
ClusterProbe: An Open, Flexible and Scalable Cluster Monitoring Tool@

Zhengyu Liang , Yundong Sun, and Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong , Pokfulam Road , Hong Kong
{ zyliang , ydsun, clwang } @csis.hku.hk

@ The research was supported by the Hong Kong RGC Grants HKU
 7032/98E and HKU Equipment Grant 10003.01991001.

Abstract

In this paper, we describe the ClusterProbe, an open,
flexible, scalable, and Java-based tool for monitoring
large clusters of workstations. The tool provides an open
environment by developing a multiple-protocol
communication interface that can be connected to various
types of external accesses from the clients. The design of
ClusterProbe allows it to scale up to commodious
capacity with its cascading hierarchical architecture. In
addition, ClusterProbe is flexible that the monitoring tool
can be easil y extended to adapt to the resource changes
by using the Java-RMI mechanism. Several useful
services are implemented based on ClusterProbe,
including the visualization of cluster resources
information in various forms and cluster fault
management. The tool has been used to assist the
execution of a cluster-based search engine and a
distributed N-body application. All experiments
demonstrate high efficiency and good performance
improvement.

1. Introduction

Using workstation clusters for distributed computing
has become popular with the emergence of low-cost,
powerful workstations and high-speed networking
facil ities [1,7]. Monitoring such a platform is not a trivial
task since typical workstations are designed to work as an
individual system rather than a part of computing cluster
[6]. To maintain the integrity of system and to harness the
full potential of workstation clusters, an efficient tool,
which can monitor the critical system activities and
cluster resource utilization, is needed. Thus, cluster
administrators can observe the entire cluster with GUI
visualization to manage and maintain the cluster. The
retrieved resource utilization information can be used to
guide the job scheduling for parallel applications [11].
This paper proposes eff icient techniques for the

development of a cluster monitoring tool. Three main
design issues are emphasized:

� Open environment: Most existing cluster
monitoring tools do not provide open environments
for application programs. Those tools collect and
display the cluster resources information only for
their integrated GUI modules. Other subsystems or
applications that may need the same data are not
able to share the monitoring information. Some
monitoring tools could be accessed through a
standard mechanism such as SQL, but the fixed
and build-in communication mode is not adequate
to support the complex and rapid changed
applications running on cluster [3]. We aim at
building an open environment that can support
multiple communication protocols. Such an
environment should allow the clients to retrieve the
cluster resources information provided by the
monitoring tool using standard communication
interfaces which are preferred and locall y
available.

� Flexibility: The resources of a cluster, including
both hardware and software evolve rapidly. A good
monitoring tool should be flexible and extensible
to keep up with the resource changes. It should
provide fast and automatic updates of cluster
resource utilities without enormous efforts in
modification.

� Scalability: The monitoring tool should scale in
capacity to manage a cluster composed of a large
number of computers, without consuming lots of
system resources. It should provide the largest
degree of paralleli sm to facil itate the concurrent
control and monitoring of the underlying cluster
resources. The monitoring tool should exploit the
paralleli sm of the execution of monitoring task,
providing group control and inspection, and
reducing overheads in coordinating monitoring
agents and server.

We have designed and implemented an open, flexible
and scalable monitoring tool, called ClusterProbe to
monitor large clusters of workstations. To create an open
environment, ClusterProbe provides multiprotocol
communication interface (MCI) to be integrated into
client with their local communication environments. The
MCI can support various communication protocols, such
as RMI/CORBA, HTTP/HTML, TCP, UDP, and SQL. In
MCI, we use multiple adaptors to provide transparent
communication services for external access. ClusterProbe
allows us to use more than one communicate adaptors for
querying requests of different protocols from various
clients. In addition, ClusterProbe adopts the pre-
formatting modules to enable the function of offering the
datum to clients with user-preferred formats including
raw data, compact data, security packets and customized
objects.

To make ClusterProbe flexible and extensible, we
have chosen to gather and transmit data using Java-RMI
mechanism. With RMI (Remote Method Invocation),
method codes can be transmitted from the server to
remote agent dynamically. This capabili ty makes
ClusterProbe naturally extensible because new resources
could be monitored by automatically downloading codes
from server to the remote agent without affecting the
execution of existing tasks. In addition, with registration
mechanism in RMI, nodes can freely join or disjoin the
cluster on the fly.

ClusterProbe sets up a cascading hierarchy of
monitoring domains to improve its scalability, which is

the ability to handle large-scale monitoring task. The
hierarchy allows us to retrieve and process data in
parallel, restrict nodes to interesting sets of the resources,
and cut down the communication to higher level domains.

In the following sections, the overview of
ClusterProbe architecture is given in Section 2. We
introduce multiprotocol communication interface and pre-
formatting modules in Section 3. We discuss Java-RMI
mechanism in Section 4. The cascading hierarchy is
discussed in Section 5. We present our implementation in
Section 6 and describe our experimental results in Section
7. Related works are discussed and compared in Section
8. Finall y, we summarize our conclusions and future
works in Section 9.

2. Overview of ClusterProbe architecture

ClusterProbe system consists of three main
components: (1) The monitoring server (2) The
monitoring proxy (3) The agent. Figure 1 shows the
overview of the ClusterProbe architecture built in a
cluster.

The monitoring server, which resides on one powerful
node of the cluster, is responsible for handling the
requests from clients and forwarding the monitoring
results to the clients that are of interest. A client
application could be a parallel task that requests the
cluster resource utilization data from the ClusterProbe, so
as to apply its load balancing strategies. Or it could be
just the cluster administrator who wants to view the

Monitoring Server

Node Node

Batch Job Domain

Application

Node

Node

Parallel Job Domain

Proxy

Application

Node

Node

Job Domain

SMP Domain

Node
Application

Node

Web Browser

Agent Adaptor/ Adaptor Peer RMI Communicator

Figure 1. Overview of ClusterProbe.

Internet

Proxy Proxy Proxy

RMI

TCP
HTTP LAN

cluster status through the Internet. All clients
communicate with monitoring server through a
communication adaptor. Communication adaptors that
support various types of communication protocols are
available in ClusterProbe.

A monitoring proxy is responsible for managing a
subset of the cluster nodes in the same domain,
containing a set of nodes based on resources type or job
allocation policy. For examples, in Figure 1, a batch job
domain can be formed, if dedicated execution
environment of parallel applications is needed. Nodes
with different hardware configuration or software
installation may also construct a domain, as long as they
are requested by the applications. The design of the
monitoring proxy is also for the scalability of the
monitoring tool itself. It is simply a partitioning
mechanism to ease the management of monitoring tool.
Thus, the monitoring tool can be used to monitor a large
cluster. A monitoring proxy accepts the requests from
upper domain, processes and forwards the data to upper
proxy.

The agent executes as a daemon on all the nodes that
comprise the cluster, downloads the monitoring sessions
from the server or proxy of its domain, collects and
reports local resources status. All agents communicate
with their monitoring proxy by using RMI.

3. Multiprotocol Communication Interface
and Pre-formatting Modules

The monitoring server is the only entrance for clients
to access the monitoring tool. The server handles requests
from all clients, distributes monitoring sessions to
corresponding nodes of cluster and supplies the
monitoring data to clients that are of interest. The
building components of monitoring server are shown in
Figure 2.

The first issue we address is to provide an open
environment for sharing monitoring information with
various types of clients in the cluster. To solve this
problem, we develop a multiprotocol communication
interface (MCI) that supports various communication
protocols. In addition, we have designed the pre-
formatting modules to offer the resources data to clients
with user-preferred formats.

In MCI, the function of multiple protocols is achieved
by using multiple adaptors. An adaptor provides access to
monitoring server through a particular communication
protocol. It opens an external access channel for clients
that use this particular protocol to retrieve resources
information from monitoring server. MCI can include any
number of adaptors, allowing it to be accessed through
different protocols. The adaptors convert the querying
requests to standard monitoring instructions and wrap the
monitoring data with associated protocol.

The client decides the type of access to an adaptor.
There are two types of access, namely direct access and
peer access. For examples, Web browser using the HTTP
protocol or an application using BSD socket protocol can
access an adaptor directly. Both cases are direct accesses.
On the other hand, most Java clients access an adaptor
through an adaptor peer. For examples, Java clients may
use RMI or HTTP protocol to communicate with each
other’s. In this case, it is a peer access.

We have defined a set of application program interface
called Cluster Monitoring API (CMAPI), which
standardize the functions of adaptors. Thus, an adaptor is
a class that implements the interfaces defined in CMAPI.
With classes loading technology in Java, an adaptor can
be plugged in without restarting the monitoring server.

Clients may access monitoring tool for obtaining all
kinds of cluster information. To enhance the usability of
data and to reduce the loading of clients, we have
developed the pre-formatting modules to wrap the raw
data with user-preferred formats. The data can be sent
with raw data format or formatted packages that is
processed by two or more modules.

In ClusterProbe, the pre-formatting modules include a
number of reusable and generic function components for
common formats, including filters for compact format,
cryptographers for security format, chart/graph generators
for chart/graph format and etc.

4. Java-RMI Mechanism

Java Remote Method Invocation (RMI) [9] is Java’s
remote procedure call (RPC) mechanism. RMI is a
distributed object technology that lets you add Java
functionality throughout the system in an incremental, yet

Adaptor
(TCP)

Adaptor
(HTTP)

Adaptor
(SQL)

Adaptor
(RMI)

Computing Task

Adaptor Peer
(TCP)

Multiprotocol Communication Interface (MCI)

CMAPI (Cluster Monitoring API)

Pre-formatting
Modules

Core Monitoring
Layer

Monitoring Server

Classes
Library

Monitoring RMI Communicator

Java Application

Adaptor Peer
(RMI)

Web Browser

(HTTP)

Figure 2. Architecture of monitoring server.

seamless way. Because of this feature, RMI can move
methods (class implementations) from server to agent
dynamically.

In ClusterProbe, an agent is a daemon that running on
a monitored node to collect and report the resource
configuration and system-related statistics, according to
the monitoring instructions specified by the server. The
agents can process the monitoring data and react to
resource changes, rather than just sending information to
server or proxy. For example, one agent allows low-level
events to be handled locally without alarm reporting.

We define an interface that describes how to retrieve
the resources data from underlying operation system. The
agents can download the implementation of the interface
from the server when new resources are created. They can
monitor new resources as soon as the implementations
became available. Updated implementation can also be
delivered to the agents through the same mechanism. This
allows the monitoring of resources to be implemented and
started at any time. The monitoring session, which is a
thread that executes the codes defined in the downloaded
implementation of the interface, will therefore be
executed on the agents. This approach provides faster
upgrade without installing any new software on agents. It
gives us the maximal flexibility and extensibility, since
adding and changing resources require us to write only
one new Java class and install it once on the monitoring
server.

The building components of an agent include RMI
communicator and Monitoring Bus. The RMI
communicator handles communication between agent and
server. The Monitoring Bus controls the monitor sessions
and call s the appropriate session to perform the requested
operations.

Because monitoring codes can be downloaded from
server and inserted to agent dynamically, the agent is
simple and light-weighted. Furthermore, starting the
monitoring agent is the only operation for adding a new
node to the cluster. The agent will lookup the server and
registers to server by itself.

5. Cascading Hierarchy

A cluster system should be able to scale up or scale
down for affordability and market volume. Thus,
scalability should also be considered while designing the
cluster monitoring tool. That is, the monitoring tool
should be able to scale to monitor a large cluster without
scarifying its eff iciency.

We have designed a cascading hierarchy of
monitoring domains to improve the scalability. The
cluster nodes are partitioned dynamically into disjoined
groups named as domain, according to monitoring
services. Figure 3 shows the design of the hierarchy of
monitoring domains. One monitor proxy is set up in each

domain (except the top domain) and provides following
functions:

1) Register or unregister to the proxy of upper
domain.

2) Receive the monitoring instructions from upper
proxy and distribute the monitoring session to
agents or proxies under this domain.

3) Merge/sort the monitoring data from this
domain and forward it to upper proxy.

4) Handle the fault events or forward them to
upper proxy.

A monitoring proxy is responsible for managing the
nodes or proxies located in the domain where the proxy is
residing. The upper proxy can access this domain
through the proxy without knowing the detail s of nodes in
this domain.

Owing to these functions, the hierarchy provides many
benefits. With this hierarchical structure, the agents can
download the monitoring sessions from the proxy in their
own domain, instead of the single monitor server. This
hierarchy also allows specialization of nodes. We can
group the nodes equipped with interesting resources into
the same domain, so that the monitoring operation can be
simpler. Unnecessary monitoring data won't be collected
to save the execution time and system resources. In

Domain A

M
S

M
S

M
S

M
S

Cascading
Module

Client

Monitor Server

A

M
S

Agent

Top Domain
(Whole Cluster)

MS = Monitoring Session

Client Client Client

D A P T O R

M
S

M
S

M
S

M
S

Proxy

Cascading
Module

M
S

M
S

M
S

M
S

M
S

Proxy

M
S

M
S

Agent

Cascading
Module

M
S

M
S

M
S

M
S

M
S

Proxy

M
S

M
S

Agent

M
S

M
S

Agent

M
S

M
S

Agent

M
S

M
S

M
S

Agent

Domain A-a

Domain B

Figure 3. The hierarchy of monitoring domain.

addition, the monitoring operation codes implemented by
the client applications could be more portable. For
example, all SMP nodes can be assigned in the same
domain, allowing clients needing the configuration and
status of SMP nodes to use the same monitoring operation
codes when new SMP nodes join the cluster since the
proxy of the SMP domain can delegate all the nodes
below it.

Furthermore, this hierarchy can reduce the
communication to high level domain. By merging and
fil tering the data, the proxy can decrease the size of the
packets. As the amount of data gathered increases and the
size of the cluster grows, the reduction of communication
becomes more significant.

6. Implementation

ClusterProbe has been implemented on a cluster of
PCs running Linux 2.1.90 or 2.2.1, including 22 WinChip
PCs, 4 Dell PowerEdge 4-way SMP servers, 8 Dualon
(Dual Celeron) SMP PCs and 10 Pentium II PCs,
interconnected by ATM, Gigabit Ethernet and Fast
Ethernet switches.

The monitoring server is the core of the ClusterProbe.
It is located in one of the PowerEdge SMP server with 1
GB memory, running Linux 2.2.1. The monitoring server
adopts multiprotocol communication interface composed
of multiple adaptors. Multiple adaptors provide multiple
channels to the tool through various communication
protocols. The adaptor will transform the request from
original protocol to monitoring instruction defined in
CMAPI and convert the monitoring data with associated
protocol. All adaptors should be defined as identical
structure so that they can be accessed without knowing
the detail s. So far, we have implemented the adaptors for
RMI, HTTP and BSD Socket (TCP). The following is the
brief definition of the universal interface for adaptor:

import java.lang.* ;
public interface Adaptor implements Runnable {
 protected Message readMsg ();
 public Instruction transform (Message req);
 public Message buildMessage(MonData data);
 protected void sendMsg(Message msg);
 void run(); //keep li stening the requests
}

Before sending the data to clients, the monitoring
server can wrap the data with the pre-formatting modules.
Three kinds of modules are supported in ClusterProbe:

� Filter module: The module can be used to filter the
reduplicated or stale data and batch the related data.
� Security module: Using Java Cryptography
Extension (JCE) packages, the module can authenticate
data by encryption.

� Chart/Graph module: The output of this module is
a customized object that can be displayed as a chart or
a graph, such as sheet, strip chart, pie chart, LED sign
etc.

The monitoring proxies could be considered as special
agents that can manage the agents or other proxies below
them in its domain. Four major monitor proxies are
configured at this moment to monitor our benchmark tests
on Directed Point communication subsystem [12] in the
WinChip cluster, Cluster-based search engine built in the
4 Dell PowerEdge servers, the Java Thread Migration
project (JESSICA) [13] on the 8 Dualon Cluster, and the
10 Pentium II PCs for developing parallel N-Body
algorithm [15], respectively. Selected experimental
results will be discussed in Section 7.

The agent resides on each nodes of the cluster. It will
collect resource configuration information and system-
related statistics. All agents are communicated through
RMI. Because RMI allows us to download methods from
server automatically, the agent code can be written as
simple as below:

import java.rmi.* ;
public interface Agent extends Remote {
 void monitor (Session session)
 throws RemoteException;
}
public interface Session extends Seriablizable {
 void run();
}

Note that the resources consumed by the agent is light.
The size of agent code could be as small as
300Kbytes,depending on the number of sessions they
support.

7. Experimental Results

ClusterProbe is an open monitoring tool for cluster. It
can serve for a multitude of parallel applications or
subsystems. In this section, we briefly discuss four typical
examples.

7.1. Web-based Cluster Management

We have designed and implemented a Web-based
cluster management tool to monitor and manage the
cluster resources. The management tool interacts with
ClusterProbe to obtain various kinds of cluster resource
information.

 With ClusterProbe, the cluster can be managed with
minimum human intervention. New resources can be
easily and immediately integrated and software upgrades
become trivial. With HTTP adaptor and pre-formatting
modules, ClusterProbe can offer customized chart/graph

applets to the Web browser. Administrators could select
the monitored resource, range, refresh time and display
type. The security module is used to authenticate all users
when they access the monitoring tool through the
Internet. Figure 4 and 5 show two snapshots of the
visualization of our web-based management system by
using StripChart and PieChart pre-formatting modules,
respectively. In figure 4, each chart shows a node’s
system load averages for the past 5, 10, and 15 minutes in
different colors and the history records and viewed in the
same chart for comparing. While in figure 5, each pie
chart shows a node’s memory usage for user, system,
idle, buffer and shared in different colors. The charts will
be updated within the refresh interval specified by
administrators.

Figure 4. Snapshot of strip charts for workload.

Figure 5. Snapshot of pie charts for memory.

 7.2. Scalable WWW Search Engine (SWSE)

SWSE is a simple parallel full-text WWW searching
engine on a cluster of PCs. The goal of SWSE is to
achieve high throughput and short response time for
serving queries, by using the collective computing power
and storage capacity of the cluster. The implementation of
this engine follows a multiple-query-server-multiple-data-
server model. We have installed the SWSE system on a
domain composed of 4 Dell PowerEdge 4-way SMP PCs,
interconnected by an IBM 8275-416 Fast Ethernet
Switch, and running a background application that
generates intensive computation but non-uniform load
distribution on the cluster nodes. ClusterProbe plays a
significant role to improve performance in SWSE system.

Figure 6. Performance results of SWSE system

We compare two sets of execution time data for
serving various numbers of queries in a batch in figure 6.
One set of data is collected by using the round robin
algorithm without accessing ClusterProbe. Another one is
collected by using the CPU utilization and Disk IO speed
information gained via HTTP adaptor of ClusterProbe to
choose node with the lightest workload to conduct search.
With the assist of ClusterProbe, we can achieve 5-20%
performance improvement.

7.3. DOO N-Body

The DOO N-Body test was performed in a
Distributed Object-Oriented (DOO) system for solving N-
Body problem on heterogeneous cluster [15]. The system
allows a group of distributed objects on multiple hosts to
work cooperatively in computation. By using the RMI
adaptor peer, the system can inquire ClusterProbe the
information about host configuration and current status
such as workload and CPU utilization. Referring to the
data provided by ClusterProbe, the DOO system could
dynamically configure the computing environment so as

Exectution Time of SWSE System

0

10000

20000

30000

40000

50000

0 10000 20000 30000 40000 50000
No. of Matched Records

T
o

ta
l E

xe
c.

 T
im

e
(m

s)

Without ClusterProbe With ClusterProbe

to be adaptive to the computing requirements of an
application, as well as the available resources in the
cluster.

Fig. 7 compares the performance of the two algorithms
for solving N-body problem of particle simulations in the
DOO system running in a dedicated environment with 10
Pentium II PCs. One algorithm assigns tasks to fixed
machines. The second algorithm dynamically selects
light-loaded machines according to the node information
provided by ClusterProbe. Overall, the ClusterProbe can
improve the execution time around 5-20%.

Figure 7. Performance results of particle
simulation on the DOO system

7.4. Fault Management

To keep high availability, cluster system requires
facil ities to detect, locate, isolate, and recover from
failure. We use ClusterProbe to detect node failure by
matching the state of resources with the abnormal
conditions, identify when and where failure occurs, and
notify the interested event handlers to isolate or recover
from failure.

We have implemented the global event facility in
ClusterProbe to assist in locating failure, defining and
handling events. Java provides local events, in which an
AWT component informs other components that
something interesting has happened. In our case, we want
to send and receive event objects over the cluster between
distributed agents. For each node in our cluster, it
receives fault messages in the form of event objects from
one or many remote agents, and it sends fault messages to
other agents.

Global event structuring mechanism is identical to the
local event model of Java, except that instead of source
reference within a single Java Virtual Machine, a global
name for the event is used. Furthermore, because the
nodes involved of one global event are distributed,
multicast can be used for eff icient RMI communication,
instead of Java’s local point-to-point casting.

There are several advantages to use global event.
When an event happens, it not only affects the local
resources that cause the event, but also affects the remote
resources, concurrently or orderly. So the first advantage
of using global event is the possibility of integrating the
distributed event handlers running on each node.
Furthermore, we can use global events to diagnose the
real problem. For instance, a proxy receives several
events in the same time and all the events report
networking problems, then the proxy checks the event
sources and finds that all of the sources of the events are
connected to a same switch, so the networking problem
may be caused by the switch.

8. Related Works

Java Dynamic Management Kit (JDMK) is the first
Java-based solution for building and distributing
intelligence into network device [10]. It is a multiple
agent development tool on the market to integrated web-
based, push/pull technologies as well as support for
multiple management protocol such as SNMP, HTTP and
RMI. Both JDMK and ClusterProbe follow similar
approaches by implementing multiple adaptors in the
distributed system. However, in JDMK each node acts as
an individual information source, the access to the node
must be explicit, while ClusterProbe aggregates the
information through the monitoring server. Besides, for a
universal management toolkit, JDMK does not
specifically address the issues such as pre-formatting
modules and global event management.

GARDMON is a Java-based monitoring tool for non-
dedicated cluster computing system [4]. It follows client-
server methodology and provides transparent access to all
monitored nodes from a monitoring machine.
GARDMON can monitor the entire cluster activities
through a single point of control by using the gardmon-
server. However, GARDMON could not been accessed
by parallel applications or subsystems except for the
gardon-client. The same situation could be found in K-
CAP [16], DOGMA [8] and PARMON [5].

The Node Status Reporter (NSR) [14] and the Cluster
Administration using Relational Databases (CARD) [2]
both provide a standard mechanism for cluster status
access, NSR interface and SQL, respectively. But the
fixed communication interface is not adequate to satisfy
the varied applications. Besides, with the pre-formatting
modules ClusterProbe can provide more helpful,
powerful, perspective and secure resources information
about the cluster.

9. Conclusions and Future Works

We have presented a Java-based cluster-monitoring
tool that seizes the advantages of open, flexibility and
extensibil ity. We showed the idea of using multiprotocol

Speedup of particle simulation
on the DOO system

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Processors

S
pe

ed
up

Without ClusterProbe With ClusterProbe

communication interface for building open environment
with adaptive communication protocols. Pre-formatting
modules have been very useful in wrapping the resources
information with appropriate formats. The RMI
mechanism and cascading architecture are proven to be
helpful for flexible resource access and monitoring.
Several examples are also given to show the effectiveness
of the tool.

We will develop more adaptors and pre-formatting
modules for ClusterProbe so as to enable more
applications to share the resources information. And the
global event mechanism will be extended to handle more
complex failure.

References

[1] T. Anderson, D. Culler, and D. Patterson. A case for Now.
IEEE Micro, February 1995, pp. 54-64.

[2] Eric Anderson and Dave Patterson. Extensible, Scalable
Monitoring for Cluster of Computers. The Proceedings of
the 11th Systems Administration Conference (LISA’97), Oct.
1997.

[3] Joel Apisdorf, Kevin Thompson, and Rick Wilder.
OC3MON: Flexible, Affordable, High Performance
Statistics Collection. Proceedings of the 10th Systems
Administration Conference (LISA’96), 1996, pp. 97-112.

[4] Rajkumar Buyya, B. T. Koshy and R. Mudlapur.
GARDMON: A Java-based Montioring Tool for Gardens
Non-dedicated Cluster Computing System. The
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
June 1999, pp. 2774-2780.

[5] Rajkumar Buyya, K. Mohan and B. Gopal. PARMON: A
Comprehensive Cluster Monitoring System. The Australian
Users Group for UNIX and OpenSystems Conference and
Exhibition, AUUG’98 – Open Systems: The Common
Thread, 1998.

[6] Rajkumar Buyya. Single System Image: Need,
Approaches, and Supporting HPC systems. Proceedings of
the Fourth International Conference on Parallel and
Distributed Processing, Technique and Applications
(PDPTA’97), CSREA Publishers, 1997.

[7] K. Hwang and Z. Xu. Scalable Parallel Computing:
Technology, Architecture, Programming. A graduated
textbook, WCB/McGraw-Hill, New York, Feb 1998.

[8] G. Judd, M. Clement and Q. Snell. DOGMA: Distributed
Object Group Management Architecture, System
Overview. http://ccc.cs.byu.edu/DOGMA/System.html.

[9] Javasoft. Java Remote Method Invocation – Distributd
Computing for Java. http://java.sun.com/marketing/collat
eral/javarmi.html.

[10] Javasoft. Java Dynamic Management Kit: A WhitePaper.
http://www.sun.com/software/java-dynamic/wp-jdmk/inde
x.html.

[11] J. A. Kaplan, M. L. Nelson. A Comparison of Queueing,
Cluster and Distributed Compuing Systems. Technical
Report, RNS-94-006, NASA Ames Research Center, 1994.

[12] C. M. Lee, A. Tam, and C.L. Wang. Directed Point: An
Efficient Communication Subsystem for Cluster
Computing. Proceedings of the 10th IASTED International
Conference on Parallel and Distributed Computing and
Systems, Las Vegas, October 1998, pp. 662-675.

[13] Matchy J. M. Ma, Cho-Li Wang, Francis C. M. Lau,
Zhiwei Xu. JESSICA: Java-Enabled Single System Image
Computing Architecture. The International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), June 1999, pp. 2781-2787.

[14] C. Roder, T. Ludwig and A. Bode. Flexible Status
Measurement in Heterogeneous Environment. The
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’98),
June 1998.

[15] Yudong Sun, ZhengYu Liang and Cho-Li Wang. A
distributed Object-Oriented Method for Particle
Simulations on Cluster. High Performance Computing and
Networking (HPCN) Europe 1999, Apr 1999, pp. 245-253.

[16] Putchong Uthayopas et al. Interactive Management
of Workstation Cluster Using WorldWide Web,
Cluster Computing Conference (CCC’97), 1997.

