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Abstract

The IP Multicast service model extends the traditional ledftrt
Internet datagram delivery service for efficient multi4piopacket
delivery. However, in spite of a decade of research on nastic
protocols and applications, a globally deployed multicasvice is
nowhere in sight, hindered by multitudes of problems suamas-
ageability, lack of a robust inter-domain multicast rogtjgrotocol,
scalability, and heterogeneity. In this work, we proposew mod-
el for Internet multicast where we view multi-point deliyamot as
a network primitive but rather as an application-level asfiruc-
ture service. Our architecture relies on a collection ddtsigically
placed networkagentsthat collaboratively provides the multicast
service for a session. Clients locate a nearby agent andt@yphie
session via that agent. Agents organize themselves intov@m o
lay network of unicast connections and build data distidiutrees
on top of this overlay structure. This model effectively fitan-

s the client set into a number of small data groups intercctede
by robust unicast links. We call this communication most=dtter-
castand the network agents that are central to this m&deitter-
Cast proXies or SCX3Me present a protocol callégossamefor
grouping clients with SCXs and building an overlay mesh df un
cast connections across SCXs. We demonstrate the efficamyr of
architecture via a set of simulation experiments that shwat the
latencies incurred and redundant packet duplication imstratting
data over the scattercast mesh are low.

1 Introduction

The Internet multicast backbone, or MBone [7, 8] has beemeghe
search community’s vehicle for efficient multi-point comnica-

tion since its introduction ten years ago. IP multicast isean
tension of the traditional best-effort Internet datagramded for
efficient group-oriented communication where each soardata
flow is delivered efficiently to all interested receivers aalting to

a multicast distribution tree.

However, in spite of a decade of research on multicast proto-

cols and applications, IP multicast is yet to take off. Alibb it
has been available for research through the experimentairidB
network, and has recently been implemented in many comalerci
routers, most ISPs are still reluctant to enable it in theimdins.

A number of crucial problems have impeded the global depkaym
of IP multicast. We summarize some of them below:

e In [9] and [21], the authors cite a number of problems that
are inherent in the current IP multicast service model. €hes
problems, including group management, lack of access con-
trol, absence of a good inter-domain multicast routing @rot
col, and distributed multicast address allocation, havegu
to be a significant barrier to wide-spread commercial deploy
ment of IP multicast.

e Moreover, the heterogeneity in the Internet makes it difficu
to build multicast applications that can simultaneousliy sa
isfy the conflicting requirements of the wide range of client
devices and networks that span the entire Internet.

e Finally, like IP unicast, the multicast service model poms
only best-effort packet delivery. Richer services suchedis r
able, sequenced delivery and congestion control are rteléga
to higher transport or application layers. However, uniike
the unicast world where TCP addresses these issues for most
applications, in the multicast domain, these problemsare f
more complex and much harder to address in the context of
a single generic transport protocol

Recently, protocols such as IPv6, BGMP/MASC [22], and GLOP
addressing [28] have attempted to address some of thessissu
Researchers have also proposed changing the underlyirtgcasdl
t service model itself (EXPRESS [21] and Simple Multicask])3
to better manage some of the above problems. However, none of
these solutions address the crucial issues of heterogeradiabil-
ity, and congestion control, which remain a stumbling blamkthe
success of multicast services. Moreover, as new protocelina
vented to patch problems inherent in the multicast serviodeh
the underlying network layer gets more and more complex.

One of the reasons for the success of the Internet is its sim-
plicity and consequent robustness. In keeping with thecjplas
of end-to-end design [34], the Internet was explicitly desid to
leave the core network layer technology simple, robust, easl
to understand, and to migrate all complex services to higyars.

The unicast datagram forwarding service is easily amertatilas



separation. On the other hand, we believe that the IP msttgex-
vice model is too complex to be implemented satisfactonilyrely
as a network primitive. In this work, we thus distinguishvee¢n
the notion of IP multicast as a network layer primitive anditinu
point data delivery as a higher level network service. Rathan
assume the existence of a global multicast “dial-tone,” veg/P
multicast as an efficient protocol building block that need Ipe
available everywhere. We instead build multi-point delvas an
infrastructure service that leverages well-understoadi rabustu-
nicasttransport protocols and couples them with IP multicast for
efficient multi-point data delivery. Separating multi-pbdelivery
into a higher-level infrastructure service allows us tofkéee net-
work layer primitives simple and easy to manage.

Our architecture for Internet multicast partitions a hetgr-
neous set of session participants into disjoint data grougsch
data group is serviced by a strategically located netwodnagA
collection of network agents collaboratively provides thelticast
service for a session. Clients locate a nearby agent andtaphie
multicast session via that agent. Agents organize themsehto
an overlay network of unicast connections and build dataidis
tion trees on top of this overlay structure. We call this camnima-
tion modelscattercast and the network agents that are central to
this model ScatterCast proXies (SCXs). Figure 1 depictséne
ous components of the architecture.

Recently, researchers have proposed migrating the muittitp
delivery functionality entirely to the end-clients thatrpeipate in
the multicast session without any support from the netwds; [
42]. Although the motivation for that work is similar to ounse
believe that without explicit support from the infrastrue, it is
not possible to build practically deployable multi-poirgtrdibution
systems that can scale well beyond a few hundred to a few thou-
sand clients. In scattercast, each SCX can support manyl-simu
taneous clients, so even a session consisting of a hundrd,SC
each servicing a hundred clients, will result in a total s@ssize
of ten thousand. We believe that such infrastructure sugpeital
to the success of a multi-point delivery architecture anteds to
be an integral part of the architecture, rather than somgtthiat is
patched in at a later time.

Just as the network layer Internet architecture providegli w
defined structure for IP routing and for peering of IP netkgyrso
also this new scattercast service requires an infrastreietchitec-
ture that imposes structure on the peering model for SCXgfzend
interaction across SCXs, and between SCXs and clients. ét th
core of scattercast is a topology management protocold-&ites-
samerthat SCXs use to locate each other in a decentralized man-
ner and to self-configure themselves into an adaptive anclesffi
overlay mesh of unicast interconnections. SCXs run a vagéa
distance-vector routing protocol on top of this mesh strireetand
effectively build reverse-shortest-path distributioees.

By migrating the multicast service to higher layers, scatist
keeps the underlying network model simple and straightfmdy
Moreover, the problems that plague IP multicast are eithierie
nated or mitigated due to application-level intelligenEer exam-
ple, there is no need for a global distributed IP-level nealst ad-
dressing scheme. Scattercast sessions have applicetieimbhmes
that are independent of the underlying network routing quots.
With the scattercast model, routers do not need to maintain-c

' The termscattercasts borrowed from prior work by Ratnasamy et al.[32] on a

delivery-based model for multicast communication.

plex group management state; this state is migrated to higher
SCXs. Additionally, SCXs can impose application-specificess
control restrictions to determine who is allowed to sendemeive
data in the session.

By explicitly using application-level agents in the netkos-
cattercast also allows for a scenario where SCXs can uséappl
tion semantics to adaptively modify the content in orderuio the
needs of the clients. This property of scattercast is vegfuito
tackle the heterogeneity that plagues IP multicast apjiics and
to build complex services such as reliability and congestiontrol
on top of this architecture. In [5], the authors leveragedbatter-
cast architecture to provide such application-specifiiaipdd mul-
ticast service in the face of extreme heterogeneity. IniSed, we
provide an outline of how our architecture allows us to bsiltth
complex services and applications.

We note that Gossamer is certainly not the only self-conéitjon
protocol that is possible for scattercast. It is the restibur ini-
tial experimentation with building the various componeoitthe s-
cattercast architecture. Although scattercast simplifienetwork
model by migrating complex multicast protocols to higheyrelis,
it suffers from the drawback that its data distribution sr@ge not
as efficient as native router-supported multicast. Yet,avahitec-
ture strives to build an efficient overlay mesh so that thelltes
performance hit for the data distribution trees is minin@iir sim-
ulation experiments demonstrate that the average delay fne
source to receivers in scattercast is typically within ®vibat for
native multicast or direct unicast from the source to therers.

In the rest of this paper we describe the service model for our
architecture and discuss the design of the various comp®mn
the architecture. Section 2 describes the details of ouritaxx
ture. Section 3 describes the Gossamer protocol. In Sedtiare
discuss how our architecture allows us to build more compkx
vices such as reliable delivery and congestion control profdhis
framework, and describe example applications. SectioreSeamts
an evaluation of the Gossamer protocol and the status ohwulet
mentation. Finally, we summarize some related work andeprtes
future work and our conclusions.

2 The Scattercast Architecture

The scattercast architecture embeds in the network a tiofheof
agents that together provide the scattercast servicerd-igillus-
trates the various components of the architecture. Cligatsrces

or receivers) wishing to participate in a scattercast sessbmmu-
nicate with a nearby SCX and tap into the session via that SCX.
SCXs self-configure themselves into an overlay structurelfta
distribution across the wide area.

2.1 The Service Model

Each scattercast session has an explicit URL-like uniqueena
The name is used to identify the session and to distinguish be
tween sessions. Session names are of the &xat t er cast :
//creator-identity/session-nane. The creator identi-

ty is used to avoid collisions in the session name-space.sifhe
plest form of creator identity is the domain name of the agehat
creates the session. For example, a multimedia seminauaneo
ment may have the nanecat t ercast://cs. mydonai n.
edu/ mul ti medi a- sem nar/ .
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Figure 1:The scattercast architecture Clients communicate with
SCXs either via locally scoped multicast groups or via ustica

SCXs form a mesh of unicast interconnections between tHeasse

A single scattercast session may consist of multiple indepe
dent data streams, each with its own transport requiremdfuas
example, some streams may require reliable data deliveiilewh
others may be satisfied with best-effort performance. Aggpion-

s may also wish to split different media types into separai@ d
streams. For example, a real-time Internet broadcast mapime
posed of a video and an audio stream. Scattercast uses tha not
of data channelgo separate such independent streams. Each da-
ta channel has an associated well-known numeric identiféren
sources transmit data packets, they include the channelifiee

in the packet header. Scattercast uses this identifier te rine
data over the appropriate channel. This notion of multipl@nnel-

s within the same scattercast session allows us to reuseamthe s
scattercast overlay network for different types of dataatns.

The scattercast service model requires both sources agigdeec
s to explicitly join the session. Moreover, sources mustieity
announce their intent to send data. The underlying scakepro-
tocols use this information to build efficient source-rabtiata dis-
tribution trees.

Each client (source or receiver) attaches to a nearby SCX and
interacts with the rest of the session via that SCX. Each S&X,
turn, simultaneously serves many clients. As shown in Edur
clients communicate with their SCX using multicast if pbssj
otherwise they revert to unicast connections to the SCXosr
SCXs, data is transmitted using an overlay structure ofasticon-
nections. These data transport connections may be UDP, arCP,
some other unicast transport protocol depending upon thgre
ments of the channels for that session.

Typically, SCX lifetimes are limited to those of their clisn An
SCX s created on demand for a specific session and it dies athen
of its clients leave the session. We note that although tslieray
join and leave a scattercast session at a rapid rate, sin&an
serves a number of clients, it remains part of the sessiooragsds
it has at least one client to serve. We assume that, in ge/$€xs
join and leave a scattercast session at a relatively slav rat

As described above, the scattercast service model resuéts i
two-tiered communication model—communication betwe@énts

and SCXs, and inter-SCX communication. In the rest of this se
tion, we address some of the issues raised by this model.rlicpa
ular, we look at the following questions:

e How do clients discover scattercast sessions?

e What is the environment that SCXs run in?

e How do clients locate a “nearby” SCX?

e How do clients attach to the scattercast session via the SCX?

We leave the discussion of the details of the inter-SCX conmimu
cation to Section 3.

2.2 Scattercast Announcements

<SCATTERCAST
name="scattercast://creator-identity/session-name”>
<DESCRIPTION>
An optional textual description of the session
goes here
</DESCRIPTION>

<CHANNEL id="numeric-identifier">
<DESCRIPTION>
An optional textual description for this channel
</DESCRIPTION>
<TRANSPORT unicast="unicast-protocol-name”
multicast="multicast-protocol-name”/>
</CHANNEL>
<CHANNEL id="numeric-identifier">
</CHANNEL>

<RENDEZVOUS>
rendezvous-point-location

</RENDEZVOUS>

</SCATTERCAST>

Figure 2:Format of a scattercast announcement

Scattercast sessions can be advertised either on the wesb or u
ing a special well-known scattercast session in a mannetasim
to the Session Announcement Protocol (SAP) [19] used on the M
Bone. Scattercast announcements are represented usititxthe
tended Markup Language (XML) [3]. The announcement contain
s all the necessary parameters that pertain to the sessiap. F
ure 2 shows the format of a scattercast announcement. Each an
nouncement must include the name of the session, one or more
<CHANNEL> sections, and & RENDEZVOUS> section. As
described in Section 2.1, eaeftCHANNEL > section includes the
numeric identifier associated with the channel and the tyfes
transport protocols that the channel should use for comeation



across SCXs and between clients and SCXs. Unicast proteeol d
scriptors may be UDP, TCP, or some other unicast transpotopr
col, while multicast protocol descriptors may be UDP or sogie
able multicast protocol such as SRM [11]. Th®RENDEZVOUS>
section lists one or morendezvous pointthat SCXs use to find
each other. We discuss the details of the rendezvous mechsni
in Section 3.4.

2.3 SCX Environment

In order for the scattercast service to be viable, it is @utm ad-
dress the question of where SCXs reside and what conditimys t
operate under. As an infrastructure service, SCXs mustirema
highly available and robust against failures. To addressetis-
sues, we rely on strategically located servitestersfor hosting
SCXs. These clusters consist of commodity workstationgcap

ly housed at ISP points of presence. Clusters are an effiareht
cost-effective way of providing robustness and availapiio the
scattercast service. We assume the existence of a clustergea
ment platform that provides the function of creating SCXswh
required and ensuring that the SCXs remain available aru/eec
from faults. Various such cluster service platforms haverbgro-
posed in the research community [1, 4, 12, 16]. We rely on the
Active Service platform for hosting SCXs. The details ofthius-
ter platform can be found in [1]. For the purpose of this distan,

it is sufficient to note that the cluster platform deals wthie factu-

al details of launching SCXs when required, monitoring tHflem
faults, and recovering from failures when necessary.

2.4 Locating an SCX

In order for clients to receive data from the scattercastieasn an
efficient manner, it is imperative that they attach theneglw an
SCXthat is close to them. With a potentially large number@XS
capable cluster platforms spread across the Internettslieeed
a way to locate the closest SCX. This is a well-studied resear
problem, and we identify a few solutions:

Static configuration: Clients may be statically configured with the
location of their closest cluster platform. This mechanism
simple to implement, but does not permit automatic discov-
ery of new nearby cluster platforms.

The basic idea is to constructradirection frameworkhat
manages a special DNS domain, sa&gdi r ect . scatter-
cast . net, and resolves client queries for that domain into
an address for a scattercast cluster that is closest toithe cl

t. The redirection framework is composed of an elaborate
network of probes that monitor the Internet building a real-
time network map that identifies the delays between differen
parts of the network. Using this map, the redirection frame-
work can easily identify the closest scattercast clusteafy
client. Thus the client always manages to find a nearby clus-
ter without any pre-configuration.

Explicit application-level redirection: Using DNS resolution for
redirecting clients to appropriate clusters can be pladyed
problems due to clients caching stale addresses. Old duste
may no longer be offering the scattercast service, new clus-
ters may have cropped up that are closer to the client, or net-
work conditions might have changed. This can be addressed
by using an explicit application-level redirection mecisam
such as that used by HTTP.

Although the redirection framework approach for locaticgts
tercast clusters is superior, our prototype scattercapteémenta-
tion relies on static client configuration. The Sandpipeotbdnt
service [35] has implemented a proprietary system thatides a
well-designed redirection sub-system, and a practicaloyep s-
cattercast architecture should utilize that work.

2.5 Client Attachment

Once a client has discovered the nearest scattercast sgiat
form, it contacts the cluster and makes a request for an SQX.
request includes the session announcement for the sehsioimée
client is interested in and an indication of whether thertlis a
source of data or not. The cluster creates a new SCX if needed
and returns the location of the SCX, including a unicast |&ress
and port number as well as a locally scoped IP multicast gtioap
can be used if multicast connectivity is available betwéendient
and the SCX. The client initially attempts to communicatéwtie
SCX over the IP multicast group, but reverts to unicast comimu
cation if that fails. This allows us to leverage the efficigof IP
multicast in the local domain when it is available.

As long as the client is part of the session, it sends periodic
KEEP_ALIVE messages to the SCX. It announces its imminent

Auto configuration: A modification to the static configuration SChem%eparture via aM_LEAVING message. The SCX uses this mes-

is to use a statically configured DNS name to identify the
local cluster platform (e.gscatter cast. nydomai n.
edu), or a script akin to web-proxy auto-configuration script-
s [26]. The WPAD (Web Proxy Auto Discovery) Draft [15]
describes a number of mechanisms for discovery of network
services based on DHCP [10], SLP [38], or DNS queries [18,
17]. These mechanisms do not require the client to know the
exact names of the cluster platform machines, but still do no
account for dynamic network changes.

Transparent DNS redirection: A more sophisticated approach re-
lies on using special DNS names that are resolved diffgrentl
for different clients based on the clients’ location. This a
proach is used by the Sandpiper Networks’ Footprint web
caching service [35].

sage (or the loss i€EEP_ALIVE messages) as an indication of the
client’s death. When all clients of the SCX have left the eegthe
SCX too leaves the session.

3 Gossamer: Inter-SCX Communication

In addition to communication between clients and SCXs, aiaftu
part of the scattercast architecture is the set of mechantbiat
SCXs use to construct an application-level overlay distidn net-
work, and to transmit data on top of this overlay structure Miw
present Gossamer, our protocol for constructing and mainta
this overlay topology. The goal of Gossamer is to build arcieffit
data distribution tree from the source of data. The simpiest of
distributing data across SCXs is to construct a unicasttsfaoio-

gy rooted at the source SCX (i.e. the SCX to which the source of



data is attached). This simplistic approach however hagigme
ger of resulting in excessive network load near the sourcith W
star topology, the source SCX will simply perform aavay uni-
cast transmission of the data to all destination SCXs. Séaui
packet is duplicated multiple times at the source SCX, thadba
width requirements on the physical Internet links near therce
SCX can be excessive. In order to limit the amount of dupdicat
packets traversing any physical link across the networlssamer
should build smarter distribution trees where the sourcX 8éns-
mits data only to a handful of nearby SCXs which in turn fordvar
the data towards the rest of the session. In other words,aBuss
distribution trees should restrict the degree of any sigflX node
depending upon its bandwidth capabilities. We note howthatr
such a degree-restricted tree will result in longer delaysértain
SCXs than the corresponding delays in the original unictest s
The goal of Gossamer then is to build a degree-restrictedrspa
tree across SCXs while at the same time keeping the averdae de
between the source and all destinations at a minimum.

We can define the problem more formally as follows:

GIVEN: A set of Internet node¥®’ that represent SCXs participat-
ing in a scattercast session, a source SCX V/, and node
degree constraints; (Vuv; € V) > 2. We can build arab-
stract distance grapli = (V, F) that is the complete graph
over the set of SCX nodes. The cost of edge v, } € E is
set to the unicast distance between nodeandwv; (assum-
ing shortest path symmetric Internet routing).

FIND: A distribution treeT’, which is a spanning tree of the graph
G such thatd;, the degree of node; € V in T is at most
k;, andT"s total costC is the minimuni among all possible
such trees, wher€' is defined as the sum of path lengths in
T between the sourceand all other nodes.

The problem of constructing minimal degree-constrainezhsp
ning trees of graphs is known to be NP-hard [14]. Moreoveg, th

Application
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Figure 3:Gossamer Protocol Layers

directly, Gossamer instead first builds a richer mesh direanade
up of unicast connections across SCXs, and on top of this mesh
runs a routing protocol to compute source-rooted reversetest
path distribution trees. The reasons for this are two-félidst, the
mesh provides redundancy to the scattercast topology, ngaki
more resilient to failures than a simple fragile tree stuuet If an
edge or node in the topology fails, the routing algorithmoanst-
ically constructs new paths by routing around the failurecéhd,
routing algorithms have built-in mechanisms to deal wittedgon
and avoidance of loops in the distribution paths. This makes
struction of loop-free distribution trees much simpler.

Since the data distribution trees have degree constraietsn-
pose similar constraints while constructing the mesh. Ehisures
that the shortest path trees that are built by the routing datd
distribution protocols on top of this mesh automaticallsisfa the
degree constraints.

Figure 3 shows the different layers involved in the Gossamer
protocol. At the bottom is a mesh management layer that deals
with the basic topology construction and maintenance. Do r
ing layer runs a distance vector routing protocol on top efrtesh
and provides input to the mesh management layer in orderststas
in optimizing the mesh, and as a consequence, the pathsdmetwe
the sources and the receivers. The data distribution layestoucts

problem remains NP-hard even in the specific case of complete distribution trees based on routing information extradiedn the
graphs. Hence we need to rely on heuristics to solve the aboverouting layer and deals with the forwarding algorithms #at used

problem. However, it is difficult to compare the performarafe
the heuristic approach to the optimal solution, since cainguhe
optimal tree is prohibitively expensive. But, we do knowtttize
cost of the optimal tree is bounded by the c@si;.., of the cor-
responding unicast star topolod¥,:., rooted at the source We
can use this bound as a metric for evaluating the performafite
heuristic approach. We also note that, in terms of path renghis
costCs:qr IS equivalent to the cost incurred for a source-rooted IP
multicast routing tree (assuming shortest-path and symirieter-

net routing).

3.1 A Practical Topology Construction and Management

Algorithm

In order to be practically deployable, any heuristic thatdeeel-
op must be entirely decentralized and must be able to coge wit
a dynamically changing membership of the §et The ultimate
goal of Gossamer is to construct spanning trees for datahulist
tion. Although it is possible to construct such a tree ac®8Xs

2Note that minimizing the total cosF' is equivalent to minimizing the average

delay.

to disseminate the data. Finally, any application-specifimputa-
tion may be performed on top of the Gossamer layers.

We now look at the details of the Gossamer protocol starting
with a brief overview of the entire protocol.

3.2 Protocol Overview

When an SCX joins a session, it uses a variant of a network re-
source discovery protocol proposed by Harchol et al. [203is
cover other mesh members. It uses the seeaflezvous points
listed in the session announcement to bootstrap the disgoee
cess. As the SCX encounters new nodes, it selects some ofthem
be its neighbors in the mesh. As defined by the degree comstrai
each SCX has a target number of neighbors that it attemptsto ¢
nect to in the mesh. In order to ensure that nodes can insgeted

the mesh without requiring any explicit coordination asrasdes,

we split the degree constraint at each node into two: a maximu
number §,) of edges that the node is allowed to insert from it to
other nodes, and a maximum numbker)(of edges that it is willing

to accept from other nodes. As long as we ensure khat k1,

any new SCX node joining the mesh will eventually find sotne
nodes that have room to accept connections from it. We use the



notation< k. ,k2>> to represent these degree constraints, effectively
resulting in a total degree constraint/of + k.

Rather than pick a random set/f neighbors, each node uses
a local optimization algorithm to choose neighbors that mesult
in better distribution trees. The trees themselves aretnaied
by running a distance vector routing protocol on top of thesme
topology. Each node maintains a routing table with an erary f
each source SCX. The data distribution layer uses thisnguti-
formation to construct source-rooted reverse shortest giatribu-
tion trees.

We now look at some of the details of the mesh construction
and tree building algorithms.

3.3 Node Discovery: Name Dropper

When an SCX joins a session, it uses a variant of the Name Drop-

per protocol proposed by Harchol et al. [20] to discover o8&X
nodes. We note that it is not required for SCXs to have coraplet
and accurate information of mesh membership at all times. An
SCX (sayX;) initiates the Name Dropper algorithm by discover-
ing a small set of mesh members through some startup rendggzvo
mechanism. Let us denote by X;) the set of other SCXs th&;
knows of. Periodically,X; performs a discovery round. During
this round, it picks a random nod€; € I'(X;) and sends ®IS-

dezvous point failure. We note, however, that even if alteavous
points in the session fail, existing mesh members can coatio
operate; the only functionality that is lost is the abilityr fnew
SCXs to join the session.

3.5 SCX Leaves

When an SCX leaves the session, it floods a time-stamped-notifi
cation to the rest of the mesh. This allows the remaining St©Xs
remove this node from their membership E¢X'). The departing
SCX sends the notification to its immediate mesh neighbors wh
in turn propagate it to the rest of the session. Since the rizesh
not loop-free, SCXs use the time-stamp in the notificatiotetect
duplicate copies of the notification and stop forwardingdbpies.
In addition to leaving a session explicitly, an SCX may faittw
out any warning. In such a situation, its neighbors in thehmes
will detect the failure and notify the rest of the session.d&tect
neighbor failure, neighboring nodes in the mesh exchangegie
KEEP_ALIVE messages. Loss of these messages is an indication
of failure. Upon receiving an SCX leave/failure notificatjamther
SCXs mark that SCX as dead in their membership list, anderigg
updates in the routing layer.

It is possible that the death of an SCX causes the mesh to be
partitioned. Although such an occurrence will be rare, itsinoe

COVERY message to it. This message includes a bounded randomdealt with and the mesh repaired. In order to detect meshtipasg,

list v(X;) C I'(X;). WhenX; receives the message, it merges
this list into its own sel’(X;) of known nodes. In addition, it re-
turns aDISCOVERY_RESPONSE message that includes its own
list v(X;) C I'(X;). X; in turn merges this list into its own set
I'(X;), and thus gradually learns of all or most of the other nodes
in the system.

Our discovery algorithm described above differs from thig-or
inal Name Dropper proposal in two ways. The original alderit
m transmits membership information in only one directigX;)
sent toX;) during a round. By incorporating an exchange in both
directions, we allow for a newly joinind\; to quickly discover a
number of other SCXs. This, however, comes at the cost of in-
creased communication cost. The second difference istthatin-
imize communication overhead, we limit the size of the lists
changed at each round. We have not analyzed the effectssof thi
bounded list size on the performance of the Name Dropper algo
rithm. However, in practice, our simulation results deised in
Section 5.2 demonstrate the practical usability of the ritlgm.

3.4 Rendezvous

The Name Dropper algorithm assumes the existence of a bayotst
ping rendezvous mechanism to initiate the discovery pocéée
rely on well-knownrendezvous point®r this purpose. Each scat-
tercast session has associated with it one or more rende paints
that are advertised in the session announcement. Thesezrents
points are SCXs that remain alive and are part of the session f
the entire duration of the session. When a new SCX joins the se
sion, it initializes its mesh membership $&tX) to the list of ren-
dezvous points for the session. Using the Name Dropperitigor
described in the previous section, it can eventually discall the
other nodes in the mesh.

The redundancy introduced by multiple rendezvous points en

sures that new SCXs can join the mesh even in the face of ren-

we rely on a periodit{ EARTBEAT that is generated by one of the
rendezvous points and propagated over the mesh. The remdezv
points run a simple distributed election algorithm and picie of
themselves as the heartbeat generator. As long as every 8CX i
the session continues to receive this heartbeat, the enésh is
connected. Loss of heartbeat messages indicate a poterash
partition, and the SCX that detects the loss attempts totheadar-
tition by re-contacting the heartbeat generator. It is fsghat a
large number of SCXs that are partitioned from the heartgeat
erator detect the partition at the same time. To preventfaliem
from contacting the heartbeat generator simultaneoustyuse a
randomized damping interval before the SCX attempts to tieal
partition. In the event that the heartbeat generator itsadf died,
the remaining rendezvous points elect a new heartbeat afener
and the healing process continues.

3.6 Mesh Optimization

So far we have not discussed any mechanisms for ensurinththat
mesh constructed by Gossamer actually results in efficistrilol-
tion trees. Let us now look at some of the algorithms that Goss
employs to optimize the mesh over time. In this discussianagr
sume that the routing layer runs a limited form of distancetoe
routing, where the routing table contains only a small nundje
entries: one for each source of data.

The goal of the mesh optimization algorithm should be to im-
prove the quality of the mesh. Since the eventual goal of &uss
is to build efficient data distribution trees, the optimieatalgo-
rithm should attempt to add edges that will result in an eiffec
improvement of the routes towards the sources of data andvwem
edges that are not as useful.

SCXs periodically probe other mesh nodes to evaluate the use
fulness of adding new edges. A nodg probes another nod&;
using aREQUEST_STATUS message. Th&TATUS response



optimize(X;) {
Let A = (set of neighbors of X;) U X;
Foreach X € A {
Let C.F[X] = compute_cost_function(X)

Let Y (€ A) = node with maximum C.F.
Let H = hysteresis value
If ¥ == Xj) then
reject X;
Else if (C.E[Y] — C.F[X,] > H) then {
accept X
rejectY

}

Else reject X;

Figure 4:Algorithm used by X; to determine whether to accept
X as a neighbor

from X contains a copy of the current routing tablef and a
CAN_ACCEPT flag that indicates whetheX; has room to accept
a connection from¥X;. The state of this flag depends upon whether
X; has reached its limit;2, of connections it is willing to accept
from other nodes.X; uses this status information to evaluate the
usefulness of; as a neighbor over its current set of neighbors.

If X; has not yet filled its limik: of edges it is allowed to add,
it will accept X; as a neighbor. But, iK; already hag, neighbors,
then in order to accept;, it will have to remove one of its existing
neighbors. X; runs an optimization algorithm that evaluates the
“cost” of all of its neighbors andX;. In order to realize efficient
data distribution trees, the mesh needs to be optimizedfioremt
routes from receivers to source SCXs. The cost functionstéthis
into account and computes the cost of routing to the variousces
via the individual neighbors. Figure 5 shows the cost fuorctised
as input to the optimization algorithm which itself is deébed in
Figure 4. The SCX will accepk; as a neighbor only iX;'s cost
function is less than that of one of its existing neighborableast
H. H is a hysteresis value that allows us to trade off the stgmfit
the mesh versus the level of optimization. A higher valuéfo#ill
result in fewer changes to the mesh structure, but may resalt
less efficient mesh. After preliminary experiments, we heefethe
hysteresis value to 0.15 times the number of known sourcesSCX

3.7 Routing Layer

On top of the mesh, the routing layer runs a variant of a degan
vector routing protocol. Sources announce their intenetaldata

to their SCX. The source SCX immediately creates a zerotfeng
routing table entry to itself in its local routing table. Bhéntry
gets advertised to the rest of the session via periodicrrgutpdate
messages that neighboring SCXs exchange with each otheh Ea
SCX maintains a routing table that contains one entry percgou
SCX. In order to detect routing loops and avoid the countimg-
infinity problem [6], each SCX stores in its routing tableréeg the

compute_cost_function(X) {
Let C.R[X]=0.0
For each source S in X;’s routing table {
Let C.F[X] 4+ = normalized cost™ of routing to S
via X
}
If (X;i’s routing table is empty) then {
Let C.F[X] = normalized cost™ of the edge
between X; and X

Return C.F[X]
}

*Note: Normalized routing cost is defined as the cost of the route
to S via X divided by the maximum of the corresponding such
costs for allX’ € A (see Figure 4 for definition oh). Similarly

the normalized edge cost is defined as the ratio of the costeof t
edge betweeX; andX to the maximum of the corresponding edge
costs for allX’ € A. We note that the normalized cost is always a
value between 0.0 and 1.0.

Figure 5: Algorithm used by X; to compute the cost function
for node X.

of the neighbor’s path, thus avoiding routing loops.

The routing protocol relies on unicast distances betweeleso
as the metric for the routing protocol. Each node in the mesh r
s a simpleping experiment to determine its distance to its mesh
neighbors. A ping experiment consists of a small sequentimef
stamped packets that the node sends to its neighbor. Whegha ne
bor receives the ping packets, it simply reflects them badkéeo
sender. The sender uses the average time difference besspdn
ing the packets and receiving the responses to compute dine-ro
trip times and thus the one-way distances.

3.8 Data Distribution

Gossamer uses the routing tables generated by the routyeg la
to construct source-rooted reverse shortest path databdison
trees. The trees are built out of an independent set of toahsp
connections that are separate from the control connectiseg by
the mesh construction and routing protocols. A separagdsreon-
structed for each channel in the session. The session acememt
specifies the form of transport connections that each chaises.
Data forwarding occurs as follows. Data is forwarded at the
Application Data Unit (ADU) level. Applications define thawn
notions of packet boundaries, and all data forwarding itteczast
respects these ADU boundaries. Each ADU consists of a G@ssam
header that identifies the source of data, the source SCXyther-
ic channel identifier, and the length of the ADU payload. Atrea
nodeX;, when an ADU is received on a channel from a neighbor
X;, itis forwarded only ifX; is the next hop inX;’s route towards
the source SCX. Every ADU that passes this reverse-pattkdbec
forwarded to all those neighbors that u¥e as their next hop for

complete path from it to the source SCX. When a node attempts routing towards the source SCX.

to select a better route based on a routing update received dr
neighboring SCX, it first checks to ensure that it is not alyepart

Transient changes in the distribution tree due to routindptgs
may result in temporary disruption of data flow. To minimizeya



data loss during a route change, data continues to be foedard
along the old route for a short while until the downstream SCX
starts receiving data along the new route.

4 Building Services on Top of Scattercast

Scattercast provides the basic mechanisms to enable puirti-
communication in the wide area. Our architecture allegiab@any
of the problems associated with IP multicast. By using a UiR&-
naming scheme for scattercast, we eliminate the need foola gl
ally distributed network layer multicast addressing scher8ince
scattercast sessions include the identity of the creatqassof
the session name, name collisions are trivially avoidedatt8c
cast also eliminates any need for complex per-group stata-ma
tenance at routers, and instead migrates this state tocafiph-
level SCXs where it can be more easily handled. Additionalith
application-level intelligence in SCXs, the scattercastiei allows
SCXs to implement application-specific access controtictigin-

s to determine who is allowed to participate in the sessiahtan
send data within the session.

Additionally, the presence of application-level agentkesait
possible to build more complex higher-level services sicteha-
bility, congestion control, and heterogeneous commuitinatAl-
though a number of protocols such as RMTP [23], SRM [11] and
PGM [36] have been proposed to build reliability on top of the
best-effort IP multicast service, they are all fundaméwntahal-
lenged by the heterogeneity that exists across the Inteinghe
multicast domain, a communication source is potentiallyfiamt-
ed with a wide range of path characteristics to each recefuer
example, different delays, link rates, packet losses, angpeting
congestion on the paths to the different receivers. Thigipligity
of data paths and the possibility of multiple congestiomtmalong
independent sections of the paths imposes great difficalthi@de-
sign of an end-to-end scheme for reliable multicast. TG&xtHy
multicast congestion control schemes [39, 40] typicalllyamork
with single-source sessions, and do not satisfactorilpaccodate
bandwidth heterogeneity across the multicast distriloutiee.

The scattercast architecture explicitly allows appligasi to ad-
dress these problems of heterogeneity and congestionot ot
cripple traditional reliable multicast protocols. Rathan rely
on traditional notions of bit-level reliability, scatterst allows for
the notion of semantic reliability, that is, reliability offormation
rather than that of the representation of the informatid@Xs can
use application-level knowledge to alter the content dyinalty
or to adapt the rate and ordering of data objects. For example
an SCX that feeds data down a bandwidth-constrained link may
convert bandwidth-intensive data such as images or vidéoxo
er bit-rate versions before transmitting them down the trairsed
link. Moreover, scattercast can leverage the robust andesiion-
friendly behavior of well-known unicast transport protéxsuch
as TCP to assist in wide-area inter-SCX communication. S€Xs
provide intelligent congestion management via technicues$ as
buffering, on-the-fly transcoding to a lower bit rate, or ksipcon-
gestion notifications to upstream SCXs to slow down theingra
mission rates.

In [5], the authors describe a framework for providing rbla
multi-point communication based on the scattercast archite.
As described above, they rely on application-specific angtation
of SCXs to assist in the reliability protocol. They refer teetscat-

tercast proxies used for reliable communicatiorRadiable Multi-
cast proXiesor RMXs The details of how SCXs/RMXs are cus-
tomized on a per-application basis to provide applicagpaeific
reliability are described in [5]. RMXs implement end-toeerelia-
bility on top of the scattercast framework using a PGM-likeai-
anism [36]. Loss recovery is initiated by sending a retraission
request upstream towards the source. Intermediate RMXi®agg
gate retransmission requests. They first attempt to recbeedata
themselves, and if that fails forward the request towardsstiurce.
The authors describe the details in [5].

4.1 Scattercast Applications

To illustrate the viability of the scattercast architeetwve are in-
vestigating a range of applications. We now look at two djpeci
applications that we are building on top of the scattercadtitec-
ture: a reliable shared electronic whiteboard, and an metesudio
broadcast application.

The shared electronic whiteboard allows a diverse set of me-
dia to be created and displayed interactively by a group efais
Our whiteboard application is based on similar previousstesach
aswb [27] and mediaboard[37]. A whiteboard session consist-
s of a shared presentation space that is divided into a nuofber
canvas pages. It supports data types such as line drawigs, t
images, and postscript files. Each data object on the whatebo
is encoded and transmitted as an independent ADU. The applic
tion uses the Scalable Reliable Multicast (SRM) protocd] b
achieve reliability in the local multicast groups betweeunltinast-
capable clients and their SCXs. It relies on TCP for unicasad
transmission across SCXs and between multicast-incaptblegs
and their SCXs. As the ADU flows through the SCX network, it
may be transformed on the fly in order to mitigate the effedts o
heterogeneity across the range of participating clients. ékam-
ple, an image may be transcoded to a lower bit-rate reprasent
for faster transmission across a low bandwidth link. We eonv
images to a progressive JPEG representation; this allows$€
transmit each scan of the progressive image independemitlto
decide how many scans to transmit and how fast to transmit eac
of them. The details of the whiteboard application and thia da
transformations that can be applied to the whiteboard ADtds a
described in [5]; we port their work on RMXs for whiteboaras t
our architecture.

The second application that we are building is an Interndicau
broadcast tool. We use MP3 (MPEG 1 or 2 Layer Ill Audio) as
the underlying audio format. The source broadcasts MP3dsam
to the entire session through its SCX. Users wishing to “tune
to the broadcast use standard MP3 clients such as mpg1281{29]
WinAmp [30]. SCX cluster platforms export an HTTP interface
to the MP3 clients. A client tunes to a specific broadcast by co
tacting its local cluster platform and including the web edd of
the broadcast’s session announcement. The cluster praificiurn
redirects the client to the appropriate SCX for that broatic&CXs
too export an HTTP interface through which the MP3 frames are
streamed to the clients. If the client is capable of usingticast
to receive MP3 broadcasts (e.g. WinAmp with a multicast plug
in [25]), it may directly communicate with its SCX using a iy
scoped multicast channel.



5 Evaluation

In this section, we evaluate the behavior of our architectuith
respect to the mesh structure and the data distributiors titeet
Gossamer produces. We rely on simulation experiments toaea
the operation of our protocol. The main metric that we use for
evaluation is the total cosf' of routing from a source over the
Gossamer distribution network. As described in Sectio'3s
defined as the sum of path lengths in the distribution treevéent
the source SCX and all other SCXs. The length of each pattein th
tree is the sum of the unicast distances between the pairsdafsn
that make up the path. We compare this cost to the €osf. of
routing over the unicast star topology from the source SCAlto
other nodes, that is, the sum of the unicast distances betthee
source SCX and all other nodes. We usedbst ratio as our
performance metric.

C
Cstar

5.1 Simulation Setup

We implemented Gossamer in a simple protocol simulator. The
simulator implements the Name Dropper discovery algorjttima
mesh optimization algorithms, and a distance vector rgytiroto-

col for building data distribution trees. The input to thenslator

is an internet topology generated using the Georgia Tecbldgy
Generator [41]. We used the Transit-Stub model to genenate o
experimental topologies. Each topology consisted of 108fen
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time.

The routing layer performs routing updates every 30 secofle
experiment ends when there are no changes to the mesh structu
for at least 100 seconds.

5.2 Name Dropper Performance

Figures 6 and 7 depict the performance of the Name Dropper re-
source discovery algorithm during an experiment congistinl 00
SCXs. In our experiment, we restricted the size of the mestiiier
sety(X) exchanged during eadSCOVERY round to 30. From
Figure 6, we see that all nodes discover at least 90% of th®fes
the nodes within the first 20 seconds of the experiment. Ov&% 8
of the nodes discover everyone else within the first minutéhef
experiment. The rest of the nodes discover everyone eldenwit
the first 2 minutes. Figure 7 shows the behavior of the NameDro
per algorithm for a single randomly chosen SCX in the experitn
The SCX rapidly discovers most of the other nodes in the sessi
The rate of discovery tapers off for the last 5% of the noddss T
indicates that the session patrticipants quickly discoeeheother
and can start forming a mesh structure. We will see how thmoglis
ery time for Name Dropper scales with increasing sessioa isiz
Section 5.4. Let us now see how the mesh construction ahgosit
behave.

The simulator assumes shortest path internet routing and ac 5.3 Mesh Construction

cordingly computes unicast distances between nodes irofia-t

. . .o L
ogy. Some of these nodes are selected at random as SCX nodekigure 8 shows the variation of cost ratjg=— for each distribu-

and the Gossamer protocol is run across these nodes. The sim!

ulator does not take into account the effects of any crodfictra
and queueing delays on the behavior of the protocol. In thké¢ ne
few sections, we present the results of our experiments atuev
ate the performance of Gossamer in a range of environments. |
each of our experiments, there is a well known rendezvous.SCX
All remaining SCXs join the session at a random instant withie
first five seconds of the experiment. Unless mentioned oflserw

each session consists of a hundred SCXs and one randomly cho-

ion tree during the progress of an expe?itrrﬁent involving Gree
nodes. We notice that over time, the cost ratio progressidet
creases for each of the five distribution trees. Within al®00
seconds all of the cost ratios mostly stabilize to their fivele.
Initially, the SCXs attempt to locate other nodes and to rietee
their utility as neighbors. Slowly over time, as they diseotheir
optimal neighbors, the mesh stabilizes into its final owedauc-
ture.

Figure 9 demonstrates the distribution of cost ratios fabkt

sen source SCX, and each SCX has a node degree constraint off€shes over a large number of experiments. We ran 100 exper-
<3,4>. SCXs execute the Gossamer algorithms every 5 seconds.iments over 25 different topologies. As earlier, each expent



35

— Source 1

-~ Source 2
---Source 3
\ — - Source 4
---—Source 5

Cost Ratio

154

T T
400 500
Time (seconds)

C
Cstar

Figure 8:Variation of cost ratio ( ) v/s time.

120

100

80 —

60 —

40 —

Number of experiments

20 —

LW B =

T T T T
135 145 155 165 175 185 195 205 215 225 235
Cost Ratio

C

Figure 9: Distribution of cost ratio ( -

) over a range of ex-

periments.

[
o

i
=

B oe
o N

Average number of edge changes per node
oo
.

T T T T
300 400 500 600
Time (seconds)

T
200 700

Figure 10:Cumulative number of edge changes per node in the
mesh structure over time. Each edge that is added or removed

is counted as two changes, one for each node in the edge

computed the number of physical links in the underlying rimé¢
topology that carried duplicate data copies. The x-axisesgnts
the number of data copies that any link may see, and the yrepis
resents the number of links that carry a certain number ofesop
We notice that most links carry only one copy of the data; i th
Gossamer distribution tree, 153 of the physical links camly one
copy, and in the unicast star topology 177 links carry a sicgipy.
However, in the unicast star topology, links near the sostdéer
from excessive packet duplication. As seen from Figure flibaest
two links carry over 95 copies of each data packet in the whica
star topology. On the other hand, with the Gossamer meshb-stru
ture, no link carries more than 14 copies of the data. Thusseee
that Gossamer is quite effective in limiting the packet dgilon
overhead in comparison to naive unicast.

5.4 Scaling Behavior

had 100 SCXs and 5 sources. The cost ratios are measured forT he above experiments depict the behavior of Gossamer fred fi
each source once the mesh structure has stabilized. Thesy-ax number of SCXs and a fixed node degree. We now look at how

represents the number of experiments that resulted in aratist
betweent0.05 of the corresponding x-axis value. As seen from
Figure 9, the distribution of the cost ratios is centerediacbl.65,
that is, the cost of routing data on the scattercast digidburee
is typically 1.65 times that of directly unicasting the d&tam the
source SCX to the other nodes. For a small number of expetsnen
the cost ratio was as low as 1.35 or as high as 2.35.

In Figure 10, we study the stabilization properties of Gozsa
The figure shows the cumulative distribution of the averagalmer

the protocol operates as we vary these parameters. For #ieof
following experiments, we compute each data point by rupi@s
independent simulations and computing the average andS#te 9
confidence interval.

Figure 12 shows the scaling behavior of the Name Dropper al-
gorithm. The x-axis plots the session size in terms of thebam
of SCXs and the y-axis plots the time when all of the SCXs in
the session have discovered at least 90% of the other SCXs. As
expected, the time to completion of the Name Dropper algorit

of changes made to the mesh per node. Each edge that is added to increases with increasing session size. We note that ooreNa
or removed from the mesh is counted as two changes, one for eac Dropper performance scales essentially linearly as ompts¢he
node in the edge. We notice that most of the changes to the meshO(logn) performance for the original algorithm in [20]. This is

topology occur in the initial stages of the experiment. \ivithbout
300 seconds, the mesh stabilizes to almost its final streictur

In Figure 11, we demonstrate the effectiveness of the Gamsam
distribution trees in limiting the number of duplicate cepiof data
that any internet link needs to carry. We ran a single expemirand

10

due to the fact that we use a bounded list size during B4SCOV-
ERY round unlike the original algorithm which exchanges the en-
tire membership sdf(X) in each round. This penalty is incurred
to limit the communication overhead in each round.

Figure 13 shows the variation in cost ratio across a range of
session sizes. For a small number of SCXs, most of the SCXs are
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directly connected to the source, and hence the cost ratawis

As the number of SCXs increases, most SCXs receive dataghrou

other transit SCXs, thereby resulting in a higher cost ratie mea-

sured the cost ratio for sessions with up to 350 SCXs. For faost

sized sessions, the cost ratio remains within 1.6 and 1dur€&il4

shows how the cost ratio varies with node degree. As expgetited
cost ratio decreases with increasing node degrees. As tled®

gree increases, the depth of the distribution trees deesetisereby
decreasing the cost of routing over the tree.

Finally, Figure 15 shows the variation in the running time of
the algorithm with respect to the total number of SCXs. Weenot

that, as shown in Figure 10, although the mesh may not stelidr

a long time, most mesh changes occur early on and subsidie fair

quickly; only a small number of nodes continue to optimizeitth
connections for a while. Figure 15 shows that the time it $foe
the mesh to stabilize increases with increasing number o{sSC
This is expected since a larger session size implies moresS€X
discover and more SCXs to attempt to optimize for. In Secfipn
we discuss some techniques that we are planning to investiga
improving the stabilization time of the Gossamer protocol.

5.5 Implementation Status

We have implemented a preliminary prototype of our scadistrar-
chitecture. The SCX implementation is built on top of the i¥et
Service [1] cluster platform framework. The cluster platiotakes

care of the details of launching a new SCX and providing robus
ness and fault tolerance to SCXs. We rely on web advertisemen

of scattercast sessions. Clients download session anemamts
from the web and join the session via their local SCX clustet-p

form. Although Section 2.4 outlines a number of mechanisons f

finding the local SCX cluster platform, for simplicity, wev&im-
plemented static configuration. The cluster platform lmrats ei-
ther read from a well-known location (e.g. a file in /etc on XJni
or a registry property on Windows) or passed to the appbcatin

the command-line. SCXs implement most of the features of the

Gossamer protocol, which they use to self-organize intovanlay
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structure. We are currently building applications on topta$ ar-
chitecture. We have implemented the shared electronielbird
tool and are currently implementing the Internet audio Hoaest
application described in Section 4.1.

6 Related Work

The Endsystem Multicast [42] and Yallcast [13] researclquts
have proposed similar multi-point data distribution framoeks that
build distribution trees purely on an end-host basis. Likats
tercast, both Endsystem Multicast and Yallcast addressntfe
fectiveness of IP multicast for content distribution. Thely on
self-organizing protocols for constructing distributitnees out of
unicast tunnels across end-hosts participating in theicastt ses-
sion. Like scattercast, Endsystem Multicast builds a masbtsire
across participating end-hosts and then constructs soooted
trees by running a routing protocol. On the other hand, ‘ésficli-
rectly builds a spanning tree structure across the endshagtout
any intermediate mesh structure. Although this approaocidathe
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redundant edges that a mesh structure incurs, it requifgsnsive

loop detection and avoidance mechanisms, and is also extfrem

fragile and susceptible to partitions.

The main difference between our approach and that of Yallcas

and Endsystem Multicast is the explicit use of infrastruetser-
vice agents—SCXs—in our architecture. Although it is pblkesto
incorporate proxies into Endsystem Multicast and Yallc&&2Xs
are an integral aspect of the scattercast architecture.eida/b that

for such a framework to scale well beyond a few hundred dient

infrastructure support will be absolutely crucial. A fulliecentral-
ized end-host-only self-organization protocol will noakzbeyond

a few hundred or a few thousand patrticipants. On the othed,han

since scattercast proxies can simultaneously serve mamis|we
believe that one or a small number of proxies per ISP will H&-su
cient to serve a large client population.

The scattercast architecture germinated from prior work by
nasamy et al. [32]. They defineddelivery-based modéor reli-
able multicast communication where receivers organizetiedves
into a multilevel hierarchy of disjoint multicast delivegroups.

Data transmission is achieved by unicasting data betweempgr
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representatives which in turn multicast data to their dagihgroup.
Such a delivery model enables the data delivery process taibe
lored to match the homogeneous network characteristidsmiit-
dividual delivery groups. In [33], Ratnasamy et al. use ativast-
tree-inference algorithm to build a protocol building teea dis-
tributed Group Formation Protocol (GFP)—that allows reees to
self-organize into a source-rooted hierarchy of disjointltoast
groups where the hierarchy is congruent with the native icast
t tree topology. However, this protocol relies on the existe of
a global multicast control channel, which scattercastieitjyl in-
tends to avoid.

The Adhoc Multicast Routing Protocol, AMRoute [24], is an
approach for multicast in mobile adhoc networks that ciehtdi-
rectional shared trees for data distribution using onlyugreenders
and receivers as tree nodes. Unicast tunnels are used dmkee
to connect neighbors on the user multicast tree. Thus, ANRou
does not need to be supported by network nodes that are not in-
terested in or capable of multicast and group state costigtiad
only by group senders and receivers. However, unlike scaisé
AMRoute does not attempt to optimize the distribution treamy
form. Scattercast, on the other hand, explicitly relies @s€&amer
to build an efficient overlay network for data transmission.

In [2], Bauer et al. compare a number of heuristics to find effi-
cient degree-restricted multicast trees in the presencergdtraints
on the copying ability of the individual switch nodes in thetwork.
Although some of these heuristics may be applied to cortstiige
tribution trees in scattercast, we believe that the meshé&pproach
used by Gossamer is superior to directly building spannmiegst

Reliable multicast transport protocols such as RMTP [28her
nize group members into a hierarchical tree structure foregat-
ing acknowledgments at midpoints in the network. Each branc
the tree has a designated receiver (DR) to receive ackngwiedts
from its children and aggregate them upwards to the sendee. T
scattercast architecture is similar to RMTP in that it gefents
around an SCX just as RMTP groups receivers around DRs. But
RMTP uses its tree structure only for acknowledgments acolre
ery of lost data; all initial data transmission happens avgtobal
multicast group. Scattercast, on the other hand, reliesioneied
distribution trees for data transmission as well.

7 Future Work

We have implemented a preliminary prototype of the scadtgrc
architecture. Although our simulation experiments dentaies the
efficacy of the architecture, we plan to conduct experimasisg a
deployed system in a real network. We plan to deploy our pypt
across the wide area to evaluate its performance and itatstigl
especially in the face of real world traffic.

We are currently investigating extending the Gossameppoit
to allow for multi-level Gossamer meshes in order to achiest
ter scaling properties. SCXs in the local area participate iocal
Gossamer protocol independent of the rest of the sessiomall s
number of representative SCXs from the local area alsoqpatie
in a higher level Gossamer protocol with other SCXs acros®th
tire Internet. This ensures that the topmost level consitewer
SCXs and hence can stabilize to its final mesh structureivelat
ly quickly. The lower-level SCXs only interact with their sy
SCXs and are not affected by the behavior of the rest of the ses
sion.



Although scattercast currently permits only source-rddtees,
it is possible to extend this to bidirectional shared treBeurces
that wish to use a shared tree can explicitly include the 8©X
for the shared tree in their packet headers. Gossamer willthute
the data over the explicitly specified shared tree. Sucheshtaees
are especially useful for scenarios containing a large rarnolh
participants, all of whom are generating packets. For exeymip
order to implement a reliability protocol such as SRM, RMTP o
PGM on top of scattercast, receivers in a scattercast $essy in-
termittently transmit ACK or NACK packets, and may poteltyia
respond to retransmission requests. In such a situatias,atl-
vantageous to use the distribution tree rooted at the scasce
bidirectional shared tree for the ACK, NACK, and retransiua
traffic. In the future, we plan to investigate the use of Gosafor
constructing such bidirectional shared trees.

8 Summary

We have presented an architecture for Internet contentitaist
tion that relies on application-level intelligence embedldvithin
the network infrastructure rather than on network layer troas-
t primitives to provide efficient multi-point data distrition. Our
architecture, which we call scattercast, makes use of aaath
of intelligent network agents (ScatterCast proXies or SCiKat
collaboratively provide the multicast service for a sessiGlients
participate in the session via a nearby SCX by either usinglio
ly scoped IP multicast groups or direct unicast connectiorthe
local SCX. SCXs organize themselves into an overlay netwdrk
unicast interconnections and build data distributiongree top of
the overlay structure.

By migrating the multi-point delivery functionality out dhe
network layer to a higher infrastructure service layer,tsraast
maintains the simplicity of the underlying network model.oid-
over, scattercast simplifies the design of complex religbdnd
congestion control protocols by allowing for applicatispecific
adaptation to deal with the heterogeneity that typicaligmes tra-
ditional reliable multicast protocols.

Scattercast relies on a protocol called Gossamer to buikf-an
ficient overlay structure. Our simulation results show ttiet la-
tencies incurred by transmitting data over the scattemasth are
typically within 1.6 to 1.9 times those associated with dile u-
nicasting or multicasting the data from the source to théousr
destinations. At the same time, the mesh generated by Gessam
substantially limits the bandwidth usage of the physicaérimet
links in comparison to naive-way unicast.

The scattercast architecture is a first step towards a new ap-
proach for content distribution that explicitly moves apation in-
telligence into the network infrastructure, while at thengatime
maintaining compatibility with the existing IP architeotu We be-
lieve that as the Internet evolves, architectures similacattercast
based on intelligent application-aware network compamemitl
become increasingly prevalent. Our experience with szttt can
provide valuable input for the design of such next-generalinter-
net architectures.
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