
Towards Merging Recursion and ComonadsAlberto PardoInstituto de Computaci�onUniversidad de la Rep�ublicaMontevideo - Uruguaypardo@fing.edu.uyAbstractComonads are mathematical structures that account naturally for e�ects that derive from the contextin which a program is executed. This paper reports ongoing work on the interaction between recursionand comonads. Two applications are shown that naturally lead to versions of a comonadic foldoperator on the product comonad. Both versions capture functions that require extra arguments fortheir computation and are related with the notion of strong datatype.1 IntroductionOne of the main features of recursive operators derivable from datatype de�nitions is that they impose astructure upon programs which can be exploited for program transformation. Recursive operators struc-ture functional programs according to the data structures they traverse or generate and come equippedwith a battery of algebraic laws, also derivable from type de�nitions, which are used in program calcula-tions [24, 11, 5, 15]. Some of these laws, the so-called fusion laws, are particularly interesting in practicesince they enclose speci�c cases of deforestation, a program transformation technique that permits to re-move intermediate data structures from programs. Functional programs can also be structured accordingto the e�ects they produce. This can be possibe by using monads [33] as structuring device. Monads arewell-known mathematical structures with wide application in programming [30, 20] and formal semantics[26, 31, 32].Previous works [12, 17, 25, 28] have studied how to combine both structuring mechanisms, giving riseto recursive operators that deal with e�ects modeled by monads. A result that can be concluded fromthose works is that encapsulating e�ects with monads leads to a smooth framework for reasoning aboutprograms with e�ects. In fact, monads permit to focus on the relevant structure of programs disregardingdetails about the speci�c e�ect that a program produces.Comonads are mathematical structures, dual to monads in a categorical sense, that have been usedalmost entirely in semantics (see e.g. [6, 7, 31, 32]). In recent years, however, there has been a growinginterest in investigating the usefulness that comonads may have in programming. Some results in thisconcern are given by Kieburtz [21], who argues that comonads account naturally for e�ects that derivefrom program context.This paper reports ongoing research concerning the interaction between comonads and recursion.Like with monads, the aim of this work is the study of recursive operators with e�ects, now modeled bycomonads. Among our goals is the derivation of algebraic laws for such operators, in particular, fusionlaws, since they enclose deforestation cases for new recursion patterns. In addition to discussing generalaspects of comonads, we focus our study on a particular comonad, namely, the product comonad. Thiscomonad permits us to represent two common classes of recursive de�nitions: (i) functions with extra�xed parameters, and (ii) functions with accumulating parameters. For each of these classes, we introducean structural recursive operator, a variant of the traditional fold operator, that deals with the parameterswithin the product comonad. We also present calculational laws associated with these operators. Inthose laws it is possibe to observe that, like monads, comonads permit to focus on the relevant structureof programs, hiding details about the particular e�ect.1

The remainder of this paper is organized as follows. Section 2 is about datatype theory. Section 3introduces comonads and discusses distributive laws between functors and comonads. Distributive lawsare the basis for the de�nition of comonadic extensions of functors, which are the constructions thatcapture the shape of recursion of comonadic operators. In section 4 we review previous work on recursivefunctions with (�xed) parameters [10, 29], but now from a comonadic point of view. This leads to thede�nition of a fold with parameters, which constitutes our �rst example of a comonadic fold. In Section5, we show how a de�nition of a fold with accumulating parameters, another form of comonadic fold,can be obtained from that of fold with parameters by including accumulations as part of the comonadicextension of the base functor. Finally, in Section 6 we draw some conclusions and describe future work.2 Recursive DatatypesThis section presents the mathematical framework the paper is based on and �xes some notation. Wedescribe the essentials of the category-theoretic explanation of inductive and coinductive datatypes, thede�nition of structural recursive functions in that setting and some of their algebraic laws. Further detailson these topics can be found in e.g. [22, 11, 5, 1, 15].2.1 PreliminariesIn the categorical approach to recursive types, types are modeled by objects of a category C, and functions(operations, programs) are modelled by morphisms of this category. In this setting, type constructorscorrespond to endofunctors on C (i.e. functors from C to C). We shall assume that C is a category with�nite products (�; 1) and �nite coproducts (+; 0), where 0=1 denotes the initial/�nal object of C. Theleading example of such a category is Set, the category of sets and total functions.The unique arrow from A to 1 is written !A. We write �1 : A � B ! A and �2 : A � B ! B todenote the product projections. The pairing of two arrows f : C ! A and g : C ! B is denoted byhf; gi : C ! A � B. Product associativity is denoted by �A;B;C : A � (B � C) ! (A � B) � C. Thecoproduct inclusions are written inl : A ! A + B and inr : B ! A + B. For f : A ! C and g : B ! C,case analysis is the unique morphism [f; g] : A+B ! C with [f; g] � inl = f and [f; g] � inr = g. Productand coproduct can be made into bifunctors C � C ! C by de�ning their action on arrows (see e.g. [5]).It is also straightforward to obtain their generalizations to n components.A recursively de�ned datatype T is understood as a solution (a �xed point) of an equation X �= FX ,for an appropriate endofunctor F : C ! C that captures the shape (or signature) of the type. In thispaper we will consider datatypes with signatures given by so-called polynomial functors [1]. The followingis an inductive de�nition of this class of functors:F ::= I j An j � ni j � j + j F hF; : : : ; F iI : C ! C stands for the identity functor. An : Cn ! C denotes the n-ary constant functor. It mapsn-tuples of objects to the object A, and n-tuples of functions to the identity on A; when n = 1 wesimply write A. � ni : Cn ! C (with n � 2) denotes the i-th projection functor from a n-ary productcategory. F hG1; : : : ; Gni (or F hGii for short) denotes the composition of F : Cn ! C with the functorsG1; : : : ; Gn (all of the same arity); when n = 1 we omit brackets. It stands for the functor that mapsA 7! F (G1A; : : : ; GnA). We write F yG for yhF;Gi when y 2 f�;+g.We shall often suppress the subscripts on natural transformations where the objects involved are clear.2.2 Inductive TypesInductive types are least �xpoints of (covariant) functors. They correspond to initial functor-algebras, ageneralization of the usual notion of term algebras over a given signature.Let F : C ! C be a functor. An F -algebra is an arrow h : FA! A, called the operation. The object Ais called the carrier of the algebra. A morphism of algebras, or F -homomorphism, between h : FA! Aand k : FB ! B is an arrow f : A ! B such that f � h = k � Ff . The category of F -algebras isformed by considering F -algebras as objects and F -homomorphisms as morphisms. The initial objectof this category, if it exists, gives the inductive type whose signature is captured by F , and encodes the2

constructors of that type. We shall denote the initial algebra by inF : F �F ! �F . A well-known resultstates that any initial algebra is an isomorphism.Initiality permits to associate an operator with each inductive type, which is used to represent func-tions de�ned by structural recursion on that type. This operator, usually called fold [3] (or catamorphism[24]), corresponds to the unique homomorphism that exists to any F -algebra h : FA! A from the initialone. We will denote it by (jhj)F : �F ! A. For being fold an homomorphism the following equationholds: (jhj)F � inF = h � F (jhj)FExample 2.1 Consider a datatype for natural numbers,N = zero j succ NIts signature is captured by a functor K : C ! C such that KA = 1 + A and Kf = id1 + f . EveryK-algebra is a case analysis [h1; h2] : 1 + A ! A, with h1 : 1 ! A and h2 : A ! A; in particular, theinitial algebra [zero; succ] : 1 + N ! N where zero : 1 ! N and succ : N ! N. (N stands for �K.) Foreach algebra h = [h1; h2], fold is the unique arrow f = (jhj)K : N ! A such that f � zero = h1 andf � succ = h2 � f . 2Lists, trees as well as many other datatypes are usually parameterised. The signature of such datatypesis captured by a bifunctor F : C � C ! C. By �xing the �rst argument of a bifunctor F one can get aunary functor F (A;�), to be written FA, such that FAB = F (A;B) and FA f = F (idA; f). The functorFA induces a parameterised inductive datatype D�A = �FA, least solution to the equation X �= F (A;X),whose constructors are given as part of the initial algebra inFA : FA(D�A)! D�A.Example 2.2 Lists with elements over A are usually declared as follows:list(A) = nil j cons(A� list(A))We will often write A� for list(A). The signature of lists is captured by the functor LA = 1+A� I . Theinitial algebra is [nil; cons] : 1 +A�A� ! A� with nil : 1! A� and cons : A�A� ! A�. For any algebrah = [h1; h2] : 1 + A � B ! B, fold is the unique arrow f = (jhj)LA : A� ! B such that, f(nil) = h1 andf(cons(a; `)) = h2(a; f(`)). It corresponds to the standard foldr operator used in functional programming[3]. 2Example 2.3 Consider a datatype for binary treesbtree(A) = empty j node (btree(A)�A� btree(A))Its signature is captured by the parameterised functor BA = 1+I�A�I . The constructors form the initialalgebra [empty; node] : 1+btree(A)�A�btree(A)! btree(A). For each algebra h = [h1; h2] : BAC ! C,the fold operator is given by the unique arrow f = (jhj)BA : btree(A) ! C that satis�es these equations:f(empty) = h1 and f(node(t; a; u)) = h2(f(t); a; f(u)). 2Now we discuss some of the standard calculational properties that fold enjoys. The �rst law we presentis rather obvious. It is called the identity law and states that a fold with the initial algebra as target isthe identity. (jinF j)F = id�FA law that plays an important role in program calculation is the so-called fusion law. It states that thecomposition of a fold with an algebra homomorphism is again a fold.f � h = g � Ff) f � (jhj)F = (jgj)F (1)The next law is known as acid rain or fold-fold fusion. The goal of acid rain is to combine functionsthat produce and consume elements of an intermediate data structure. In order to be removed by thislaw, the intermediate datatype is required to be produced by a fold whose target algebra is constructed3

in terms of a transformer. A transformer [11] is a function T : (FA ! A) ! (GA ! A) that convertsF -algebras into G-algebras such that, if f : A! B is a homomorphism between F -algebras h : FA! Aand h0 : FB ! B, i.e. f � h = h0 � Ff , then it is also a homomorphism between the correspondingG-algebras, i.e. f �T(h) = T(h0) �Gf . Intuitively, a transformer T may be thought of as a polymorphicfunction that uses algebras of one class to construct algebras of another class.Fold-fold fusion then states the following:T transformer) (jhj)F � (jT(inF)j)G = (jT(h)j)G (2)This law can be proved as follows. Consider an algebra h : FA ! A. Since every fold is a homo-morphism, by de�nition of transformer we have that (jhj)F : �F ! A is also a homomorphism betweenthe G-algebras T(inF) : G�F ! �F and T(h) : GA ! A. Therefore, by fusion (1), it follows that(jhj)F � (jT(inF)j)G = (jT(h)j)G, which is the desired result.Let D�A = �FA be a parameterised inductive datatype induced by a bifunctor F . D� is thus a typeconstructor that can be made into a functor D� : C ! C, called a type functor [5], by de�ning its actionD�f : D�A! D�B on each arrow f : A! B:D�f = (jinFB � F (f; idD�B)j)FAFor instance, by expanding the de�nition of list(f) = (j[nil; cons � (f � id)]j)LA we get the de�nition of theusual map function on lists [3].A standard property of type functors is map-fold fusion. For f : A! B and h : FB C ! C,(jhj)FB �D�f = (jh � F (f; idC)j)FA2.3 Coinductive TypesCoinductive types are greatest �xpoints of functors. They represent (potentially) in�nite datatypes. Givena functor F , a F -coalgebra is an arrow g : A! FA. The object A is called the carrier of the coalgebra. Acoalgebra map, or F -homomorphism, between two coalgebras g : A! FA and g0 : B ! FB is an arrowf : A ! B such that g0 � f = Ff � g. Just like algebras, coalgebras and their homomorphisms form acategory. The �nal object of this category, if it exists, gives the coinductive type with signature F . Wedenote the �nal coalgebra by outF : �F ! F�F ; it encodes the destructors of the coinductive type.Finality means the existence of a unique homomorphism from any coalgebra g : A ! FA to outF ,which gives rise to an operator, called unfold [19, 16] (or anamorphism [24]), that will be denoted by[(g)]F : A! �F . It satis�es the equation:outF � [(g)]F = F [(g)]F � gExample 2.4 The functor SA = A � I captures the signature of the datatype of streams A1, formedby in�nite sequences of elements over A. Every stream coalgebra g = hh; ti : B ! A � B is the pairingof two functions h : B ! A and t : B ! B. The �nal coalgebra hhead; taili : A1 ! A � A1 gives thedestructors, while its inverse, scons : A � A1 ! A1, the constructor of streams. The unfold operatoris the unique function f = [(g)]SA : B ! A1 such that head � f = h and tail � f = f � t. Equivalently,f = scons � hh; f � ti. 2Calculational laws for unfold can be derived by �nality (see e.g. [11]). Like for inductive types,each parameterised coinductive type D�A = �FA, with F a bifunctor, can be made into a type functorD� : C ! C by de�ning its action on each arrow f : A! B,D�f = [(F (f; idD�A) � outFA)]FBFor instance, f1 = [(hf � head; taili)]SA . A standard property of type functors is unfold-map fusion. Forf : A! B and g : C ! FA C, D�f � [(g)]FA = [(F (f; idC) � g)]FB (3)4

3 ComonadsIn this section we de�ne the notion of a comonad and related concepts. We also analyze those aspects ofthe interaction between functors and comonads that turn out to be essential for merging recursion andcomonads.Monads are a well-known mechanism to structure functional programs (or program segments) thatproduce side e�ects. A typical monadic program is of type A ! MB, where M (the monad) is anabstract data type that encapsulates the action of the speci�c e�ect. Every monad provides, essentially,the means to compose e�ect-producing programs as well as to inject values into computations. In thissection, we see that the dual structures to monads, called comonads, can also be used as an abstraction tomodel some kinds of computation. Comonads account naturally for e�ects that derive from the context inwhich a program is executed. A typical comonadic program is of type NA! B, where N is an abstractdata type that encapsulates the e�ect modeled by the comonad. Every comonad provides, essentially,the means to compose comonadic functions as well as to project a value from any computation in thecomonad.The following is one of the formal de�nitions of a comonad.De�nition 3.1 A comonad over a category C is a triple (N; �;�#), called a Kleisli triple, where N isthe action on objects of a functor N : C ! C, � : N) I is a natural transformation, and �# is anextension operator which for each arrow f : NA ! B yields an arrow f# : NA ! NB, and such thatthe following equations hold: �#A = idNA, for every f : NA! B, �B � f# = f , and for every f : NA! Band g : NB ! C, g# � f# = (g � f#)#. 2If we understand NA as a type of computations over A, then �A : NA ! A is the means to projecta value from a computation. The extension operator �# plays the same role as the extension operatorfor monads (the popular bind operator), in the sense that it provides a way of composing comonadicfunctions. Indeed, the Kleisli composition of f : NA! B and g : NB ! C is de�ned by g � f = g � f#.The comonad laws thus state that Kleisli composition is associative and that � is a left and right identitywith respect to it.Like for monads, we can associate a Kleisli categoy to each comonad.De�nition 3.2 For each Kleisli triple (N; �;�#) over C, the Kleisli category CN is de�ned as follows: theobjects of CN are those of C; morphisms between objects A and B in CN correspond to arrows NA! Bin C, i.e. CN (A;B) � C(NA;B); identities are given by �A : NA! A; and composition is given by Kleislicomposition. 2We can de�ne a lifting functor (e�) : C ! CN as the identity on objects, and ef = f � �A : NA ! B,for each f : A! B.Example 3.3 The product comonadmodels the presence of contextual information that is passed around.Let X be an object of C representing a type of contexts. Then,NA = A�X �A = �1 f# = hf; �2ifor f : NA ! B. That is, � projects the value contained in a computation discarding the context. Theextension operator, on the other hand, applies function f to the input computation and copies the contextto the output. 2Example 3.4 Computations in the state in context comonad deal with a state originated in the contextand a function to make observations on the state. Let S stand for a state space. Then,NA = [S ! A]� S �A = �(f; s): f(s) f# = curry(f)� idSwhere recall that, for f : [S ! A] � S ! B, curry(f) : [S ! A] ! [S ! B]. The � operator permits toproject a value from the state. For every f : NA ! B, the extension operator takes a computation inthe comonad and returns another composed by a new function to project a value from the state and thesame state as in the input computation. 25

The following is an alternative de�nition of a comonad.De�nition 3.5 A comonad over C is a triple (N; �;) formed by an endofunctor N : C ! C and twonatural transformations � : N) I and : N) NN which obey the laws: �NA � A = idNA = N�A � Aand NA � A = NA � A. 2The following equations hold as part of the relationship between both de�nitions of a comonad:Nf = (f � �A)#, for f : A! B, A = id#NA, and f# = Nf � A, for f : NA! B.Example 3.6 The stream comonad [15] describes computations that produce an in�nite sequence ofresults. NA = A1 �A = head A = tailswhere tails : A1 ! (A1)1 is the function that generates the sequence with all tails of a given stream.It is given by an unfold tails = [(hid; taili)]SA . Sincef# = Nf � A = f1 � tailsfor each f : A1 ! B, and tails is an unfold, by applying unfold-map fusion, law (3), we get f# =[(hf; taili)]SA : A1 ! B1. That is, f#(s) = scons(f(s); f#(tail(s))). 2Other examples of comonads can be found in [6, 21, 31].In this paper we are interested in studying recursive operators that involve comonadic computations.Combining recursion and comonads requires an analysis of the interaction between comonads and functorsrepresenting datatype signatures. For this analysis we will follow the guidelines given in previous workson monads (see e.g. [12, 28]).The fundamental structure that needs to be considered for the interaction is a distributive law of acomonad N over a functor F , that is, a natural transformation�F : NF) FNFrom it we can derive the comonadic extension of functor F over the comonad N , eF : CN ! CN , whichis a construction that acts on elements of the Kleisli category. Indeed, given a distributive law �F , theaction of the corresponding extension eF on each arrow f : NA! B is given byeFf = NFA �FA- FNA Ff- FBThe action on objects is given by eFA = FA for every extension, because the objects of CN and C coincide.Comonadic extensions and distributive laws are actually in one-to-one correspondence.Under certain conditions, the comonadic extension may be a functor on the Kleisli category itself. Inthat case eF is said to be a lifting. The conditions are given in the following theorem.Theorem 3.7 ([27]) Given a comonad (N; �;) and a functor F on C, eF : CN ! CN is a lifting of Fi� the corresponding distributive law �F : NF) FN satis�es these equations:F�A � �FA = �FA (4)�FNA �N�FA � FA = FA � �FA (5)Recall that we are considering signatures that are given by polynomial functors. Given an arbitraryfunctor F and a comonad (N; �;�#), a distributive law �F is then de�ned by induction on the structureof F . Some cases of that de�nition are unproblematic, since they directly follow by type considerations:�IA = idNA : NA! NA�Cn(A1;:::;An) = �C : NC ! C��ni(A1;:::;An) = idNAi : NAi ! NAi�F hGiiA = F (�G1A ; : : : ; �GnA) � �F(GiA) : NF (GiA) ! F (GiNA)6

In the last line we used (GiY), for some Y , as an abbreviation for (G1Y; : : : ; GnY).The following are typical cases:�F�GA = (�FA � �GA) � ��(FA;GA) �F+GA = (�FA + �GA) � �+(FA;GA)The distributive laws for the product and the coproduct require some additional considerations. Inthe case of the product, ��(A;B) : N(A�B)! NA�NBis an arrow, in general not uniquely determined, that splits a computation. The following is a standardchoice: ��(A;B) = hN�1; N�2iwhich satis�es the equations of Theorem 3.7:(�A � �B) � ��(A;B) = �A�B��NA;NB �N��(A;B) � A�B = (A � B) � ��(A;B)Therefore, with this choice of ��, e� : CN � CN ! CN results to be a lifting of �.A distributive law for the coproduct is an arrow�+(A;B) : N(A+B)! NA+NBthat does not always exist. One alternative would be to proceed by analogy with monads, and require,for the existence of the coproduct distribution, that the comonad is costrong. A comonad is said to becostrong when it comes equipped with a natural transformation �A;B = N(A +B) ! NA+ B, called acostrength, subject to four coherence conditions obtained from those for strong monads [26] by reversingthe direction of all arrows and replacing all products by coproducts. We will not enter into the detailshere. For the product comonad, the comonad we will deal with in the next two sections, a distributivelaw for the coproduct exists under certain conditions, and, as we will see later, that distributive law turnsout to be the natural choice.From the distributive laws de�ned above we can derive an expression of the monadic extension foreach polynomial functor:eIf = f F̂ hGiif = eF (fG1f; : : : ; fGnf)fCnf = �C f e� g = hf �N�1; g �N�2ig� ni (f1; : : : ; fn) = fi f e+ g = (f + g) � �+Thus, in particular,̂(F �G)f = h eFf �N�1; eGf �N�2i ^(F +G)f = (eFf + eGf) � �+We conclude this section presenting a property speci�c to comonadic extensions of composite functors.In the next section, this property will help us to derive expansions of a comonadic recursive operator onspeci�c datatypes.Proposition 3.8 Let (N; �;�#) be a comonad. Let H = F hG1; : : : ; Gni be a composite functor on Csuch that F : Cn ! C has a lifting eF over N . Then, for every f : NA ! B, the following diagramcommutes: NF (GiA) (eHf)# - NF (GiB)F (NGiA)�F(GiA) ? F ((fGif)#)- F (NGiB)�F(GiB)?7

Proof The commutativity of the desired diagram follows from the commutativity of the following com-posite diagram.NF (GiA) (�F)#- NF (NGiA) NF (�Gi)- NF (GiNA) NF (Gif)- NF (GiB)(I) (II) (III)F (NGiA)�F ? F (id#)- F (NNGiA)�F ? F (N�Gi)- F (NGiNA)�F? F (NGif)- F (NGiB)�F?In fact, observe that(eHf)# = NF (Gif) �NF (�Gi) � (�F)# F ((fGif)#) = F (NGif) � F (N�Gi) � F (id#)Recall that, by hypothesis, eF was assumed to be a lifting. So, in particular, �F satis�es the equationsof Theorem 3.7. Therefore, (I) commutes as it coincides with equation (5); note that id# = and(�F)# = N�F � . (II) and (III) commute by naturality of �F . 2To see an instance of this property, consider the case of H = F + G. Then, the following equationholds: �+ � (eHf)# = ((eFf)# + (eGf)#) � �+ (6)4 Functions with ParametersSome recursive functions require extra (�xed) parameters, usually representing some context information,for their computation. A function of this kind can be de�ned in essentially two ways. One is to give itby a higher-order de�nition, i.e. as a curried function that yields a function on the parameters as result,something that is common practice in a higher-order functional language. From a categorical point ofview, a de�nition of this kind can be given if the corresponding underlying category is cartesian closed,that is, a category such that for every pair of objects A and B there is an exponential object [A ! B]satisfying an universal property (see e.g. [2]). To see an example, consider the function that adds twonatural numbers. Its curried de�nition add : N ! [N ! N] is given byadd zero n = n add (succ m) n = succ (add m n)This de�nition corresponds to a higher-order fold, add = (jh1; h2j), with h1 = �n:n : N ! N, andh2 = �g:�n: succ (g n) : [N ! N] ! [N ! N].The other possibility is to introduce the function with parameters as a �rst-order de�nition, i.e. asa function from the product between the recursive argument and the parameters to the result. Thecorresponding de�nition of add, of type N � N ! N, is given byadd (zero; n) = n add (succ m;n) = succ (add (m;n))De�nitions of this kind can be written both in a �rst-order and in a higher-order language, but they cannotbe represented as a fold. The problem is that fold does not possess the ability of explicitly managingparameters by itself. One way to overcome this problem is to introduce a new operator, called pfold,which is a sort of fold with parameters. Our motivation to study such an operator is by no means becausewe want to avoid the use of higher-order. Higher-order is without doubts one of the most important anduseful features of modern functional languages. Our interest in pfold is, however, based on the fact thatit represents an alternative way of de�ning a speci�c class of structural recursive functions, and, perhapsthe most important reason, it constitutes a simple example of the combination between comonadic e�ectsand recursion. On the other hand, pfold might be the only alternative available to de�ne the functionsin question in a traditional language without higher-order features.As Cockett and Spencer [10] observed, to achieve a de�nition of pfold it is not necessary to assumethat the underlying category C is cartesian closed. Instead, it is su�cient to assume that the initialalgebra is strongly initial [10] (or initial with parameters). The theory of strong datatypes has been usedas the basis for the design of the programming language charity [9].8

The concept of strong initiality is based on that of strong functor. A functor F : C ! C is said tobe strong if it is equipped with a natural transformation �FA;X : FA�X ! F (A�X), called a strength,such that the following equations hold:F�1 � �FA;X = �1 (7)F�A;X;Y � �FA;X�Y = �FA�X;X � (�FA;X � idY) � �FA;X;Y (8)Polynomial functors turn out to be strong under the additional assumption that category C is distributive.A category C is said to be distributive [34, 8] if it possesses both �nite products and coproducts and binaryproducts distribute over coproducts. This means that, for any objects A, B and C, the canonical map[inl� idC ; inr � idC] : A� C +B � C ! (A+B)� Cis an isomorphism whose inverse is the natural transformation denoted bydA;B;C : (A+B)� C ! A� C +B � CThere is a plenty of examples of such categories, since every cartesian-closed category with coproducts isa distributive category. Set and Cpo1 are typical cases.A de�nition of strength for each polynomial functor F can be given by induction on the structure ofF . � IA;X = idA�X : A�X ! A�X�Cn(A1;:::;An);X = �1 : C �X ! C��ni(A1;:::;An);X = idAi�X : Ai �X ! Ai �X��(A;B);X = h�1 � idX ; �2 � idXi : (A�B)�X ! (A�X)� (B �X)�+(A;B);X = dA;B;X : (A+B)�X ! A�X +B �X�F hGiiA;X = F (�G1A;X ; : : : ; �GnA;X) � �F(GiA);X : F (GiA)�X ! F (Gi(A�X))It is easy to check that each � above de�ned indeed satis�es the equations (7) and (8).Strong functors can be lifted to work on X-actions, which are arrows of type A � X ! B for eachA and B. Given a strong functor F , for each f : A � X ! B, we de�ne FXf : FA � X ! FB to beFXf = Ff � �FA;X .Given a strong functor F , an initial F -algebra inF is said to be strongly initial [10] if, for each objectX and X-action h : FA � X ! A, there exists a unique X-action f : �F � X ! A that makes thefollowing diagram in C commute F�F �X inF � idX - �F �XFA�XhFXf; �2i ? h - Af?The unique arrow f that results from strong initiality is precisely the de�nition of the pfold operator weare looking for. We denote it by pfoldF (h) : �F �X ! A.The following proposition guarantees the existence of categories where strong initiality holds.Proposition 4.1 ([10]) If C is a cartesian closed category, then every initial algebra is strongly initial.1By Cpo we mean the category of cpos (not necessarily having a bottom element) and continuous functions.
9

Proof Let inF be initial. Consider an X-action h : FA � X ! A. With it, construct the F -algebrak = curry(j) : F [X ! A] ! [X ! A], where j = h � hFXapply; �2i : F [X ! A]�X ! A. Now, considerthe following composite diagram:F�F � idX Ff � idX- F [X ! A]�X hFXapply; �2i- FA�X(I) (II)�F � idXinF � idX ? f � idX- [X ! A]�Xk � idX? apply - Ah?where f = (jkj)F . (I) commutes by initiality of inF , whereas (II) commutes by the universal property ofthe exponential, i.e. apply � (curry(j) � idX) = j. So, as a consequence, the outer rectangle commutes.By the bijection between the curried and uncurried version of any arrow, we have that, given f : �F ![X ! A], there is a unique f 0 : �F � X ! A such that apply � (f � idX) = f 0. Therefore, sincehFXapply; �2i � (Ff � idX) = hFX(apply � (f � idX)); �2i, it follows that f 0 is the unique arrow such thatf 0 � (inF � idX) = h � hFXf 0; �2iIn other words, inF is strongly initial. Since f 0 corresponds to pfoldF (h), as an aside we obtain thisequation: pfoldF (h) = apply � ((jcurry(h � hFXapply; �2i)j)F � idX) 2Consider the product comonad (N; �;�#) described in Example 3.3. Observe that each X-actioncorresponds to an arrow NA ! B in the Kleisli category CN . In particular, every pfold. Motivated bythis fact we will restate the de�nition of pfold, now in terms of comonadic notions. As a result we willobtain a de�nition that makes explicit the fact that pfold is a special case of a comonadic fold.First of all, observe that every strength �FA;X : FA � X ! F (A � X) is a distributive law �FA :NFA ! FNA of the product comonad over F . Therefore, FX corresponds to a comonadic extensioneF , which can be shown to be indeed a lifting of F when F is polynomial. In addition, it holds thath � h eFf; �2i = h � (eFf)# and f � (g � idX) = f � hg � �1; �2i = f � (g � �1)# = f � eg#.In summary, the universal property of pfold states that, for any h : NFA ! A, pfold is the uniquearrow f = pfoldF (h) : N�F ! A that makes the following diagram commute:NF�F ginF# - N�FNFA(eFf)# ? h - Af?or equivalently, pfoldF (h) �ginF = h � eF pfoldF (h)This means that pfold can be regarded as being the de�nition of a comonadic fold for the special case ofthe product comonad.The following notions hold for every comonad. A comonadic F -algebra is an arrow h : NFA ! A.Viewed as an arrow in CN , a comonadic algebra corresponds to a eF -algebra in that category. Considertwo eF -algebras h : NFA ! A and h0 : NFB ! B. A homomorphism between h and h0 is an arrowf : NA ! B such that f � h = h0 � eFf , whereas a pure homomorphism between them is an arrowf : A! B such that f � h = h0 �NFf .Therefore, in the context of the product comonad, an initial algebra inF is said to be strongly initialwhen its lifting,ginF : NF�F ! �F , happens to be the initial object in the category of eF -algebras. Thismeans that, for each eF -algebra h : NFA! A, the comonadic fold is de�ned as the unique homomorphismbetweenginF and h that exists by initiality. Observe that, so de�ned, the comonadic fold (or equivalently,pfold) coincides with the standard fold of the category CN .10

Example 4.2 Like we saw in Example 2.1, the signature of natural numbers is given by the functorK = 1+I . Recall that NA = A�X . Thus, �KA = (�1+ id)�d : N(1+A) ! 1+NA and eKf = (�1+f)�d,for f : NA! B. For any algebra h = [h1; h2]�d : N(1+A)! A, with h1 : 1�X ! A and h2 : A�X ! A,pfold is the unique arrow f = pfoldK(h) : N �X ! A such thatf � ([zero; succ] � idX) = h � (eKf)#Let us now derive an expansion of this de�nition. By equation (6), we have that d�(eKf)# = (�#1 +f#)�d.So, h � (eKf)# = [h1 � �#1 ; h2 � f#] � d = [h1; h2 � hf; �2i] � d. Pre-composing both sides of the equationwith d�1 = [inl� idX ; inr � idX], we then obtainf � [zero� idX ; succ� idX] = [h1; h2 � hf; �2i]Finally, by case analysis we get the desired equations:f � (zero� idX) = h1 f � (succ� idX) = h2 � hf; �2i 2Example 4.3 Consider the list datatype. Its signature is given by the functor LA = 1+A� I . For eachh = [h1; h2] � d : (1 + A � B) �X ! B, pfold is the unique arrow f = pfoldLA(h) : A� �X ! B thatmakes the following equation hold,f � ([nil; cons]� idX) = h � ((fLAf)#Like in the previous example, applying (6) and pre-composing both sides with d�1, we obtainf � [nil� idX ; cons� idX] = [h1; h2 � hh�1 � �1; f � (�2 � idX)i; �2i]which is amenable to case analysis:f � (nil� idX) = h1 f � (cons� idX) = h2 � hh�1 � �1; f � (�2 � idX)i; �2iIn functional notation, f (nil; x) = h1(x) and f (cons(a; `); x) = h2(a; f(`; x); x). 2Example 4.4 Consider the binary tree datatype. Its signature is given by the functor BA = 1+I�A�I .For each h = [h1; h2] � d : (1 + B � A � B) � X ! B, pfold is the unique arrow f = pfoldBA(h) :btree(A) �X ! B that makes the following equation hold,f � ([empty; node]� idX) = h � ((fBAf)#By similar arguments as in the preceding examples we obtain the following equations in functionalnotation: f (empty; x) = h1(x) f (node(t; a; u); x) = h2(f(t; x); a; f(u; x); x) 2The pfold operator can also be used to give a de�nition of a strength for any type functor D�corresponding to a strongly initial parameterised datatype induced by a bifunctor F that satis�es to bebistrong. A bifunctor F : C �C ! C is called bistrong [9] if the functors F (A;�) and F (�; B) are strong.Then, �D�A;X : D�A�X ! D�(A�X) is given by�D�A;X = pfoldFA(�A;X) where �A;X = inFA�X � �F (�;D�(A�X))A;XA proof that �DA;X is indeed a strength can be found in [29].Now, let us see some laws for pfold. Assume that F is polynomial; that way eF is a lifting. Webegin with an identity law, which states that a pfold with the lifting of the initial algebra as target is theidentity in CN . pfoldF (ginF) = ��F11

The fusion law states that the Kleisli composition of a pfold with a homomorphism is again a pfold.f � h = k � eFf) f � pfoldF (h) = pfoldF (k)The following law states an obvious result: (the lifting of) every fold can be seen as a pfold that does notmake use of the parameters.](jhj)F = pfoldF (eh)It is possible to state two acid rain laws for pfold. Each of them deal with a particular notion oftransformer, di�erent from the one introduced for fold in Section 2. The �rst law, called pfold-pfoldfusion, permits to fuse two pfolds. The notion of transformer employed by pfold-pfold fusion is thefollowing: A transformer is a function T : (NFA ! A) ! (NGA ! A) that converts eF -algebras intoeG-algebras such that it preserves homomorphisms. That is, given two eF -algebras h : NFA ! A andh0 : NFB ! B, if f : NA! B is a homomorphism between them, i.e. f � h = h0 � eFf , then it is also ahomomorphism between the corresponding eG-algebras, i.e. f �T(h) = T(h0) � eGf .The de�nition of pfold-pfold fusion is the following:T transformer) pfoldF (h) � pfoldG(T(ginF)) = pfoldG(T(h))Note that, since pfold coincides with the standard fold when viewed as an arrow in CN , pfold-pfold fusionis nothing but fold-fold fusion (2) in CN .The second acid rain law, called pfold-fold fusion, permits the fusion of compositions between pfoldsand folds. It works with the following notion of transformer. A transformer is a function T : (FA !A) ! (NGA! A) that converts F -algebras into eG-algebras such that, if f : A! B is a homomorphismbetween h : FA ! A and h0 : FB ! B, then it is a pure homomorphism between the correspondingeG-algebras, that is, if f � h = h0 � Ff then f �T(h) = T(h0) �NGf .T transformer) (jhj)F � pfoldG(T(inF)) = pfoldG(T(h)) (9)Further laws for pfold can be found in [29].Example 4.5 The function prune : btree(A) � A� ! btree(A) takes a binary tree t and a list ` anddiscards all subtrees whose roots occur in `.prune(empty; `) = emptyprune(node(t; a; t0); `) = if a 2 ` then emptyelse node(prune(t; `); a; prune(t0; `))We can de�ne it as pfold, prune = pfoldBA(alg-pr) : Nbtree(A) ! btree(A), where NA = A � A�. Thecomonadic algebra alg-pr : NBA(btree(A)) ! btree(A) is given by,alg-pr(x; `) = case x ofinl(u) ! emptyinr(t; a; t0)! if a 2 ` then empty else node(t; a; t0)It can be written as alg-pr = T([empty; node]), where T : (BAC ! C) ! (NBAC ! C) is the transformergiven by, T(h) = �(x; `): case x ofinl(u) ! h1inr(c1; a; c2)! if a 2 ` then h1 else h2(c1; a; c2)with h = [h1; h2].Consider the function size : btree(A) ! N that counts the number of nodes of a tree.size(empty) = zero size(node(t; a; u)) = 1 + size(t) + size(t0)12

This function is a fold, size = (jalg-sj)BA ; the algebra alg-s : 1+N�A�N ! N has the obvious de�nition.Suppose that now we want to count the number of nodes that remain in a tree after pruning.count = btree(A) �A� prune - btree(A) size - NBy using pfold-fold fusion we can transform this composition into a single pfold, avoiding in that way thegeneration of the intermediate tree. size � prune = pfoldBA(T(alg-s))That is, prune(empty; `) = 0prune(node(t; a; t0); `) = if a 2 ` then 0 else 1 + count(t; `) + count(t0; `) 25 AccumulationsAccumulations are functions that use an extra parameter to keep intermediate results to be used duringthe computation (see e.g. [4, 13, 14, 18]). In this section we build up a comonadic operator for a kind ofdownwards accumulations by adding some ingredients to the de�nition of pfold.For de�ning accumulations we can follow, essentially, the same two alternatives discussed before forfunctions with parameters. One is to de�ne accumulations by higher-order folds. This is the approachadopted in [18] and [5]. As before, this alternative requires to work in a cartesian closed category. Asan example, consider the function asums that computes the list of accumulated sums of a list of naturalnumbers. The curried version is of type list(N) ! [N ! list(N)]:asums [] e = [e] asums (n : `) e = e : asums ` (e+ n)The other alternative is to give an uncurried de�nition of the accumulation. In the case of asums,asums([]; e) = [e] asums(n : `; e) = e : asums(`; e+ n)De�nitions of this kind cannot be written as a fold nor as a pfold. Like for functions with parameters,a simple fold cannot be used because it lacks the possibility of managing extra arguments. The problemwith pfold, on the other hand, is that it can deal with extra arguments, but they cannot be altered alongthe computation. Like in the previous section, the solution we will adopt consists of the introduction ofa new operator, called afold, that corresponds to a fold with accumulating parameters. The motivationsfor de�ning such an operator are the same as the discussed for pfold. To achieve a de�nition of afold wewill need to work with a modi�ed version of strong initiality that reects the presence of accumulations.We will also show that, like pfold, afold is a form of comonadic fold.Let us �x an object X that in this case will be regarded as an object of accumulators. Consider againthe product comonad (N; �;�#), with NA = A�X . Recall the diagram that de�nes pfold.NF�F ginF# - N�FNFA(eFf)# ? h - Af?As we saw in the previous section, the existence and uniqueness of a f ful�lling this diagram is whatcharacterizes the notion of strong initiality. Functions with parameters and accumulations are very similarstructurally. The only di�erence between them is that accumulations modify the extra parameters duringcomputation. Therefore, to achieve a de�nition of a fold with accumulating parameters starting o� fromthat of pfold, we only need to alter the part of pfold that in the new operator represents the processof accumulation. That part is within eFf ; more precisely, within the distributive law �F . In pfold,13

the distributive law simply makes available the value of the parameters to the recursive calls. In anaccumulation, however, we do not distribute the value of the parameters to the recursive calls, but anaccumulated value, which is calculated from the current value of the parameters and the informationcontained in the node of the data structure that is being visited. In this respect, for a datatype withsignature F , we will assume that the accumulation is performed by an accumulating function g : F1�X !X , where F1 represents the information that is left in a node after discarding the sub-structures. Wethen introduce a modi�ed version of the distributive law that reects the process of accumulation:�F;gA = NFA �F;gA - NFA �FA- FNAwhere �F;gA = FA�X h�1; F (!A)� idXi- FA� (F1�X) idFA � g- FA�XObserve that the new distributive law is indexed by the functor and the function that performs theaccumulation. Indeed, the whole construction corresponding to the new operator will be parametric ong. Note also that �F;gA is natural on A, as required (in order to be a distributive law). This is becauseg as well as the rest of the components of �F;g (which are in turn natural transformations) do not makeany assumption about A. Moreover, g acts on X , which is an internal datum of the comonad.From �F;gA we can construct a new comonadic extension of F , let us call it F . Then, Ff = Ff � �F;gA ,or which is the same, Ff = eFf � �F;gA . In general, we do not expect that the new extension is a lifting.However, equation (4) holds independently from the choice of g. This means that F preserves identitiesbut lacks in general the preservation of Kleisli composition.With the new constructions we can now state a modi�ed version of strong initiality. Given a functorF and an arrow g : F1�X ! X , we say that an initial algebra is initial with accumulating parametersif, for each F -algebra h : NFA ! A, there exists a unique arrow f = afoldF (g; h) : N�F ! A, calledfold with accumulating parameters, that makes the following diagram in C commuteNF�F ginF# - N�FNFA(Ff)# ? h - Af?or equivalently, afoldF (g; h) �ginF = h � F afoldF (g; h)Proposition 5.1 If C is a cartesian closed category, then every initial algebra is initial with accumulatingparameters.Proof The proof of this proposition is exactly the same as the one showed for Proposition 4.1 exceptfor the fact that we have to replace FX by F . 2In Section 4, we used Proposition 3.8, actually an instance of it given by equation (6), to deriveexpansions of pfold for particular datatypes. In the case of afold, however, it is necessary to state aslightly di�erent property that takes account of the presence of �F;g as part of the distributive law. Thenew property assumes composite functors of the form F = G1 + � � � + Gn. We present here the simplecase of F = G1+G2, since it su�ces for the examples we show below; the generalization to n summandsis immediate.Proposition 5.2 Let (N; �;�#) be the product comonad. Let F = G1 + G2 be a composite functor.Let the accumulating function g : F1 � X ! X be given by g = [g1; g2] � d, with gi : Gi1 � X ! X ,14

i = 1; 2. Then, for every f : NA! B, the following diagram commutes:N(G1A+G2A) (Ff)# - N(G1B +G2B)NG1A+NG2A�+ ? (G1f)# + (G2f)#- NG1B +NG2B�+?Proof Recall that, for the product comonad, �+ = d. The commutativity of the desired diagram followsfrom the commutativity of the following one.N(G1A+G2A) (�+ � �F;g)# - N(NG1A+NG2A) N(fG1f + fG2f)- N(G1B +G2B)(I) (II)NG1A+NG2A�+ ? (�G1;g1)# + (�G2;g2)#- N2G1A+N2G2A�+ ? NfG1f +NfG2f- NG1B +NG2B�+?In fact, observe that (Ff)# = N(fG1f + fG2f) � (�+ � �F;g)#(G1f)# + (G2f)# = (NfG1f +NfG2f) � ((�G1;g1)# + (�G2;g2)#)(II) commutes by naturality of �+. The proof of (I) is given by the following calculation. Some of itssteps are, in turn, the result of straightforward but tedious calculations. Let us de�ne fi = gi �Gi(!A),with i = 1; 2. Hence, �Gi;gi = h�1; fii. Moreover, it is easy to see that �F;g = h�1; [g1; g2] � d �NF (!A)i =h�1; [f1; f2] � di. �+ � (�+ � �F;g)# = d � (d � h�1; [f1; f2] � di)#= d �N(d � h�1; [f1; f2] � di) � = d �N((h�1; f1i+ h�1; f2i) � d) � = d �N(�G1;g1 + �G2;g2) �Nd � = (N�G1;g1 +N�G2;g2) � d �Nd � = (N�G1;g1 +N�G2;g2) � (+) � d= ((�G1;g1)# + (�G2;g2)#) � �+ 2Before showing examples of afold on speci�c datatypes, we derive a generic expansion of this operatorfor the case that the datatype signature is of the form F = G1 +G2. In fact, that is the form the basefunctors of the examples have. Let h = [h1; h2] � d : NFA ! A and let g = [g1; g2] � d : F1�X ! X .Thus, afold is the unique arrow f = afoldF (g; h) that makes this diagram commute:N(G1 �F +G2 �F) NinF - N�FN(G1A+G2A)(Ff)# ? d- NG1A+NG2A [h1; h2] - Af?Applying Proposition 5.2 we obtain this equationf �NinF = [h1; h2] � ((G1f)# + (G2f)#) � dLet inF = [c1; c2]. If we pre-compose both sides of this equation with d�1 and apply product andcoproduct laws we get 15

f � [c1 � idX ; c2 � idX] = [h1 � (G1f)#; h2 � (G2f)#]Hence, by case analysis we havef � (c1 � idX) = h1 � (G1f)# f � (c2 � idX) = h2 � (G2f)#where Gif = fGif � �Gi;gi = fGif � h�1; gi � (Gi!� idX)i.Example 5.31. For the natural numbers, f = afoldK(g; h) is such thatf � (zero� idX) = h1 f � (succ� idX) = h2 � hf � h�1; g2 � (!� idX)i; �2iwhere h = [h1; h2] � d : (1 + A) � X ! A and g = [g1; g2] � d : (1 + 1) � X ! X . In functionalnotation, f(zero; x) = h1(x) and f(succ(n); x) = h2(f(n; g2(x)); x).2. For lists, f = afoldLA(g; h) is such thatf(nil; x) = h1(x) f(cons(a; `); x) = h2(a; f(`; g2(a; x)); x)where h = [h1; h2] � d : (1 +A�B)�X ! B and g = [g1; g2] � d : (1 +A� 1)�X ! X .For example, the asum function is given by asum = afold(g; h) : N� � N ! N� , with h1(x) = [x],h2(a; l; x) = cons(x; l), g1(x) = x, g2(a; x) = a+ x.3. For binary trees, f = afoldBA(g; h) is such thatf(empty; x) = h1(x) f(node(t; a; u); x) = h2(f(t; g2(a; x)); a; f(u; g2(a; x)); x)where h = [h1; h2] � d : (1 + C �A� C)�X ! C and g = [g1; g2] � d : (1 + 1�A� 1)�X ! X .2Now, we present some laws for afold. The identity law states that, whatever the action of the accumu-lating function is, an afold on the lifting of the initial algebra simply returns the element of the datatypethat it takes as input. For every g, afoldF (g;ginF) = ��FThe identity law is a consequence of the fact that F preserves identities. The next law is a fusion law. Itstates that the composition of a afold with a pure homomorphism is again a afold.f � h = k �NFf) f � afoldF (g; h) = afoldF (g; k) (10)The following law states that, �xed an accumulating function g, (the lifting of) every fold can be seen asan afold that does not make use of the accumulators.](jhj)F = afoldF (g;eh)An acid rain law can also be established for afold. We call it afold-fold fusion since it permits to fusecertain kinds of afolds with folds. The shape of the de�nition and the notion of transformer employedby this law coincide with those for pfold-fold fusion (9). Let us recall the notion of transformer. We saythat a function T : (FA! A) ! (NGA! A) is a transformer if it converts F -algebras into G-algebrasin such a way that, if f : A ! B is a homomorphism between h : FA ! A and h0 : FB ! B, thenit is a pure homomorphism between the corresponding G-algebras. That is, if f � h = h0 � Ff thenf �T(h) = T(h0) �NGf .T transformer) (jhj)F � afoldG(g;T(inF)) = afoldG(g;T(h))The proof of this law is as follows. Consider an algebra h : FA! A. Since every fold is a homomor-phism, by de�nition of transformer we have that (jhj)F : �F ! A is also a pure homomorphism betweenthe algebras T(inF) : NG�F ! �F and T(h) : NGA ! A. Therefore, by afold fusion (10), it followsthat (jhj)F � afoldG(T(inF)) = afoldG(T(h)), which is the desired result.16

Example 5.4 The function cut : btree(A) ! btree(A) takes a tree and removes all subtrees whose roothas already occurred in any of its ancestors.cut(t) = prune(t; nil)where prune : btree(A) �A� ! btree(A) is such thatprune(empty; `) = emptyprune(node(t; a; t0); `) = if a 2 ` then emptyelse node(prune(t; cons(a; `)); a; prune(t0; cons(a; `)))This function can be written as an afold, prune = afoldBA(acc-pr; alg-pr) : Nbtree(A) ! btree(A), whereNA = A�A�. The accumulating function acc-pr : BA1�A� ! A� is de�ned byacc-pr(x; `) = case x ofinl(u) ! `inr(u; a; u0)! cons(a; `)whereas the comonadic algebra alg-pr : NBA(btree(A)) ! btree(A) is given by,alg-pr(x; `) = case x ofinl(u) ! emptyinr(t; a; t0)! if a 2 ` then empty else node(t; a; t0)This algebra can be written as alg-pr = T([empty; node]), where T : (BAC ! C)! (NBAC ! C) is thetransformer showed in Example 4.5.Like in Example 4.5, we want to count the number of nodes that remain in a tree after pruning.count = btree(A) �A� prune - btree(A) size - Nwhere recall from Example 4.5 that size = (jalg-sj)BA . Using afold-fold fusion we can transform thiscomposition into a afold, eliminating as a result the generation of the intermediate tree.count = size � prune = afoldBA(acc-pr;T(alg-s))Expanding the afold we obtaincount(empty; `) = zerocount(node(t; a; t0); `) = if a 2 ` then zeroelse 1 + count(t; cons(a; `)) + count(t0; cons(a; `)) 26 Conclusions and Future WorkThis paper presented some results in an attempt to study recursive operators with e�ects modeled bycomonads. We showed two common applications that neatly combine the product comonad with struc-tural recursion, obtaining as a result two instances of comonadic fold.Similar results can be achieved for other operators, like unfold or primitive recursion (paramorphisms[23]). It is to notice that the analysis of the interaction between comonads and corecursion is, in principle,not so interesting as it is in the case of (structural) recursion. The reason is that, in a similar manner asmonadic folds reduce to folds (see e.g. [12, 25]), comonadic unfolds can esaily be reduced to unfolds. Infact, for h : A! NFA, comonadic unfold is de�ned by the unique arrow f : NA ! �F that makes thisdiagram commute: NFA �h# NAF�FeFf ? �foutF N�Ff#?17

But, since eFf = Ff � �F and foutF � f# = outF � f , we have that outF � f = Ff � (�FA � h). Therefore,by �nality f = [(�FA � h)]F . In other words, independently of the particular comonad, a comonadic unfoldexists for every coinductive type.Other directions for future study are::� The search of more interesting cases of comonads that neatly interact with recursion.� The derivation of further laws for accumulations, for example, laws involving type functors.� The application of the accumulation strategy [4, 3] in connection with our notion of accumulation,and its comparasion with other approaches (like e.g. [18]).� The combination of recursion with both monads and comonads.Acknowledgements I would like to thank the anonymous referees for helpful suggestions and com-ments. Diagrams were drawn using Paul Taylor's macros.References[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Programming - An Introduction -.In Advanced Functional Programming, LNCS 1608. Springer-Verlag, 1999.[2] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.[3] R. Bird. Introduction to Functional Programming using Haskell, 2nd edition. Prentice-Hall, UK,1998.[4] R.S. Bird. The Promotion and Accumulation Strategies in Transformational Programming. ACMTransactions on Programming Languages and Systems, 6(4), October 1984.[5] R.S. Bird and O. de Moor. Algebra of Programming. Prentice Hall, UK, 1997.[6] S. Brookes and S. Geva. Computational Comonads and Intensional Semantics. Technical ReportCMU-CS-91-190, School of Computer Science, Carnegie Mellon University, 1991.[7] S. Brookes and K. Van Stone. Monads and Comonads in Intensional Semantics. Technical ReportCMU-CS-93-140, School of Computer Science, Carnegie Mellon University, 1993.[8] R. Cockett. Introduction to Distributive Categories. Mathematical Structures in Computer Science,3:277{307, 1993.[9] R. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18, University of Calgary,June 1992.[10] R. Cockett and D. Spencer. Strong Categorical Datatypes I. In R.A.C. Seely, editor, Interna-tional Meeting on Category Theory 1991, volume 13 of Canadian Mathematical Society ConferenceProceedings, pages 141{169, 1991.[11] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit Twente, The Netherlands,1992.[12] M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda Informatica 94-28,University of Twente, June 1994.[13] J. Gibbons. Upwards and Downwards Accumulations on Trees. In R.S. Bird, C.C. Morgan, andJ.C P. Woodcock, editors, Mathematics of Program Construction, LNCS 669. Springer-Verlag, 1993.[14] J. Gibbons. Generic Downwards Accumulations. Science of Computer Programming, 37(1{3):37{65,2000. 18

[15] J. Gibbons. Lecture Notes on Algebraic and Coalgebraic Methods for Calculating Functional Pro-grams. In Summer School on Algebraic and Coalgebraic Methods in the Mathematics of ProgramConstruction, Oxford, UK, April 2000.[16] J. Gibbons and G. Jones. The Under-Appreciated Unfold. In Proc. 3rd. ACM SIGPLAN Interna-tional Conference on Functional Programming. ACM, September 1998.[17] Z. Hu and H. Iwasaki. Promotional Transformation of Monadic Programs. In Fuji InternationalWorkshop on Functional and Logic Programming, pages 196{210. World Scienti�c, July 1995.[18] Z. Hu, H. Iwasaki, and M. Takeichi. Calculating Accumulations. Technical Report METR 96-03,Faculty of Engineering, University of Tokyo, March 1996.[19] G. Hutton. Fold and Unfold for Program Semantics. In Proc. 3rd. ACM SIGPLAN InternationalConference on Functional Programming. ACM, September 1998.[20] S. Peyton Jones and J. Launchbury. Lazy functional state threads. In SIGPLAN Symposium onProgramming Language Design and Implementation (PLDI'94), pages 24{35, 1994.[21] R. Kieburtz. Codata and Comonads in Haskell (Unpublished manuscript). Available fromhttp://www.cse.ogi.edu/~dick/dick.html.[22] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and Monographsin Computer Science. Springer-Verlag, 1986.[23] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4:413{424, 1992.[24] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopesand Barbed Wire. In Proceedings of Functional Programming Languages and Computer Architec-ture'91, LNCS 523. Springer-Verlag, August 1991.[25] E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Programming. In AdvancedFunctional Programming, LNCS 925, pages 228{266. Springer-Verlag, 1995.[26] E. Moggi. Notions of Computation and Monads. Information and Computation, 93:55{92, 1991.[27] P.S. Mulry. Lifting Theorems for Kleisli Categories. In 9th International Conference on MathematicalFoundations of Programming Semantics, LNCS 802, pages 304{319. Springer-Verlag, 1993.[28] A. Pardo. Fusion of Recursive Programs with Computational E�ects. Theoretical Computer Science(to appear), 2000. Available from http://www.fing.edu.uy/~pardo.[29] A. Pardo. A Calculational Approach to Strong Datatypes. In Selected Papers from the 8th NordicWorkshop on Programming Theory. Research Report 240, Department of Informatics, University ofOslo, 1997.[30] S. Peyton-Jones and P. Wadler. Imperative Functional Programming. In Proceedings of 20th AnnualACM Symposium on Principles of Programming Languages, Charlotte, North Carolina, 1993.[31] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free University,Amsterdam, June 1996.[32] D. Turi and G. Plotkin. Towards a Mathematical Operational Semantics. In LICS'97, pages 280{291,1997.[33] P. Wadler. Monads for functional programming. In Advanced Functional Programming, LNCS 925.Springer-Verlag, 1995.[34] R.F.C. Walters. Data Types in Distributive Categories. Bull. Austral. Math. Soc., 40:79{82, 1989.19

