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Abstract In the past few years there has been a tumultuous activity aimed

at introducing novel conceptual schemes for quantum computing. The approach

proposed in (Marzuoli A and Rasetti M 2002, 2005a) relies on the (re)coupling

theory of SU(2) angular momenta and can be viewed as a generalization to ar-

bitrary values of the spin variables of the usual quantum–circuit model based on

‘qubits’ and Boolean gates. Computational states belong to finite–dimensional

Hilbert spaces labelled by both discrete and continuous parameters, and unitary

gates may depend on quantum numbers ranging over finite sets of values as well

as continuous (angular) variables. Such a framework is an ideal playground to dis-

cuss discrete (digital) and analogic computational processes, together with their

relationships occuring when a consistent semiclassical limit takes place on discrete

quantum gates. When working with purely discrete unitary gates, the simulator

is naturally modelled as families of quantum finite states–machines which in turn

represent discrete versions of topological quantum computation models.

We argue that our model embodies a sort of unifying paradigm for computing

inspired by Nature and, even more ambitiously, a universal setting in which suit-

ably encoded quantum symbolic manipulations of combinatorial, topological and

algebraic problems might find their ‘natural’ computational reference model.
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Introduction

“ ...Of course, we might get useful ideas from studying how the brain

works, but we must remember that automobiles do not have legs like

cheetas nor do airplanes flap their wings! We do not need to study

the neurologic minutiae of living things to produce useful technologies;

but even wrong theories may help in designing machines. Anyway, you

can see that computer science has more than just technical interest.”

(Feynman, 1996)

Richard Feynman was interested in computer science mainly in the last
few years of his life, and the recent blossoming of quantum information theory
and computing makes his ‘Simulating physics with computers’ (Feynman,
1982) a prescient paper in that field of research.
Leaving aside Feynman’s somehow iconoclastic quotation, let us go over John
von Neumann’s deep vision of computing inspired by the complex living
organism par excellence, the brain. In his lecture at the Hixon Symposium
‘Cerebral mechanisms in behaviour’ published in (von Neumann, 1951), he
discussed first of all the ‘dicotomy of the problem’: the dialectic between the
task of modelling of elementary computational units, on the one hand, and
analysing the interconnections among such units on the other. In his words:

“ The first part of the problem is at present the dominant one in

physiology. It is closely connected with the most difficult chapters of

organic chemistry and of physical chemistry, and may in due course

be greately helped by quantum mechanics. (...)

The second part, on the other hand, is the one which is likely to attract

those of us who have the background and the tastes of a mathematician

or a logician. With this attitude, we will be inclined to remove the first

part of the problem by the process of axiomatization, and concentrate

on the second one.”

Of course computer models constrained by neurobiological data can help
reveal how the physical properties of networks of neurons can be used to
encode information at both the levels introduced by von Neumann. More-
over, in the emerging field of computational neuroscience people are currently
addressing both top–down and bottom–up approaches (Churchland and Se-
jnowski, 1992) and the borderline between the concepts of ‘elementary com-
putational unit’ and ‘networks made of units’ could be destined to fade out

2



at some sufficiently small scale.
Taking by now for granted von Neumann’s axiomatic procedure –namely
treating units as ’black boxes’, the inner structure of which need not to be
be disclosed– his analysis goes on by illustrating the analogy and digital prin-
ciples on which computational processes can be based. Coming to the point,
he concludes that:

“ When the central nervous system is examined, elements of both

procedures, digital and analogic, are discernible. (...) It is well known

that there are various composite functional sequences in the organism

which have to go through a variety of steps from the original stimulus

to the ultimate effect –some of the steps being neural, that is, digital,

and others humoral, that is analogic. These digital and analogical

portions in such a chain may alternately multiply.”

In the following we shall see how a mixed (analogic and discrete) model
of ‘quantum’ simulator arises naturally from an advanced branch of quantum
theory of angular momentum. Such a ‘spin network’ model, together with its
semiclassical counterpart, might indeed represent a sort of unifying paradigm
embracing analog/discrete, microscopic/macroscopic, local/global features of
computing processes inspired by Nature on the one hand, and a powerful
implementation of quantum symbolic manipulation, on the other.

Mixed quantum computing:
the spin network simulator

The theory of binary coupling of N = n + 1 SU(2) angular momenta
represents the generalization to an arbitrary N of the coupling of two angu-
lar momentum operators J1,J2 which involves Clebsch–Gordan (or Wigner)
coefficients in their role of unitary transformations between uncoupled and
coupled basis vectors, |j1 m1 > ⊗ |j2 m2 > and |j1 j2; JM > respectively.
The quantum numbers j1, j2 associated with J1,J2 label irreducible repre-
sentations of SU(2) ranging over {0, 1/2, 1, 3/2, . . .}; m1, m2 are the magnetic
quantum numbers, −ji ≤ mi ≤ ji in integer steps; J is the spin quantum
number of the total angular momentum operator J = J1+J2 whose magnetic
quantum number is M = m1 + m2, −J ≤ M ≤ J . Here units are chosen
for which ~ = 1 and we refer to (Varshalovich et al. , 1988) for a complete
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account on the theory of angular momentum in quantum physics. On the
other hand, SU(2) ‘recoupling’ theory –which deals with relationships be-
tween distinct binary coupling schemes of N angular momentum operators–
is a generalization to any N of the simplest case of three operators J1,J2,J3

which calls into play unitary transformations known as Racah coefficients
or 6j symbols. A full fledged review on this advanced topic in the general
framework of Racah–Wigner algebra can be found in (Biedenharn and Louck,
1981).

The architecture of the ‘spin network’ simulator proposed in (Marzuoli
and Rasetti, 2002) and worked out in (Marzuoli and Rasetti, 2005a) relies
extensively on recoupling theory and can be better summarized by resorting
to a combinatorial setting proposed by the same authors in (Marzuoli and
Rasetti, 2005b).
The computational space is there modelled as an SU(2)–fiber space structure
over a discrete base space V

(V, C
2J+1, SU(2)J)n (1)

which encodes all possible computational Hilbert spaces as well as unitary
gates for any fixed number N = n + 1 of incoming angular momenta.
• The base space V

.
= {v(b)} represents the vertex set of a regular,

3–valent graph Gn(V, E) whose cardinality is |V | = (2n)!/n!. There exists a
one–to–one correspondence

{v(b)} ←→ {HJ
n (b)} (2)

between the vertices of Gn(V, E) and the computational Hilbert spaces of
the simulator.

The label b above has the following meaning –on which we shall exten-
sively return later on: for any given pair (n,J), all binary coupling schemes
of the n + 1 angular momenta

{

Jℓ

}

, identified by the quantum numbers
j1, . . . , jn+1 plus k1, . . . , kn−1 (corresponding to the n − 1 intermediate an-
gular momenta

{

Ki

}

) and by the brackets defining the binary couplings,
provide the ‘alphabet’ in which quantum information is encoded (the rules
and constraints of bracketing are instead part of the ‘syntax’ of the resulting
coding language). The Hilbert spaces HJ

n (k1, . . . , kn−1) thus generated, each
(2J+1)-dimensional, are spanned by complete orthonormal sets of states with
quantum number label set B such as, e.g. for n = 3,

{((

j1

(

j2j3

)

k1

)

k2
j4

)

j
,

((

j1j2

)

k′

1

(

j3j4

)

k′

2

)

j

}

.
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More precisely, for a given value of n,HJ
n(b) is the simultaneous eigenspace

of the squares of 2(n+1) Hermitean, mutually commuting angular momentum
operators J1, J2, J3, . . . ,Jn+1 with fixed sum J1 + J2 + J3 +. . .+Jn+1 = J,
of the intermediate angular momentum operators K1, K2, K3, . . . , Kn−1 and
of the operator Jz (the projection of the total angular momentum J along
the quantization axis). The associated quantum numbers are j1, j2, . . . , jn+1

; J ; k1, k2, . . . , kn−1 and M , where −J ≤ M ≤ in integer steps. If Hj1⊗
Hj2 ⊗ · · · ⊗Hjn ⊗ Hjn+1 denotes the factorized Hilbert space, namely the
(n + 1)–fold tensor product of the individual eigenspaces of the (Jℓ)

2 ’s, the
operators Ki’s represent intermediate angular momenta generated, through
Clebsch–Gordan series, whenever a pair of Jℓ’s are coupled. As an exam-
ple, by coupling sequentially the Jℓ’s according to the scheme (· · · ((J1 +
J2) + J3) + · · ·+ Jn+1) = J – which generates (J1 + J2) = K1, (K1 + J3) =
K2, and so on – we should get a binary bracketing structure of the type
(· · · (((Hj1 ⊗Hj2)k1

⊗Hj3)k2
⊗ · · · ⊗Hjn+1)kn−1

)J , where for completeness we
add an overall bracket labelled by the quantum number of the total angu-
lar momentum J . Note that, as far as jℓ’s quantum numbers are involved,
any value belonging to {0, 1/2, 1, 3/2, . . .} is allowed, while the ranges of
the ki’s are suitably constrained by Clebsch–Gordan decompositions (e.g. if
(J1 +J2) = K1 ⇒ |j1− j2| ≤ k1 ≤ j1 + j2). We denote a binary coupled basis
of (n+1) angular momenta in the JM–representation and the corresponding
Hilbert space introduced in (2) as

{ | [j1, j2, j3, . . . , jn+1]
b ; kb

1 , kb

2 , . . . , kb

n−1 ; JM 〉, −J ≤M ≤ J}

= HJ
n (b)

.
= span { | b ; JM 〉n } , (3)

where the string inside [j1, j2, j3, . . . , jn+1]
b is not necessarily an ordered

one, b ∈ B indicates the current binary bracketing structure and the ki’s are
uniquely associated with the chain of pairwise couplings selected by b.
• For a given value of J each HJ

n(b) has dimension (2J + 1) over C and
thus there exists one isomorphism

HJ
n(b) ∼= b C

2J+1 (4)

for each admissible binary coupling scheme b of (n + 1) incoming spins.
The vector space C2J+1 is naturally interpreted as the typical fiber attached
to each vertex v(b) ∈ V of the fiber space structure (1) through the iso-
morphism (4). In other words, Hilbert spaces corresponding to different
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bracketing schemes, although isomorphic, are not identical since they actu-
ally correspond to (partially) different complete sets of physical observables,
namely for instance {J2

1, J2
2, J2

12, J2
3, J2, Jz} and {J2

1, J2
2, J2

3, J2
23, J2, Jz} re-

spectively (in particular, J2
12 and J2

23 cannot be measured simultaneously).
On the mathematical side this remark reflects the fact that the tensor prod-
uct ⊗ is not an associative operation.
• For what concerns unitary operations acting on the computational

Hilbert spaces (3), we examine first unitary transformations associated with
recoupling coefficients (3nj symbols) of SU(2) (j–gates in the present quan-
tum computing context). As shown in (Biedenharn and Louck, 1981) any
such coefficient can be splitted into ‘elementary’ j–gates, namely Racah and
phase transforms. A Racah transform applied to a basis vector is defined
formally as R : | . . . ( (a b)d c)f . . . ; JM〉 7→ | . . . (a (b c)e )f . . . ; JM〉, where
Latin letters a, b, c, . . . are used here to denote generic, both incoming (jℓ ’s
in the previous notation) and intermediate (ki ’s) spin quantum numbers. Its
explicit expression reads

|(a (b c)e )f ; M〉

=
∑

d

(−1)a+b+c+f [(2d + 1)(2e + 1)]1/2

{

a b d
c f e

}

|( (a b)d c)f ; M〉, (5)

where there appears the 6j symbol of SU(2) and f plays the role of the
total angular momentum quantum number. Note that, according to the
Wigner–Eckart theorem, the quantum number M (as well as the angular
part of wave functions) is not altered by such transformations, and that the
same happens with 3nj symbols. On the other hand, the effect of a phase
transform amounts to introducing a suitable phase whenever two spin labels
are swapped

| . . . (a b)c . . . ; JM〉 = (−1)a+b−c | . . . (b a)c . . . ; JM〉. (6)

These unitary operations are combinatorially encoded into the edge set
E = {e} of the graph Gn(V, E): E is just the subset of the Cartesian product
(V × V ) selected by the action of these elementary j–gates. More precisely,
an (undirected) arc between two vertices v(b) and v(b′)

e (b, b′)
.
= (v(b), v(b′)) ∈ (V × V ) (7)

6



exists if, and only if, the underlying Hilbert spaces are related to each other
by an elementary unitary operation (5) or (6). Note also that elements in E
can be considered as mappings (V × C2J+1)n −→ (V × C2J+1)n

(v(b), HJ
n(b) ) 7→ (v(b′), HJ

n(b′) ) (8)

connecting each given decorated vertex to one of its nearest vertices and thus
define a ‘transport prescription in the horizontal sections’ belonging to the
total space (V ×C2J+1)n of the fiber space (1). The crucial feature that char-
acterizes the graph Gn(V, E) arises from compatibility conditions satisfied by
6j symbols in (5), cfr. (Varshalovich et al. , 1988). The Racah (triangular)
identity, the Biedenharn–Elliott (pentagon) identity and the orthogonality
conditions for 6j symbols ensure indeed that any simple path in Gn(V, E)
with fixed endpoints can be freely deformed into any other, providing iden-
tical quantum transition amplitudes at the kinematical level.
• To complete the description of the structure (V, C2J+1, SU(2)J)n we

call into play M–gates which act on the angular dependence of vectors in
HJ

n(b) by rotating them. By expliciting such dependence according to

HJ
n(b)

.
= span { |b; θ, φ; JM〉n }, (9)

we write the action of a rotation on a basis vector as

|b; θ′, φ′; M ′J 〉n =
J

∑

M=−J

DJ
MM ′ (αβγ) |b; θ, φ; JM 〉n , (10)

where (θ, φ) and (θ′, φ′) are polar angles in the original and rotated coordi-
nate systems, respectively. DJ

MM ′ (αβγ) are Wigner rotation matrices in the
JM representation (expressed in terms of Euler angles (αβγ)) which form
a group under composition (Varshalovich et al. ,1988). The shorthand no-
tation SU(2)J employed in (1) actually refers to the group of W–rotations,
which in turn can be interpreted as actions of the automorphism group of the
fiber C2J+1. Since rotations in the JM representation do not alter the bi-
nary bracketing structure of vectors in computational Hilbert spaces we can
interpret W–rotation operators as ‘transport prescriptions along the fiber’.

The framework outlined above should have made it manifest that we can
switch, at will and independently
i) j–gates –represented by 3nj recoupling coefficients between distinct binary
coupled schemes of (n + 1) incoming angular momenta– depending only on
discrete parameters, the spin quantum numbers;

7



Figure 1: The fiber space structure of the spin network computational space

(V, C2J+1, SU(2)J )n for (n + 1) = 4 incoming angular momenta. The vertices of

the graph are in one–to–one correspondence with binary coupled Hilbert spaces: all

of them have dimension (2J + 1), for some fixed J , and are visualized by ‘blowing

up’ each vertex into a plane. M–gates can be thought of as ‘rotations’ applied

to vectors (depicted as arrows) lying inside any such space. On the other hand,

each edge of the graph represents here one Racah transform (phase transforms

are not taken into account for simplicity) and each connected path in the graph

corresponds to a particular 3nj recoupling coefficient (j–gate).

ii) M–gates –represented by Wigner rotation matrices– depending essentially
on continuous (angular) parameters, as summarized pictorially in Fig. 1.
These features, which rely on the discreteness of the base space V and on
the ‘triviality’ of transport laws in the total space (V × C

2J+1)n , make
the computational space of the spin network simulator an ideal arena for
implementing and keeping under control ‘mixed’ computational processes at
the quantum level.

Before entering into more details on this particular issue, let us point
out that our model of quantum simulator actually complies with a vari-
ety of computing schemes, ranging from (analogical and/or discrete, digital)
circuit-type models and finite state–automata up to discretized versions of
‘topological’ quantum computation (Marzuoli and Rasetti, 2005a). Inside
each of these classes we may also consider different types of quantum al-
gorithms (associated with ‘programs’) which of course must depend on the
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particular ‘encoding scheme’ adopted for the problem we choose to treat. In
this respect, as we shall see in the next section, problems from low dimen-
sional topology, geometry, group theory and graph theory (rather than from
number theory) are particularly suitable to be addressed in this ‘quantum–
combinatorial’ framework.

Looking for the time being at the simulator as a (not Boolean) quantum
circuit model (an all–purpose machine able to implement in principle any
computations, so we do not need to specify here a problem nor an encoding
scheme) we have to choose a program, one particular input state and a set of
(accepted) output states. A program is a collection of step–by–step transition
rules (gates), namely a family of ‘elementary unitary operations’ (Racah,
phase trasform or yet Wigner rotation operators for fixed values of the Euler
angles) and we assume that it takes one unit of the intrinsic discrete time
variable to perform anyone of them. In the combinatorial setting described
above such prescriptions amount to select a family of ‘directed paths’ in the
fiber space structure (V, C2J+1, SU(2)J)n (cfr. Fig. 1), all starting from
the same input state and ending in an admissible output state. A single
path in this family is associated with a particular algorithm supported by
the given program. By a directed path P with fixed endpoints we mean a
(time) ordered sequence

|vin 〉n ≡ |v0 〉n → |v1 〉n → · · · → |vs 〉n → · · · → |vL 〉n ≡ |vout 〉n , (11)

where we use the shorthand notation |vs〉n for computational states and
s = 0, 1, 2, . . . , L(P) is the lexicographical labelling of the states along the
path. L(P) is the length of the path P and L(P) · τ

.
= T is the time required

to perform the process in terms of the discrete time unit τ .
A circuit–type computation consists in evaluating the expectation value

of the unitary operator UP associated with the path P, namely

〈vout |UP | vin 〉n. (12)

By taking advantage of the possibility of decomposing UP uniquely into an
ordered sequence of elementary gates, (12) becomes

〈vout |UP | vin 〉n = ⌊

L−1
∏

s=0

〈vs+1 | Us,s+1 | vs 〉n ⌋P (13)

with L ≡ L(P) for short. The symbol ⌊ ⌋P denotes the ordered prod-
uct along the path P and each elementary operation is rewritten as Us,s+1
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(s = 0, 1, 2, . . .L(P)) to stress its ‘one–step’ character with respect to such a
circuit–type computation.

It is worth noticing that actual computation –namely the choice of families
of directed paths in the simulator’s computational space (V, C2J+1, SU(2)J)n–
breaks the invariance with respect to ‘intrinsic time–translations’ which holds
instead at the purely kinematical level (we have to specify the ordering in
(11) and (13)). Moreover, different types of evolutions can be grouped into
‘computing classes’ according to the nature of the gates that a particular
program has to employ (see Section 4.2 of (Marzuoli and Rasetti, 2005a) for
more details). Of course, a computing class that alternates (a finite number
of) j and M–gates is the most general one and, as pointed out before, its
kind of behavior is exactly what we need to implement mixed quantum com-
putation. In the pictorial representation given above, this would amount to
‘move’ a vector in a nearest vertex along the graph and then rotate it inside
each space, alternatively.
Looking now in particular at the analogic mode –namely just acting with
sequences of rotations inside one space– we argue that the spin network
simulator plays the role of ‘universal’ quantum analog machine, despite von
Neumann’s early claim that “ ‘universal’ quantum analogical machines do
not make sense” (he refers of course to classical devices which are based on
a variety of physical mechanisms, not sharing unifying principles, cfr. (von
Neumann, 1951)). More precisely, such analogic processes belong to M–
computing classes containing programs which employ only (finite sequences
of) M–gates in their associated directed paths and it would not be difficult
to recognize that such kind of computation, when suitably applied to N 1

2
–

spins, reproduces the standard Boolean quantum circuit.
On the other hand, a j–computing class includes programs which employ
only j-gates at each computational step, namely the only allowed ‘moves’
are along the edges of the computational graph of Fig. 1. This class is
particularly interesting since it shares many features with ‘discretized’ topo-
logical quantum field theories (TQFTs), the so–called state sum models, re-
lated in turn with SU(2) Chern–Simons TQFT (cfr. the next section). Here
the combinatorial structure becomes prominent owing to the existence of a
one–to–one correspondence between allowed elementary operations (Racah
and phase tranforms) and the edge set E of the graph Gn(V, E). Inside this
class the selection of (families of) directed paths proceeds as in the most gen-
eral case illustrated above, but we realize that dynamical processes break as
well the combinatorial invariance which holds at the kinematical level (where
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paths with fixed endpoints can be freely deformed one into another due to
the algebraic identities satisfied by SU(2) 6j symbols, which imply that the
corresponding quantum amplitudes are equal). When working in such purely
discrete modes, the spin network complies with Feynman’s requirements for
an ‘universal’ (discrete) simulator (Feynman, 1982) as discussed extensively
in (Marzuoli and Rasetti, 2002).

Improving quantum complexity:
the ‘quantum field computer’

The tremendous efforts spent in the last few years on quantum informa-
tion processing were motivated and fostered by the single important result
constituted by Shor’s algorithm. However, they were at the same time frus-
trated by the fact that the progresses toward successful physical implemen-
tation had not been paralled by the discovery of other algorithms, definitely
demonstrating the superiority of quantum vs. classical computation.

The 1998 pioneering paper by Michael Freedman (from which we borrow
the title of this section) opened the possibility of greatly improving standard
quantum computing –inspired by the behavior of ‘quantum mechanical’ phys-
ical systems– moving to ‘quantum field’ theory. His program is outlined in
the abstract of (Freedman, 1998):

The central problem in computer science is the conjecture that two

complexity classes, P (...) and NP (...), are distinct in the standard

Turing model of computation: P 6= NP. As a generality, we propose

that each physical theory supports computational models whose power

is limited by the physical theory. It is well known that classical physics

supports a multitude of implementation of the Turing machine. Non–

Abelian topological quantum field theories exhibit the mathematical

features to support a model capable of solving all #P problems, a

computationally intractable class, in polynomial time. Specifically,

Witten, in (Witten, 1989), has identified expectation values in a cer-

tain SU(2)–field theory with values of the Jones polynomial of knots

(Jones, 1987) that are #P–hard (Jaeger et al. ,1990). This suggest

that some physical system whose effective Lagrangian contains a non–

Abelian topological term might be manipulated to serve as an analog

computer capable of solving NP or even #P–hard problems in poly-
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nomial time. Defining such a system and addressing the accuracy

issues inherent in preparation and measurement is a major unsolved

problem.

In a series of papers (cfr. (Freedman et al. , 2002) and references therein)
this intriguing idea has been worked out in details, both on the theoretical
side and in view of actual physical implementation by means of anyonic sys-
tems. It is somehow disappointing that these authors provide a proof accord-
ing to which topological quantum computation based on modular functors
of SU(2) Chern–Simons theory is polynomially–reducible to the standard
quantum circuit model employing qubits and Boolean elementary quantum
gates. This would mean that, after all, the ‘quantum field computer’ is not
more powerful than a quantum Turing machine, rendering unjustified the ef-
fort of going through such a conceptually difficult framework. We argue that
there is a way out of this dead end, relying on the observation that only a
restricted sector of the underlying topological field theory has been involved
in showing reducibility, that is to say, just a few degrees of freedom have
been actually switched on, hiding the effective performances of this model of
computation.

Two comments are in order here. In the quantum approach, the expo-
nentially better efficiency of quantum with respect to classical information
manipulation is to a large extent due to the presence of entanglement. One
may therefore wonder which is the mechanism that in quantum field comput-
ers, in Freedman’s sense, promotes the efficiency of quantum vs. classical.
It should be observed first of all that the notion of entanglement is strictly
speaking proper to first quantization; it refers to the non-separability in
quantum mechanics in certain conditions of multi–component superposition
states. As such, the notion cannot be exported to the second quantized for-
malism of (topological) quantum field theory. However, it is well known that
in the latter one the basic mechanisms for dynamical evolution is the exis-
tence of many degenerate vacua, among which the system can tunnel. The
corresponding correlations are generated and carried by soliton–like excita-
tions. In the scheme of (Marzuoli and Rasetti, 2000), based on the recoupling
of angular momenta, this feature is implicitly reflected in the property that
the single Hilbert spaces entering the tensor product giving life to the global
space of states, are all mutually isomorphic, yet different spaces (and hence
different recouplings) encode different information, and manipulating infor-
mation means just transforming a coupling scheme into another.
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In Section 6 of (Marzuoli and Rasetti, 2005a) we proved that quantum cir-
cuital computational classes of j–type –modelled on the spin network graph
Gn(V, E) as explained at the end of the previous section– are indeed ‘dis-
cretized’ versions of Freedman and collaborators’ ‘functors’. In particular,
for each fixed n, we can embed paths on the spin network into a (2+1)–
dimensional handlebody presentation of the differentiable manifold which
support the modular Chern–Simons functor; combinatorial operations on
the graph correspond to suitable topological moves on the ‘pant decompo-
sition’ of 3–manifolds known as Dehn twists. Such discrete counterparts of
the topological setting share a number of interesting features:
i) they solve the open problem concerning ‘localization’ of modular functors;
ii) they can be naturally interpreted as families of ‘finite states’ automata,
in contrast with the somehow disturbing ‘analogic’ character of the quantum
field computer;
iii) the underlying discretized quantum theory belongs to the class of SU(2)
‘state sum models’ introduced in (Turaev and Viro, 1992) and used exten-
sively also in quantum gravity models (cfr. Sections 5 and 6 of (Marzuoli
and Rasetti 2005a) and references quoted therein).

For what concerns the issue of quantum complexity, which we would like
to focus on for the rest of this section, the key remark is ii) above. In the spin
network computational space Gn(V, E) (for a fixed n) we recognize first of all
a finite ‘input alphabeth’ whose ‘letters’ are the spin quantum numbers of the
incoming angular momenta {j1, j2, . . . , jn+1} plus n pairs of brackets {(, )}
(or, equivalently, n intermediate spin quantum numbers {k1, k2, . . . , kn−1},
recall (3)). Each of the computational Hilbert spaces {HJ

n (b)} is finite–
dimensional according to (4) and unitary operators, associated with 3nj sym-
bols and decomposable according to (5) and (6), play the role of of transition
functions depending on finite sets of discrete (spin) variables. The inherently
step–by–step character of transition functions is associated with the existence
of an intrinsic discrete–time variable, denoted by τ in the previous section.
These features make the spin network the ideal candidate for a ‘general pur-
pose’, finite–states and discrete–time machine able to accept any quantum
language compatible with the algebra of SU(2) angular momenta on the one
hand, and as powerful as the quantum field computer on the other. This
last characteristic, in particular, will allow us to address also problems that
share a ‘global’ nature, such as calculating topological invariants of knots
and links.

Once discussed the general conceptual scheme, we pass to illustrate our
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guiding idea with respect to actual implementation of algorithms. The ex-
ponential efficiency that quantum algorithms may achieve vs. classical ones
might prove especially relevant in addressing problems in which the space
of solutions is not only endowed with a numerical representation but is it-
self characterized by some additional ‘combinatorial’ structure, definable in
terms of a grammar and a syntax and thus suitable to be encoded natu-
rally in the spin network computational framework. There are a number of
problems that are not easily formulated in numerical (‘digital’) terms and
that are quite often intractable in classical complexity theory (cfr. (Garey
and Johnson, 1979)). In combinatorial and algebraic topology typical issues
are: the construction of presentations of the fundamental group (or the first
homology group) of compact 3–manifolds decomposed as handlebodies; the
study of equivalence classes of knots/links in the three–sphere, related in
turn to the classification of hyperbolic 3–manifolds; the enumeration of in-
equivalent triangulations of D–dimensional compact manifolds. As for group
theory: the word problem, the coniugacy problem, the isomorphism prob-
lem for both finite and finitely presented groups. Finally, a huge number
of problems arise in graph theory (the Hamiltonian circuit problem, just to
mention one) and we find it intriguing that the the graph underlying the spin
network simulator –known as Twist–Rotation graph– turns out to be auto-
matically encoded into the computational quantum space (cfr. Appendix A
of (Marzuoli and Rasetti, 2005a)).

Just to give an insight into the ‘local’ and ’global’ nature that these
types of problems may exhibit, let us turn to the Artin braid group, the
representation theory of which enters heavily into many physical applications,
ranging from statistical mechanics to (topological) quantum field theories.
Historically, three fundamental decision problems were formulated by Max
Dehn in 1911 for any finitely presented group G:
• word problem: does there exist an algorithm to determine, for any arbitrary
word w in the generators of G, whether or not w = identity in G?
• coniugacy problem: does there exist an algorithm to decide whether any
pair of words in the generators of G are conjugate to each other?
• isomorphism problem: given an arbitrary pair of finite presentations in
some set of generators, does there exist an algorithm to decide whether the
groups they present are isomorphic?
Following the development of the classical theory of algorithms (recursive
functions and Turing machine) it is reasonable to expect that Dehn’s prob-
lems might be recursively solvable or, at least, that the ‘local’ ones (the word

14



and the coniugacy problems) be so. It turns out, instead, that not only these
problems, but a host of local and global decision problems sharing a combi-
natorial flavor are unsolvable within such scheme. As for the braid group, an
efficient classical algorithm has been found recently for the restricted word
problem (deciding whether two words are equal or not), but the best known
algorithm for the coniugacy problem is exponential–time with respect to the
length of the input word (we refer the reader to (Birman and Brendle, 2004)
for an exhaustive review on braid group). The search for quantum algorithms
to solve efficiently this kind of problems is a major challenge for improving
quantum computation.

Concluding remarks and outlook

Since the spin network quantum circuit can support both analogic and
discrete computing processes, in the spirit of von Neumann’s quotations re-
ported in the introduction we may ask whether –for example– we can carry
out simulations of molecular dynamics in biochemical systems. Typically,
organic molecules, by their own, are complex quantum systems, certainly
not well modelled on two–level systems as should happen if we keep on us-
ing quantum computers handling with qubits. Moreover, any such system
displays several ‘sources’ of angular momentum: electrons’ spins, electrons’
orbital angular momentum, nuclear spins and also angular momenta associ-
ated with rotations of the nuclear axis (or axes) with respect to the labo-
ratory reference frame. Except for electrons’ individual spins, all the other
sources may have quantum numbers different from 1/2 (and possibly quite
large). Experimentally, some types of interactions occuring in such systems
are well modelled on two–body interactions, and thus ‘binary’ coupled states
(3) can indeed describe in a quite accurate way the molecule wave function
in the reference frame of its center of mass. Different experimental settings
do correspond, on the other hand, to different binary coupled schemes, and
transitions between pairs of such couplings are described in terms of 3nj coef-
ficients, for suitable n (Vincenzo Aquilanti, private communication). On the
other hand, the action of an external magnetic field forces angular momenta
to align along its direction, and such phenomenon should be well simulated,
in some experimental circumstances, by the action of Wigner rotation oper-
ators defined in (10).

Having recognized the possibility of simulating (classes of) discrete and
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analogic processes at truly quantum scales, let us have a look at a pecu-
liar feature of our model of computation, namely the chance of relating
‘quantum’–discrete modes to ‘analogic’–classical ones. Recall that purely
discrete transition functions at the quantum level are basically implemented
by Racah trasforms of the type (5). Going trough the semiclassical limit,
where all the angular momentum quantum numbers are ≫ 1 in ~ units (or,
equivalently, formally letting ~ → 0), the 6j symbol becomes a function
of some (suitably defined) angles, and thus acquires a continuous character
(cfr. (Ponzano and Regge, 1968) and Section 5 of (Marzuoli and Rasetti,
2005a)): accordingly, quantum transition probabilities are turned into clas-
sical ones. For what concerns states on which such asymptotic gates act,
the inerhently quantum Hilbert space structure (3) is obviuosly lost in ap-
proaching the classical limit, but nevertheless we may think of ensembles of
‘macroscopic’ particles characterized by classical angular momenta and en-
dowed with classical, many–body interactions modelled on two–body ones.
Since the asymptotic formula by Ponzano and Regge fits with experimental
data already for quantum numbers of the order of few ~, we argue that some
molecular systems might be accurately simulated in this ‘analogic’ setting.
Coming back to Feynman’s quotation from (Feynman, 1996), and turning the
argument around, we can say that scientists do indeed get useful ideas from
studying (neurobiological) molecular systems whose theoretical background
is getting more and more well founded. Thus, the hint here is to take these
theories as ‘true’, and rather focus on the search for different, more appropri-
ate models of computation, eventually going beyond the Turing paradigm.

As a final remark, and turning to the issue of quantum complexity, we are
currently addressing quantum automaton–type computations for evaluating
polynomials of knots and links, including Jones’ polynomial (Jones, 1987).
This is achieve by encoding into a ‘braided’ version of the spin network graph
Gn(V, E) links presented as closures of braids, and preliminary results seem
to be encouraging (Garnerone et al., 2005 and 2006).
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