
University of Wollongong
Research Online

Faculty of Informatics - Papers Faculty of Informatics

2012

Privacy enhanced data outsourcing in the cloud
Miao Zhou
University of Wollongong, mz775@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Willy Susilo
University of Wollongong, willy_susilo@uow.edu.au

Jun Yan
University of Wollongong, jyan@uow.edu.au

Liju Dong
University of Wollongong, liju@uow.edu.au

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Publication Details
Zhou, M., Mu, Y., Susilo, W., Yan, J. & Dong, L. (2012). Privacy enhanced data outsourcing in the cloud. Journal of Network and
Computer Applications, 35 (4), 1367-1373.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/informatics
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Privacy enhanced data outsourcing in the cloud

Abstract
How to secure outsourcing data in cloud computing is a challenging problem, since a cloud environment
cannot been considered to be trusted. The situation becomes even more challenging when outsourced data
sources in a cloud environment are managed by multiple outsourcers who hold different access rights. In this
paper, we introduce an efficient and novel tree-based key management scheme that allows a data source to be
accessed by multiple parties who hold different rights. We ensure that the database remains secure, while some
selected data sources can be securely shared with other authorized parties.

Keywords
outsourcing, cloud, privacy, enhanced, data

Disciplines
Physical Sciences and Mathematics

Publication Details
Zhou, M., Mu, Y., Susilo, W., Yan, J. & Dong, L. (2012). Privacy enhanced data outsourcing in the cloud.
Journal of Network and Computer Applications, 35 (4), 1367-1373.

This journal article is available at Research Online: http://ro.uow.edu.au/infopapers/1901

http://ro.uow.edu.au/infopapers/1901

Privacy Enhanced Data Outsourcing in the Cloud

Miao Zhou, Yi Mu, Willy Susilo

Centre for Computer and Information Security Research, School of Computer Science and

Software Engineering,University of Wollongong, Wollongong, NSW 2522, Australia

Jun Yan

School of Information Systems and Technology, University of Wollongong, Wollongong,

NSW 2522, Australia

Liju Dong

School of Computer Science and Software Engineering,University of Wollongong,
Wollongong, NSW 2522, Australia

School of Information Science and Engineering, Shenyang University, Shenyang 110044,
P. R. China

Abstract

How to secure outsourcing data in cloud computing is a challenging problem,
since a cloud environment cannot been considered to be trusted. The situation
becomes even more challenging when outsourced data sources in a cloud envi-
ronment are managed by multiple outsourcers who hold different access rights.
In this paper, we introduce an efficient and novel tree-based key management
scheme that allows a data source to be accessed by multiple parties who hold dif-
ferent rights. We ensure that the database remains secure, while some selected
data sources can be securely shared with other authorized parties.

Keywords:
Access Control, Data Outsourcing, Cloud Computing

1. Introduction

Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (software, data stor-
age, network, etc.) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. The datacenter hardware
and software is what we call a cloud and the services over the Internet provided
by the cloud are referred as cloud services. With these cloud-based services, it

Email addresses: {mz775,ymu,wsusilo}@uow.edu.au (Miao Zhou, Yi Mu, Willy Susilo),
jyan@uow.edu.au (Jun Yan), liju@uow.edu.au (Liju Dong)

Preprint submitted to Elsevier February 1, 2012

is possible for enterprises to relocate their IT service and maintenance outside
of their organization, regardless of geography and available hardware devices.
Figure 1 shows the variety of cloud services, and the roles of the people that as
data owner, cloud provider and users in different deployment models of cloud
computing.

Enterprise

Data
Storage
Service

Office
Apps

On Demand
CPUs

Printing
Service

Cloud Provider

Private Cloud

CRM
ServiceService

Service

Service

Business
Apps/Service

Employee

User

Public
Cloud

Data
Outsourcing

Data Owner

Data
Sharing

Figure 1: Cloud Computing and Data Outsourcing.

The data stored in a cloud database is considered as data outsourcing, since
they are managed by an external party. Among kinds of cloud computing ser-
vices, we have especially seen the dramatic growth of cloud storage services,
with which enterprises outsource their data into cloud environment for location
independent resource pooling, rapid resource elasticity and usage-based pric-
ing. For example, cloud Storage Services such as Microsoft’s Azure storage and
Amazon’s S3 have gained a lot of popularity recently.

However, while more and more enterprises store their private data on the
cloud storages, which are generally managed by untrusted parties, secure and
privacy have become major concerns. As a countermeasure, Microsoft has re-
cently deployed a virtual private storage service [1]. Although the recent efforts
in secure cloud computing, there are a number of unsolved security issues. One
of such issues is how to protect confidentiality and privacy of user data, while
those data have to be shared/managed by multiple parties. This is also the
issue to be addressed in this paper.

For a consideration of security, the outsourced data are generally encrypted
so that only authorized users can access them. Generally, these outsourced
data consist of many data blocks, hence the management of encryption keys is
a major challenge.

The classical tree-based hierarchy schemes such as RFC2627 [2] and the
scheme proposed by Wong et al. [3] have been widely used in group key man-
agement. With the tree-based ideas, some key management methods of access
hierarchies for data outsourcing have been proposed [4, 5, 6, 7, 8]. These meth-
ods provide some useful solutions to minimize the number of cryptographic keys,

2

which have to be managed and stored. Aiming to provide secure and efficient
access to outsourced data, Wang, Li et al.[4] proposed a tree-based crypto-
graphic key management scheme for data storages in the cloud. They referred
the scenario to as “owner-write-users-read”. Their tree-based key management
structure is similar to a traditional one, where a single root node holds the mas-
ter key that can be used to derive other node keys. Each node key can be used
to derive the keys of its children in the hierarchy. With their scheme, a data
block stored in the cloud can be updated by a party who holds either the specific
decryption key or a node key corresponding to one of its parents. Assume there
is an outsourcing server authorized to manage a node (not the root node) that
has several child nodes, then in this case, the outsourced party is granted the
node key, which can be used to derive all sub-keys for its child nodes. In another
word, once a parent node in the tree is given, all the children would be known.
This is a common problem which exists in many tree-based key management
schemes. The existing ones such as[4, 9, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
could work perfectly, only when all legitimate node users are authorized to access
all the child nodes under the specific one.

Considering this problem, we propose a practical application for private data
management, which we name it as OWUR/W (owner-write-users-read/write)
applications, where a data source protected with a node key in a key manage-
ment tree can be shared with or managed by another party without compromis-
ing the security of the data encrypted with its child nodes’ keys. Additionally,
data can be updated not only by the data owner, but also by other legitimate
parties. We found that this scenario is very useful in outsourcing management.
We notice that other existing schemes do not offer this feature.

Intuitively, we want to realize that the encrypted data block associated with
a node can be decrypted by multiple decryption keys where one of them is
associated with the tree and can be utilized to generate its keys children’s keys,
while other decryption keys are only used to decrypt the data block stored in the
node. Let us assume two decryption keys (d1, d2), assigned to a node, where one
of them is associated with the tree (let us assume that d1 is the key associated
with the tree and is known to the manager only). Both decryption keys are
associated with the unique encryption key, e. For a user, who is authorized to
access only the data block stored in the node and should not have access to
its children, the manager only grants d2 to the user. With d2, the user can
decrypt the data block but cannot generate the decryption keys of this node’s
children. We believe that this method offers an additional privacy protection to
the outsourced data.

In this paper, we propose a novel tree-based key management scheme and
show that it can indeed capture the idea given above. We also show how to
apply our scheme to protect outsourced data in a cloud.

The remainder of this paper is organized as follows. In section 2, we present
our data outsourcing model for cryptographic cloud storage. In section 3, we
describe our key derivation hierarchy for key management in cloud storage.
In section 4, we give a concrete example and present the main construction,
including the encryption method and the detailed algorithms. In section 5, we

3

analyze the data access procedure. In section 6, we discuss an extension of the
proposed scheme. In section 7, we conclude this paper.

2. The Model

In this section, we present our data outsourcing model, following the appli-
cation scenario presented in section 1. An illustration of our model is presented
in Fig. 7. The system consists of four major parties:

• The cloud Provider (P), who provides third-party data storage services.

• The original data owner (O), who holds the master (root) key and is
responsible to set up the key management system.

• The sub-tree data manager (M), who holds an authorized node key, which
can be used to derive all decryption keys for its child nodes. Notice that we
assume each node has two decryption keys: one can be used to derive all
decryption keys of its children and the other can only be used to decrypt
the encrypted data in the specific node.

• A user or another sub-tree data manager (U), who will probably use or
share a data block at a node managed by M but does not hold the full
administrative right of deriving the decryption keys of the children of this
node.

Root Node
(d0)

Node N(i+1)j

accessed by U

(dijk)

O

P

Sub-tree
managed by

M

Figure 2: The data outsourcing model.

Our encryption method is asymmetric, in the sense that the encryption key
and decryption key(s) are different. For simplicity, we assume that the data
stored in each node is encrypted by one encryption key associated with two
decryption keys. One of these two decryption keys is used for the decryption of
the database located at the corresponding node and the generation of sub-keys

4

for the child nodes, while another one can only be used for the decryption of
the database at the same node.

Let eij denote encryption keys and dijk the corresponding decryption keys,
respectively, where i denotes the level of a tree, j the index of nodes and k
the index of decryption keys. The root master key is denoted by d0. Let Nij

denote a node in the tree. Using a binary tree as an example, our model can be
described as follows:

• The original owner O generates a master (root) key, d0, which can be used
to derive all other decryption keys and encryption keys in a tree.

• Each node in the tree obtains a master decryption key dij1 and the sec-
ondary decryption key dij2, generated from the root key. We allow the
secondary decryption key dij2 to be derived from dij1.

• The sub-tree data manager M obtains a key dij1 as its master key, which
can be used to generate all node keys of the sub-tree, including the sec-
ondary keys.

• User U can request a secondary decryption key dij2 from M for accessing
the encrypted data stored in node Nij

This key management scheme holds all features from a normal binary tree
hierarchy and introduces the new secondary key, which enables the flexibility in
key management and additional privacy protection.

3. Key Derivation Hierarchy

Without losing generality, we assume that the outsourced data contain n
blocks and 2(i−1) � n � 2i where i denotes the level of the tree. Therefore, we
can construct a complete binary tree from Node N0 to Nij where i and j denote
the level of a tree and j the node index, respectively.

Before defining the key derivation tree, we first define Key Value.

Definition 1. (Key Value) Except the root node N0, any node Nij in the key
derivation tree T, has a key value Kij of two decryption keys dij1 and dij2.
These two decryption keys are also denoted as key pair (dij1,dij2). Such a key
pair can generate the encryption key eij for this node.

The definition of Key Derivation Tree is given as follows. Notice that the
encryption key associated with a key value is less important in the key deriva-
tion.

Definition 2. (Key Derivation Tree) A key derivation tree, denoted T, is a tree
T = 〈N, K〉, rooted at vertex N0. Any node Nij except the leaves, can derive
its child nodes of indices i(2j − 1) (for the left) and i(2j) (for the right), for
i = 1, 2, ... and j = 1, ..., 2i, while its parent (if any) is found at index (i−1)� j

2�.
Kij ⊆ K, denotes the key value of each node Nij, where the key value consists
of a set of decryption keys corresponding to this node.

5

To construct the key derivation tree, we choose a cryptographic one-way
hash function as our key generation function: H : {0, 1}∗ → Zq, which can be
used to compute the decryption key of child nodes of any node Nij , while hard
to invert the key of Nij . The key value Kij of node Nij is represented by Kij

← (dij1, dij2) where dij1 denotes the master decryption key and dij2 denotes
the secondary decryption key. The one-way hash function H is also being used
to compute dij2 from the input dij1: dij2 ← H(dij1). We illustrate the key
derivation hierarchy in Figure 2, where i � 0, j � 1.

(di11, di12) (di(j-1)1, di(j-1)2) (dij1, dij2)

(d(i-1) (j/2 1, d(i-1) (j/2 2)

(di21, di22)

(d(i-1)11, d(i-1)22)

(d241, d242)(d231, d232)(d221, d222)(d211, d212)

(d121, d122)(d111, d112)
key

derivation
hierarchy

d0

e12e11

ei1 ei2 ei(j-1) eij

Figure 3: Key derivation hierarchy.

With the root key d0 for node N0, we can derive all the key pairs:

d0 → d111 → d112, d0 → d121 → d122.

d111 → d211 → d212, d111 → d221 → d222.

d121 → d231 → d232, d121 → d241 → d242.

... ...

d(i−1)� j
2 �1 → di(j−1)1 → di(j−1)2, d(i−1)� j

2 �1 → dij1 → dij2

... ...

The encryption keys are generated from key pairs which contain the master
decryption key and the secondary decryption key, for example,

(d111, d112) → e11, (d121, d122) → e12,

(d211, d212) → e21, (d221, d222) → e22,

... ...

(di(j−1), di(j−1)2) → ei(j−1), (dij1, dij2) → eij

... ...

6

To derive child keys, the original data owner O conducts the following com-
putations. For a key pair (dij1,dij2) of node (i, j), its child on the left can be
calculated as

(d(i+1)(2j−1)1, d(i+1)(2j−1)2) = (H(dij1‖(2j − 1)), H(H(dij1‖(2j − 1))))

and its child on the right can be calculated as

(d(i+1)(2j)1, d(i+1)(2j)2) = (H(dij1‖2j), H(H(dij1‖2j))).

Other sub-keys can generated accordingly. In this way, the whole key derivation
tree can be constructed. We will give a concrete scheme in the following section.

4. The Concrete Scheme

Having demonstrated how our scheme works, we now provide a concrete
construction. We borrow the polynomial introduced in [20] and demonstrate
how to apply it to our key derivation tree.

4.1. The Polynomial Function
The security of this system relies on difficulty of computing discrete loga-

rithm. The protocols are based on a polynomial function and a set of exponen-
tials. Let p, q be two large prime numbers such that q|p − 1, and g ∈ Z∗

p be a
generator of order q. Let xi ∈U Zq for i = 0, 1, 2..., n be a set of integers. The
polynomial function of order n is constructed as follows.

f(x) =
n∏

i=1

(x− xi) ≡
n∑

i=0

aix
i mod q,

where {ai} are coefficients:

a0 =
n∏

j=1

(−xj),

a1 =
n∑

i=1

n∏

i �=j

(−xj),

· · · ,

an−2 =
n∑

i �=j

(−xi)(−xj),

an−1 =
n∑

i=1

(−xj),

an = 1.

7

It is noted that
∑n

i=0 aix
i
j = 0. This property is important for our scheme.

Having the set {ai}, we can then construct the corresponding exponential func-
tions,

{ga0 , ga1 , · · · , gan} ≡ {g0, g1, · · · , gn} mod p.

All elements here are computed under modulo p. For convenience, we will omit
modulo p in the rest of this paper.

Now we are ready to construct an asymmetric-key system where the encryp-
tion key is the tuple {g0, g1, · · · , gn} mapping to n decryption keys {xi}.

4.2. Key Derivation Tree and Data Encryption
Let us use a binary tree as an example and (i, j) as an arbitrary node. Then

the main construction contains four algorithms: Key Generation, Encryption,
Decryption and Key Derivation.

4.2.1. Key Generation
The decryption keys are denoted by (dij1, dij2), which correspond to (x1, x2)

in the 2-degree polynomial defined above, where dij2 = H(dij1). For simplicity,
we denote (dij1, dij2) = (d1, d2). The encryption key corresponding to (d1, d2)
is e = (g0, g1, g2), where g0 = ga0 = gd1d2 , g1 = ga1 = g−(d1+d2), g2 = ga2 = g.
For simplicity, we have omitted the subscripts of eij .

4.2.2. Encryption
The encryption algorithm takes as input a message M ∈ {0, 1}∗, the encryp-

tion key e, a random k ∈ Zq, and a generator h ∈ Z∗
p , and outputs a ciphertext

(c1, c2), where
c1 ← (hk · gk

0 , gk
1 , gk

2), c2 = M · hk.

Let us rewrite c1 as (b1, b2, b3) for convenience. The encryption scheme is a
variant of ElGamal encryption, which is proven to be secure under the assump-
tion of Chosen Plaintext Attack when the group Z∗

p is properly selected. It
can be easily converted into Chosen Ciphertext Security by Fujisaki-Okamoto
transformation [21].

4.2.3. Decryption
This algorithm takes as input the ciphertext (c1, c2) and one of decryption

keys d1 and d2, and outputs M . hk can be computed from b1 · bdi
2 · bdi

2

3 , for
i ∈ {1, 2}. Thus, M can be computed as M = c2/hk.

4.2.4. Key Derivation
This algorithm takes as input the master decryption key dij1 and a one way

hash function H : {0, 1}∗ → Zq. It outputs the two child nodes of key dij1.
During the key derivation procedure, the left child node can be computed as

(d(i+1)(2j−1)1, d(i+1)(2j−1)2) = (H(dij1‖(2j − 1)), H(H(dij1‖(2j − 1))))

8

and the right child node can be computed as

(d(i+1)(2j)1, d(i+1)(2j)2) = (H(dij1‖2j), H(H(dij1‖2j))).

By repeating this algorithm, the whole key derivation tree can be generated.
Our scheme also considers “Write” applications and allows the user to re-

encrypt the data. This means that the encryption key e should be given to the
user. The reader might think that the user could alter the encryption key by
changing a new encryption key, as he can easily replace his existing decryption
key with a different one. However, this action will fail if the data manager
checks the correctness of the encryption regularly. An alternative solution is to
use an RSA modulus and assume that two corresponding primes, which form
the modulus, is only known to the manager. This change makes the encryption
key unmalleable.

5. Data Access Procedure

In this section, we describe the data access procedure for four associated
parties given in Section 2.

5.1. Notations
• M, O, P, U: abbreviated names appear as the four major parties as given

in our model.

• M → O: m. M sends message m to O.

• kXY : symmetric key shared between parties X and Y .

• TX : a timestamp generated by X;

5.2. Data access procedure
Using Nij as example, the data block is encrypted with eij , which is cor-

responding to two decryption keys (dij1, dij2). The data access procedure is
described in two phases, shown in Figure 4 and Figure 5.

5.2.1. The First Phase
In the first phase, Data Owner O, Sub-tree Manager M and Cloud Provider

P execute the following five steps.

1. M sends O a key request message: M REQ, where M REQ = {sub id, TM ,
MAC(kMO, sub id, TM)}. MAC denotes the message authentication code
with the key kMO shared by M and O. After the original data owner O
sets up the system, the first step in the data access procedure are run by
O and its sub-tree data manager M. M sends O an access request message
M REQ in order to obtain the sub-tree root key. The sub id field in this
message provides the index of the sub-tree root node. Upon receiving the
M REQ message, O performs data-integrity validation by checking the
MAC of sub id and timestamp.

9

O
(Data Owner)

P
(Cloud

Provider)

M
(Sub-tree
Manager)

(1) key request message

(2) O sends M the sub-tree root key

(3) data access request message

(4) encrypted data blocks

(5) data updating

Figure 4: The first phase.

2. O sends M the sub-tree root key dij1 encrypted with EkMO
. Upon receiving

dij1, M can use it to derive the second key and other keys of its child nodes
and access the the encrypted data block as given in the next step.

3. M sends P an access request message: M REQ, where M REQ = {sub tree id,
TM , MAC(kMP , sub tree id, TM)}

4. M accesses the stored data block.

5. With the sub-tree root key dij1 for Nij , M can update all the sub-tree
nodes. We call this sub-procedure as a write step because M can modify
and more importantly, re-encrypt the sub-tree data. After that, M sends
the re-encrypted data block back to P.

5.2.2. The Second Phase
In the second phase, User U, Data Owner O and Cloud Provider P execute

the following five steps:

1. U sends M a key request message: U REQ, where U REQ = {req id, TU ,
MAC(kMU , req id, TU)}. This step runs between User U and the sub-tree
data manager M. Without any interaction with the original data owner
O, the user U starts the connection by sending a key request message
U REQ to the sub-tree manager M. MAC is the message authentication
code using the key kMU . The req id field contains the node information
for U. M performs data-integrity validation with the MAC, upon receiving
the U REQ message.

2. M sends U the secondary decryption key dij2 with respect to the same
node. U can use this decryption key to decrypt the same data block.
If U is a legitimate user that can write the data, M also provides the
encryptions key eij corresponding to this node.

10

M
(Sub-tree
Manager)

P
(Cloud

Provider)

U
(User)

(1) key request message

(2) M sends U the required dij2

(3) data access request message

(4) encrypted data blocks

(5) user updates the data

Figure 5: The second process.

3. U sends P an access request: U REQ = {req node id, TU , MAC(kUP ,
req node id, TU)}.

4. U accesses the encrypted data block.

5. Given the encryption key eij , U can update this specific data node. We
call this sub-procedure as a user write step where a legimate user can
modify and re-encrypt the specific data block.

Our protocol can be directly applied to a practical application. We can apply
it to the OWUR/W application, for example. There are many other practical
applications such as securely outsourcing data management of a telecom, where
the outsourced manager can only manage the registration of users, while the
payment history can only be accessed by staff from the original telecom.

6. Generalization of Key Derivation Hierarchy

A flexible and efficient key management scheme should be adaptable and
expandable for different application scenarios. For this consideration, we first
expand our scheme into multiple branches and n sub-keys respectively. We then
have a generalized key derivation hierarchy with a consideration of both cases.

6.1. Multiple Branches
We can easily expand our scheme to multiple branches (m > 2) as Figure 6.
Every parent node has m child nodes which can be derived in a simi-

lar way. Taking parent node (d1m1, d1m2) as an example, its first child node
(d2[m(m−1)+1]1, d2[m(m−1)+1]2) can be computed as

(H(d1m1||[m(m1) + 1]), H(H(d1m1||[m(m1) + 1]))),

11

(d2[m(m-1)+1]1, d2[m(m-1)+1]2)

d0

e1m

e11

(d1m1, d1m2)

(d111, d112)

(d121, d122)

(d2()1, d2()2)2m2m

(d131, d132)

(d2[m(m-1)+2]1, d2[m(m-1)+2]2)

Figure 6: A key derivation tree with multiple branches.

and its last child node (d2(m2)1, d2(m2)2) can be computed as

(H(d1m1||m2, H(H(d1m1||m2))).

This expansion lowers the level of derivation hierarchy, by increasing the number
of nodes in each level.

6.2. Multiple Sub-keys
We can also expand it to n sub-keys (n > 2), where these sub-keys map to

a single encryption key used to encryption the corresponding data block. In
regard to node Nij , this n sub-keys are denoted by (dij1,dij2,...,dijn) and the
encryption key by eij . Every decryption key can be used to decrypt the data
block, while only the master decryption key dij1 can derive n sub-keys in the
tree.

Taking n = 3 as an example (shown in Figure 7), the decryption keys are
denoted by (dij1,dij2,dij3), which correspond to (x1, x2, x3) in the 3-degree poly-
nomial defined in Section 4, where dij2 = H(dij1||1), dij3 = H(dij1||2). Denote
(dij1, dij2, dij3) by (d1, d2, d3), the encryption key corresponding to (d1, d2, d3)
is e = (g0, g1, g2, g3), where g0 = ga0 = g−d1d2d3 , g1 = ga1 = gd1d2+d1d3+d2d3 ,
g2 = ga2 = g−(d1+d2+d3), g3 = ga3 = g.

Combining both cases above, we can have a generalized key derivation tree.
An m-branch n sub-key derivation tree is presented in Figure 8.

7. Conclusion

Key management and access control are important for secure cloud com-
puting. As a traditional approach, tree-based key management has attracted

12

(di11, di12, di13) (di(j-1)1, di(j-1)2, di(j-1)3) (dij1, dij2, dij3)(di21, di22, di23)

(d(i-1)11, d(i-1)22, d(i-1)23)

(d241, d242, d243)(d231, d232, d233)(d221, d222, d222)(d211, d212, d213)

(d121, d122, d123)(d111, d112, d113)

d0

e12e11

ei1 ei2 ei(j-1) eij

Figure 7: Take n = 3 as an example.

a lot of attention. We found that a traditional tree-based approach has some
drawbacks in data oursourcing in that a node key holder to derive all child keys,
which is also an important feature for key management. In order to solve the
outsourcing problem and maintain the key management feature, we proposed
OWUR/W applications for data sourcing and presented a secure and flexible
tree-based key derivation hierarchy, which allows only the outsourcing party to
access the data block located at a specified node while he cannot access the data
blocked encrypted with child keys. We believe that our tree-based outsourcing
key management opens up an entirely new approach for secure and flexible key
management.

References

[1] S. Kamara, K. Lauter, Cryptographic cloud storage, in: R. Sion, R. Curt-
mola, S. Dietrich, A. Kiayias, J. Miret, K. Sako, F. Seb (Eds.), Financial
Cryptography and Data Security, Vol. 6054 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2010, pp. 136–149.

[2] D. Wallner, E. Harder, R. Agee, Rfc2627: Key management for multicast:
Issues and architectures.

[3] C. K. Wong, M. Gouda, S. S. Lam, Secure group communications using
key graphs, in: Proceedings of the ACM SIGCOMM ’98 conference on
Applications, technologies, architectures, and protocols for computer com-
munication, SIGCOMM ’98, ACM, New York, NY, USA, 1998, pp. 68–79.

[4] W. Wang, Z. Li, R. Owens, B. Bhargava, Secure and efficient access to
outsourced data, in: Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, ACM, New York, NY, USA, 2009, pp.
55–66.

13

e11

(d2[m(m-1)+1]1, d2[m(m-1)+1]2, , d2[m(m-1)+1]n)

d0

e1m(d1m1, d1m2, , d1mn)

(d111, d112, , d11n)

(d121, d122, , d12n)

(d2()1, d2()2, , d2()n)

(d2[m(m-1)+2]1, d2[m(m-1)+2]2, , d2[m(m-1)+2]n)

2m 2m2m e 22()m

Figure 8: Expanding to M-Branch N-Tuple Hierarchy.

[5] E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi, P. Samarati,
Balancing confidentiality and efficiency in untrusted relational dbmss, in:
Proceedings of the 10th ACM conference on Computer and communications
security, CCS ’03, ACM, New York, NY, USA, 2003, pp. 93–102.

[6] C. Blundo, S. Cimato, S. De Capitani di Vimercati, A. De Santis, S. Foresti,
S. Paraboschi, P. Samarati, Efficient key management for enforcing access
control in outsourced scenarios, in: D. Gritzalis, J. Lopez (Eds.), Emerging
Challenges for Security, Privacy and Trust, Vol. 297 of IFIP Advances in
Information and Communication Technology, Springer Boston, 2009, pp.
364–375.

[7] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati,
Over-encryption: Management of access control evolution on outsourced
data, in: Proceedings of the 33rd international conference on Very large
data bases, VLDB ’07, VLDB Endowment, 2007, pp. 123–134.

[8] M. J. Atallah, M. Blanton, N. Fazio, K. B. Frikken, Dynamic and efficient
key management for access hierarchies, ACM Trans. Inf. Syst. Secur. 12
(2009) 18:1–18:43.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi,
P. Samarati, Preserving confidentiality of security policies in data outsourc-
ing, in: Proceedings of the 7th ACM workshop on Privacy in the electronic
society, WPES ’08, ACM, New York, NY, USA, 2008, pp. 75–84.

14

[10] M. J. Atallah, K. B. Frikken, M. Blanton, Dynamic and efficient key man-
agement for access hierarchies, in: Proceedings of the 12th ACM conference
on Computer and communications security, CCS ’05, ACM, New York, NY,
USA, 2005, pp. 190–202.

[11] Y. R. Yang, X. S. Li, X. B. Zhang, S. S. Lam, Reliable group rekeying: A
performance analysis, in: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communica-
tions, SIGCOMM ’01, ACM, New York, NY, USA, 2001, pp. 27–38.

[12] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati, Key management for multi-user encrypted databases, in: Pro-
ceedings of the 2005 ACM workshop on Storage security and survivability,
StorageSS ’05, ACM, New York, NY, USA, 2005, pp. 74–83.

[13] E. Damiani, S. De Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Sama-
rati, An experimental evaluation of multi-key strategies for data outsourc-
ing, in: H. Venter, M. Eloff, L. Labuschagne, J. Eloff, R. von Solms (Eds.),
New Approaches for Security, Privacy and Trust in Complex Environ-
ments, Vol. 232 of IFIP International Federation for Information Process-
ing, Springer Boston, 2007, pp. 385–396.

[14] Y. Kim, A. Perrig, G. Tsudik, Simple and fault-tolerant key agreement for
dynamic collaborative groups, in: Proceedings of the 7th ACM conference
on Computer and communications security, CCS ’00, ACM, New York, NY,
USA, 2000, pp. 235–244.

[15] D. Naor, M. Naor, J. B. Lotspiech, Revocation and tracing schemes for
stateless receivers, in: Proceedings of the 21st Annual International Cryp-
tology Conference on Advances in Cryptology, CRYPTO ’01, Springer-
Verlag, London, UK, 2001, pp. 41–62.

[16] D. Liu, P. Ning, K. Sun, Efficient self-healing group key distribution with
revocation capability, in: Proceedings of the 10th ACM conference on Com-
puter and communications security, CCS ’03, ACM, New York, NY, USA,
2003, pp. 231–240.

[17] D.-W. Kwak, S. J. Lee, J. W. Kim, E. Jung, An efficient lkh tree balanc-
ing algorithm for group key management, Communications Letters, IEEE
10 (3) (2006) 222 – 224.

[18] Y. Sun, K. Liu, Scalable hierarchical access control in secure group com-
munications, in: INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, Vol. 2, 2004, pp.
1296 – 1306 vol.2.

[19] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati,
A data outsourcing architecture combining cryptography and access con-
trol, in: Proceedings of the 2007 ACM workshop on Computer security
architecture, CSAW ’07, ACM, New York, NY, USA, 2007, pp. 63–69.

15

[20] Y. Mu, V. Varadharajan, K. Quac Nguyen, Delegated decryption, in:
M. Walker (Ed.), Cryptography and Coding, Vol. 1746 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 1999, pp. 797–797.

[21] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric
encryption schemes, in: Proceedings of the 19th Annual International Cryp-
tology Conference on Advances in Cryptology, CRYPTO ’99, Springer-
Verlag, London, UK, 1999, pp. 537–554.

16

	University of Wollongong
	Research Online
	2012

	Privacy enhanced data outsourcing in the cloud
	Miao Zhou
	Yi Mu
	Willy Susilo
	Jun Yan
	Liju Dong
	Publication Details

	Privacy enhanced data outsourcing in the cloud
	Abstract
	Keywords
	Disciplines
	Publication Details

