Towards Merging Recursion and Comonads

Alberto Pardo
Instituto de Computacion
Universidad de la Reptblica
Montevideo - Uruguay
pardo@fing.edu.uy

Abstract

Comonads are mathematical structures that account naturally for effects that derive from the context
in which a program is executed. This paper reports ongoing work on the interaction between recursion
and comonads. Two applications are shown that naturally lead to versions of a comonadic fold
operator on the product comonad. Both versions capture functions that require extra arguments for
their computation and are related with the notion of strong datatype.

1 Introduction

One of the main features of recursive operators derivable from datatype definitions is that they impose a
structure upon programs which can be exploited for program transformation. Recursive operators struc-
ture functional programs according to the data structures they traverse or generate and come equipped
with a battery of algebraic laws, also derivable from type definitions, which are used in program calcula-
tions [24, 11, 5, 15]. Some of these laws, the so-called fusion laws, are particularly interesting in practice
since they enclose specific cases of deforestation, a program transformation technique that permits to re-
move intermediate data structures from programs. Functional programs can also be structured according
to the effects they produce. This can be possibe by using monads [33] as structuring device. Monads are
well-known mathematical structures with wide application in programming [30, 20] and formal semantics
[26, 31, 32].

Previous works [12, 17, 25, 28] have studied how to combine both structuring mechanisms, giving rise
to recursive operators that deal with effects modeled by monads. A result that can be concluded from
those works is that encapsulating effects with monads leads to a smooth framework for reasoning about
programs with effects. In fact, monads permit to focus on the relevant structure of programs disregarding
details about the specific effect that a program produces.

Comonads are mathematical structures, dual to monads in a categorical sense, that have been used
almost entirely in semantics (see e.g. [6, 7, 31, 32]). In recent years, however, there has been a growing
interest in investigating the usefulness that comonads may have in programming. Some results in this
concern are given by Kieburtz [21], who argues that comonads account naturally for effects that derive
from program context.

This paper reports ongoing research concerning the interaction between comonads and recursion.
Like with monads, the aim of this work is the study of recursive operators with effects, now modeled by
comonads. Among our goals is the derivation of algebraic laws for such operators, in particular, fusion
laws, since they enclose deforestation cases for new recursion patterns. In addition to discussing general
aspects of comonads, we focus our study on a particular comonad, namely, the product comonad. This
comonad permits us to represent two common classes of recursive definitions: (i) functions with extra
fixed parameters, and (ii) functions with accumulating parameters. For each of these classes, we introduce
an structural recursive operator, a variant of the traditional fold operator, that deals with the parameters
within the product comonad. We also present calculational laws associated with these operators. In
those laws it is possibe to observe that, like monads, comonads permit to focus on the relevant structure
of programs, hiding details about the particular effect.

The remainder of this paper is organized as follows. Section 2 is about datatype theory. Section 3
introduces comonads and discusses distributive laws between functors and comonads. Distributive laws
are the basis for the definition of comonadic extensions of functors, which are the constructions that
capture the shape of recursion of comonadic operators. In section 4 we review previous work on recursive
functions with (fixed) parameters [10, 29], but now from a comonadic point of view. This leads to the
definition of a fold with parameters, which constitutes our first example of a comonadic fold. In Section
5, we show how a definition of a fold with accumulating parameters, another form of comonadic fold,
can be obtained from that of fold with parameters by including accumulations as part of the comonadic
extension of the base functor. Finally, in Section 6 we draw some conclusions and describe future work.

2 Recursive Datatypes

This section presents the mathematical framework the paper is based on and fixes some notation. We
describe the essentials of the category-theoretic explanation of inductive and coinductive datatypes, the
definition of structural recursive functions in that setting and some of their algebraic laws. Further details
on these topics can be found in e.g. [22, 11, 5, 1, 15].

2.1 Preliminaries

In the categorical approach to recursive types, types are modeled by objects of a category C, and functions
(operations, programs) are modelled by morphisms of this category. In this setting, type constructors
correspond to endofunctors on C (i.e. functors from C to C). We shall assume that C is a category with
finite products (x, 1) and finite coproducts (+,0), where 0/1 denotes the initial/final object of C. The
leading example of such a category is Set, the category of sets and total functions.

The unique arrow from A to 1 is written !4. We write 71 : AXx B - Aand my : A X B = B to
denote the product projections. The pairing of two arrows f : C — A and g : C — B is denoted by
(f,9) : C — A x B. Product associativity is denoted by aspc : A x (B x C) = (A x B) x C. The
coproduct inclusions are written inl: A - A+ Bandinr: B—- A+ B. For f:A—-Candg: B — C,
case analysis is the unique morphism [f,g]: A+ B — C with [f,g] oinl = f and [f, g] o inr = g. Product
and coproduct can be made into bifunctors C x C — C by defining their action on arrows (see e.g. [5]).
It is also straightforward to obtain their generalizations to n components.

A recursively defined datatype T is understood as a solution (a fixed point) of an equation X = F X
for an appropriate endofunctor F' : C — C that captures the shape (or signature) of the type. In this
paper we will consider datatypes with signatures given by so-called polynomial functors [1]. The following
is an inductive definition of this class of functors:

Fuo=T|A" IO x | + | F(F,...,F)

I :C — C stands for the identity functor. A™ : C" — C denotes the n-ary constant functor. It maps
n-tuples of objects to the object A, and n-tuples of functions to the identity on A; when n = 1 we
simply write A. II : C™ — C (with n > 2) denotes the i-th projection functor from a n-ary product
category. F(Gi,...,G,) (or F(G;) for short) denotes the composition of F': C™ — C with the functors
G1,...,G, (all of the same arity); when n = 1 we omit brackets. It stands for the functor that maps
A F(G1A4,...,G,A). We write F'{ G for {(F,G) when | € {x,+}.

We shall often suppress the subscripts on natural transformations where the objects involved are clear.

2.2 Inductive Types

Inductive types are least fixpoints of (covariant) functors. They correspond to initial functor-algebras, a
generalization of the usual notion of term algebras over a given signature.

Let F': C — C be afunctor. An F-algebra is an arrow h : FA — A, called the operation. The object A
is called the carrier of the algebra. A morphism of algebras, or F-homomorphism, between h: FA — A
and k : FB — B is an arrow f : A — B such that foh = ko Ff. The category of F-algebras is
formed by considering F-algebras as objects and F-homomorphisms as morphisms. The initial object
of this category, if it exists, gives the inductive type whose signature is captured by F', and encodes the

constructors of that type. We shall denote the initial algebra by ing : F uF — pF. A well-known result
states that any initial algebra is an isomorphism.

Initiality permits to associate an operator with each inductive type, which is used to represent func-
tions defined by structural recursion on that type. This operator, usually called fold [3] (or catamorphism
[24]), corresponds to the unique homomorphism that exists to any F-algebra h: FA — A from the initial
one. We will denote it by (h)r : uF" — A. For being fold an homomorphism the following equation
holds:

(h)F oinp =ho F(h)Fr
Example 2.1 Consider a datatype for natural numbers,
N = zero | succ N

Its signature is captured by a functor K : C — C such that KA =1+ A and Kf = id; + f. Every
K-algebra is a case analysis [hy,he] : 1+ A — A, with by : 1 — A and hs : A — A; in particular, the
initial algebra [zero,succ] : 1 + N — N where zero : 1 — N and succ : N — N. (N stands for uK.) For
each algebra h = [hq, hs], fold is the unique arrow f = (h)x : N — A such that f ozero = h; and
fosucc=hgo f. a

Lists, trees as well as many other datatypes are usually parameterised. The signature of such datatypes
is captured by a bifunctor F' : C x C — C. By fixing the first argument of a bifunctor F' one can get a
unary functor F'(4, —), to be written F4, such that F4 B = F(A, B) and Fa f = F(id4, f). The functor
F4 induces a parameterised inductive datatype D, A = uFa, least solution to the equation X = F(4, X),
whose constructors are given as part of the initial algebra ing, : Fa(D,A) — D, A.

Example 2.2 Lists with elements over A are usually declared as follows:
list(A) = nil | cons(A x list(A))

We will often write A* for list(A). The signature of lists is captured by the functor Ly =1+ A x I. The
initial algebra is [nil,cons] : 1+ A x A* — A* with nil: 1 - A* and cons: A x A* — A*. For any algebra
h =[hi,hs] : 1+ A x B — B, fold is the unique arrow f = (h|)r, : A* — B such that, f(nil) = h; and
f(cons(a, £)) = ha(a, f(£)). It corresponds to the standard foldr operator used in functional programming
[3]. O

Example 2.3 Consider a datatype for binary trees
btree(A) = empty | node (btree(A) x A X btree(A))

Its signature is captured by the parameterised functor By = 1+1x Ax I. The constructors form the initial
algebra [empty, node] : 1+ btree(A4) x A x btree(A) — btree(A). For each algebra h = [hy, ha] : B4C — C,
the fold operator is given by the unique arrow f = (h)p, : btree(4) — C that satisfies these equations:
f(empty) = hy and f(node(t,a,u)) = ha(f(t),a, f(w)). O

Now we discuss some of the standard calculational properties that fold enjoys. The first law we present
is rather obvious. It is called the identity law and states that a fold with the initial algebra as target is
the identity.

(Iinp\)p = iduF

A law that plays an important role in program calculation is the so-called fusion law. It states that the
composition of a fold with an algebra homomorphism is again a fold.

foh=goFf = fo(h)r=I(g)r (1)

The next law is known as acid rain or fold-fold fusion. The goal of acid rain is to combine functions
that produce and consume elements of an intermediate data structure. In order to be removed by this
law, the intermediate datatype is required to be produced by a fold whose target algebra is constructed

in terms of a transformer. A transformer [11] is a function T : (FA — A) — (GA — A) that converts
F-algebras into G-algebras such that, if f : A — B is a homomorphism between F-algebras h: FA — A
and b’ : FB — B, i.e. foh = h' o Ff, then it is also a homomorphism between the corresponding
G-algebras, i.e. fo T(h) = T(h') o Gf. Intuitively, a transformer T may be thought of as a polymorphic
function that uses algebras of one class to construct algebras of another class.

Fold-fold fusion then states the following;:

T transformer = (h)r o (T(inr))e = (T(h))c (2)

This law can be proved as follows. Consider an algebra h : FA — A. Since every fold is a homo-
morphism, by definition of transformer we have that (h))g : uF" — A is also a homomorphism between
the G-algebras T(ing) : GuF — puF and T(h) : GA — A. Therefore, by fusion (1), it follows that
(h)r o (T(inr))e = (T(h))a, which is the desired result.

Let D, A = uF4 be a parameterised inductive datatype induced by a bifunctor F. D, is thus a type
constructor that can be made into a functor D, : C — C, called a type functor [5], by defining its action
D,f:D,A— D,B on each arrow f: A — B:

Duf = (‘inFB OF(fa idDuB)DFA

For instance, by expanding the definition of list(f) = ([nil,conso (f x id)])1, we get the definition of the
usual map function on lists [3].
A standard property of type functors is map-fold fusion. For f : A— B and h: Fg C — C,

(P)Es © Duf = (ho F(f,idc))ry

2.3 Coinductive Types

Coinductive types are greatest fixpoints of functors. They represent (potentially) infinite datatypes. Given
a functor F, a F'-coalgebra is an arrow g : A — F'A. The object A is called the carrier of the coalgebra. A
coalgebra map, or F-homomorphism, between two coalgebras g: A — F'A and ¢’ : B — F'B is an arrow
f A — Bsuchthat g o f = Ffog. Just like algebras, coalgebras and their homomorphisms form a
category. The final object of this category, if it exists, gives the coinductive type with signature F. We
denote the final coalgebra by outp : vF' — FvF}; it encodes the destructors of the coinductive type.

Finality means the existence of a unique homomorphism from any coalgebra g : A — F A to outp,
which gives rise to an operator, called unfold [19, 16] (or anamorphism [24]), that will be denoted by
(g)]F : A — pF. It satisfies the equation:

outp o [(glr = Flglrog

Example 2.4 The functor S4 = A x I captures the signature of the datatype of streams A°°, formed
by infinite sequences of elements over A. Every stream coalgebra g = (h,t) : B — A X B is the pairing
of two functions h : B — A and ¢t : B — B. The final coalgebra (head, tail) : A — A x A gives the
destructors, while its inverse, scons : A x A* — A°, the constructor of streams. The unfold operator
is the unique function f = [g)|s, : B — A such that head o f = h and tailo f = f ot. Equivalently,
f =sconso (h, fot). |

Calculational laws for unfold can be derived by finality (see e.g. [11]). Like for inductive types,
each parameterised coinductive type D, A = vF4, with F' a bifunctor, can be made into a type functor
D, : C — C by defining its action on each arrow f: A — B,

D,f =[F(f,idp,a) o outr,)|rs

For instance, f*° = [((f o head, tail))]s,. A standard property of type functors is unfold-map fusion. For
fiA—= Bandg:C — FuC,
Dy folglr. =[F(fidc) o g)rs (3)

3 Comonads

In this section we define the notion of a comonad and related concepts. We also analyze those aspects of
the interaction between functors and comonads that turn out to be essential for merging recursion and
comonads.

Monads are a well-known mechanism to structure functional programs (or program segments) that
produce side effects. A typical monadic program is of type A — M B, where M (the monad) is an
abstract data type that encapsulates the action of the specific effect. Every monad provides, essentially,
the means to compose effect-producing programs as well as to inject values into computations. In this
section, we see that the dual structures to monads, called comonads, can also be used as an abstraction to
model some kinds of computation. Comonads account naturally for effects that derive from the context in
which a program is executed. A typical comonadic program is of type NA — B, where N is an abstract
data type that encapsulates the effect modeled by the comonad. Every comonad provides, essentially,
the means to compose comonadic functions as well as to project a value from any computation in the
comonad.

The following is one of the formal definitions of a comonad.

Definition 3.1 A comonad over a category C is a triple (N,e, —#), called a Kleisli triple, where N is
the action on objects of a functor N : C — C, € : N = I is a natural transformation, and —# is an
extension operator which for each arrow f : NA — B yields an arrow f# : NA — NB, and such that
the following equations hold: ef =idya, forevery f: NA— B, ego f# = f,and forevery f : NA — B
and g: NB — C, g% o f# = (g o f#)#. O

If we understand N A as a type of computations over A, then €4 : NA — A is the means to project
a value from a computation. The extension operator —# plays the same role as the extension operator
for monads (the popular bind operator), in the sense that it provides a way of composing comonadic
functions. Indeed, the Kleisli composition of f : NA — B and g: NB — C is defined by ge f = go f#.
The comonad laws thus state that Kleisli composition is associative and that € is a left and right identity
with respect to it.

Like for monads, we can associate a Kleisli categoy to each comonad.

Definition 3.2 For each Kleisli triple (N, e, —#) over C, the Kleisli category Cy is defined as follows: the
objects of Cn are those of C; morphisms between objects A and B in Cy correspond to arrows NA — B
inC,i.e. Cn(A, B) = C(NA, B); identities are given by €4 : NA — A; and composition is given by Kleisli
composition. O

We can define a lifting functor (=) : C — Cx as the identity on objects, and JT: foea: NA— B,
for each f: A — B.

Example 3.3 The product comonad models the presence of contextual information that is passed around.
Let X be an object of C representing a type of contexts. Then,

NA=Ax X €A =T f#:<fa7r2>

for f: NA — B. That is, € projects the value contained in a computation discarding the context. The
extension operator, on the other hand, applies function f to the input computation and copies the context
to the output. O

Example 3.4 Computations in the state in context comonad deal with a state originated in the context
and a function to make observations on the state. Let S stand for a state space. Then,

NA=[S— A xS ea = Af,s). f(s) f# = curry(f) x ids

where recall that, for f : [S — A] x S — B, curry(f) : [S — A] — [S — B]. The € operator permits to
project a value from the state. For every f : NA — B, the extension operator takes a computation in
the comonad and returns another composed by a new function to project a value from the state and the
same state as in the input computation. O

The following is an alternative definition of a comonad.

Definition 3.5 A comonad over C is a triple (N,¢,v) formed by an endofunctor N : ¢ — C and two
natural transformations e : N = I and v : N = NN which obey the laws: exya 074 =idya = Negoya
and yya 074 = Nys07y4. O

The following equations hold as part of the relationship between both definitions of a comonad:
Nf=(foea)#, for f: A— B, ’yA:idﬁA,andf#:NfO’yA,forf:NA—>B.

Example 3.6 The stream comonad [15] describes computations that produce an infinite sequence of
results.

NA = A> €4 = head v4 = tails

where tails : A% — (A°°)™ is the function that generates the sequence with all tails of a given stream.
It is given by an unfold tails = [(id, tail))]s, . Since

f#* = Nfoys= f>otails

for each f : A* — B, and tails is an unfold, by applying unfold-map fusion, law (3), we get f# =
[((f,tail))s, : A — B>. That is, f#(s) = scons(f(s), f# (tail(s))). O

Other examples of comonads can be found in [6, 21, 31].

In this paper we are interested in studying recursive operators that involve comonadic computations.
Combining recursion and comonads requires an analysis of the interaction between comonads and functors
representing datatype signatures. For this analysis we will follow the guidelines given in previous works
on monads (see e.g. [12, 28]).

The fundamental structure that needs to be considered for the interaction is a distributive law of a
comonad N over a functor F', that is, a natural transformation

5F . NF = FN

From it we can derive the comonadic extension of functor F' over the comonad N, F:Cy— Cn, which
is a construction that acts on elements of the Kleisli category. Indeed, given a distributive law 6F, the
action of the corresponding extension F' on each arrow f: NA — B is given by

58 Ff

Ff = NFA—2+ FNA FB

The action on objects is given by FA = FA for every extension, because the objects of Cy and C coincide.
Comonadic extensions and distributive laws are actually in one-to-one correspondence.

Under certain conditions, the comonadic extension may be a functor on the Kleisli category itself. In
that case F' is said to be a lifting. The conditions are given in the following theorem.

Theorem 3.7 ([27]) Given a comonad (N,e€,7v) and a functor F on C, F :Cn — Cn is a lifting of F
iff the corresponding distributive law §¥ : NF = FN satisfies these equations:

FEAO(SE = €FA (4)
SNaoN&Goypa = Fyqodh (5)

Recall that we are considering signatures that are given by polynomial functors. Given an arbitrary
functor F' and a comonad (N, ¢, —#), a distributive law §F is then defined by induction on the structure
of F'. Some cases of that definition are unproblematic, since they directly follow by type considerations:

&L =idna :NA— NA

5(7:11__714") = €c :NC = C

S(h 4y =idNa, : NA; » NA;

650 =R, 097 0 8F, 4 NF(GiA) = F(GiN A)

In the last line we used (G;Y'), for some Y, as an abbreviation for (G1Y,...,G,Y).
The following are typical cases:
557 = (65 x 8§) 0 83 0t = (65 +6%) 0 6(raca

FA,GA))

The distributive laws for the product and the coproduct require some additional considerations. In
the case of the product,

6(XA13) :N(Ax B) - NAx NB

is an arrow, in general not uniquely determined, that splits a computation. The following is a standard
choice:

6(XA13) = (N, N7a)
which satisfies the equations of Theorem 3.7:
(eaxep)odiyp = €axn
ONaNB © N(S(XA,B) oyaxp = (vax7B)o 6(XA,B)

Therefore, with this choice of §*, X :Cn x Cn — Cn tesults to be a lifting of x.
A distributive law for the coproduct is an arrow

845 N(A+B)— NA+NB

that does not always exist. One alternative would be to proceed by analogy with monads, and require,
for the existence of the coproduct distribution, that the comonad is costrong. A comonad is said to be
costrong when it comes equipped with a natural transformation pa, g = N(A+ B) - NA + B, called a
costrength, subject to four coherence conditions obtained from those for strong monads [26] by reversing
the direction of all arrows and replacing all products by coproducts. We will not enter into the details
here. For the product comonad, the comonad we will deal with in the next two sections, a distributive
law for the coproduct exists under certain conditions, and, as we will see later, that distributive law turns
out to be the natural choice.

From the distributive laws defined above we can derive an expression of the monadic extension for
each polynomial functor:

—_—~—

If = f F(G)f = F(G1f,...,Gnf)
&f = €C f;zg = <f°N7T1,g°N7T2>
T (fryeos fa) = fi F¥g = (f+g)ost
Thus, in particular,
(F x G)f = (Ff o Nmy,Gf o Nr) (F+G)f = (Ff+Gf)ob*

We conclude this section presenting a property specific to comonadic extensions of composite functors.
In the next section, this property will help us to derive expansions of a comonadic recursive operator on
specific datatypes.

Proposition 3.8 Let (N,¢,—#) be a comonad. Let H = F(G4,...,G,) be a composite functor on C
such that F' : C" — C has a lifting F' over N. Then, for every f : NA — B, the following diagram
commutes:

NF(G;A) (H1)* NF(G;B)

5(FGi A) 5(FGi B)

F(NG;A) — F(NG;B)
F((Gif)*)

Proof The commutativity of the desired diagram follows from the commutativity of the following com-
posite diagram.

vr@a) O vevea) NP0y pava) NECD |y
6F (I) 6F (I1) 6F (II1) 6F
F(NG;A) o F(NNG;A) N F(NG;NA) FNGT F(NG;B)
In fact, observe that
(ALf)#* = NF(Gif) o NF(59°) o (6F)# F((@if)#) = F(NG:f) o F(N6S") o F(id")

Recall that, by hypothesis, F was assumed to be a lifting. So, in particular, 6F satisfies the equations
of Theorem 3.7. Therefore, (I) commutes as it coincides with equation (5); note that id* = v and
(6F)# = N6¥ o. (II) and (I1I) commute by naturality of 5. O

To see an instance of this property, consider the case of H = F 4+ (G. Then, the following equation
holds:

5t o (Hf)* = (Ff)* + (Gf)*)os* (6)

4 Functions with Parameters

Some recursive functions require extra (fixed) parameters, usually representing some context information,
for their computation. A function of this kind can be defined in essentially two ways. One is to give it
by a higher-order definition, i.e. as a curried function that yields a function on the parameters as result,
something that is common practice in a higher-order functional language. From a categorical point of
view, a definition of this kind can be given if the corresponding underlying category is cartesian closed,
that is, a category such that for every pair of objects A and B there is an exponential object [A — B
satisfying an universal property (see e.g. [2]). To see an example, consider the function that adds two
natural numbers. Its curried definition add : N — [N — N] is given by

add zeron =n add (succ m) n = succ (add m n)

This definition corresponds to a higher-order fold, add = (h1,hs|), with Ay = An.n : N — N, and
he = Ag.An.succ(gn) : [N— N — [N—= N

The other possibility is to introduce the function with parameters as a first-order definition, i.e. as
a function from the product between the recursive argument and the parameters to the result. The
corresponding definition of add, of type N x N — N, is given by

add (zero,n) =n add (succ m, n) = succ (add (m, n))

Definitions of this kind can be written both in a first-order and in a higher-order language, but they cannot
be represented as a fold. The problem is that fold does not possess the ability of explicitly managing
parameters by itself. One way to overcome this problem is to introduce a new operator, called pfold,
which is a sort of fold with parameters. Our motivation to study such an operator is by no means because
we want to avoid the use of higher-order. Higher-order is without doubts one of the most important and
useful features of modern functional languages. Our interest in pfold is, however, based on the fact that
it represents an alternative way of defining a specific class of structural recursive functions, and, perhaps
the most important reason, it constitutes a simple example of the combination between comonadic effects
and recursion. On the other hand, pfold might be the only alternative available to define the functions
in question in a traditional language without higher-order features.

As Cockett and Spencer [10] observed, to achieve a definition of pfold it is not necessary to assume
that the underlying category C is cartesian closed. Instead, it is sufficient to assume that the initial
algebra is strongly initial [10] (or initial with parameters). The theory of strong datatypes has been used
as the basis for the design of the programming language CHARITY [9)].

The concept of strong initiality is based on that of strong functor. A functor F' : C — C is said to
be strong if it is equipped with a natural transformation TE’X :FAx X = F(A x X), called a strength,
such that the following equations hold:

Frmo TE’X T (7)

Foaaxyo Tf,XxY = foX,X o (TE,X xidy)oara xy (8)

Polynomial functors turn out to be strong under the additional assumption that category C is distributive.
A category C is said to be distributive [34, 8] if it possesses both finite products and coproducts and binary
products distribute over coproducts. This means that, for any objects A, B and C, the canonical map

[inl X idg,inr xidg]: AxC+BxC — (A+B)xC
is an isomorphism whose inverse is the natural transformation denoted by
dapc: (A+B)xC —>AxC+BxC

There is a plenty of examples of such categories, since every cartesian-closed category with coproducts is
a distributive category. Set and Cpo’ are typical cases.
A definition of strength for each polynomial functor F' can be given by induction on the structure of

F.
fo,x = idaxx t Ax X 5 Ax X
ﬁiwAMX =m CxX=>C
T(HX;__WA"),X = ida;xx c A XX 5 A x X
T(a.B) x = (m xidx,ms X idx) : (AxB)x X = (Ax X) x (BxX)
T&,B),X = daBx : (A+B)x X 53 AxX+BxX
Tao = F(r{x, o mSn) ol ayx ¢ F(GiA) x X = F(Gi(A x X))

It is easy to check that each 7 above defined indeed satisfies the equations (7) and (8).

Strong functors can be lifted to work on X-actions, which are arrows of type A x X — B for each
A and B. Given a strong functor F, for each f : A x X — B, we define FXf : FA x X — FB to be
FXf :Fforix.

Given a strong functor F, an initial F-algebra ing is said to be strongly initial [10] if, for each object
X and X-action h : FA x X — A, there exists a unique X-action f : uF x X — A that makes the
following diagram in C commute

o
FuF x X — P29 | pxx

(FX f,m3) f
FAx X A - A

The unique arrow f that results from strong initiality is precisely the definition of the pfold operator we
are looking for. We denote it by pfoldg(h) : uF' x X — A.
The following proposition guarantees the existence of categories where strong initiality holds.

Proposition 4.1 ([10]) If C is a cartesian closed category, then every initial algebra is strongly initial.

!By Cpo we mean the category of cpos (not necessarily having a bottom element) and continuous functions.

Proof Let ing be initial. Consider an X-action h : FA x X — A. With it, construct the F-algebra
k= curry(j) : F[X — A] = [X — A], where j = ho (FXapply, m) : F[X — A] x X — A. Now, consider
the following composite diagram:

Ff xid FXappl
Fup xidy 119X pry gy x BT3PV by
i?’LFXidX (I) kXidX (II) h
F xid X 2> Al x X - A
K 1ox f xidx [] apply

where f = (k)r. (I) commutes by initiality of inp, whereas (II) commutes by the universal property of
the exponential, i.e. apply o (curry(j) x idx) = j. So, as a consequence, the outer rectangle commutes.
By the bijection between the curried and uncurried version of any arrow, we have that, given f: uF —
[X — A], there is a unique f' : uF x X — A such that apply o (f x idx) = f’. Therefore, since
(FXapply, m) o (Ff xidx) = (FX(applyo (f x idx)), ms), it follows that f' is the unique arrow such that

f’ o (ZnF X IdX) =ho <Fxf’77r2>

In other words, ing is strongly initial. Since f' corresponds to pfoldx(h), as an aside we obtain this
equation:

pfold (k) = apply o ((curry(h o (F¥apply, m))) F x idx)
O

Consider the product comonad (N, e, —#) described in Example 3.3. Observe that each X-action
corresponds to an arrow NA — B in the Kleisli category Cy. In particular, every pfold. Motivated by
this fact we will restate the definition of pfold, now in terms of comonadic notions. As a result we will
obtain a definition that makes explicit the fact that pfold is a special case of a comonadic fold.

First of all, observe that every strength 7§ v : FA x X — F(A x X) is a distributive law 6§ :
NFA — FNA of the product comonad over F'. Therefore, FX corresponds to a comonadic extension
F, which can be shown to be indeed a lifting of F' when F' is polynomial. In addition, it holds that
ho (Ff,m) =ho(Ff)* and fo(gxidx) = fo(gom,m) = fo(gom)¥* = fog#.

In summary, the universal property of pfold states that, for any h : NFA — A, pfold is the unique
arrow f = pfoldg(h) : NuF — A that makes the following diagram commute:

inF
NFuF NuF
(Ff)* !
NFA A

or equivalently,
pfold(h) e ing = h e F pfold (k)

This means that pfold can be regarded as being the definition of a comonadic fold for the special case of
the product comonad.

The following notions hold for every comonad. A comonadic F-algebra is an arrow h : NFA — A.
Viewed as an arrow in Cy, a comonadic algebra corresponds to a F'-algebra in that category. Consider
two F-algebras h : NFA — A and ' : NFB — B. A homomorphism between h and h' is an arrow
f: NA — B such that f ¢ h = h' ¢ F'f, whereas a pure homomorphism between them is an arrow
f:A— Bsuchthat foh=h' o NF]f.

Therefore, in the context of the product comonad, an initial algebra inf is said to be strongly initial
when its lifting, inp : NFuF — pF', happens to be the initial object in the category of F'-algebras. This
means that, for each F-algebrah : NFA — A, the comonadic fold is defined as the unique homomorphism
between ing and h that exists by initiality. Observe that, so defined, the comonadic fold (or equivalently,
pfold) coincides with the standard fold of the category Cn.

10

Example 4.2 Like we saw in Example 2.1, the signature of natural numbers is given by the functor
K = 1+1. Recall that NA = Ax X. Thus, 6§ = (m; +id)od: N(1+4) = 1+ NAand Kf = (7 + f) od,
for f: NA — B. For any algebra h = [hq, ha]od: N(1+A) — A, withhy : 1xX — Aand hy : AXX — A,
pfold is the unique arrow f = pfoldy (k) : N x X — A such that

f o ([zero,succ] o idx) = ho (K f)#

Let us now derive an expansion of this definition. By equation (6), we have that do (K f)# = (x¥ + f#)od.
So, ho (Kf)# =[hy o 7rf&, hy o f#]od = [hy, hs o (f,m)] o d. Pre-composing both sides of the equation
with d=! = [inl x idx,inr x idx], we then obtain

f ozero x idx,succ X idx]| = [h1, ha o (f, m2)]
Finally, by case analysis we get the desired equations:

fo(zero xidx) = hy fo(suce x idx) = hy o (f, 72)
O

Example 4.3 Consider the list datatype. Its signature is given by the functor L4 = 1+ A x I. For each
h = [hi,hy]od: (1+ A x B) x X — B, pfold is the unique arrow f = pfold;, (k) : A* x X — B that
makes the following equation hold,

£ o ([nil,cons] x idx) = ho ((Laf)#
Like in the previous example, applying (6) and pre-composing both sides with d~!, we obtain
fo[nil xidx,cons x idx] = [h1,hg o ({(my o7, f o (me X idx)), m2)]
which is amenable to case analysis:
fo(nil xidx) = hy fo(cons Xidx) =hgo ({(m om, fo(m Xidx)),m)
In functional notation, f (nil,z) = hi(z) and f (cons(a,), z) = ha(a, f(£, z),x). O

Example 4.4 Consider the binary tree datatype. Its signature is given by the functor B4 = 1+ I x Ax I.
For each h = [hi,hs]od : (1+ B x A x B) x X — B, pfold is the unique arrow f = pfoldg, (h) :
btree(4) x X — B that makes the following equation hold,

f o ([empty, node] x idx) = ho ((Baf)*

By similar arguments as in the preceding examples we obtain the following equations in functional
notation:

[(empty, z) = hy (z) f (node(t, a,u), z) = ha(f(t,2), a, f(u,z), z)
|

The pfold operator can also be used to give a definition of a strength for any type functor D,
corresponding to a strongly initial parameterised datatype induced by a bifunctor F' that satisfies to be
bistrong. A bifunctor F': C x C — C is called bistrong [9] if the functors F'(4, —) and F(—, B) are strong.

Then, 74% : DA x X — D, (A x X) is given by

D, _ . F(—,D,(AxX))
Talx = pfoldr, (¢4,x) where Pax =iNFy,x°Tax

A proof that TRX is indeed a strength can be found in [29)].

Now, let us see some laws for pfold. Assume that F' is polynomial; that way Fisa lifting. We
begin with an identity law, which states that a pfold with the lifting of the initial algebra as target is the
identity in Cp .

pfold - (inr) = €,r

11

The fusion law states that the Kleisli composition of a pfold with a homomorphism is again a pfold.
feh=FkeFf = fepfolds(h) = pfoldp(k)

The following law states an obvious result: (the lifting of) every fold can be seen as a pfold that does not
make use of the parameters.

—_— ~

(h)r = pfoldg(h)

It is possible to state two acid rain laws for pfold. Each of them deal with a particular notion of
transformer, different from the one introduced for fold in Section 2. The first law, called pfold-pfold
fusion, permits to fuse two pfolds. The notion of transformer employed by pfold-pfold fusion is the
following: A transformer is a function T: (NFA — A) - (NGA — A) that converts F-algebras into
é-algebras such that it preserves homomorphisms. That is, given two f’—algebras h: NFA — A and
h': NFB — B, if f: NA — B is a homomorphism between them, i.e. f eh = h'e Ff, then it is also a
homomorphism between the corresponding G-algebras, i.e. f e T(h) = T(h') ¢ Gf.
The definition of pfold-pfold fusion is the following:

T transformer = pfold(h) e pfold,(T(inr)) = pfold, (T(h))

Note that, since pfold coincides with the standard fold when viewed as an arrow in Cp, pfold-pfold fusion
is nothing but fold-fold fusion (2) in Cy.

The second acid rain law, called pfold-fold fusion, permits the fusion of compositions between pfolds
and folds. It works with the following notion of transformer. A transformer is a function T : (FA —
A) = (NGA — A) that converts F-algebras into G-algebras such that, if f : A — B is a homomorphism
between h : FA — A and h' : FB — B, then it is a pure homomorphism between the corresponding
G-algebras, that is, if foh = h' o F'f then fo T(h) = T(h') o NGf.

T transformer = (h)F o pfoldg(T(ing)) = pfolds (T(h)) (9)
Further laws for pfold can be found in [29].
Example 4.5 The function prune : btree(A) x A* — btree(A) takes a binary tree ¢ and a list £ and
discards all subtrees whose roots occur in £.
prune(empty,) = empty
prune(node(t,a,t'),£) = if a € £ then empty
else node(prune(t,), a, prune(t’, £))

We can define it as pfold, prune = pfoldg, (alg-pr) : Nbtree(A) — btree(A), where NA = A x A*. The
comonadic algebra alg-pr : NB4(btree(A)) — btree(A) is given by,

alg-pr(z,£) = case z of
inl(u) — empty
inr(t,a,t') — if a € £ then empty else node(t, a,t’)
It can be written as alg-pr = T([empty, node]), where T': (B4sC — C) — (NB4C — C) is the transformer
given by,
T(h) = A(z, ?). case = of
inl(u) — hl
inr(c1,a,c2) — if a € £ then h; else hy(ci,a,c2)

Wlth h = [hl, hg]
Consider the function size : btree(4) — N that counts the number of nodes of a tree.

size(empty) = zero size(node(t,a,u)) = 1 + size(t) + size(t')

12

This function is a fold, size = (alg-s) 5, ; the algebra alg-s : 1 + Nx A x N — N has the obvious definition.
Suppose that now we want to count the number of nodes that remain in a tree after pruning.

prune size

count = btree(4) x A* btree(A) N

By using pfold-fold fusion we can transform this composition into a single pfold, avoiding in that way the
generation of the intermediate tree.

size o prune = pfoldp , (T(alg-s))
That is,

prune(empty,) = 0
prune(node(t, a,t'),£) = if a € £ then 0 else 1 + count(t, £) + count(¢', £)

5 Accumulations

Accumulations are functions that use an extra parameter to keep intermediate results to be used during
the computation (see e.g. [4, 13, 14, 18]). In this section we build up a comonadic operator for a kind of
downwards accumulations by adding some ingredients to the definition of pfold.

For defining accumulations we can follow, essentially, the same two alternatives discussed before for
functions with parameters. One is to define accumulations by higher-order folds. This is the approach
adopted in [18] and [5]. As before, this alternative requires to work in a cartesian closed category. As
an example, consider the function asums that computes the list of accumulated sums of a list of natural
numbers. The curried version is of type list(N) — [N — list(N)]:

asums [] e = [e] asums (n:f) e =¢e:asums ¢ (e + n)
The other alternative is to give an uncurried definition of the accumulation. In the case of asums,
asums([],e) = [e] asums(n : £,e) = e : asums(¢, e + n)

Definitions of this kind cannot be written as a fold nor as a pfold. Like for functions with parameters,
a simple fold cannot be used because it lacks the possibility of managing extra arguments. The problem
with pfold, on the other hand, is that it can deal with extra arguments, but they cannot be altered along
the computation. Like in the previous section, the solution we will adopt consists of the introduction of
a new operator, called afold, that corresponds to a fold with accumulating parameters. The motivations
for defining such an operator are the same as the discussed for pfold. To achieve a definition of afold we
will need to work with a modified version of strong initiality that reflects the presence of accumulations.
We will also show that, like pfold, afold is a form of comonadic fold.

Let us fix an object X that in this case will be regarded as an object of accumulators. Consider again
the product comonad (N, e, —#), with NA = A x X. Recall the diagram that defines pfold.

inF
NFuF NuF
(Ff)* !
NFA A

As we saw in the previous section, the existence and uniqueness of a f fulfilling this diagram is what
characterizes the notion of strong initiality. Functions with parameters and accumulations are very similar
structurally. The only difference between them is that accumulations modify the extra parameters during
computation. Therefore, to achieve a definition of a fold with accumulating parameters starting off from
that of pfold, we only need to alter the part of pfold that in the new operator represents the process
of accumulation. That part is within Ff; more precisely, within the distributive law §7. In pfold,

13

the distributive law simply makes available the value of the parameters to the recursive calls. In an
accumulation, however, we do not distribute the value of the parameters to the recursive calls, but an
accumulated value, which is calculated from the current value of the parameters and the information
contained in the node of the data structure that is being visited. In this respect, for a datatype with
signature F', we will assume that the accumulation is performed by an accumulating functiong : F1x X —
X, where F'1 represents the information that is left in a node after discarding the sub-structures. We
then introduce a modified version of the distributive law that reflects the process of accumulation:

_ pE-9 5F
370 = NFA A+ NFA AL FNA

where

F(! id id
67 = paxx e FC)Xx) g ey x) JEAXT g x

Observe that the new distributive law is indexed by the functor and the function that performs the
accumulation. Indeed, the whole construction corresponding to the new operator will be parametric on

g. Note also that gig is natural on A, as required (in order to be a distributive law). This is because
g as well as the rest of the components of #*9 (which are in turn natural transformations) do not make
any assumption about A. Moreover, g acts on X, which is an internal datum of the comonad.

From gi’g we can construct a new comonadic extension of F, let us call it 7. Then, Ff = Ffo Si’g,
or which is the same, Ff = Ff o 05;’9. In general, we do not expect that the new extension is a lifting.
However, equation (4) holds independently from the choice of g. This means that F' preserves identities
but lacks in general the preservation of Kleisli composition.

With the new constructions we can now state a modified version of strong initiality. Given a functor
F and an arrow g : F'1 x X — X, we say that an initial algebra is initial with accumulating parameters
if, for each F-algebra h : NFA — A, there exists a unique arrow f = afoldr(g,h) : NuF — A, called
fold with accumulating parameters, that makes the following diagram in C commute

inF
NFuF NuF
Fp f
NFA A

or equivalently,
afoldr(g, h) e ing = h e F afoldr(g, h)

Proposition 5.1 If C is a cartesian closed category, then every initial algebra is initial with accumulating
parameters.

Proof The proof of this proposition is exactly the same as the one showed for Proposition 4.1 except
for the fact that we have to replace FX by F. O

In Section 4, we used Proposition 3.8, actually an instance of it given by equation (6), to derive
expansions of pfold for particular datatypes. In the case of afold, however, it is necessary to state a
slightly different property that takes account of the presence of 9 as part of the distributive law. The
new property assumes composite functors of the form F = G; + --- + G,,. We present here the simple
case of F = G1 + (G2, since it suffices for the examples we show below; the generalization to n summands
is immediate.

Proposition 5.2 Let (N,¢,—#) be the product comonad. Let F' = G; + G be a composite functor.
Let the accumulating function g : F'1 x X — X be given by g = [g1,92] 0 d, with g; : G;1 x X — X

14

i = 1,2. Then, for every f: NA — B, the following diagram commutes:

F#
N(G1A+ G2 A) (£7) » N(G1B + G2B)
ot ot
NG1A+NG2A ‘NGlB‘FNGQB

G NH* + (G2)*

Proof Recall that, for the product comonad, §+ = d. The commutativity of the desired diagram follows
from the commutativity of the following one.

N(G1A + G2 A) (67 0 97)* N(NG1A + NG A) N(Gif +Caf) N(G1B + G2B)
5+ (I) 5+ (IT) 5+
NG1A+ NGy A T 1 (95 N2G1 A + N?GyA NG TiNG NGB+ NGB
In fact, observe that
(Ff)# = N(GLf +Gaf)o (67 0gF9)#
(@GiN*+(Gaf)* = (NGif + NGaf)o ((09)% + (69)#)

(IT) commutes by naturality of *. The proof of (I) is given by the following calculation. Some of its
steps are, in turn, the result of straightforward but tedious calculations. Let us define f; = g; o G;(!14),
with i = 1,2. Hence, 899 = (ry, f;). Moreover, it is easy to see that 879 = (m1,[g1,g2] odo NF(14)) =
<7Tlv [flva] o d>

5 o (67 0879)# = do(do(m,[fi, f] 0 d))*
do N(do(m,[f1,f]od))oy
do N(((m1, f1) + (m1, f2)) od) oy
= do N(@Gl’-‘“ + ng,gz) oNdovy
= (N§%191 + N§9292)odo Ndory
= (N§%191 + NOG292) 0 (y +7) od

_ ((9G1791)# + (ngﬁyz)#) odt

O

Before showing examples of afold on specific datatypes, we derive a generic expansion of this operator
for the case that the datatype signature is of the form F' = G; + G>. In fact, that is the form the base
functors of the examples have. Let h = [hy,hs]od: NFA — A and let g = [g1,¢g2] 0od : F1 x X — X.
Thus, afold is the unique arrow f = afoldr(g, k) that makes this diagram commute:

Nz'np

N(G1uF + Gy uF) » NuF
(Ff)* f
N(G1A + G2 A) NG1A+ NG, A A
[h1, ho]
Applying Proposition 5.2 we obtain this equation
foNinp =[h1,ho] o (G1f)* + (G2f)¥) o d
Let inp = [c1,ca]. If we pre-compose both sides of this equation with d~! and apply product and

coproduct laws we get

15

foler xidx,ca x idx] = [l o (G f)#, hy o (Gaf)#]
Hence, by case analysis we have
folei xidx) = hio(Gif)* fol(er xidx) =hyo(Gaf)*
where G, f = a;f 0 fC%i9i = a;f o (m,gi0 (Gi! xidx)).
Example 5.3
1. For the natural numbers, f = afoldk (g, k) is such that
fol(zero xidx) = hy fo(succ x idx) = hao (f o (m,gs0 (! Xidx)), ms)
where h = [hy,hs]Jod: (1+ A) x X — A and g = [g1,¢2]0d : (1 +1) x X — X. In functional
notation, f(zero,z) = hi(z) and f(succ(n),z) = ha(f(n, g2(z)), z).
2. For lists, f = afold,, (g, h) is such that

f(nil,x) = hy(z) f(cons(a,£),z) = ha(a, f(£,g2(a,x)), z)
where h = [h1,hs]od: (1+ Ax B)x X = B and g =[g1,92]0d: (1+ Ax1) x X — X.

For example, the asum function is given by asum = afold(g,h) : N* x N — N*, with hq(z) = [z],
ha(a,l,z) = cons(z, 1), g1(z) =z, ga(a,z) = a + z.

3. For binary trees, f = afoldg, (g, h) is such that

f(emptya :IZ) =Mh (I) f(nOde(tv a, u)v x) = hZ(f(tv 92 (av I)), a, f(uv 92 (av I)), x)

where h = [h1,h2]od: (14 C x AxC)x X — C and g =[g1,92]0d: (1+1xAx1)x X — X.
O

Now, we present some laws for afold. The identity law states that, whatever the action of the accumu-
lating function is, an afold on the lifting of the initial algebra simply returns the element of the datatype
that it takes as input. For every g,

afoldp(g, Z,T;;') = €uF

The identity law is a consequence of the fact that F' preserves identities. The next law is a fusion law. It
states that the composition of a afold with a pure homomorphism is again a afold.

foh=koNFf = foafoldr(g,h) = afoldr(g, k) (10)

The following law states that, fixed an accumulating function g, (the lifting of) every fold can be seen as
an afold that does not make use of the accumulators.

—_ ~

(Ih‘)p = afoldp(g, h)

An acid rain law can also be established for afold. We call it afold-fold fusion since it permits to fuse
certain kinds of afolds with folds. The shape of the definition and the notion of transformer employed
by this law coincide with those for pfold-fold fusion (9). Let us recall the notion of transformer. We say
that a function T: (FA — A) — (NGA — A) is a transformer if it converts F-algebras into G-algebras
in such a way that, if f : A — B is a homomorphism between h : FA — A and b’ : FB — B, then
it is a pure homomorphism between the corresponding G-algebras. That is, if f o h = h' o Ff then
foT(h) = T(h') o NGY.

T transformer = (h)F o afoldg(g, T(ing)) = afoldg (g, T(h))

The proof of this law is as follows. Consider an algebra h: FFA — A. Since every fold is a homomor-
phism, by definition of transformer we have that (h])r : uF' — A is also a pure homomorphism between
the algebras T(ing) : NGuF — puF and T(h) : NGA — A. Therefore, by afold fusion (10), it follows
that (k) o afoldg(T(ing)) = afoldg(T(h)), which is the desired result.

16

Example 5.4 The function cut : btree(A) — btree(A) takes a tree and removes all subtrees whose root
has already occurred in any of its ancestors.

cut(t) = prune(t, nil)
where prune : btree(A) x A* — btree(A) is such that
prune(empty,) = empty
prune(node(t,a,t'),£) = if a € £ then empty
else node(prune(t, cons(a, £)), a, prune(t’, cons(a, £)))
This function can be written as an afold, prune = afold g, (acc-pr, alg-pr) : Nbtree(A) — btree(A4), where
NA = A x A*. The accumulating function acc-pr: B41 x A* — A* is defined by
acc-pr(z,f) = case z of
inl(u) - £
inr(u,a,u’) — cons(a,)
whereas the comonadic algebra alg-pr : N B4 (btree(A)) — btree(A) is given by,
alg-pr(z,£) = case z of
inl(u) — empty
inr(t,a,t') — if a € £ then empty else node(t, a,t')
This algebra can be written as alg-pr = T([empty, node]), where T': (B4C — C) — (NB4C — C) is the

transformer showed in Example 4.5.
Like in Example 4.5, we want to count the number of nodes that remain in a tree after pruning.

prune size

count = btree(4) x A* btree(A) N

where recall from Example 4.5 that size = (alg-s)p,. Using afold-fold fusion we can transform this
composition into a afold, eliminating as a result the generation of the intermediate tree.

count = size o prune = afold g, (acc-pr, T'(alg-s))
Expanding the afold we obtain
count(empty, {) = zero
count(node(t, a, t'), ¢) if a € £ then zero
else 1 + count(t, cons(a, £)) + count(t', cons(a, £))

6 Conclusions and Future Work

This paper presented some results in an attempt to study recursive operators with effects modeled by
comonads. We showed two common applications that neatly combine the product comonad with struc-
tural recursion, obtaining as a result two instances of comonadic fold.

Similar results can be achieved for other operators, like unfold or primitive recursion (paramorphisms
[23]). Tt is to notice that the analysis of the interaction between comonads and corecursion is, in principle,
not so interesting as it is in the case of (structural) recursion. The reason is that, in a similar manner as
monadic folds reduce to folds (see e.g. [12, 25]), comonadic unfolds can esaily be reduced to unfolds. In
fact, for h: A — NFA, comonadic unfold is defined by the unique arrow f : NA — vF that makes this
diagram commute:

h#*
NFA«—— NA
Ff f*
FvF «—— NvF
outp

17

But, since ﬁf = Ff o6 and outp o f# = outp o f, we have that outpo f = Ff o (65 o h). Therefore,
by finality f = [04 o h)]r. In other words, independently of the particular comonad, a comonadic unfold
exists for every coinductive type.

Other directions for future study are:
e The search of more interesting cases of comonads that neatly interact with recursion.
e The derivation of further laws for accumulations, for example, laws involving type functors.

e The application of the accumulation strategy [4, 3] in connection with our notion of accumulation,
and its comparasion with other approaches (like e.g. [18]).

e The combination of recursion with both monads and comonads.

Acknowledgements I would like to thank the anonymous referees for helpful suggestions and com-
ments. Diagrams were drawn using Paul Taylor’s macros.

References

[1]

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Programming - An Introduction -.
In Advanced Functional Programming, LNCS 1608. Springer-Verlag, 1999.

M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.

R. Bird. Introduction to Functional Programming using Haskell, 2nd edition. Prentice-Hall, UK,
1998.

R.S. Bird. The Promotion and Accumulation Strategies in Transformational Programming. ACM
Transactions on Programming Languages and Systems, 6(4), October 1984.

R.S. Bird and O. de Moor. Algebra of Programming. Prentice Hall, UK, 1997.

S. Brookes and S. Geva. Computational Comonads and Intensional Semantics. Technical Report
CMU-CS-91-190, School of Computer Science, Carnegie Mellon University, 1991.

S. Brookes and K. Van Stone. Monads and Comonads in Intensional Semantics. Technical Report
CMU-CS-93-140, School of Computer Science, Carnegie Mellon University, 1993.

R. Cockett. Introduction to Distributive Categories. Mathematical Structures in Computer Science,
3:277-307, 1993.

R. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18, University of Calgary,
June 1992.

R. Cockett and D. Spencer. Strong Categorical Datatypes I. In R.A.C. Seely, editor, Interna-
tional Meeting on Category Theory 1991, volume 13 of Canadian Mathematical Society Conference
Proceedings, pages 141-169, 1991.

M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit Twente, The Netherlands,
1992.

M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda Informatica 94-28,
University of Twente, June 1994.

J. Gibbons. Upwards and Downwards Accumulations on Trees. In R.S. Bird, C.C. Morgan, and
J.C P. Woodcock, editors, Mathematics of Program Construction, LNCS 669. Springer-Verlag, 1993.

J. Gibbons. Generic Downwards Accumulations. Science of Computer Programming, 37(1-3):37-65,
2000.

18

[15]

[30]

[31]

[32]

[33]

[34]

J. Gibbons. Lecture Notes on Algebraic and Coalgebraic Methods for Calculating Functional Pro-
grams. In Summer School on Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, Oxford, UK, April 2000.

J. Gibbons and G. Jones. The Under-Appreciated Unfold. In Proc. 8rd. ACM SIGPLAN Interna-
tional Conference on Functional Programming. ACM, September 1998.

Z. Hu and H. Iwasaki. Promotional Transformation of Monadic Programs. In Fuji International
Workshop on Functional and Logic Programming, pages 196-210. World Scientific, July 1995.

7. Hu, H. Iwasaki, and M. Takeichi. Calculating Accumulations. Technical Report METR 96-03,
Faculty of Engineering, University of Tokyo, March 1996.

G. Hutton. Fold and Unfold for Program Semantics. In Proc. 3rd. ACM SIGPLAN International
Conference on Functional Programming. ACM, September 1998.

S. Peyton Jones and J. Launchbury. Lazy functional state threads. In SIGPLAN Symposium on
Programming Language Design and Implementation (PLDI’94), pages 24-35, 1994.

R. Kieburtz. Codata and Comonads in Haskell (Unpublished manuscript). Available from
http://www.cse.ogi.edu/"dick/dick.html.

E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and Monographs
in Computer Science. Springer-Verlag, 1986.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4:413-424, 1992.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopes
and Barbed Wire. In Proceedings of Functional Programming Languages and Computer Architec-
ture’91, LNCS 523. Springer-Verlag, August 1991.

E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Programming. In Advanced
Functional Programming, LNCS 925, pages 228-266. Springer-Verlag, 1995.

E. Moggi. Notions of Computation and Monads. Information and Computation, 93:55-92, 1991.

P.S. Mulry. Lifting Theorems for Kleisli Categories. In 9th International Conference on Mathematical
Foundations of Programming Semantics, LNCS 802, pages 304-319. Springer-Verlag, 1993.

A. Pardo. Fusion of Recursive Programs with Computational Effects. Theoretical Computer Science
(to appear), 2000. Available from http://www.fing.edu.uy/ pardo.

A. Pardo. A Calculational Approach to Strong Datatypes. In Selected Papers from the 8th Nordic
Workshop on Programming Theory. Research Report 240, Department of Informatics, University of
Oslo, 1997.

S. Peyton-Jones and P. Wadler. Imperative Functional Programming. In Proceedings of 20th Annual
ACM Symposium on Principles of Programming Languages, Charlotte, North Carolina, 1993.

D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free University,
Amsterdam, June 1996.

D. Turi and G. Plotkin. Towards a Mathematical Operational Semantics. In LICS’97, pages 280-291,
1997.

P. Wadler. Monads for functional programming. In Advanced Functional Programming, LNCS 925.
Springer-Verlag, 1995.

R.F.C. Walters. Data Types in Distributive Categories. Bull. Austral. Math. Soc., 40:79-82, 1989.

19

