
A Piggyback Method to Collect Statistics for Query Optimizationin Database Management Systems�Qiang Zhuy Brian Dunkelz Nandit SoparkarzSuyun Chenx Berni Schieferx Tony LaixAbstractA database management system (DBMS) usually performs query optimization based on statisticalinformation about data in the underlying database. Out-of-date statistics may lead to ine�cient queryprocessing in the system. Existing solutions to this problem have some drawbacks such as heavy admin-istrative burden, high system load, and tardy updates. To overcome these drawbacks, our new approach,called the piggyback method, is proposed in this paper. The key idea is to piggyback some additionalretrievals during the processing of a user query in order to collect more up-to-date statistics. The col-lected statistics are used to optimize the processing of subsequent queries. To specify the piggybackedqueries, basic piggybacking operators are de�ned in this paper. Using the operators, several types ofpiggybacking such as vertical, horizontal, mixed vertical and horizontal, and multi-query piggybackingare introduced. Statistics that can be obtained from di�erent access methods by applying piggybackanalysis during query processing are also studied. In order to meet users' di�erent requirements forthe associated overhead, several piggybacking levels are suggested. Other related issues including ini-tial statistics, piggybacking time, and parallelism are discussed. Our analysis shows that the piggybackmethod is promising in improving the quality of query optimization in a DBMS as well as in reducingthe user's administrative burden for maintaining an e�cient DBMS.Keywords: Database management system, query optimization, cost estimation, statistics collection,piggybacking query, access method1 IntroductionIt is well-known that query optimization is crucial in achieving e�cient query processing for a database man-agement system (DBMS), especially for the relational, object-oriented, and distributed DBMSs[8; 18; 20; 24; 26].There are two types of query optimizers in DBMSs: heuristic-based and cost-based. Most query optimizersin commercial DBMSs are cost-based, i.e., based on cost analysis for queries[9; 12; 14; 15; 19]. The more ac-curate the cost analysis is, the more e�cient the query processing. However, accurate cost analysis requiresthe statistics about the underlying database to be up-to-date. Unfortunately, existing methods for collectingand maintaining statistics in the system catalog are not entirely satisfactory.�Research was supported by the Centre for Advanced Studies at IBM Toronto Laboratory and the University of Michigan.yDepartment of Computer and Information Science, The University of Michigan, Dearborn, MI 48128, USA.zDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109, USA.xIBM Toronto Laboratory, North York, Ontario, M3C 1H7, Canada.1

A typical statistics-collection method, which is used in many DBMS products, such as DB2, Oracle,Informix and Sybase, is to periodically invoke a utility that collects and updates statistics about the under-lying database[9; 12; 14; 15; 19]. We term this method as the utility method. The major disadvantages ofthis method are:� Heavy system load. The utility competes for system resources with other components in a DBMS and,therefore, signi�cantly increases the system load.� Out-of-date statistics. To avoid a heavy system load, the utility cannot be invoked very often. As aresult, out-of-date statistics may be used by the query optimizer quite often, and this leads to ine�cientquery processing.� Incomplete statistics Some statistics, such as the costs of user-de�ned functions in recent object-relational DBMSs, cannot be collected by the utility method. Users are required to manually updatesuch statistics in the system catalog.� High cost for analyzing large databases. Unless a user1 speci�es a data subset to analyze, which isperforce a subjective assessment, the utility typically analyzes the whole database. Clearly, analyzingstatistics for a large database is very expensive and unnecessary for data that never changes.� Inconvenience for users. Users have to manually invoke the utility whenever signi�cant changes havebeen made to the database. Otherwise, obsolete statistics may be used by the query optimizer.Due to the problems described above, it is quite common for database users to hardly ever invoke theutility to update the database statistics progressively once the database is initialized. As a result, systemperformance may become progressively worse as the data changes and evolves.Recently, sampling techniques have been incorporated into the utility method in some commercialDBMSs[14; 19]. The idea is to use sampled data to estimate statistics instead of analyzing a complete dataset. This approach mitigates some of the above disadvantages. However, the problems are not completelyeliminated. For instance, the overhead for analyzing statistics for the whole database is still signi�cant, somestatistics are still not obtainable, and users still need to manually invoke the utility. Furthermore, samplingitself may involve accessing a signi�cant part of the database.Another common method for collecting statistics, so-called the dynamic query optimization method[1; 21; 22],or simply the dynamic method, is to obtain up-to-date statistics by analyzing the result or intermediate re-sult of a user query during its processing. The up-to-date statistics can be used not only to dynamicallyimprove the processing of the current query but also to optimize subsequent queries. This method providesan approach to obtain up-to-date statistical information without signi�cantly increasing the system load.However, a shortcoming of this method is that not all useful statistics can be updated. Consider the followingexample.Example 1 A user issues the following query on a DBMS:Q1: SELECT R1:a2FROM R1WHERE R1:a3 IN (SELECT R2:b1FROM R2) ;1A database administrator (DBA) is considered as one type of user in this paper.2

where R1(a1; a2; a3) and R2(b1; b2) are two tables in the underlying database. Note that the equivalentrelational algebra expression2, which will be used in the discussions below, for query Q1 is:�R1:a2 (R1 1R1:a3=R2:b1 (�R2:b1 (R2))where � and 1 denote the project and join operations, respectively. One feasible access plan to execute Q1is performing the following subquery �rst:Q(2)1 : SELECT R2:b1FROM R2(i.e., �R2:b1 (R2)), then performing the outer query block by using the result of subquery Q(2)1 . Clearly, theDBMS can collect and update statistics about the column R2:b1 by analyzing the result of Q(2)1 during thequery processing. However, statistics about R2:b2 cannot be obtained during the query processing since itis not referenced by Q(2)1 .To meet the performance requirement of modern information processing, a DBMS should employ astatistics-collection method that (1) collects up-to-date statistics for all pertinent data; (2) incurs as lowan overhead as possible; and (3) reduces the user's burden of invoking a utility manually. In this paper,we propose such a new approach, called the piggyback query optimization method, or simply the piggybackmethod. The key idea of the piggyback method is to collect statistics by piggybacking some additionalretrievals during the processing of a user query in order to improve the quality and quantity of collectedstatistics. Although these side retrievals are not related to the processing of the given query (and may slowdown the query processing slightly), the statistics collected from the results of the side retrievals can be usedto improve the processing of subsequent queries.A comprehensive survey on existing techniques for statistics collection and cost estimation in DBMSswas given by Mannino et al. in [13]. They divided statistics into base statistics (pro�le) for the tables ina database, intermediate statistics for the intermediate result tables during query processing, and targetstatistics for the �nal result table of a query. They discussed the relationships between statistics and costestimates in query processing. In [4, 11, 23], Zander, Copeland, and Mackert et al. proposed a number oftechniques to estimate physical statistics (e.g., page references) for data and index �les in a database. In [6],Haas et al. introduced several sampling-based estimators to estimate the number of distinct valus of a columnin a table. In [3, 10, 16, 17], Christodoulakis, Selinger, Shapiro, and Lipton et al. proposed various techniquesincluding parametric methods, table-based methods, and sampling methods to estimate the intermediate andtarget table sizes from some base statistics. Gardy et al. studied the evolution of the table size statistic underqueries and updates in [5]. They showed that the statistic behaves asymptotically as Gaussian processes. In[21], Yu et al. suggested a number of dynamic (adaptive) query optimization techniques and classi�ed theminto direct ones, which dynamically optimize the current query based on runtime information, and indirectones, which collect dynamic information from the current query to optimize subsequent quries. Yu et al.proposed an adaptive query optimization algorithm to dynamically complete a partial access plan based onlatest statistics collected at runtime in [22]. The piggybacking idea for collecting/updating statistics was�rst mentioned in our previous work [25] for a multidatabase environment, but technical details for theapproach were not studied. In this paper, we explore the piggyback technique in detail and study how itcan be incorporated into a DBMS. To our knowledge, there is no similar work that has been reported in theliterature.2There may be an inessential di�erence about duplicates in the result table.3

The rest of the paper is organized as follows. Section 2 de�nes basic piggybacking operators and introducesdi�erent types of piggybacking. Section 3 studies the statistics obtainable from di�erent access methods viapiggyback analysis. Section 4 suggests several piggybacking levels to meet users' di�erent requirements foroverhead. Section 5 discusses some other related issues. Section 6 concludes the paper.2 Types of PiggybackingThere are several types of piggybacking, which will be discussed in the following subsections. Among them,vertical piggybacking and horizontal piggybacking form the basic ones. Using the basic types of piggybacking,more complex forms of piggybacking may be generated.2.1 Vertical PiggybackingVertical piggybacking includes extra columns in query processing. Consider the following example.Example 2 To obtain statistics about column R2:b2 in Example 1, the DBMS can perform a slightlydi�erent subquery:Q(2)01 : SELECT R2:b1; R2:b2FROM R2 ;(i.e., �R2:b1;R2:b2 (R2)) on the underlying database instead of Q(2)1 and analyze its result. Since both Q(2)1 andQ(2)01 usually scan table R2 once (and, e�ectively, also access R2:b2), Q(2)01 increases the processing cost ofquery Q1 only slightly. In fact, we have piggybacked the side retrieval:Q01: SELECT R2:b2FROM R2 ;(i.e., �R2:b2 (R2)) during the processing of user query Q1 to obtain necessary statistics with a slightly addi-tional overhead.In general, consider a user query Q with operand tables R1; R2; :::; Rn. To process Q, a DBMS usuallyperforms a subquery3 Q(i) = �CLi (�Fi (Ri)) (1)on each table Ri (1 � i � n) to retrieve data that is required to process Q, where � denotes the selectoperation in the relational algebra. We call Q(i) an access subquery for table Ri. For instance, for Q1 inExample 1, two access subqueries are Q(1)1 = �R1:a2;R1:a3 (�0true0 (R1))and Q(2)1 = �R2:b1 (�0true0 (R2)):Using intermediate results from the access subqueries, the DBMS can evaluate query Q. Hence,Q = F (Q(1); Q(2); :::; Q(n)); (2)3Note that a DBMS may execute such a subquery with other operations via pipelining. We also assume that the columnsreferenced in quali�cation Fi but not needed in the further processing of the query are included in project target list CLi, whichsimpli�es the de�nition of horizontal piggybacking in the next subsection.4

where F (:::) is a query formula that generates the result of Q by using the results of Q(1); Q(2); :::; Q(n). Forinstance, for Q1 in Example 1,F (Q(1); Q(2)) = �Q(1) :a2(Q(1) 1Q(1) :a3=Q(2):b1 Q(2)) :Let ! be an operator such that !X (Q(i)) = �CLi [X (�Fi (Ri));where X is a set of columns in Ri. !X (Q(i)) is called a vertically-piggybacked subquery for Q(i) with apiggybacked column set X , and ! is called the vertical piggybacking operator. If X � CLi 6= ;, !X (Q(i)) isnon-trivial. Otherwise, it is trivial. For example,!R2:b2(Q(2)1) = �R2:b1;R2:b2(�0true0 (R2)):is a non-trivial vertically-piggybacked subquery in Example 1.Let !�1 be an operator such that!�1X (!X (Q(i))) = �CL0i � X (!X (Q(i))) = Q(i):where CL0i = CLi [X . !�1 is called the inverse vertical piggybacking operator of !.For a given query Q = F (Q(1); Q(2); :::; Q(n)) in (2), the following query with ! and !�1 applied toits access subqueries Q0 = F (!�1X1 (!X1 (Q(1))); !�1X2 (!X2 (Q(2))); :::; !�1Xn (!Xn (Q(n))))is called a vertically-piggybacked query for Q. If at least one vertically-piggybacked subquery !Xi (Q(i))(1 � i � n) is non-trivial, Q0 is non-trivial. Otherwise, it is trivial. Note that, unlike a subquery and itsvertically-piggybacked counterpart, the original query Q has the same result as its vertically-piggybackedcounterpart Q0, i.e., Q � Q0: However, processing the vertically-piggybacked query may generate moreintermediate results (see Figure 1), and these can be used to produce useful statistics that improve thequality of query optimization.
R 1 R nR 2

ωX2(Q (2)) ωXn(Q (n))ωX1(Q (1))

R nR 2R 1

Q (n)

Original query:

Q (2)Q (1)

Vertically-piggybacked query:

F

Query result

ω
-1

O

x2 (ωX2(Q (2)))

O

ω
-1
xn (ωXn(Q (n)))

F

Query result

O

ω
-1
x1 ()ωX1(Q (1))

analysis

useful

piggybacking
vertical

piggyback

statistics

Figure 1: Idea of Vertical PiggybackingNote that, at the low level in a DBMS, a complete tuple is usually fetched from the data �le into abu�er although only part of the tuple may be needed for processing the given query. Hence piggybacking5

side retrievals for extra columns from a table during the processing of a user query usually does not incuradditional I/O cost. However, the piggyback analysis on intermediate results to obtain useful statisticsrequires some additional CPU time. Although CPU time is relatively small compared with I/O cost, itshould be kept as low as possible. To achieve this goal, we propose to allow including extra columns forpiggyback analysis with di�erent degrees, depending on the user's constraint to piggyback overhead. Themore the overhead allowed, the more number of extra columns may be included in piggyback analysis.With regard to di�erent degrees of vertical piggybacking, we divide the columns of an operand table Rifor a given query Q into the following four classes:AC1 = f x j x is a column in Ri ^ x is referenced in Q g;AC2 = f x j x is an indexed column in Ri g � AC1;AC3 = f x j x is a column in Ri ^ (x is part of the primary key_ x is part of a foreign key _ x is referenced by a foreign key) g � AC2;AC4 = f x j x is a column in Ri g � AC3:The principle for including piggybacked columns is to include those columns that are more likely to bereferenced by user queries. Since the columns in AC1 are known to be referenced in at least one user query,they have the highest priority to be included in piggyback analysis. Since an index on a column indicatesthat users intend to use the column in their queries quite often, the columns in AC2 have the next higherpriority to be included in piggyback analysis. The next preferred class of columns are those related toprimary and/or foreign keys, i.e., those in class AC3. We term such a column as a key-related column. Theremaining columns are in class AC4, which may be included for piggyback analysis if the user's requirementon piggyback overhead is not high.Let Xk = [kj=1 ACj ; (1 � k � 4):The following subquery !Xk (Q(i)) = �CLi [Xk (�Fi (Ri))is called the vertically-piggybacked subquery at level i. A vertically-piggybacked query Q is at level k ifat least one of its vertically-piggybacked subqueries is at level k. However, to simplify implementation, werecommend having all vertically-piggybacked subqueries in Q at the same level, and this is assumed in therest of this paper.Note that there exist some queries whose results may be obtained completely from the referenced indexeswithout accessing the data �les of operand tables. Many DBMSs support such an \index-only access"method. In this case, a complete tuple may not be available in memory during query processing. Therefore,including extra columns in piggyback analysis may incur additional I/O cost. To deal with such a situation,class AC2 can be further divided into two subclasses for given query Q:AC2 1 = f x j x is a column in Ri with an index referenced in Q g � AC1;AC2 2 = f x j x is an indexed column in Ri g � AC2 1:An index is said to be referenced in a query if the query references at least one column on which the indexis built. The values of for the columns in subclass AC2 1 can be obtained from the referenced indexes whenthey are fetched into memory during query processing. Since the columns in subclass AC2 2 only have non-referenced indexes, to obtain their values requires additional I/O cost. Hence, AC2 1 is assigned a higherpriority than AC2 2. 6

2.2 Horizontal PiggybackingHorizontal piggybacking includes extra rows in query processing. Consider the following example.Example 3 For the following user query:Q2: SELECT R1:a1; R1:a2FROM R1WHERE R1:a1 > 3 ;(i.e., �R1:a1; R1:a2 (�R1:a1 > 3(R1)) where R1:a1 is indexed while R1:a2 is not, a feasible access plan is toretrieve the quali�ed rows from R1 via the index on R1:a1. Several statistics on R1:a1 can be obtained viaanalyzing information contained in the index if the index, which is relatively small compared with the data�le, is completely fetched into memory. However, statistics on R1:a2 may not be accurately known since notall data values of R1:a2 are obtained (e.g., if it is a sparse index). An improvement can be made by using allrows in the retrieved pages from the data �le as sample rows4 to estimate the statistics on R1:a2. Althoughit is possible that some rows in the retrieved pages are not quali�ed for the query, they may be usable toimprove the accuracy of statistical estimates. Since the rows in a retrieved page are available in memory, suchhorizontal piggybacking may provide better statistics without incurring much additional cost. Furthermore,additional random sample pages that contain no quali�ed rows may also be fetched into memory to obtaineven better statistics since the randomness and size of the sample set are improved. Trade-o�s need to bemade between the overhead and accuracy.In general, consider a user query Q with operand tables R1; R2; :::; Rn. Let Q(i) be the access subqueryfor table Ri (1 � i � n) as in (1), and Q = F (Q(1); Q(2); :::; Q(n)) as in (2).Let
 be an operator such that
Y (Q(i)) = �CLi (�Fi _ Y (Ri))where Y is a quali�cation condition for the extra rows to be retrieved from table Ri.
Y (Q(i)) is called ahorizontally-piggybacked subquery with a piggyback quali�cation condition Y , and
 is called the horizontalpiggybacking operator. If f x j x satisfies Y ^ :(x satisfies Fi) g 6= ;;then
Y (Q(i)) is non-trivial. Otherwise, it is trivial.Let
�1 be an operator such that
�1Y (
Y (Q(i))) = �Fi (
Y (Q(i))) = Q(i):
�1 is called the inverse horizontal piggybacking operator of
.For a given query Q = F (Q(1); Q(2); :::; Q(n)) in (2), the following query with
 and
�1 applied toits access subqueries Q00 = F (
�1Y1 (
Y1 (Q(1)));
�1Y2 (
Y2 (Q(2))); :::;
�1Yn (
Yn (Q(n))))is called a horizontally-piggybacked query for Q. If at least one horizontally-piggybacked subquery
Yi (Q(i))(1 � i � n) is non-trivial, Q00 is non-trivial. Otherwise, it is trivial.4Note that such a convenience sampling technique may yield a biased sample unless the convertional assumptions about theuniform distribution of column values and the independence of di�erent columns hold. Biased samples are adopted in manyapplications although they may not lead to good statistical estimates.7

To determine a horizontally-piggybacked subquery
Yi (Q(i)), we need to choose the piggyback quali�ca-tion condition Y . Condition Y should be chosen in such a way that the extra rows can be used to derivegood statistical estimates and the piggyback overhead is kept as low as possible.At one extreme, Y) Fi, i.e., Y logically implies Fi. In this case, no extra rows will be fetched; thatis, the horizontally-piggybacked subquery is trivial. Although there is no piggyback overhead in this case,statistics that we obtain may be poor. At the other extreme, Y = `true0; that is, all rows in the operand tablewill be fetched. Although we can obtain all statistics about the table in this case, the piggyback overheadmay be high.There are two useful cases between the two extreme cases. LetRB = f n j 9y (y 2 Ri ^ Fi jy = `true0 ^ y:pid = n) g;where Fi jy denotes the truth value of condition Fi when instantiated by row y from table Ri, and y:pid isthe identi�cation number5 of the page that contains row y in the data �le. In other words, RB is the set ofidenti�cation numbers of retrieved pages. In the �rst case, we de�ne the piggyback quali�cation conditionY on table Ri as follows Y jx = true if and only if x:pid 2 RB; (3)where x is a row from table Ri. This condition quali�es all rows in the retrieved (�le) pages for the query.Since the newly quali�ed rows are in the retrieved pages, including them in piggyback analysis does not incurany additional I/O cost. For example, the following is the horizontally-piggybacked subquery6 in Example 3
R1:pid 2 RB (Q2) = �R1:a1;R1:a2 (�R1:a1>3 _ R1:pid 2 RB (R1)): (4)In the second case, we take a small set SB of extra sample pages and de�ne the piggyback quali�cationcondition Y as follows:Y jx = true if and only if (x:pid 2 RB _ x:pid 2 SB):This condition quali�es not only the rows in the retrieved pages but also the rows in chosen sample pages.Retrieving rows in the sample pages requires some additional I/O cost. However, statistical estimates canbe improved by using these additional sample rows. The sample pages can be chosen randomly from thedata �le.2.3 Mixed vertical and horizontal piggybackingNote that vertical piggybacking increases the quantity (number) of statistics to be collected/estimated, whilehorizontal piggybacking improves the quality (accuracy) of statistics to be estimated. Applying only verticalor horizontal piggybacking alone may be insu�cient. More suitable may be the case in which a mixtureof vertical and horizontal piggybacking is adopted. For example, the vertical piggybacking operator can beapplied to the horizontally-piggybacked subquery in (4) to yield a mixed vertical and horizontal piggybackedsubquery: !R1:a3 (
R1:pid 2 RB (Q2)) = �R1:a1;R1:a2;R1:a3 (�R1:a1>3 _ R1:pid 2 RB (R1));which can be used to estimate statistics on column R1:a3 in addition to columns R1:a1 and R1:a2.5pid can be considered as an implicit attribute (column) of the operand table stored in a database.6By convention, a table name is used as a tuple variable in the quali�cation condition of a relational algebra expression.8

For a general query Q = F (Q(1); Q(2); :::; Q(n)), the following is a mixed vertical and horizontalpiggybacked query: Q� = F (!�1X1 (
�1Y1 (!X1 (
Y1 (Q(1))))); !�1X2 (
�1Y2 (!X2 (
Y2 (Q(2)))));::::::; !�1Xn (
�1Yn (!Xn (
Yn (Q(n)))))):Piggyback analysis is to be performed after
 and ! are applied and before
�1 and !�1 are applied.In fact, piggyback analysis and query processing can be done in a pipelined manner, i.e., the completeresult of a piggybacked subquery is not required before the query is further processed.2.4 Multi-Query PiggybackingFrom Section 2.2, we know that the data values obtained via the horizontal piggybacking can be used asa sample set for statistical analysis. Sample pages in addition to the retrieved pages in a data �le may beused to improve the properties (randomness and size) of a sample set. However, fetching extra sample pagesrequires additional overhead.To improve the properties of a sample set without incurring much additional overhead, another type ofpiggybacking, called multi-query piggybacking, may be utilized. The idea is to use the retrieved data frommultiple queries as one sample set. In this way, the sample size is increased. The randomness of the sampleset is also improved if user queries are assumed to be independent, which is true in many cases. Furthermore,piggyback analysis may be performed on a query-by-query base (i.e., via pipelining) without waiting for the�nal sample set to be formed. For example, consider the average length of a column, which is a statisticused in query optimization. Let Si be the set of values for column R:a retrieved by query Qi (1 � i � n).Clearly, the total length len(Si) and total number jSij of values in sample subset Si can be obtained viaanalyzing Si alone without other Sj where j 6= i. The average length avg len(R:a) of column R:a for the�nal sample set S = [ni=1Si can be calculated as follows:avg len(R:a) = Pni=1 len(Si)Pni=1 jSij :Sample subset Si can be discarded after intermediate statistics len(Si) and jSij are obtained.Note that the mixed vertical and horizontal piggybacking is a general type of piggybacking for a singlequery, while the multi-query piggybacking, which combines multiple individual piggybacked queries, is evenmore general. The vertical and horizontal piggybacking operators are the basic building blocks for allpiggybacked queries.3 Statistics Obtainable via Piggyback Analysis3.1 Statistics for Query OptimizationDi�erent DBMSs may maintain di�erent types of statistics in their catalogs for query optimization. Table 1shows the typical statistics maintained in a DBMS. There are some other statistics that are not shown in thetable, which are mainly used by a DBA to monitor the system performance and decide how to recon�gureand/or reorganize the database.The statistics for query optimization can be classi�ed into logical and physical types:(Logical statistics : C1; C2; C3; C4; C5; T1; I3; I4Physical statistics : T2; T3; T4; I1; I2; I5; I6; I79

Type Label DescriptionC1 max value of a column (or second max value)Column C2 min value of a column (or second min value)Statistics C3 number of distinct values of a columnC4 distribution (frequent values and quantiles)C5 average column lengthT1 number of rows in a tableTable T2 number of pages used by a tableStatistics T3 percentage of active rows compressed for a tableT4 number of over
ow rowsI1 number of leaf pagesI2 number of B-tree index levelsIndex I3 number of distinct values for the 1st column of index keyStatistics I4 number of distinct values for the full index keyI5 percentage of rows in the clustered orderI6 average number of leaf pages per index valueI7 average number of data pages per index valueTable 1: Typical Statistics Maintained in a CatalogThe logical statistics can be determined by the data values in a database, while physical ones are determinedby the properties of physical organizations for the database on a storage medium.3.2 Statistics obtainable from access methodsIn a DBMS, a user query is implemented by one or more access methods such as the sequential scan methodand the hash join method. In principle, the access methods involving more than one table can be implementedby the ones involving a single table, i.e., the ones used for access subqueries. We hence mainly consider unaryaccess methods, and the common ones are:8>>><>>>: Sequential scan (SS) : scan the rows in a table sequentiallyIndex scan (IS) : retrieve the qualified rows via an indexIndex� only access (IOA) : get all requested values from an index treeHash access (HA) : retrieve the qualified rows via a hash tableStatistics can be obtained during the execution of an access method although not all statistics are obtainablevia every method. In fact, statistical information is obtained at di�erent levels of accuracy. At the top level,an accurate statistic is obtained via calculation using a complete data set. At the second level, an estimatedstatistic is obtained via sampled data. At the next level, validity information on a statistic rather than thestatistic itself is obtained. In other words, we only know whether the statistic is up-to-date or not. At thelowest level, no statistic can be obtained. Table 2 shows what statistics may be obtained (at what level)during the execution of di�erent access methods.C1 C2 C3 C4 C5 T1 T2 T3 T4 I1 I2 I3 I4 I5 I6 I7SS p p p p p p p p p � � � � � � �(I) full p p p p p p p p p p p p p p p p(II) a < �1; a > �2 p p � � � � � � � � p � � � � �IS (III) a < �1 � p � � � � � � � � p � � � � �(IV) a > �2 p � � � � � � � � � p � � � � �(V) partial � � � � � � � � � � p � � � � �(I) full p p p p p � � � � p p p p � p �(II) a < �1; a > �2 p p � � � � � � � � p � � � � �IOA (III) a < �1 � p � � � � � � � � p � � � � �(IV) a > �2 p � � � � � � � � � p � � � � �(V) partial � � � � � � � � � � p � � � � �HA � � � � � � � � � � � � � � � �`p' | accurate statistics; `�' | estimated statistics via sampling; `�' | validity information of statistics;`�' | no obtainable/applicable statistics; `a' | an indexed column; `�1', `�2' | constants;Table 2: Statistics Obtainable via Access Methods10

For the sequential scan method, since the whole data �le of a table is scanned, all column and tablestatistics can be accurately calculated during its execution. However, since indexes are not accessed, noindex statistics can be obtained.For the index scan method, there are several cases. (I) The �rst case occurs when an index tree is usedas a means to scan the whole corresponding table in the sorted order of the indexed column. Since boththe index and the table are fully scanned, all statistics can be obtained. (II) The second case occurs whenthe retrieved values of an indexed column a from the index tree cover at least both range a < �1 and rangea > �2, where �1 and �2 are constants. Since a < �1 (if not empty) implies min(a) is retrieved and a > �2(if not empty) implies max(a) is retrieved, both the maximum and minimum statistics (C1 and C2) can beobtained accurately. Since the index tree is accessed, statistic I2 can also be obtained accurately. Otherstatistics can be estimated by using the set of retrieved data as a set of sample data. For example, statisticC3 for column a in table R can be estimated as:C3 = jRj � n(a)jSj ;where jRj, n(a), and jSj are the cardinality of R, the number of distinct values in the sample set, and thecardinality of the sample set, respectively. Note that a sample set can be improved by applying horizontalpiggybacking or multi-query piggybacking. (III) The third case occurs when the retrieved values of anindexed column cover range a < �1 but not range a > �2. In this case, statistic C2 can be obtainedaccurately, but not statistic C1. For C1, the following condition7 can be used to check if current C1 isout-of-date: (9x 2 S such that x > C1)) (C1 is out� of � date); (5)where S is the set of retrieved values and `)' denotes the logic implication. The obtainability of otherstatistics is the same as that in Case (II). (IV) The fourth case occurs when the retrieved values of anindexed column cover range a > �2 but not range a < �1. In this case, statistic C1 can be obtainedaccurately, but not statistic C2. For C2, the following condition can be used to check if current C2 isout-of-date: (9x 2 S such that x < C2)) (C2 is out� of � date): (6)The obtainability of other statistics is the same as that in Case (II). (V) The last case occurs when it isunknown whether the retrieved values of a column (indexed or not) contain maximum or minimum. Forexample, it is not known what condition is satis�ed for the values of a non-indexed column that are obtainedfrom the rows retrieved via the indexed column. In this case, statistics C1 and C2 can be validated by usingthe conditions (5) and (6), respectively. The obtainability of other statistics is the same as that in Case (II).For the index-only access method, the obtainability of statistics is similar to the index scan method.The only di�erence is that no statistics related to the data �le of a table or the table itself can be obtainedsince the data �le is not accessed. Only the statistics about the referenced index(es) (excluding the relateddata �le) and the corresponding indexed column(s) can be obtained, estimated or validated. Note that tablestatistic T1 may be obtained or estimated when the referenced index(es) is a unique index.For the hash access method, conditions (5) and (6) can be used to validate statistics C1 and C2, respec-tively. Other column statistics and most table statistics can be estimated by taking data in the hit bucket(s)of the hash �le as a set of sample data. It is clear that no index statistics can be obtained.7Unfortunately, it is only a su�cient condition for an out-of-date statistic, not a necessary and su�cient condition.11

Note that there is another class of statistics | the ones for user-de�ned functions, such as the numberof I/O's required for execution of such a function. This type of statistics are supported in recent object-relational DBMSs They are not listed in Table 1. It is easy to see that this type of statistics cannot becollected or estimated via scanning the data objects in a database. Therefore, they cannot be updated byusing the utility method. The current solution adopted in commercial products to this problem is to ask usersmanually update such statistics in the catalog by using update commands[2; 7]. However, such statistics canbe obtained via piggyback analysis during the execution of a query that invokes the user-de�ned function(s).For example, the measured elapse time of a user-de�ned function can be used as an estimate of the coststatistic for the function. This is another advantage of the piggyback method.4 Piggybacking LevelsPiggyback analysis can be performed at di�erent levels. At one end of the spectrum, no piggyback analysisis performed during query processing. Statistics for query optimization can be collected by applying theutility method. There is no piggyback overhead in this case. However, as mentioned in Section 1, there are anumber of serious drawbacks with this approach. At the other end of the spectrum, a full piggyback analysisis performed during query processing, i.e., all pertinent statistics related to the accessed data objects areobtained. A full piggyback analysis usually requires signi�cant overhead since all relevant data (no matterquali�ed or not for the query) for the accessed data objects is retrieved. As pointed out before, it is possibleto perform piggyback analysis at some level such that useful statistics are obtained with slightly additionalcost because unquali�ed data may exist in the retrieved pages of a data �le.Our goal is to obtain as many statistics as possible within a given tolerance of piggyback overhead. Themore the overhead allowed, the more statistics, together with accuracy, may be obtained. To achieve thisgoal, we de�ne six levels of piggybacking. In general, the higher the piggybacking level, the more and betterstatistics may be obtained | however, more overhead may also be incurred.Level 0: No piggyback analysis is performed during query processing.Level 1: Frequencies of tables/indexes accessed by queries are recorded, and the validity of relevant statisticsis checked during query processing.Level 2: Statistics on the accessed index(es), column(s) and table(s) are collected and/or estimated duringquery processing.Level 3: Statistics at level 2 as well as those on other indexed columns in a referenced table are collectedand/or estimated during query processing.Level 4: Statistics at level 3 as well as those on other key-related columns in a referenced table are collectedand/or estimated during query processing.Level 5: Statistics at level 4 as well as those on the remaining columns in a referenced table are collectedand/or estimated during query processing.At piggybacking level 0, the piggybacking option of the system is disabled by a user. Since no piggybackanalysis is performed during query processing, there is no overhead. Statistics have to be collected byinvoking the statistics collecting utility manually.At piggybacking level 1, no statistics are directly collected or estimated during query processing. Onlythe access frequency of each data object (table or index) is counted during query processing. The set S of12

most frequently accessed data objects is identi�ed. Clearly, it is important to keep the statistics on dataobjects in S up-to-date because they are used frequently to optimize user queries. In fact, there is no needto update statistics for the data objects that are never accessed by users. On the other hand, it is possiblethat the statistics on a data object x in S is already up-to-date. In this case, there is no need to updatethe statistics on x. To determine which data object whose statistics are out-of-date, the validity of statisticsis checked by inspecting the retrieved data during query processing. Let W be the set of data objectswhose statistics are found to be out-of-date. Then the set V = S \ W contains the data objects whosestatistics should be updated. The statistics collecting utility is now invoked to collect statistics only for dataobjects in V . Since the statistics collecting utility is not invoked for all data objects indiscriminately orfor some data objects selected subjectively, the utility is used more e�ectively. Furthermore, the utility canbe automatically invoked by the system without user's interference once set V is found. Hence the user'sburden of manually invoking the utility is relieved. Figure 2 shows such a useful lightweight piggybackingprocedure.
Query

Processing query resultuser query

Analysis
Piggyback

accessed data)
(frequently

S

W
(data with

old statistics)

V

Statistics
Collecting

Utility
statistics
useful

Figure 2: Useful Lightweight PiggybackingAt piggybacking level 2, statistics are collected and/or estimated for the data objects (index(es), col-umn(s) and table(s)) that are referenced in a query. These are, in fact, the statistics that can be obtainedvia traditional dynamic query optimization.At piggybacking levels 3 { 5, statistics on extra columns that are included by the vertically-piggybackedqueries at levels 2 to 4 (respectively, see Section 2.1) are collected and/or estimated.Note that piggybacking levels 2 { 5 can be further divided into sublevels by using horizontally piggybackedqueries. At the �rst sublevel, all data in the retrieved pages from a �le are used in piggyback analysis duringquery processing. At the second sublevel, data in additional sample pages are used in piggyback analysis. Atthe third level, data from multiple queries are combined and utilized by the piggyback statistical analysis.Usually, the higher the sublevel is, the higher the quality of collected statistics would be.For the sublevel 2 at piggybacking level 5, if all pages in relevant data and index �les are chosen as samplepages, it actually is the full piggybacking. Such a full piggybacking may not be practically feasible due toits high overhead. A proper piggybacking level in a system can be determined according to a user-speci�edtolerance of overhead.5 Related IssuesInitial statisticsThe piggyback method collects statistics during query processing. A basic question is how to get the initialstatistics for processing the �rst query. There are several possible solutions to this problem.13

One solution is to use the default values for statistics. The piggyback method provides the system witha self-tuning capability. In other words, the system will generate increasingly better access plans sincemore accurate statistics are collected or estimated by the piggyback method as the database is used. Ashortcoming with this approach is that the system may produce poor access plans at the initial stage.A better way to solve the problem is to perform heuristic-based query optimization initially. Afterthe system has collected su�cient statistics by using the piggyback method, it starts to optimize queriesbased on cost analysis. Unfortunately, not all DBMSs supports both heuristic-based and cost-based queryoptimization.Another approach to solve the problem is to use the utility method to get the initial statistics. Thepiggyback method is then used to maintain up-to-date statistics automatically.Piggybacking timeThere is no need to perform piggyback analysis for every user query, since statistics may not be out-of-dateand are not required to be exact either. However, query performance may degrade severely if statistics arefar from accurate. A question arises as to when is the proper time to perform piggyback analysis.There are several possible ways to solve this problem. The simplest way is to perform piggyback sta-tistical analysis periodically, e.g., every 100 queries. This method may not be e�ective since the change ofstatistics may not follow a �xed pattern. Another way is to let the DBA to manually enable and disable thepiggybacking option at proper times. The drawback of this method is that the user's burden is not relieved.A better way is to let the system automatically activate and deactivate the piggybacking option based onthe system performance and load. When the performance of a query become worse, it has a reason to believethat the relevant statistics may not be up-to-date. Piggybacking at a proper level can be activated. Theheavier the current system load, the lower the piggybacking level should be activated. If the piggybackinglevel 1 is activated, the statistics collecting utility can be invoked automatically for the identi�ed data objectswhen the system load is not heavy.Alternatively, the piggybacking level 1 can be set as the default level. When a signi�cant amount ofstatistics are found to be out-of-date during query processing, either the piggybacking level is raised or thestatistics collecting utility is invoked to update statistics. When it is found that not many statistics need tobe updated for a long time, the piggybacking option for the system can be deactivated automatically.Note that the piggyback method may not completely replace the utility method. They can complementeach other. The piggyback method usually reduces the invocation frequency of the statistics collectingutility and makes the utility automatically collect statistics only for frequently accessed data objects, whilethe utility method can be used to collect statistics that cannot (or too expensive) be collected via piggybackanalysis. Using them e�ectively can greatly improve the system e�ciency and reduce user's burden.Parallelism in piggybackingTypically, the statistical information obtained via piggybacking is not used for processing the current query.Hence, query processing and piggyback analysis can be performed in parallel. In this way, system performanceand resource utilization can be improved. In a uniprocessor system, the piggyback analysis task can be runin background. In a multiprocessor system, the query processing task and the piggyback analysis taskcan be run on separate processors in parallel. Note that since statistical information needs not be exact,locks on data items can be released once query processing is done. There is no need to hold locks forpiggyback analysis. Due to the limitation of the paper length, how to perform parallel piggyback analysis14

and synchronize parallel tasks will be discussed in a separate paper.6 ConclusionIn today's database applications, data tends to change very frequently. Existing techniques for maintainingstatistics on data cannot meet this demand. Out-of-date statistics may lead to poor system performance.On the other hand, it is not convenient for a user to manually update statistics as required in most currentcommercial DBMSs. To solve these problems, a new piggyback method for collecting query optimizationstatistics is proposed in this paper.The key idea of the piggyback method is to ride some side retrievals piggyback on the processing of auser query. Statistics obtained via analyzing the results of both the given query and the side retrievals areused to update the system catalog. The improved statistics can be utilized to optimize subsequent queries.Several types of piggybacking have been introduced in this paper. Vertical piggybacking, which retrievesextra unrequested columns from an operand table, can increase the quantity of obtainable statistics; whilehorizontal piggybacking, which retrieves extra unrequested rows from an operand table, can improve thequality of obtained statistics. Typically, a mixed vertical and horizontal piggybacking should be employedto provide good statistics in terms of both quantity and quality. Multi-query piggybacking, which makesuse of data retrieved by multiple (piggybacked) queries in piggyback analysis, can be used to provide higherquality statistics with low overhead. The basic vertical and horizontal piggybacking operators are de�ned todescribe di�erent types of piggybacked queries.Piggyback analysis can be performed at di�erent levels in a system. The higher the piggybacking level is,the more the piggyback overhead although more statistics could be obtained. A proper piggybacking levelcan be chosen according to the system load and the user-speci�ed tolerance of piggyback overhead. A usefullightweight piggyback analysis is to count the access frequencies of data objects and check the validity of theirstatistics without actually updating the statistics during query processing. The statistics collection utilityis then automatically invoked for the identi�ed data objects that are frequently accessed by user queriesand whose statistics are out-of-date. Such an integration of the piggyback method and the utility methodprovides an e�ective solution to the problem of collecting statistics for query optimization in a DBMS. Thediscussion in the paper also shows that statistics can be obtained with di�erent degrees of accuracy (i.e.,accurately calculated, approximately estimated, or e�ectively validated) via piggyback analysis from di�erentaccess methods.The main advantages of the piggyback method are:� The user's burden for manually invoking a utility to update statistics is relieved, since statistics are up-dated during query processing or automatic execution of the statistics collection utility. This advantageo�ers a great convenience to users.� The cost of maintaining statistics about rarely-used data is reduced, since the piggyback method updatesstatistics only for the data accessed by or related to a user query. This advantage saves the time wastedby the utility method for maintaining useless statistics.� More useful statistical information is collected, since extra unrequested data, which was not consideredin the dynamic method, is considered and the user-de�ned functions, which were not handled in theutility method, are handled.� The changing of statistics is more smooth, since statistics are updated more promptly. This advantagereduces the chance for the system to be jammed with the tasks of re-optimizing queries.15

It is expected that a DBMS incorporating the piggyback method can better meet users' satisfaction interm of performance and convenience.AcknowledgementsThe authors would like to thank Peter Haas, John McPherson, David Ready, Enzo Cialini, Gabby Silberman,Weidong Kou, Per-�Ake Larson, Alberto Mendelzon, Patrick Martin, Qi Cheng, and Roger Zheng for theirvaluable suggestions and comments for the work reported in this paper.References[1] G. Antoshenkov. Dynamic query optimization in Rdb/VMS. In Proceedings of the 9th InternationalConference on Data Engineering, pages 538{47, Vienna, Austria, 1993.[2] D. Chamberlin. Using the New DB2: IBM's Object-Relational Database System. Morgan KaufmannPublishers, Inc., 1996.[3] S. Christodoulakis. Estimating record selectivities. Information System, 8(2):105{115, 1983.[4] G. Copeland et al. Bu�ering schemes for permanent data. In Proceedings of the Int'l Conf. on DataEngineering, pages 214{21, Los Angeles, Calif., 1986.[5] D. Gardy and G. Louchard. Dynamic analysis of some relational database parameters. TheoreticalComputer Science, 144(1-2):125{59, 1995.[6] P. J. Haas, J. F. Naughton, et al. Sampling-based estimation of the number of distinct values of anattribute. In Proceedings of the 21st VLDB Conference, pages 311{22, Zurich, Swizerland, 1995.[7] IBM. DB2 Universal Server Administration Guide Version 5. International Business Machines Corpo-ration, 1997.[8] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing Surveys, 16(2):111{152, June 1984.[9] J. Kirkwood. Sybase Architecture and Administration. Ellis Horwood, 1993.[10] R. J. Lipton and J. F. Naughton. Practical selectivity estimation through adaptive sampling. InProceedings of SIGMOD, pages 1{11, 1990.[11] L. Mackert and G. Lohman. Index scans using a �nite LUR bu�er: A validated i/o model. TechnicalReport RJ4836, IBM Almaden Research Center, 1985.[12] C. Malamud. INGRES Tools for Building an Information Architecture. Van Nostrand Reinhold, 1989.[13] M. V. Mannino, P. Chu, and T. Sager. Statistical pro�le estimation in database systems. ACM Com-puting Surveys, 20(3), September 1988.[14] J. McNally et al. Informix Unleashed. SAMS Publishing, 1997.[15] C. S. Mullins. DB2 Developer's Guide. SAMS Publishing, 1994.16

[16] P. G. Selinger and M. Adiba. Access path selection in distributed data base management systems. InProceedings of the International Conference on Data Bases, pages 204{15, Aberdeen, Scotland, 1980.[17] G. P. Shapiro and C. Connel. Accurate estimation of the number of tuples satisfying a condition. InProceedings of SIGMOD, pages 256{76, 1984.[18] W. Sun, W. Meng, and C. Yu. Query optimization in distributed object-oriented database systems.Comput. J. (UK), 35(2):98{107, April 1992.[19] E. Whalen. Oracle Performance Tuning and Optimization. SAMS Publishing, 1996.[20] C. T. Yu and C. C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399{433,Dec. 1984.[21] C. T. Yu, L. Lilien, K. C. Guh, M. Templeton, D. Brill, and A. Chen. Adaptive techniques for distributedquery optimization. In IEEE 1986 International Conference on Data Engineering, pages 86{93, LosAngeles, USA, 1986.[22] M. J. Yu and P. C.-Y. Sheu. Adptive query optimization in dynamic databases. International Journalon Arti�cial Intelligence Tools, 7(1):1{30, 1998.[23] V. Zander, B. Taylor, et al. Estimating block accesses when attributes are correlated. In Proceedingsof the 12th Int'l Conf. on Very Large Databases, pages 119{27, Kyoto, Japan, 1986.[24] Qiang Zhu. Query optimization in multidatabase systems. In Proceedings of the 1992 IBM CASConference, vol.II, pages 111{27, Toronto, Canada, Nov. 1992.[25] Qiang Zhu. An integrated method of estimating selectivities in a multidatabase system. In Proceedingsof the 1993 IBM CAS Conference, pages 832{47, Toronto, Canada, Oct. 1993.[26] Qiang Zhu and P.-�A. Larson. Global query processing and optimization in the CORDS multidatabasesystem. In Proceedings of the 9th ISCA International Conference on Parallel and Distributed ComputingSystems, pages 640{6, Dijon, France, Sept. 1996.

17

