Cluster Probe: An Open, Flexible and Scalable Cluster Monitoring Tool®

ZhengyuLiang, YundongSun, and Cho-Li Wang
Department of Computer Science and Information Systems
The University of Hong Kong, Pokfulam Road , HongKong
{ zyliang, ydsun, clwang} @csis.hku.hk

Abstract

In this paper, we describe the ClugterProbe, an open,
flexible, scalable, and Java-based tool for monitoring
large dusters of workgtations. The todl provides an open
environment by deveoping a multiple-protocol
comnunication interface that can be connected to various
types of external accesss from the dients. The design of
ClusterProbe allows it to scale up to comnodious
capacity with its cascading hierarchical architecture. In
addtion, ClusterProbe isflexible that the monitoring tod
can ke eadly extended to adapt to the resource charges
by usng the Java-RMI medhanism. Several useful
services are implemented based on ClusterProbe,
including the \sudization d cluster resources
information in various forms and cluser fault
management. The tool has been used to asdg the
exeation o a cluster-based search engine and a
distributed N-body application. All experiments
demonstrate high efficiency and good performance
improvement.

1. Introduction

Using workgtation clusters for distributed computing
has become popular with the emergence of low-cogt,
powerful workstations and high-speed retworking
facilities[1,7]. Monitoring such a platform is not atrivial
task gnce typical workstations are designed to work as an
individual system rather than a part of computing cluster
[6]. To maintain the integrity of system and to harnessthe
full potential of workstation clusters, an efficient tod,
which can monitor the critical system activities and
cluster resource utilization, is needed. Thus, cluster
administrators can observe the entire duster with GUI
visualization to manage and maintain the duster. The
retrieved resource utilization information can be used to
guide the job scheduling for paralel applications [11].
This paper proposes efficient tedniques for the

@ Thereseach was supported bythe Hong KongRGC Grants HKU
703298E and HKU Equipment Grant 10003.01991001.

development of a duster monitoring tod. Three main
design issles are anphasi zed:

Open environment: Mog exising cluster
monitoring tools do not provide open environments
for application programs. Thase todls collect and
display the duster resources information only for
their integrated GUI modues. Other subsystems or
applications that may need the same data ae not
able to share the monitoring information. Some
monitoring tools could be acessd throuch a
standard medhanism such as SQL, but the fixed
and build-in communication mode is not adequate
to support the mplex and rapid changed
applications running on cluster [3]. We aim at
building an open environment that can suppart
multiple communication protocols. Such an
environment should allow the dientsto retrieve the
cluster resources information provided by the
monitoring tool usng standard communication
interfaces which are preferred and localy
available.

Flexibility: The resources of a duster, including
both hardware and software evolve rapidly. A good
monitoring tool should be flexible and extensble
to keep up with the resource changes. It should
provide fast and automatic updates of cluster
resource utilities without enormous efforts in
modification.

Scalability: The monitoring tool should scale in
cgpacity to manage acluster composed of a large
number of computers, without consuming lots of
system resources. It should provide the largest
degree of paralledlism to facilitate the concurrent
control and monitoring d the underlying cluster
resources. The monitoring tod should exploit the
paradlelism of the execution of monitoring task,
providing group control and inspection, and
reducing overheads in coordinating monitoring
agents and server.

We have desgned and implemented an open, flexible
and scalable monitoring tool, called ClugterProbe to
monitor large dusters of workstations. To create a open
environment, ClugterProbe provides multiprotocol
comrrunication interface (MCI) to be integrated into
client with their loca communication environments. The
MCI can suppat various communication protocols, such
as RMI/CORBA, HTTP/HTML, TCP, UDP, and SQL. In
MCI, we use multiple adaptors to provide transparent
communication services for external access ClusterProbe
allows us to use more than ore @mmunicate adaptors for
querying requests of different protocols from various
clients In addition, ClusterProbe alops the pre-
formatting modules to enable the function of offering the
datum to clients with user-preferred formats including
raw data, compact data, security packets and customized
objects.

To make ClugerProbe flexible and extensible, we
have dosen to gather and transmit data using Java-RMI
mechanism. With RMI (Remote Method Invocation),
method codes can be transmitted from the server to
remote gent dynamicaly. This capability makes
ClusterProbe naturally extensible because new resources
could be monitored by automatically downloading codes
from server to the remote gent without affecting the
execution of existing tasks. In addition, with registration
mechanism in RMI, nodes can freely join or digoin the
cluster onthe fly.

ClusterProbe sets up a cascading hierarchy of
monitoring damains to improve its salability, which is

the ability to hande large-scae monitoring task. The
hierarchy alows us to retrieve and process data in
paralel, restrict nodes to interesting sets of the resources,
and cut down the communication to higher level domains.

In the following sections, the overview of
ClusterProbe architecture is given in Section 2. We
introduce multiprotocol communication interface and pre-
formatting modules in Section 3 We discuss Java-RMI
mechanism in Section 4. The @scading hierarchy is
discus=ed in Section 5. We present our implementation in
Sedion 6 and describe our experimental resultsin Section
7. Related works are discussed and compared in Section
8. Findly, we summarize our conclusions and future
worksin Section 9.

2. Overview of ClusterProbe ar chitecture

ClusterProbe system consists of three main
comporents. (1) The monitoring server (2) The
monitoring poxy (3) The agent. Figure 1 shows the
overview of the ClusterProbe achitecture built in a
cluster.

The monitoring server, which resides on one powerful
node of the duster, is resporsible for handing the
requests from clients and forwarding the monitoring
results to the dients that are of interes. A client
application could be a pardle task that requests the
cluster resource utilization data from the ClusterProbe, so
as to apply its load balancing strategies. Or it could be
just the cluster administrator who wants to view the

Node

Application
Node Y Proxy

Node

Node

Application
A

Monitoring Server

TCP

HTTP L A N

Node Node Proxy Node

ode

i
i
i
Application Proxy : Proxy
i

! Batch Job Domain

w Adaptor/ Adaptor Peer

:l RMI Communicator

Figure 1. Overview of ClusterProbe.

cluster status through the Internet. All clients
communicate with monitoring server through a
communication adaptor. Communication adaptors that
suppat various types of communication protocols are
availablein ClusterProbe.

A monitoring proxy is resporsible for managing a
subset of the duster nodes in the same domain,
containing a set of nodes based on resources type or job
alocation policy. For examples, in Figure 1, a batch job
domain can be formed, if dedicated exeaition
environment of parallel applications is needed. Nodes
with different hardware nfiguration a software
installation may also construct a domain, as long as they
are requested by the gplications. The design of the
monitoring poxy is aso for the scalability of the
monitoring tool itsdf. It is d$mply a partitioning
mechanism to ease the management of monitoring toal.
Thus, the monitoring tool can be used to monitor a large
cluster. A monitoring proxy accepts the requests from
upper domain, processes and forwards the data to upper
proxy.

The agent executes as a daemon on all the nodes that
comprise the cluster, downloads the monitoring sessons
from the server or proxy of its domain, collects and
reports local resources status. All agents communicate
with their monitoring proxy by using RMI.

3. Multiprotocol Communication Interface
and Pre-formatting Modules

The monitoring server is the only entrance for clients
to accessthe monitoring tool. The server handles requests
from adl clients, distributes monitoring sessons to
correspondng nodes of cluster and supplies the
monitoring dita to clients that are of interest. The
building components of monitoring server are shown in
Figure 2.

The firg issue we address is to provide an open
environment for sharing monitoring information with
various types of clients in the duster. To solve this
problem, we develop a multiprotocol communication
interface (MCI) that suppats various communication
protocols. In addition, we have designed the pre-
formatting modules to offer the resources data to clients
with user-preferred formats.

In MCI, the function of multiple protocols is achieved
by using multiple alaptors. An adaptor provides accessto
monitoring server through a particular communication
protocol. It opens an external access channel for clients
that use this particular protocol to retrieve resources
information from monitoring server. MCl can include ay
number of adaptors, alowing it to be acessed through
different protocols. The adaptors convert the querying
requests to standard monitoring instructions and wrap the
monitoring data with associated protocol.

The dient decides the type of accessto an adaptor.
There ae two types of access namely direct access and
peea access For examples, Web browser using the HTTP
protocol or an application wsng BSD socket protocol can
accessan adaptor directly. Both cases are direct accesss.
On the other hand, most Java dients access an adaptor
through an adaptor pee. For examples, Java dients may
use RMI or HTTP protocol to communicate with each
other’s. Inthiscasg, it isapeea access

We have defined a set of application program interface
cdled Cluster Monitoring APl (CMAPI), which
standardize the functions of adaptors. Thus, an adaptor is
a dassthat implements the interfaces defined in CMAPI.
With classes loading techndogy in Java, an adaptor can
be plugged in withou restarting the monitoring server.

Clients may access monitoring tod for obtaining all
kinds of cluster information. To enhance the usability of
data and to reduce the loading of clients, we have
developed the pre-formatting modules to wrap the raw
data with user-preferred formats. The data can be sent
with raw data format or formatted padkages that is
processed by two or more modules.

In ClusterProbe, the pre-formatting modues include a
number of reusable and generic function comporents for
common formats, including filters for compact format,
cryptographersfor security format, chart/graph generators
for chart/graph format and etc.

Java Application

Web Browser Computing Task

Adaptor Peer (HTTP) Adaptor Peer
(RMI) (TCP)
‘‘‘‘‘ I‘_‘_'_‘_‘_‘_‘_‘_‘_‘;‘_‘_‘_‘_1‘_‘_‘1
Adaptor Adaptor Adaptor Adaptor
(RMI) (SQL) (HTTP) (TCP)

Multiprotocol Communication Interface (MCI)

CMAPI (Cluster Monitoring API)

Pre-formatting Core Monitoring Library

Modules Layer

Monitoring RMI Communicator

|
|
|
|
|
Classes |
|
|
|
|
|
|

Monitoring Server

Figure 2. Architecture of monitoring server.

4. Java-RM |1 M echanism

Java Remote Method Invocation (RMI) [9] is BAva's
remote procedure @l (RPC) mechanism. RMI is a
distributed olject techndogy that lets you add Java
functionality throughaut the system in an incremental, yet

seamnless way. Because of this feature, RMI can move
methods (class implementations) from server to agent
dynamicdly.

In ClusterProbe, an agent is a daemon that running on
a monitored nock to collect and report the resource
configuration and system-related statistics, according to
the monitoring instructions gecified by the server. The
agents can process the monitoring data and react to
resource changes, rather than just sending information to
server or proxy. For example, one agent allows low-leve
eventsto be handled locally without alarm reporting.

We define an interface that describes how to retrieve
the resources data from underlying operation system. The
agents can download the implementation of the interface
from the server when new resources are created. They can
monitor new resources as on as the implementations
became available. Updated implementation can also be
delivered to the agents through the same mechanism. This
allows the monitoring of resources to be implemented and
started at any time. The monitoring sesson, which is a
thread that exeautes the ades defined in the downloaded
implementation of the interface, will therefore be
executed on the gents. This approach provides faster
upgade without installing any new software on agents. It
gives us the maximal flexibility and extensibility, snce
adding and changing resources require us to write only
one new Java dassand install it once on the monitoring
server.

The building components of an agent include RMI
comnunicator and Monitoring Bus. The RMI
comrrunicator handles communication between agent and
server. The Monitoring Bus controls the monitor sessons
and cdl sthe gpropriate sesson to perform the requested
operations.

Because monitoring codes can be downloaded from
server and inserted to agent dynamicaly, the aent is
smple ad light-weighted. Furthermore, starting the
monitoring agent is the only operation for adding a new
noce to the duster. The gent will lookup the server and
registersto server by itself.

5. Cascading Hierarchy

A cluster system should be able to scale up or scale
down for affordability and market volume. Thus,
scaability should also be considered while desgning the
cluster monitoring tod. That is, the monitoring tod
shoud be able to scale to monitor a large duster without
scarifying its efficiency.

We have desgned a cascading herarchy of
monitoring damains to improve the scaability. The
cluster nodes are partitioned dynamically into digoined
groups named as domain, according to monitoring
services. Figure 3 shows the desgn d the hierarchy of
monitoring danains. One monitor proxy is set up in each

domain (except the top domain) and provides following
functions:

1) Regiger or unregister to the proxy of upper
domain.

2) Receive the monitoring instructions from upper
proxy and digtribute the monitoring sesson to
agents or proxies under this domain.

3) Merge/sort the monitoring data from this
domain and forward it to upper proxy.

4) Hande the fault events or forward them to

Upper proxy.

Client Client Client Client

Top Domain
(Whole Cluster)

Monitor Server

Domain A

Domain B

MS = Monitoring Session

Figure 3. The hierarchy of monitoring domain.

A monitoring proxy is resporsible for managing the
nodes or proxies located in the domain where the proxy is
residing. The upper proxy can access this domain
through the proxy without knowing the detail s of nodesin
thisdomain.

Owing to these functions, the hierarchy provides many
benefits. With this hierarchical structure, the ayents can
download the monitoring sessons from the proxy in their
own domain, instead of the single monitor server. This
hierarchy also allows specidlization of nodes. We @n
group the nodes equipped with interesting resources into
the same domain, so that the monitoring operation can be
simpler. Unnecessary monitoring data won't be colleded
to save the exeaution time and system resources. In

addition, the monitoring operation codes implemented by
the dient applications coud be more portable. For
example, all SMP nodes can be asdgned in the same
domain, allowing clients needing the mnfiguration and
status of SMP nodes to use the same monitoring operation
codes when rew SMP nockes join the duster since the
proxy of the SMP domain can delegate dl the nodes
below it.

Furthermore, this hierarchy can reduce the
communication to high level domain. By merging and
filtering the data, the proxy can decrease the size of the
padkets. Asthe anount of data gathered increases and the
size of the dugter grows, the reduction of communication
becomes more significant.

6. Implementation

ClusterProbe has been implemented on a cluster of
PCsrunning Linux 21.90 or 2.2.1, including 22 WinChip
PCs, 4 Dell PowerEdge 4-way SMP servers, 8 Duaon
(Dual Cederon) SMP RCs and 10 Pentium Il PCs
interconnected by ATM, Gigabit Ethernet and Fast
Ethernet switches.

The monitoring server isthe mre of the ClusterProbe.
It is located in ore of the PowerEdge SMP server with 1
GB memory, running Linux 2.2.1. The monitoring server
adopts multiprotocol communication interface composed
of multiple adaptors. Multiple adaptors provide multiple
channels to the tool through various communication
protocols. The aaptor will transform the request from
original protocol to monitoring instruction defined in
CMAPI and convert the monitoring data with associated
protocol. All adaptors should be defined as identical
structure so that they can be accessed without knowing
the detail s. So far, we have implemented the adaptors for
RMI, HTTP and BSD Socket (TCP). The followingis the
brief definition of the universal interface for adaptor:

import javalang.*;

pulic interface Adaptor implements Runnable {
protected Messge readMsg ();
pulic Instruction transform (Message req);
puldic Message buildMessage(MonData data);
protected void sendMsg(Message msg);
void run(); //keep li stening the requests

}

Before sending the data to clients, the monitoring
server can wrap the data with the pre-formatting modules.
Three kinds of modules are suppated in ClusterProbe:

» Filter module: The module car be used to filter the
redupli cated or stale data and ketch the related data.

= Security module: Using Java Cryptography
Extension (JCE) packages, the module ca authenticate
data by encryption.

= Chart/Graph module: The output of this modue is
a astomized object that can be displayed as a chart or
a graph, such as shest, strip chart, pie dhart, LED sign
etc.

The monitoring proxies could be considered as gecia
agents that can manage the agents or other proxies below
them in its domain. Four mgjor monitor proxies are
configured at this moment to monitor our benchmark tests
on Directed Point communication subsystem [12] in the
WinChip cluster, Cluster-based seach engine built in the
4 Ddl PowerEdge servers, the Java Thread Migration
project (JESSCA) [13] on the 8 Duaon Cluger, and the
10 Pentium Il PCs for developing perallel N-Body
algorithm [15], respectively. Selected experimental
resultswill be discussed in Section 7.

The agent resides on each nodes of the duster. It will
collect resource configuration information and system-
related dtatistics. All agents are communicated through
RMI. Because RMI allows us to download methods from
server automaticdly, the agyent code can be written as
simple & below:

import javarmi.*;
pubic interface Agent extends Remote {
void monitor (Sesson sesgon)
throws RemoteException;
}
pulic interface Sesson extends Seriablizable {
void run();
}

Note that the resources consumed by the agent is light.
The size of agent code could be as smal as
300Kbytes,depending on the number of sessons they
suppat.

7. Experimental Results

ClusterProbe is an open monitoring tod for cluster. It
can serve for a multitude of paralel applications or
subsystems. In this section, we briefly discuss four typical
examples.

7.1. Web-based Cluster Management

We have desgned and implemented a Web-based
cluster management tod to monitor and manage the
cluster resources. The management tool interacts with
ClusterProbe to obtain various kinds of cluster resource
information.

With ClusterProbe, the duster can be managed with
minimum human intervention. New resources can be
eally and immediately integrated and software upgades
become trivia. With HTTP adaptor and pre-formatting
modules, ClusterProbe can offer customized chart/graph

applets to the Web browser. Administrators could select
the monitored resource, range, refresh time and display
type. The seaurity modue is used to authenticate all users
when they access the monitoring tool through the
Internet. Figure 4 and 5 show two snapshats of the
visualization of our web-based management system by
using StripChart and PieChart pre-formatting modules,
respectively. In figure 4, each chart shows a node’'s
system load averagesfor the past 5, 10, and 15 minutesin
different colors and the history records and viewed in the
same dart for comparing. While in figure 5, each pe
chart shows a node’'s memory usage for user, system,
idle, buffer and shared in dfferent colors. The darts will
be updated within the refresh interval specified by
administrators.

| =l Netscape: Monitor -0 X

File Edit WView Go Communicator Help |

'| w§ " Bookmarks & Location: [rtep: //c414bl. csis. bl hk:B080/servlet /cics nonito: [l @17 What's Related ‘
i

WorkLoad Tables

I

c414al Load Status

cd1da2 Load Status

c414b1 Load Status

00 1000 2000
| < — P S — P S R P
+Tust ot spefvedsUSUR Tl 18 15117:29 GAT03:00 L& Last i avtivedat Sun Ul 18 15:19:34 GRIT+03.00 15 135t data a1eived st Sun Jul 18 1525601 GMT+03:00

c414b2 Load Status c414e2 Load Status

—=_ Loadl
—

og 1000 2000

| P

2Tast data arrived st Sun Jul 18 16:08:27 GRAT+03:00 16 Last data axived at Sun Jul 18 16:14:06 GRT+03:00 1¢ last data areived at Sun Jul 18 155723 GMT+03:00

00 1000 2000

1

oo 100.0 2000

| —

c414c3 Load Status srgd2 Load Status srgd3 Load Status

100% |Applet monitor running

Figure 4. Snapshot of strip charts for workload.

{3820 Netscape: Monitor -0 X

File Edit View Go Communicator Help |

7‘ w§~ Bookmarks A Location: http: //cd14b1 csis. hku hk:8080/servlet/cics_nonito /‘ @17 what's F(Elaled|

Memory Statistics T

fastl cais hku hk Memary Stat fast.csis.hkuhk Memary Stat fast3.csisku hk Memary Stat fastdcsis kuhk Memory Stat

mmmmmm s iFree W’Tl EnFree
. ' vl ishared
e Henshared Cache:
., Caded MemShared Buffers Buffers

fastS cais hku hk Memary Stat fasth.csishku bk Memary Stat fast?.csis bk bk Memary Stat fasti.csis bk bk Memory Stat

Henised Henlzed Henised Henised

Free Free
el HenFree HerFree e
Buffers utiers are
dfers | MEMSAved shared shared outierd
e Cache: cadhe cached

=]
[[a0

|Appiet monitor running

Figure 5. Snapshot of pie charts for memory.

7.2. Scalable WWW Search Engine (SWSE)

SWSE is a smple pardld full-text WWW seaching
engine on a cluster of PCs. The goa of SWSE is to
achieve high throughput and short resporse time for
serving queries, by using the collective computing power
and storage @pacity of the cluster. The implementation of
this engine foll ows a multi ple-query-server-multiple-data-
server model. We have installed the SWSE system on a
domain composed of 4 Dell PowerEdge 4-way SMP FCs,
interconnected by an IBM 8275416 Fast Ethernet
Switch, and running a badkgrourd application that
generates intensive mmputation but non-uniform load
digtribution on the cluster nodes. ClugterProbe plays a
significant role to improve performance in SWSE system.

50000 Exectution Time of SWSE System

w i
£ 40000
(0]
£ 30000 -
|_
& 20000 1
x
|
£ 10000
(o]
|_

0 : ‘ ‘ ‘

0 10000 20000 30000 40000 50000
No. of Matched Records
—&— Without ClusterProbe —ii— With ClusterProbe

Figure 6. Performance results of SWSE system

We compare two sets of execution time data for
serving various numbers of queriesin a batch in figure 6.
One set of data is collected by using the rourd robin
algorithm withou accessng ClusterProbe. Ancther oneis
collected by using the CPU utilization and Disk 10 speed
information geined via HTTP adaptor of ClusterProbe to
choacse node with the lightest workload to conduct search.
With the asdgt of ClusterProbe, we @n achieve 5-20%
performance improvement.

7.3. DOO N-Body

The DOO NBody tet was performed in a
Distributed Object-Oriented (DOO) system for solving N-
Body problem on heterogeneous cluster [15]. The system
allows a group of distributed objects on multiple hosts to
work cooperatively in computation. By using the RMI
adaptor peer, the system can inquire ClusterProbe the
information abou host configuration and current status
such as workload and CPU utilization. Referring to the
data provided by ClugterProbe, the DOO system could
dynamicdly configure the computing environment so as

to be aaptive to the computing requirements of an
application, as well as the available resources in the
cluster.

Fig. 7 compares the performance of the two agorithms
for solving N-body problem of particle smulations in the
DOO system running in a dedicated environment with 10
Pentium Il PCs. One dgorithm assgns tasks to fixed
machines. The second agorithm dynamicaly selects
li ght-loaded machines according to the node information
provided by ClusterProbe. Overall, the ClusterProbe @an
improve the exeaution time around 520%.

Speedup of particle simulation
on the DOO system

0 - f f f f f f f f
1 2 3 4 5 6 7 8 9 10
Processors

—&— Without ClusterProbe —#— With ClusterProbe

Figure 7. Performance results of particle
simulation on the DOO system

7.4. Fault Management

To keep high availahility, cluster system requires
facilities to detect, locate, isolate, and recover from
failure. We use ClusterProbe to detect node failure by
matching the state of resources with the abnormal
condtions, identify when and where failure occurs, and
natify the interested event handers to isolate or recover
from fail ure.

We have implemented the global event facility in
ClusterProbe to assst in locating failure, defining and
handling events. Java provides local events, in which an
AWT component informs other comporents that
something interesting has happened. In our case, we want
to send and receive event objects over the duster between
distributed agents. For each node in our cluster, it
receives fault messages in the form of event objeds from
one or many remote gyents, and it sends fault messages to
other agents.

Global event structuring mechaniam is identica to the
local event model of Java, except that instead of source
reference within a single Java Virtual Machine, a global
name for the event is used. Furthermore, because the
nodes involved o one global event are distributed,
multicast can be used for efficient RMI communication,
instead of Java slocal point-to-point casting.

There ae several advantages to use global event.
When an event happens, it not only affects the loca
resources that cause the event, but also affects the remote
resources, concurrently or orderly. So the first advantage
of using global event is the posghility of integrating the
distributed event handers running on each nock
Furthermore, we @n use global events to dagnose the
red problem. For instance, a proxy receives several
events in the same time and al the events report
networking problems, then the proxy checks the event
sources and finds that all of the sources of the events are
connecded to a same switch, so the networking problem
may be caised bythe switch.

8. Related Works

Java Dynamic Management Kit (JDMK) is the first
Javarbased solution for building and distributing
intelligence into network device [10Q]. It is a multiple
agent development tool on the market to integrated web-
based, push/pull techndogies as well as suppat for
multiple management protocol such as SNMP, HTTP and
RMI. Both JDMK and ClugerProbe follow similar
approaches by implementing multiple alaptors in the
distributed system. However, in JIDMK eacdh node acts as
an individual information source, the acessto the node
must be explicit, while ClusterProbe aggregates the
information through the monitoring server. Besides, for a
universal management toolkit, JDMK does not
spedfically address the issies aich as pre-formatting
modules and global event management.

GARDMON is a Java-based monitoring tool for non
dedicated cluster computing system [4]. It follows client-
server methoddogy and provides transparent accessto all
monitored nodes from a monitoring machine.
GARDMON can monitor the aitire duster activities
through a single point of control by wusing the gardmon-
server. However, GARDMON could not been accessd
by pardlel applications or subsystems except for the
gardonclient. The same situation could be found in K-
CAP[16], DOGMA [8] and PARMON [5].

The Node Status Reporter (NSR) [14] and the Cluster
Administration wing Relational Databases (CARD) [2]
both provide a standard mechanism for cluster status
access NSR interface and SQL, respectively. But the
fixed communication interface is not adequate to satisfy
the varied applications. Besides, with the pre-formatting
modules ClusterProbe @n provide more helpful,
powerful, perspective and secure resources information
abou the duster.

9. Conclusionsand Future Works
We have presented a Java-based cluster-monitoring

tod that seizes the advantages of open, flexibility and
extensibility. We showed the idea of using multiprotocol

communication interface for building open environment
with adaptive communication protocols. Pre-formatting
modules have been very useful in wrapping the resources
information with appropriate formats The RMI
mechanism and cascading architecture are proven to be
helpful for flexible resource acess and monitoring.
Several examples are dso given to show the effectiveness
of thetool.

We will develop more adaptors and pre-formatting
modules for ClusterProbe so as to enable more
applications to share the resources information. And the
global event mechanism will be extended to handle more
complex failure.

References

[1] T. Anderson, D. Culler, and D. Patterson. A case for Now.
IEEEMicro, February 19%, pp. 54-64.

[2] Eric Anderson and Dave Patterson. Extensible, Scalable
Monitoring for Cluster of Computers. The Proceedings of
the 11" Systems Administration Conference (LI SA 97), Oct.
1997.

[3] Jod Apidorf, Kevin Thompson, and Rick Wilder.
OC3MON: Flexible, Affordable, High Performance
Statistics Collection. Proceadings of the 10" Systems
Adminigtration Conference (LISA’96), 1996, pp. 97-112.

[4] Rajkumar Buyya, B. T. Koshy and R. Mudlapur.
GARDMON: A Java-based Montioring Tool for Gardens
Non-dedicated Cluster Computing System. The
International Conference on Paralld and Distributed
Processing Tedchniques and Applications (PDPTA'99),
June 1999, pp. 2774-2780.

[5] Rajkumar Buyya, K. Mohan and B. Gopa. PARMON: A
Comprehensive Cluster Monitoring System. The Australian
Users Group for UNIX and OpenSystems Conference and
Exhibition, AUUG'98 — Open Systems. The Comnon
Thread, 1998.

[6] Rajkumar Buyya. Single System Image Need,
Approadhes, and Supporting HPC systems. Proceedings of
the Fourth International Conference on Paralld and
Distributed Processing, Technique and Applications
(PDPTA'97), CSREA Publishers, 1997.

[71 K. Hwang and Z. Xu. Scalable Paralld Computing:
Technology, Architecture, Programming. A graduated
textbook, WCB/McGraw-Hill, New York, Feb 1998.

[8] G. Judd, M. Clement and Q. Snell. DOGMA: Distributed
Object Group Management Architecture, System
Overview. http://ccc.cs.byu.edw/ DOGMA/System.html.

[9] Javesoft. Java Remote Method Invocation — Distributd
Computing for Java http://java sun.com/marketing/collat

era/javarmi.html.

[10] Javasoft. Java Dynamic Management Kit: A WhitePaper.
http://www.sun.com/software/java-dynamic/wp-jdmk/inde
x.html.

[11] J. A. Kaplan, M. L. Nelson. A Comparison o Queueing,
Cluster and Distributed Compuing Systems. Tedhnical
Report, RNS-94-006, NASA Ames Research Center, 1994,

[12] C. M. Lee, A. Tam, and C.L. Wang. Directed Point: An
Efficient Communication Subsysem for Cluster
Computing. Proceedings of the 10th IASTED International
Conference on Paralld and Digributed Computing and
Systems, Las Vegas, October 1998, pp. 662-675.

[13] Machy J M. Ma, Cho-Li Wang, Francis C. M. Lauy,
Zhiwel Xu. JESSCA: Java-Enabled Single System Image
Computing Architecture. The International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’'99), June 1999, pp. 2781-2787.

[14] C. Roder, T. Ludwig and A. Bode. FHexible Status
Measurement in Heterogeneous Environment. The
International Conference on Paralld and Distributed
Processing Tedchniques and Applications (PDPTA'98),
June 1998.

[15] Yudorg Sun, ZhengYu Liang and Cho-Li Wang. A
digributed Object-Oriented Method for Particle
Simulations on Cluster. High Performance Computing and
Networking (HPCN) Europe 1999, Apr 1999, pp. 245-253.

[16] Putchong Uthayopes et al. Interactive Management
of Workstation Clugter Using WorldWide Web,
Cluster Computing Conference (CCC' 97), 1997.

