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Abstract

Since several years there exists a question whether the dimensional
reduction and the usual dimensional regularization give different re-
sults for the QCD-improved b → sγ and b → s gluon decay rates.
Here it is demonstrated explicitly that this is not the case: As long as
physically meaningful quantities are considered, the results obtained
with help of both techniques agree.
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1 Introduction.

Since several years there exists a question whether the dimensional reduction
(DRED) and the usual dimensional regularization with fully anticommuting
γ5 (NDR) give different results for the QCD-improved b → sγ and b → s
gluon decay rates [1]. The purpose of this letter is to show explicitly that this
is not the case: As long as physically meaningful quantities are considered,
the results obtained with help of both methods agree.

The discussion presented here will be based only on the decay b → sγ
which receives continuous interest at present, because of the recent measure-
ment [2] of the B → K∗γ decay.

The b → sγ proceess at the leading order in the Standard Model interac-
tions is given by the sum of the one-loop diagrams of Fig.1. The QCD con-
tributions can be diagramatically represented by connecting the quark lines
of these diagrams with an arbitrary number of gluon lines. The diagrams con-
structed this way form a power series in the parameter αQCD(MW )ln(M2

W /m2
b)

≃ 0.7 which seems too large to be an expansion parameter. Therefore one
has to resum all the large logarithms with help of the Operator Product
Expansion and the Renormalization Group Equations (RGE).

In order to do this, one introduces the local effective hamiltonian1

Heff = −4GF√
2

V ∗

tsVtb

[

n
∑

i=1

ci(µ)Oi + counterterms

]

(1)

A complete list of the operators Oi is given in each of the papers [3, 5, 6, 7, 8].
As pointed out in ref. [5], the papers [1, 4] do not include all the operators
relevant in the leading-logarithmic approximation. This problem is, however,
to a large extent unrelated to the problem whether both dimensional methods
give the same results.

For the purpose of this paper, it is enough to give explicitly now only
three of the operators Oi.

O2 = (s̄LγµcL)(c̄LγµbL)

O7 =
e

16π2
mbs̄LσµνF

µνbR (2)

O8 =
g

16π2
mbs̄LσµνG

µνbR

where F µν and Gµν are the photonic and gluonic field strenght tensors, re-
spectively. One finds the coefficients of these operators by requireing equal-
ity of amplitudes generated by the effective Hamiltonian (1) and the full

1For simplicity we neglect the small V ∗
usVub in our discussion. However, the basic results

summarized in eqs. (7), (8) and in the Appendix are exactly the same even if V ∗
usVub is

not neglected.
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Standard Model amplitudes (up to 0(1/M4
W )) at the renormalization scale

µ = MW . The well-known results are:

c2(MW ) = 1 (3)

c7(MW ) =
3x3 − 2x2

4(x − 1)4
ln(x) +

−8x3 − 5x2 + 7x

24(x − 1)3
(4)

c8(MW ) =
−3x2

4(x − 1)4
ln(x) +

−x3 + 5x2 + 2x

8(x − 1)3
(5)

Here x = m2
t /M

2
W . The above coefficients are regularization- and renorma-

lization-scheme independent. In order to avoid appearance of large loga-
rithms in the b → sγ matrix element of Heff (1), one evolves the coefficients
ci(µ) down to the scale µ = mb, according to the RGE:

µ
d

dµ
ci(µ) −

n
∑

i=1

γji(αQCD)cj(µ) = 0 (6)

Finally, one finds that the b → sγ matrix element of Heff (1) evaluated at
µ = mb (in the leading-logarithmic approximation and for the photon on
shell) is equal to the tree-level matrix element of 2:

− 4GF√
2

V ∗

tsVtbc
eff
7 (mb)O7 (7)

with

ceff
7 (mb) = η

16
23 c7(MW ) +

8

3

(

η
14
23 − η

16
23

)

c8(MW ) + c2(MW )
8
∑

i=1

aiη
bi (8)

where η = α(MW )
α(mb)

, and ai, bi are some exact numbers that should be regularization-
and renormalization-scheme independent.

The form of the last expression agrees with the final results of any of the
papers [1, 3, 4, 5, 6, 7, 8]. However, the particular values of the numbers ai

disagree for any two of them. The numbers ai and bi are given and discussed
in the Appendix.

In order to make our discussion as simple as possible, we formally expand
the last term in (8) in powers of αQCD(MW ):

8
∑

i=1

aiη
bi = −X

αQCD(MW )

2π
ln

MW

mb

+ 0

[

(

αQCD(MW )ln
MW

mb

)2
]

(9)

where

X =
23

3

8
∑

i=1

aibi (10)

2The s-quark mass is neglected throughout.
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From the NDR results of refs. [9, 3, 1, 4, 5, 6, 7, 8] it follows that X =
8
3
, 232

81
, 232

81
, 232

81
, 208

81
, 208

81
, 208

81
, 208

81
, respectively. The first change (from 8

3
to 232

81
)

is due to the inclusion of the contributions proportional to the down-quark
charge, that had not been included in the first paper. The second change
(from 232

81
to 208

81
) is due to taking into account certain one-loop matrix el-

ements which will be described in the next section. The value of 208
81

has
been very recently confirmed [8] with help of the HV scheme [10]3 where no
one-loop matrix elements enter. The only known DRED calculation (see ref.
[1]) gives X = 124

81
. In the following two sections, the calculation of X in NDR

and DRED will be presented and shown to give the same result of 208
81

. We
restrict ourselves only to the quantity X (which has been the subject of the
main discussion in the past) in order to avoid considering all the subtleties
involved in the calculation of the remaining terms in the r.h.s. of eq. (9)
where most of the disagreements between the existing NDR calculations are
located (see the Appendix).

2 The NDR calculation of X.

In order to calculate X, we have to trace out all possible leading-logarithmic
contributions to < sγ|Heff |b >µ=mb

that are proportional to c2(MW ). Simi-
larly to refs. [1, 4], and differently than in refs. [3, 5, 6, 7, 8], we will perform
the calculation without applying the equations of motion to the operators we
encounter.

First of all, we have to consider all possible divergent one-loop 1PI dia-
grams with the O2-vertex, except for those that contain more than one power
of the QED-coupling e. There are four types of such diagrams, presented on
Figs. 2a-2d, respectively.

The diagram in Fig.2a vanishes for the on-shell photon. This is why there
is no one-loop mixing between O2 and O7. In effect, the two-loop mixing
between these two operators becomes important in the leading logarithmic
approximation.

All the diagrams in Fig.2b require only counterterms proportional to the
four-quark operators containing the c̄L and cL fields. None of such operators
can have nonvanishing one-loop b → sγ matrix elements for the on-shell
photon. Consequently, these diagrams are irrelevant in the calculation of X.

The diagrams in Fig.2c generate no divergencies in NDR.
The divergencies generated by the diagrams in Fig.2d can be exactly

3In this scheme γ5 anticommutes with the 4-dimensional γµ’s, but commutes with the
remaining ones. It is the only known scheme where problems with traces containing odd
numbers of γ5’s do not appear. The treatment of γ5 is the only difference between the HV
and NDR schemes.
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cancelled by the counterterm (see eq.(1)):

c2(µ)Z2GOG (11)

where
OG =

g

16π2
s̄Lγµ (DνG

µν) bL (12)

and

Z2G = − 4

3(4 − d)
+ (terms finite in the limit d → 4) (13)

From Z2G we recover the corresponding element of the anomalous dimension
matrix

γ2G = −4

3
+ 0(αQCD) (14)

and immediately find the relevant term in the solution of the RGE (6) for
cG(µ)

cG(µ) = cG(MW ) +
4

3
c2(MW )ln

MW

µ
+ 0(αQCDln

MW

µ
) (15)

We could write all the remaining terms as 0(αQCDlnMW

µ
) because there is no

other than O2 operator that has a coefficient of order 1 at µ = MW and
mixes with OG at zeroth order4 in αQCD.

Now, let us consider the one-loop on-shell matrix element of OG. It is
given by the diagrams in Fig.3. When a matrix element is considered, we
have to take into account also the 1PR diagrams. The sum of the diagrams
in Fig.3 appears to be proportional to the tree-level matrix element of O7:

(

Sum of the diagrams
in Fig.3 at µ = mb

)

on shell

= −4GF√
2

V ∗

tsVtbcG(mb)
αQCD

2π

2

9
< sγ|O7|b >

(16)
Comparing eqs. (7), (8), (9), (15) and (16) one finds the contribution to

X from the one-loop matrix element of OG:

∆Xmatrix element = − 8

27
(17)

A contribution to ceff
7 from one-loop matrix elements has been already

found in ref. [5]. As mentioned there, its particular value (that corresponds
to − 8

27
above) is correct only in dimensional regularization with fully an-

ticommuting γ5. In any 4-dimensional scheme (or in the HV scheme) the
on-shell b → sγ one-loop matrix element of OG vanishes. But the contribu-
tions to ceff

7 from the 2-loop mixings can (or even must) be also different.
This point has been recently emphasized in ref. [8].

4in the applied normalization for OG
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What remains to be considered is the two-loop mixing O2 → O7. It is
described by the diagrams in Fig.4. The calculation of these diagrams is
described in great detail in ref. [3]. The well-known result is

γ27 =
αQCD

2π

232

81
(18)

After solving the RGE of eq.(6)5 and formally expanding the solution in αQCD

we immediately get

∆Xmixing =
232

81
(19)

Therefore, the final value of X is

X = ∆Xmatrix element + ∆Xmixing = − 8

27
+

232

81
=

208

81
(20)

3 The DRED calculation of X.

The DRED scheme has been introduced by Siegel [11] in order to be able to
dimensionally regularize supersymmetric theories without actually breaking
supersymmetry. The only difference between NDR and DRED is that in
the latter scheme all the tensor fields are left 4-dimensional, while the mo-
menta and coordinates are d-dimensional. The dimension d is assumed to be
“smaller” than 4, which means that in practical calculations one applies the
equality6:

g(4)

µνg
νρ = g ρ

µ (21)

where g(4)
µν and gµν denote the 4-dimensional and the d-dimensional metric

tensors, respectively. As it is implicit in the above equation, we allow the
indices of the d-dimensional tensors to acquire values also larger than d, but
then the corresponding components of these tensors are assumed to vanish.

For clarity, we will keep the superscript “(4)” for all the 4-dimensional
tensors that appear in this section. It is also necessary to introduce some
notation for the diference between the 4-dimensional and the d-dimensional
tensors. We define:

G(ǫ)

µ = G(4)

µ − Gµ (22)

for the gluonic field, and
γ(ǫ)

µ = γ(4)

µ − γµ (23)

for the Dirac matrices. The matrix γ5 is taken to be anticommuting with all
the γ(4)

µ’s and γµ’s [11].
We should supply the superscripts “(4)” for all the fields and Dirac ma-

trices in the definitions of the three operators we started with in eq. (2), and

5for arbitrary values of all the other mixings
6opposite to the HV scheme where g(4)

µνgνρ = g(4)
µ

ρ is used
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to the operator in eq. (12). The “new” operators will be denoted by O(4)

2 ,
O(4)

7 , O(4)

8 and O(4)
G

, respectively.

We proceed along the same lines as in the previous section. We have to
consider the divergent parts of the diagrams in Figs. 2a-2d, but now with
the O(4)

2 -vertex. The diagrams of Figs. 2a and 2b are elliminated from our
discussion with help of the same arguements as in the NDR case.

The first real difference between NDR and DRED is in the case of the
diagrams in Fig. 2c. In the DRED case the sum of the diagrams with one
gluon and one photon does not vanish, but gives a divergence proportional
to the operator:

Ox =
eg

16π2
s̄(4)

L σ(4)

µνF
(4)µνγ(ǫ)

ρ G(ǫ)ρb(4)

L (24)

The required renormalization constant is

Z2x = +
4

3(4 − d)
+ (terms finite in the limit d → 4) (25)

So, similarly to the case of OG discussed in the previous section, we get (cf.
eqs. (11)-(15)):

cx(µ) = cx(MW ) − 4

3
c2(MW )ln

MW

µ
+ 0(αQCDln

MW

µ
) (26)

The diagrams in Fig.2c that contain two gluons are irrelevant in the
calculation of X, because the one-loop b → sγ matrix element of an operator
containing two gluons is of order α2

QCD
.

The diagrams in Fig.2d generate two important counterterms. One of
them is, of course, the counterterm proportional to O(4)

G
with the same renor-

malization constant as in eq. (13). The other is proportional to the operator

Oy =
g

16π2
s̄(4)

L γ(ǫ)

µ 2G(ǫ)µb(4)

L (27)

with the renormalization constant

Z2y = +
2

3(4 − d)
+ (terms finite in the limit d → 4) (28)

So, the coefficient of Oy behaves like

cy(µ) = cy(MW ) − 2

3
c2(MW )ln

MW

µ
+ 0(αQCDln

MW

µ
) (29)

The diagrams containing more than one gluon in Fig.2d may also give
rise to some other counterterms containing the G(ǫ)

µ field. They are, however,
irrelevant for the same reason as the two-gluon diagrams in Fig.2c.

6



The appearance of the counterterms involving the G(ǫ)
µ that break gauge

invariance in the (4−d)-dimensional subspace is nothing surprising in DRED.
They have been observed already by the inventor of DRED [11].

Now, let us consider the one-loop on-shell matrix elements of the operators
Ox, O(4)

G
and Oy. The first of them is given by the sum of diagrams in

Fig.5. The sum of these diagrams appears to be proportional to the tree

level matrix element of O(4)

7 (we ignore the possible terms proportional to the
(4 − d)-dimensional photonic field):

(

Sum of the diagrams
in Fig.5 at µ = mb

)

on shell

= −4GF√
2

V ∗

tsVtbcx(mb)
αQCD

2π

(

−2

3

)

< sγ|O7|b >

(30)
Comparing eqs. (7), (8), (9), (26) and (30) one finds:

∆Xmatrix element of Ox
= −8

9
(31)

The one-loop matrix elements of O(4)
G

and Oy are described by the same
diagrams as in the case of OG (Fig.3) - we only have to change the operator
vertex. In the case of O(4)

G
the sum of these diagrams vanishes on-shell, while

in the case of Oy we get exactly the same as in eq. (16). The correlation is
not surprising, because

OG = O(4)

G
+ Oy (32)

Using these results in the same way as before, we get:

∆X
matrix element of O

(4)
G

= 0 ∆Xmatrix element of Oy
= +

4

27
(33)

So the sum of the contributions to X from the one-loop matrix elements is

∆Xmatrix elements = −8

9
+ 0 +

4

27
= −20

27
(34)

Now, we have to consider the two-loop mixing O(4)

2 → O(4)

7 . The two-
loop diagrams look exactly the same as in the NDR case (Fig.4). In the
one-loop counterterm diagrams of Fig.4 we have to insert both the O(4)

G
- and

the Oy-counterterms. Finally, we have to take into account also the one-loop
counterterm diagrams with the counterterms proportional to Ox. The latter
diagrams can be obtained from the ones in Fig.5 just by replacing the square
(representing the Ox-vertex) by a cross (representing the Ox-counterterm).

The details of the two-loop calculation will not be presented here. It has
been done with help of the method used in ref. [13], i.e. only the difference
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between DRED and NDR has been calculated. Then one needs to consider
only the double-pole parts of the two-loop integrals (given in ref. [3]), and
also the Dirac algebra is relatively simpler.

The final result for the sought element of the anomalous-dimension matrix
is:

γ27 =
αQCD

2π

(

124

81
+

16

9

)

=
αQCD

2π

268

81
(35)

The number 16
9

comes from the Ox-counterterm diagrams. This will be ex-
actly the contribution from these diagrams to X. It is not an accident that
it equals to −2(contribution to X from the one-loop matrix element of Ox).
This is a common feature for the so-called “evanescent operators” i.e. oper-
ators vanishing in the limit d → 4 (see e.g. refs. [14, 15, 6]).

The number 124
81

in eq.(35) comes from the diagrams of Fig.4. It is in
agreement with the findings of ref. [1], where the Ox counterterms have not
been included. The presence of the Ox counterterms is also the reason why
the tests made in ref. [12] did not work in the DRED case.

As in the NDR case, we recover the contribution to X from γ27.

∆Xmixing =
268

81
(36)

and we add it to the contribution from the matrix elements, to obtain the
final result

X = ∆Xmatrix elements + ∆Xmixing = −20

27
+

268

81
=

208

81
(37)

which is in agreement with the NDR result.

4 Final remarks

The following table summarizes the results for the quantity X obtained with
help of the NDR, HV and DRED schemes.

.

scheme ∆Xmatrix elements ∆Xmixing X

NDR − 8
27

232
81

208
81

HV 0 208
81

208
81

DRED −20
27

268
81

208
81

The result for ∆Xmixing in the HV scheme has been taken from eq.(25) of
ref.[8].

8



The equality of all the three results for the physically meaningful quantity
X is what one would naturally expect, assuming that all the three schemes
are the consistent ones. This is also what one could expect by remembering
the two-loop calculation of ref. [15] where all the three schemes were found
to give the same results for the physically meaningful quantities in the four-
quark operator case.

A scheme for extending the Dirac algebra to d-dimensions is consistent
if it gives a proper limit at d → 4 and is unique7. The latter requirement
follows from the fact that a consistent regularization procedure must give the
same results for a given diagram independently on whether it is considered
separately or as a subdiagram, and independently on the order in which the
subdiagrams are calculated.

By analyzing how all the three schemes are defined, one can realize that
all of them are consistent as long as traces with odd numbers of γ5’s do not
appear. If they appear, then only the HV scheme remains consistent. In the
two other schemes we find that the expressions like

Tr(γαγµγνγργσγ5γα) (38)

in NDR, or

Tr(γ(ǫ)

α γ(4)

µ γ(4)

ν γ(4)

ρ γ(4)

σ γ5γ
(ǫ)

α ) (39)

in DRED give different results dependently on whether the cyclicity of
the trace is used, or the contracted γ’s are commuted all the way through
what stands between them.

In the calculation of X presented in this paper, as well as in the calculation
of ref. [15] no traces appeared. This is why no discrepancies between the
three schemes were observed.

Things become more complicated in the complete leading-logarithmic cal-
culation of the b → sγ rate. In that case one has to use more refined argue-
ments to show that the (sufficiently careful) NDR calculation is a consistent
one. Two independent ways of such an argumentation have been given in the
Appendix A of ref. [6]. The first was based on the idea of introducing certain
“evanescent operators” in order to avoid specifying the algebraic properties
of γ5 before arriving at expressions that cannot lead to inconsistencies8. The
other method was based on the observation, that certain symmetries in the

7We do not require that our regularization scheme preserves the symmetries of the
theory. In the absence of anomalies, all the nonsymmetric terms are local and can be
removed by proper nonsymmetric counterterms.

8This method is a consistent one, but in a general multi-loop calculation it is expected
to be much more complicated than the usual HV scheme. However, in some particular
calculations (especially such where no more than two γ5’s can appear in a single fermionic
line) it can be much simpler.

9



structure of all the relevant four-quark operators allows to perform the cal-
culation with no need to calculate any traces. This observation has been also
independently made in ref.[16], in the context of calculating similar diagrams
for the next-to-leading effects in the ∆S = 1 transitions.

Both these methods of dealing with the dangerous traces can be directly
used also in the DRED case. This is why one can expect that the sufficiently
careful DRED calculation of all the numbers ai and bi from eq.(8) will give
the same results as in the NDR and HV schemes9.

The author would like to thank Professor A. Buras for stimulating dis-
cussions.

Appendix

As mentioned below eq.(8), the numbers ai and bi present in this equation
are subject to disagreements between any two of the existing calculations of
the leading-logarithmic QCD effects in the b → sγ decay [1, 3, 4, 5, 6, 7, 8].
In most cases it is due to the fact that not all the relevant dimension-six
operators are included. The complete basis of the operators (reduced by the
equations of motion) has been written down already in ref.[3]. But the effects
of the operators called10 O3, O4, O5, O6 have been neglected there.

The three most recent papers [6, 7, 8], where the effects of all the rele-
vant operators are explicitly calculated, disagree on the mixings (O5, O6) →
(O7, O8). The authors of refs.[6] and [7] have performed a comparison of
their calculations [17], and they have found two (and only two) sources of
the disagreement

(i) not including the effects of the so-called ”evanescent operators” in
ref.[7]

(ii) disagreements in these parts of the first four two-loop diagrams in
Fig.5 of ref.[6], where the fermion mass comes from the fermionic loop.

After arriving at this conclusion, we have received the paper [8]. The
results of this paper can be reproduced, if the disagreement (i) is resolved
in favour of ref.[6], and the disagreement (ii) - in favour of ref.[7]. However,
none of the authors of the considered papers is ready to say at the moment
that his previous results should be corrected. This is why I have decided to
give here the numbers ai corresponding to each of the three papers [6, 7, 8].
They are as follows

9This is also the expectation of the authors of ref.[8] who declare to be just performing
such a complete DRED calculation.

10The numbering of the operators common for refs. [3, 5, 6, 8] is used here.

10



ref.[6]:
ai = (422534

272277
,−35533

51730
,−0.4286,−0.0714,−0.1991,−0.0453,−0.0215,−0.0990)

ref.[7]:
ai = (708542

272277
,−69049

51730
,−0.4286,−0.0714,−0.7415,−0.0003,−0.0580, +0.0323)

ref.[8]:
ai = (626126

272277
,−56281

51730
,−0.4286,−0.0714,−0.6494,−0.0380,−0.0186,−0.0057)

The corresponding numbers bi are the following

bi = (14
23

, 16
23

, 6
23

,−12
23

, 0.4086,−0.4230,−0.8994, 0.1456)

The numbers bi are insensitive to the disagreements between the papers
[6, 7, 8]. This is because they are proportional to the eigenvalues of the block-
triangular anomalous-dimension matrices which disagree with each other only
in the off-diagonal block. The latter six of the numbers bi are proportional to
the eigenvalues of the anomalous dimension matrix for the O1−O6 oparators
that has been calculated long ago in ref.[18]. The first two are given by the
self-mixing of the O7 and O8 operators that has been originally found in
ref.[19].

Some of the numbers ai and bi are not rational, but they are known
to arbitrary precision because they come from the diagonalization of the
leading-order anomalous-dimension matrices that are known exactly.

As it has been mentioned below eq.(8), the sum of all the numbers ai

always vanishes. This is because all the QCD effects summarized in eq.(8)
must vanish for η = 1.

The numbers ai corresponding to the results of refs.[6] and [8] look very
much different. However, the difference between the resulting ceff

7 ’s is be-
low 1%. This can be easily undestood, because the differences between the
anomalous dimension matrices found in these papers are only in the mixings
O5 → O7 and (O5, O6) → O8. The operator O5 acquires only a very small
coefficient (∼ 0.008) during the evolution from MW to mb. The operator O6

has a larger coefficient, but the effects of the mixing O6 → O8 → O7 tend to
cancel in the latter step (see the term proportional to O8 in eq.(8)).
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Figure captions

Fig 1. Diagrams contributing to b → sγ at the leading order of the SM
interactions

Fig 2a-2d. One-loop divergent diagrams with the O2 vertex
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Fig 3. Diagrams contributing to the one-loop on-shell matrix element
of OG, O(4)

G
or Oy. The square denotes the insertion of any of these three

operators.

Fig 4. Diagrams contributing to the two-loop mixing of O2 with O7

Fig 5. Diagrams contributing to the one-loop matrix element of Ox
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