizing the the application together with
the runtime system in the VM. This is akin to optimization of reflective systems
using the First Futamura projection in object oriented languages, as has been
demonstrated by one of the author’s older work in [17] and also in [18], but could
produce much more practical and interesting results. Such an optimization is
more difficult with OpenJIT, although some parts of JVM could be supplanted
with Java equivalents, resulting in a hybrid system.

There have been a number of work in practical reflective systems that tar-
get Java, such as OpenJava[27], Javassist[7], jContractor[14], EPP[13], Kava[30],

6 In fact, we are considering collaborative porting of OpenJIT to their system.

18 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

just to name a few. Welch and Stroud present a comprehensive survey of Java
reflective systems, discussing differences and tradeoffs of where in the Java’s
execution process reflection should occur[30].

Although a number of work in the context of open compilers have stressed
the possibility of optimization using reflection such as OpenC++[6], our work
is the first to propose a system and a framework in the context of a dynamic
(JIT) compiler, where run-time information could be exploited. A related work
is Welsh’s Jaguar system[31], where a JIT compiler is employed to optimize
VIA-based communication at runtime in a parallel cluster.

From such a perspective, another related area is dynamic code generation
and specialization such as [9, 12, 10]. Their intent is to mostly provide a form
of run-time partial evaluation and code specialization based on runtime data
and environment. They are typically not structured as a generalized compiler,
but have specific libraries to manipulate source structure, and generate code in
a “quick” fashion. In this sense they have high commonalities with the Open-
JIT frontend system, sans decompilation and being able to handle generalized
compilation. It is interesting to investigate whether specialization done with a
full-fledged JIT compiler such as OpenJIT would be either be more or less bene-
ficial compared to such specific systems. This not only includes execution times,
but also ease of programming for customized compilation. Consel et. al. have
investigated a hybrid compile-time and run-time specialization techniques with
their Tempo/Harrisa system [29, 22], which are source-level Java specialization
system written in C; techniques in their systems could be applicable for OpenJIT
with some translator to add annotation info for predicated specializations.

7 Conclusion and Future Work

We have described our research and experience of designing and implementing
OpenJIT, an open-ended reflective JIT compiler framework for Java. In partic-
ular, we proposed an architecture for a reflective JIT compiler framework on a
monolithic VM, and demonstrate a small example of how reflective JITs could be
useful class- or application specific customization and optimization by defining
a compilet which allowed us to achieve 8-9% performance gain without changing
the base-level code.

Numerous future work exists for OpenJIT. We are currently redesigning the
backend so that it will be substantially extensible, and better performing. We
are also investigating the port of OpenJIT to other systems, including more
modern VMs such as Sun’s research JVM (formerly EVM). In the due process
we are investigating the high-level, generic API for portable interface to VMs.
The frontend requires substantial work, including speeding up its various parts
as well as adding higher-level programming interfaces. Dynamic loading of not
only the compilets, but also the entire OpenJIT system, is also a major goal,
for live update and live customization of the OpenJIT. We are also working on
several projects using OpenJIT, including a portable DSM system[25], numerical
optimizer, and a memory profiler whose early prototype we employed in this

OpenJIT Frontend System 19

work. There are numerous other projects that other people have hinted; we
hope to support those projects and keep the development going for the coming
years, as open-ended JIT compilers have provided us with more challenges and
applications than we had initially foreseen when we started this project two years
ago.

Acknowledgments

Many acknowledgments are in order, too many to name here. We especially thank
Matt Welsh, who coded parts of OpenJIT during his summer job at Fujitsu. Ole
Agesen for discussing various technical issues, etc.

References

1. B. Alpern, D. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, and J. J. Barton.
Implementing Jalapeno in Java. In Proceedings of OOPSLA ’99.

2. Y. Aridor, M. Factor, and A. Teperman. cJVM: a Single System Image of a JVM
on a Cluster. In Proceedings of ICPP ’99, September 1999.

3. M. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence. An Orthogonally
Persistent Java. ACM SIGMOD Record, 25(4), December 1996.

4. B. Blanchet. Escape Analysis for Object-Oriented Languages. Application to Java.
In Proceedings of OOPSLA ’99, pages 20–34, November 1999.

5. J. Bogda and U. Holzle. Removing Unnecessary Synchronization in Java. In
Proceedings of OOPSLA ’99, pages 35–46, November 1999.

6. S. Chiba. A Metaobject Protocol for C++. In Proceedings of OOPSLA ’95, pages
285–299, 1995.

7. S. Chiba. Javassist — A Reflection-based Programming Wizard for Java. In
Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and
Java, October 1998.

8. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape Analysis
for Java. In Proceedings of OOPSLA ’99, pages 1–19, November 1999.

9. D. R. Engler and T. A. Proebsting. vcode: a retargetable, extensible, very fast
dynamic ocde generation system. In Proceedings of PLDI ’96.

10. N. Fujinami. Automatic and Efficient Run-Time Code Generation Using Object-
Oriented Languages. In Proceedings of ISCOPE ’97, December.

11. M. Golm. metaXa and the Futre of Reflection. In Proceedings of OOPSLA’98
Workshop on Reflective Programming in C++ and Java, October 1998.

12. B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An Evaluation of
Staged Run-time Optimization in DyC. In Proceedings of PLDI ’99, 1999.

13. Y. Ichisugi and Y. Roudier. Extensible Java Preprocessor Kit and Tiny Data-
Parallel Java. In Proceedings of ISCOPE ’97, December 1997.

14. M. Karaorman, U. Holzle, and J. Bruno. iContractor: A Reflective Java Library
to Support Design by Contract. In Proceedings of Reflection ’99, pages 175–196,
July 1999.

15. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proceedings of ECOOP ’97, pages
220–242, 1997.

20 H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, Y. Kimura

16. F. Maruyama, H. Ogawa, and S. Matsuoka. An Effective Decompilation Algorithm
for Java Bytecodes. IPSJ Journal PRO (written in Japanese), 1999.

17. H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa. Compiling Away the Meta-
Level in Object-Oriented Concurrent Reflective Languages Using Partial Evalua-
tion. In Proceedings of OOPSLA ’95, pages 57–64, October 1995.

18. H. Masuhara and A. Yonezawa. Design and Partial Evaluation of Meta-objects for
a Concurrent Reflective Language. In Proceedings of ECOOP ’98, pages 418–439,
July 1998.

19. S. Matsuoka, H. Ogawa, K. Shimura, Y. Kimura, and K. Hotta. OpenJIT —
A Reflective Java JIT Compiler. In Proceedings of OOPSLA’98 Workshop on
Reflective Programming in C++ and Java, October 1998.

20. O. Agesen. Design and Implementation of Pep, a Java Just-In-Time Translator.
Theory and Practice of Object Systems, 3(2):127–155, 1997.

21. H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, and Y. Kimura.
OpenJIT: An Open-Ended, Reflective JIT Compiler Framework for Java. In Pro-
ceedings of ECOOP ’2000 (to appear).

22. U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards Automatic Spe-
cialization of Java Programs. In Proceedings of ECOOP ’99, June 1999.

23. K. Shimura. OpenJIT Backend Compiler. http://www.openjit.org/docs/backend-
compiler/openjit-shimura-doc-1.pdf, June 1998.

24. K. Shimura and Y. Kimura. Experimental development of java jit compiler. In
IPSJ SIG Notes 96-ARC-120, pages 37–42, October 1996.

25. Y. Sohda, H. Ogawa, and S. Matsuoka. OMPC++ — A Portable High-Performance
Implementation of DSM using OpenC++ Reflection. In Proceedings of Reflection
’99, pages 215–234, July 1999.

26. T. Proebsting and S. Watterson. Krakatoa: Decompilation in Java. In Proceedings
of COOTS ’97, June 1997.

27. M. Tatsubori and S. Chiba. Programming Support of Design Patterns with
Compile-time Reflection. In Proceedings of OOPSLA’98 Workshop on Reflective
Programming in C++ and Java, October 1998.

28. Stanford University. SUIF Homepage. http://www-suif.stanford.edu/.
29. E. N. Volanschi, C. Consel, and C. Cowan. Declarative Specialization of Object-

Oriented Programs. In Proceedings of OOPSLA ’97, pages 286–300, October.
30. I. Welch and R. Stroud. From Dalang to Kava - the Evolution of a Reflective Java

Extention. In Proceedings of Reflection ’99, pages 2–21, July 1999.
31. M. Welsh and D. Culler. Jaguar: Enabling Efficient Communication and I/O from

Java. Concurrency: Practice and Experience, December 1999. Special Issue on
Java for High-Performance Applications.

32. J. Whaley and M. Rinard. Compositional Pointer and Escape Analysis for Java
Programs. In Proceedings of OOPSLA ’99, pages 187–206, November 1999.

