A Piggyback Method to Collect Statistics for Query Optimization

in Database Management Systems*

Qiang Zhu! Brian Dunkel? Nandit Soparkar?
Suyun Chen® Berni Schiefer? Tony Lai®

Abstract

A database management system (DBMS) usually performs query optimization based on statistical
information about data in the underlying database. Out-of-date statistics may lead to inefficient query
processing in the system. Existing solutions to this problem have some drawbacks such as heavy admin-
istrative burden, high system load, and tardy updates. To overcome these drawbacks, our new approach,
called the piggyback method, is proposed in this paper. The key idea is to piggyback some additional
retrievals during the processing of a user query in order to collect more up-to-date statistics. The col-
lected statistics are used to optimize the processing of subsequent queries. To specify the piggybacked
queries, basic piggybacking operators are defined in this paper. Using the operators, several types of
piggybacking such as vertical, horizontal, mixed vertical and horizontal, and multi-query piggybacking
are introduced. Statistics that can be obtained from different access methods by applying piggyback
analysis during query processing are also studied. In order to meet users’ different requirements for
the associated overhead, several piggybacking levels are suggested. Other related issues including ini-
tial statistics, piggybacking time, and parallelism are discussed. Our analysis shows that the piggyback
method is promising in improving the quality of query optimization in a DBMS as well as in reducing

the user’s administrative burden for maintaining an efficient DBMS.

Keywords: Database management system, query optimization, cost estimation, statistics collection,

piggybacking query, access method

1 Introduction

It is well-known that query optimization is crucial in achieving efficient query processing for a database man-
agement system (DBMS), especially for the relational, object-oriented, and distributed DBMSs(8: 18, 20, 24, 26
There are two types of query optimizers in DBMSs: heuristic-based and cost-based. Most query optimizers

9,12, 14, 15, 191 The more ac-

in commercial DBMSs are cost-based, i.e., based on cost analysis for queries!
curate the cost analysis is, the more efficient the query processing. However, accurate cost analysis requires
the statistics about the underlying database to be up-to-date. Unfortunately, existing methods for collecting

and maintaining statistics in the system catalog are not entirely satisfactory.

*Research was supported by the Centre for Advanced Studies at IBM Toronto Laboratory and the University of Michigan.
TDepartment of Computer and Information Science, The University of Michigan, Dearborn, MI 48128, USA.

tDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MT 48109, USA.
$TBM Toronto Laboratory, North York, Ontario, M3C 1H7, Canada.

A typical statistics-collection method, which is used in many DBMS products, such as DB2, Oracle,
Informix and Sybase, is to periodically invoke a utility that collects and updates statistics about the under-

9,12, 14, 15, 19]

lying database We term this method as the utility method. The major disadvantages of

this method are:

e Heavy system load. The utility competes for system resources with other components in a DBMS and,

therefore, significantly increases the system load.

e Out-of-date statistics. To avoid a heavy system load, the utility cannot be invoked very often. As a
result, out-of-date statistics may be used by the query optimizer quite often, and this leads to inefficient

query processing.

e Incomplete statistics Some statistics, such as the costs of user-defined functions in recent object-
relational DBMSs, cannot be collected by the utility method. Users are required to manually update

such statistics in the system catalog.

e High cost for analyzing large databases. Unless a user! specifies a data subset to analyze, which is
perforce a subjective assessment, the utility typically analyzes the whole database. Clearly, analyzing

statistics for a large database is very expensive and unnecessary for data that never changes.

e Inconvenience for users. Users have to manually invoke the utility whenever significant changes have

been made to the database. Otherwise, obsolete statistics may be used by the query optimizer.

Due to the problems described above, it is quite common for database users to hardly ever invoke the
utility to update the database statistics progressively once the database is initialized. As a result, system
performance may become progressively worse as the data changes and evolves.

Recently, sampling techniques have been incorporated into the utility method in some commercial
DBMSs!14 191 The idea is to use sampled data to estimate statistics instead of analyzing a complete data
set. This approach mitigates some of the above disadvantages. However, the problems are not completely
eliminated. For instance, the overhead for analyzing statistics for the whole database is still significant, some
statistics are still not obtainable, and users still need to manually invoke the utility. Furthermore, sampling
itself may involve accessing a significant part of the database.

1, 21, 22

)

Another common method for collecting statistics, so-called the dynamic query optimization method
or simply the dynamic method, is to obtain up-to-date statistics by analyzing the result or intermediate re-
sult of a user query during its processing. The up-to-date statistics can be used not only to dynamically
improve the processing of the current query but also to optimize subsequent queries. This method provides
an approach to obtain up-to-date statistical information without significantly increasing the system load.
However, a shortcoming of this method is that not all useful statistics can be updated. Consider the following

example.
Example 1 A user issues the following query on a DBMS:

Q1: SELECT R;.as
FROM R,
WHERE R;.a3 IN (SELECT R,.by
FROM R,)

LA database administrator (DBA) is considered as one type of user in this paper.

where Ri(a1, a2, asz) and Ra(by, by) are two tables in the underlying database. Note that the equivalent
relational algebra expression?, which will be used in the discussions below, for query Q; is:

(Rl X (7TR2_b1 (RZ))

TR .a
1-92 Ry.az3=Roy.by

where 7 and X denote the project and join operations, respectively. One feasible access plan to execute ()
is performing the following subquery first:

Q: SELECT Ry.b;
FROM R,

(ie., 7y, ,, (K2)), then performing the outer query block by using the result of subquery Q?). Clearly, the
DBMS can collect and update statistics about the column R,.b; by analyzing the result of Q?) during the
query processing. However, statistics about Rs.bs cannot be obtained during the query processing since it
is not, referenced by Q?). |

To meet the performance requirement of modern information processing, a DBMS should employ a
statistics-collection method that (1) collects up-to-date statistics for all pertinent data; (2) incurs as low
an overhead as possible; and (3) reduces the user’s burden of invoking a utility manually. In this paper,
we propose such a new approach, called the piggyback query optimization method, or simply the piggyback
method. The key idea of the piggyback method is to collect statistics by piggybacking some additional
retrievals during the processing of a user query in order to improve the quality and quantity of collected
statistics. Although these side retrievals are not related to the processing of the given query (and may slow
down the query processing slightly), the statistics collected from the results of the side retrievals can be used
to improve the processing of subsequent queries.

A comprehensive survey on existing techniques for statistics collection and cost estimation in DBMSs
was given by Mannino et al. in [13]. They divided statistics into base statistics (profile) for the tables in
a database, intermediate statistics for the intermediate result tables during query processing, and target
statistics for the final result table of a query. They discussed the relationships between statistics and cost
estimates in query processing. In [4, 11, 23], Zander, Copeland, and Mackert et al. proposed a number of
techniques to estimate physical statistics (e.g., page references) for data and index files in a database. In [6],
Haas et al. introduced several sampling-based estimators to estimate the number of distinct valus of a column
in a table. In [3, 10, 16, 17], Christodoulakis, Selinger, Shapiro, and Lipton et al. proposed various techniques
including parametric methods, table-based methods, and sampling methods to estimate the intermediate and
target table sizes from some base statistics. Gardy et al. studied the evolution of the table size statistic under
queries and updates in [5]. They showed that the statistic behaves asymptotically as Gaussian processes. In
[21], Yu et al. suggested a number of dynamic (adaptive) query optimization techniques and classified them
into direct ones, which dynamically optimize the current query based on runtime information, and indirect
ones, which collect dynamic information from the current query to optimize subsequent quries. Yu et al.
proposed an adaptive query optimization algorithm to dynamically complete a partial access plan based on
latest statistics collected at runtime in [22]. The piggybacking idea for collecting/updating statistics was
first mentioned in our previous work [25] for a multidatabase environment, but technical details for the
approach were not studied. In this paper, we explore the piggyback technique in detail and study how it
can be incorporated into a DBMS. To our knowledge, there is no similar work that has been reported in the
literature.

2There may be an inessential difference about duplicates in the result table.

The rest of the paper is organized as follows. Section 2 defines basic piggybacking operators and introduces
different types of piggybacking. Section 3 studies the statistics obtainable from different access methods via
piggyback analysis. Section 4 suggests several piggybacking levels to meet users’ different requirements for

overhead. Section 5 discusses some other related issues. Section 6 concludes the paper.

2 Types of Piggybacking

There are several types of piggybacking, which will be discussed in the following subsections. Among them,
vertical piggybacking and horizontal piggybacking form the basic ones. Using the basic types of piggybacking,
more complex forms of piggybacking may be generated.

2.1 Vertical Piggybacking
Vertical piggybacking includes extra columns in query processing. Consider the following example.

Example 2 To obtain statistics about column Rs.by in Example 1, the DBMS can perform a slightly
different subquery:

Q¥ SELECT Ry.by, Ro.by
FROM RQ N

(i-e.; Th, 4, 5,5, (F12)) on the underlying database instead of Q?) and analyze its result. Since both Q?) and

ng usually scan table R, once (and, effectively, also access Ra.bs), ngl increases the processing cost of

query ()1 only slightly. In fact, we have piggybacked the side retrieval:

FROM R2 N

(i.e., mp, ,, (R2)) during the processing of user query @ to obtain necessary statistics with a slightly addi-

tional overhead. |

In general, consider a user query) with operand tables Ry, Ro, ..., R,. To process (), a DBMS usually

performs a subquery®

QY =mg,, (0, (Ri)) (1)

i i

on each table R; (1 < i < n) to retrieve data that is required to process (), where o denotes the select
operation in the relational algebra. We call Q") an access subquery for table R;. For instance, for Q; in

Example 1, two access subqueries are

QY =7 a0, (B1))

and
Q¥ =7, (0, (Rs)).

Using intermediate results from the access subqueries, the DBMS can evaluate query . Hence,

Q = F(QW, W, .., "), (2)

3Note that a DBMS may execute such a subquery with other operations via pipelining. We also assume that the columns

referenced in qualification F; but not needed in the further processing of the query are included in project target list C'L;, which
simplifies the definition of horizontal piggybacking in the next subsection.

where F(...) is a query formula that generates the result of Q by using the results of Q"), Q®), ..., Q™). For
instance, for ()7 in Example 1,

FQY, QD) = 70 (@Y iy X, @)

Q1) a3=0(2) 1

Let w be an operator such that

where X is a set of columns in R;. w,(QW) is called a vertically-piggybacked subquery for Q') with a
piggybacked column set X, and w is called the vertical piggybacking operator. If X — CL; # 0, w, (QW) is

non-trivial. Otherwise, it is trivial. For example,

2
Whao b2 (Qg)) = TRy .6y ,R2.62 (U,tme, (RZ))

is a non-trivial vertically-piggybacked subquery in Example 1.

Let w™' be an operator such that

w @ @) = 7, (@) =Y.

where CL, = CL; U X. w™!is called the inverse vertical piggybacking operator of w.
For a given query @ = F(QW, Q®, ..., Q) in (2), the following query with w and w~' applied to
its access subqueries

Q' = Flwl(wy, (@M)), wil(wy, (@), o wl(wy, (Q™))

1 2 mn

is called a wvertically-piggybacked query for Q. If at least one vertically-piggybacked subquery w, (Q(i))
(1 <4 < n) is non-trivial, ' is non-trivial. Otherwise, it is trivial. Note that, unlike a subquery and its
vertically-piggybacked counterpart, the original query) has the same result as its vertically-piggybacked
counterpart @', i.e., @ = Q'. However, processing the vertically-piggybacked query may generate more
intermediate results (see Figure 1), and these can be used to produce useful statistics that improve the
quality of query optimization.

Original query: Vertically-piggybacked query:

Query result Query result

vertical
piggybacking

""" useful = ---__
statistics <2 ---

R1 R2 Rn
piggyback 1Tl
anaysis -

Figure 1: Idea of Vertical Piggybacking

Note that, at the low level in a DBMS, a complete tuple is usually fetched from the data file into a
buffer although only part of the tuple may be needed for processing the given query. Hence piggybacking

side retrievals for extra columns from a table during the processing of a user query usually does not incur
additional I/O cost. However, the piggyback analysis on intermediate results to obtain useful statistics
requires some additional CPU time. Although CPU time is relatively small compared with I/O cost, it
should be kept as low as possible. To achieve this goal, we propose to allow including extra columns for
piggyback analysis with different degrees, depending on the user’s constraint to piggyback overhead. The
more the overhead allowed, the more number of extra columns may be included in piggyback analysis.
With regard to different degrees of vertical piggybacking, we divide the columns of an operand table R;

for a given query () into the following four classes:

AC, = { z | zisacolumnin R, N zisreferencedin @ },
ACy = { z | zisan indexed columnin R; } — AC,
AC; = { z | zisacolumnin R, N (zis part of the primary key
V zis part of a foreign key V x is referenced by a foreign key) } — AC,,
ACy = { z | zisacolumnin R; } — ACs.

The principle for including piggybacked columns is to include those columns that are more likely to be
referenced by user queries. Since the columns in AC, are known to be referenced in at least one user query,
they have the highest priority to be included in piggyback analysis. Since an index on a column indicates
that users intend to use the column in their queries quite often, the columns in ACs have the next higher
priority to be included in piggyback analysis. The next preferred class of columns are those related to
primary and/or foreign keys, i.e., those in class AC3. We term such a column as a key-related column. The
remaining columns are in class ACy, which may be included for piggyback analysis if the user’s requirement
on piggyback overhead is not high.
Let
Xr=Uk_, Ac;, (1<k<4).

The following subquery
(Ri))

is called the vertically-piggybacked subquery at level i. A vertically-piggybacked query @) is at level k if

wy, (@) =70y x, (04,
at least one of its vertically-piggybacked subqueries is at level k. However, to simplify implementation, we
recommend having all vertically-piggybacked subqueries in) at the same level, and this is assumed in the
rest, of this paper.

Note that there exist some queries whose results may be obtained completely from the referenced indexes
without accessing the data files of operand tables. Many DBMSs support such an “index-only access”
method. In this case, a complete tuple may not be available in memory during query processing. Therefore,
including extra columuns in piggyback analysis may incur additional I/O cost. To deal with such a situation,

class ACy can be further divided into two subclasses for given query Q:

ACy 4

ACy o = { z | zisan indezed column in R; } — AC, .

{ = | zisacolumn in R; with an index referenced in Q@ } — ACi,

An index is said to be referenced in a query if the query references at least one column on which the index
is built. The values of for the columns in subclass AC, ; can be obtained from the referenced indexes when
they are fetched into memory during query processing. Since the columns in subclass AC, 5 only have non-
referenced indexes, to obtain their values requires additional I/O cost. Hence, AC5 ; is assigned a higher

priority than ACs 5.

2.2 Horizontal Piggybacking
Horizontal piggybacking includes extra rows in query processing. Consider the following example.
Example 3 For the following user query:

Qz: SELECT Rl.al, Rl.az
FROM R,
WHERE R;.a1 > 3)

(€ Th i kyay(Tn, 0 » 5(F1)) where Rj.a; is indexed while R;.ap is not, a feasible access plan is to
retrieve the qualified rows from R; via the index on Rj.a;. Several statistics on R;.a; can be obtained via
analyzing information contained in the index if the index, which is relatively small compared with the data
file, is completely fetched into memory. However, statistics on Rj.a2 may not be accurately known since not
all data values of R;.ay are obtained (e.g., if it is a sparse index). An improvement can be made by using all
rows in the retrieved pages from the data file as sample rows* to estimate the statistics on R;.as. Although
it is possible that some rows in the retrieved pages are not qualified for the query, they may be usable to
improve the accuracy of statistical estimates. Since the rows in a retrieved page are available in memory, such
horizontal piggybacking may provide better statistics without incurring much additional cost. Furthermore,
additional random sample pages that contain no qualified rows may also be fetched into memory to obtain
even better statistics since the randomness and size of the sample set are improved. Trade-offs need to be

made between the overhead and accuracy. |

In general, consider a user query @ with operand tables Ry, Ry, ..., Rn. Let Q") be the access subquery
for table R; (1 <i<n)asin (1), and Q = F(QM,Q®,...,Q") as in (2).
Let v be an operator such that
W (@QW) =7, (04, v (Bi)
where Y is a qualification condition for the extra rows to be retrieved from table R;. v, (Q") is called a
horizontally-piggybacked subquery with a piggyback qualification condition Y, and + is called the horizontal
piggybacking operator. If

{z | zsatisfiesY A =(x satisfies F;)} # 0,

then v, (Q) is non-trivial. Otherwise, it is trivial.

Let v~! be an operator such that

7 Oy QW) = 7, (7, (@) = Q.

~v~1is called the inverse horizontal piggybacking operator of .

For a given query @ = F(QW, Q®), ..., Q™) in (2), the following query with v and v~ applied to

its access subqueries

Q" = F(r, (1, @M)), 7, (1, (@), oy 77 (3, (™))

is called a horizontally-piggybacked query for Q. If at least one horizontally-piggybacked subquery 7, (Q(i))
(1 <4 < n) is non-trivial, Q" is non-trivial. Otherwise, it is trivial.

4Note that such a convenience sampling technique may yield a biased sample unless the convertional assumptions about the
uniform distribution of column values and the independence of different columns hold. Biased samples are adopted in many

applications although they may not lead to good statistical estimates.

To determine a horizontally-piggybacked subquery =, (Q), we need to choose the piggyback qualifica-
tion condition Y. Condition Y should be chosen in such a way that the extra rows can be used to derive
good statistical estimates and the piggyback overhead is kept as low as possible.

At one extreme, Y = Fj, i.e., Y logically implies F;. In this case, no extra rows will be fetched; that
is, the horizontally-piggybacked subquery is trivial. Although there is no piggyback overhead in this case,
statistics that we obtain may be poor. At the other extreme, Y = ‘true’; that is, all rows in the operand table
will be fetched. Although we can obtain all statistics about the table in this case, the piggyback overhead
may be high.

There are two useful cases between the two extreme cases. Let
RB={n | 3y (y € Ry N F;,="‘true’ A y.pid=n)},

where F; |, denotes the truth value of condition F; when instantiated by row y from table R;, and y.pid is
the identification number® of the page that contains row y in the data file. In other words, RB is the set of
identification numbers of retrieved pages. In the first case, we define the piggyback qualification condition
Y on table R; as follows

Y, = true if and only if z.pid € RB, (3)

where z is a row from table R;. This condition qualifies all rows in the retrieved (file) pages for the query.
Since the newly qualified rows are in the retrieved pages, including them in piggyback analysis does not incur
any additional 1/O cost. For example, the following is the horizontally-piggybacked subquery® in Example 3

YR, .pid € RB (Q2) = TRy .a1.Ry.an (Unl.a1>3 vV Ry.pid € RB (Rl)) (4)

In the second case, we take a small set SB of extra sample pages and define the piggyback qualification
condition Y as follows:

Y, = true if and only if (z.pid € RB V z.pid € SB).

This condition qualifies not only the rows in the retrieved pages but also the rows in chosen sample pages.
Retrieving rows in the sample pages requires some additional I/O cost. However, statistical estimates can
be improved by using these additional sample rows. The sample pages can be chosen randomly from the
data file.

2.3 Mixed vertical and horizontal piggybacking

Note that vertical piggybacking increases the quantity (number) of statistics to be collected/estimated, while
horizontal piggybacking improves the quality (accuracy) of statistics to be estimated. Applying only vertical
or horizontal piggybacking alone may be insufficient. More suitable may be the case in which a mixture
of vertical and horizontal piggybacking is adopted. For example, the vertical piggybacking operator can be
applied to the horizontally-piggybacked subquery in (4) to yield a mixed vertical and horizontal piggybacked
subquery:

Whi . ag (FYRl.pid € RB (Q2)) = TR, .a1.Ry.a2.R1.a3 (URl.a1>3 vV Ry.pid € RB (Rl))>

which can be used to estimate statistics on column R;.as in addition to columns R;.a; and R;.as.

5pid can be considered as an implicit attribute (column) of the operand table stored in a database.

6By convention, a table name is used as a tuple variable in the qualification condition of a relational algebra expression.

For a general query @ = F(Q(l), QY. .., Q(”)), the following is a mixed vertical and horizontal
piggybacked query:

Q" = Fy (1 @n, 0 (@), w5 (07, @y, (1 (@),

—1

------ s Wi (5w, O, (QU))))).

Piggyback analysis is to be performed after v and w are applied and before y~!

and w™! are applied.
In fact, piggyback analysis and query processing can be done in a pipelined manner, i.e., the complete

result of a piggybacked subquery is not required before the query is further processed.

2.4 Multi-Query Piggybacking

From Section 2.2, we know that the data values obtained via the horizontal piggybacking can be used as
a sample set for statistical analysis. Sample pages in addition to the retrieved pages in a data file may be
used to improve the properties (randomness and size) of a sample set. However, fetching extra sample pages
requires additional overhead.

To improve the properties of a sample set without incurring much additional overhead, another type of
piggybacking, called multi-query piggybacking, may be utilized. The idea is to use the retrieved data from
multiple queries as one sample set. In this way, the sample size is increased. The randomness of the sample
set is also improved if user queries are assumed to be independent, which is true in many cases. Furthermore,
piggyback analysis may be performed on a query-by-query base (i.e., via pipelining) without waiting for the
final sample set to be formed. For example, consider the average length of a column, which is a statistic
used in query optimization. Let S; be the set of values for column R.a retrieved by query @; (1 <i < n).
Clearly, the total length len(S;) and total number |S;| of values in sample subset S; can be obtained via
analyzing S; alone without other S; where j # i. The average length avg_len(R.a) of column R.a for the
final sample set S = U}~ S; can be calculated as follows:

Yo len(S;)
Sy 1S

Sample subset S; can be discarded after intermediate statistics len(S;) and |S;| are obtained.

avglen(R.a) =

Note that the mixed vertical and horizontal piggybacking is a general type of piggybacking for a single
query, while the multi-query piggybacking, which combines multiple individual piggybacked queries, is even
more general. The vertical and horizontal piggybacking operators are the basic building blocks for all

piggybacked queries.

3 Statistics Obtainable via Piggyback Analysis

3.1 Statistics for Query Optimization

Different DBMSs may maintain different types of statistics in their catalogs for query optimization. Table 1
shows the typical statistics maintained in a DBMS. There are some other statistics that are not shown in the
table, which are mainly used by a DBA to monitor the system performance and decide how to reconfigure
and/or reorganize the database.

The statistics for query optimization can be classified into logical and physical types:

Logical statistics : Ci, Cy, C3, C4, C5, Ty, I3, I
Physical statistics: Ts, T3, Ty, Iy, I, Iy, Ig, I7

[Type [Label Description

Cy max value of a column (or second max value)
Column Cy min value of a column (or second min value)
Statistics C3 number of distinct values of a column
Cy distribution (frequent values and quantiles)
Cs average column length
T number of rows in a table
Table T> number of pages used by a table
Statistics T3 percentage of active rows compressed for a table
Ty number of overflow rows
I number of leaf pages
I number of B-tree index levels
Index I3 number of distinct values for the 1st column of index key
Statistics 14 number of distinct values for the full index key
I5 percentage of rows in the clustered order
Is average number of leaf pages per index value
I average number of data pages per index value

Table 1: Typical Statistics Maintained in a Catalog

The logical statistics can be determined by the data values in a database, while physical ones are determined

by the properties of physical organizations for the database on a storage medium.

3.2 Statistics obtainable from access methods

In a DBMS, a user query is implemented by one or more access methods such as the sequential scan method
and the hash join method. In principle, the access methods involving more than one table can be implemented
by the ones involving a single table, i.e., the ones used for access subqueries. We hence mainly consider unary

access methods, and the common ones are:

Sequential scan (SS) : scan the rows in a table sequentially
Index scan (IS) : retrieve the qualified rows via an index
Index — only access (I0OA) : get all requested values from an index tree

Hash access (HA) : retrieve the qualified rows via a hash table

Statistics can be obtained during the execution of an access method although not all statistics are obtainable
via every method. In fact, statistical information is obtained at different levels of accuracy. At the top level,
an accurate statistic is obtained via calculation using a complete data set. At the second level, an estimated
statistic is obtained via sampled data. At the next level, validity information on a statistic rather than the
statistic itself is obtained. In other words, we only know whether the statistic is up-to-date or not. At the
lowest level, no statistic can be obtained. Table 2 shows what statistics may be obtained (at what level)

during the execution of different access methods.

| [Cn [Co [Cs [Ca [C [[T [T [Ta [L [[[Ta [[T []
SS IV IV IV IV IV IV IV IV IV X X X X X X X
() full VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIY
(M a<pfr,a>pF | V| V] & & |l [d|e|ld[V] e[|ld]|e]|
1S (T1T) a < (31 © vV S S 5 5 S E) &) &) vV @ &b &b @D @D
(IV) a > (2 v ®© @D @D &b &b @D &b @D &b v S 5 5 S S
V) partial ®© ®© D D D D D D D D vV D D D D D
M ful VI VIV IV V] x [x [x [x [VIVIVI V] x [/]x
(I1) a < B1, a> B v v & & E X X X X Dl VI e]® X & X
10A (TIT) a < B © IV)) D X X X X D IV &) D X &) X
(V) a > (2 V4 ® &) &) D X X X X D V4) D X) X
V) partial) ®)) E) X X X X E) vV | @ E) X) X
HA ® ® @ @ &3 &3 ® X @ X X X X X X X
‘y/ — accurate statistics; ‘@’ — estimated statistics via sampling; ‘@’ — validity information of statistics;
£’ no obtainable/applicable statistics; ‘a’ an indexed column; ‘617, ‘B2’ constants;

Table 2: Statistics Obtainable via Access Methods

10

For the sequential scan method, since the whole data file of a table is scanned, all column and table
statistics can be accurately calculated during its execution. However, since indexes are not accessed, no
index statistics can be obtained.

For the index scan method, there are several cases. (I) The first case occurs when an index tree is used
as a means to scan the whole corresponding table in the sorted order of the indexed column. Since both
the index and the table are fully scanned, all statistics can be obtained. (II) The second case occurs when
the retrieved values of an indexed column a from the index tree cover at least both range a < 3; and range
a > (32, where 31 and (2 are constants. Since a < (; (if not empty) implies min(a) is retrieved and a > (5
(if not empty) implies maz(a) is retrieved, both the maximum and minimum statistics (C; and C3) can be
obtained accurately. Since the index tree is accessed, statistic Io can also be obtained accurately. Other
statistics can be estimated by using the set of retrieved data as a set of sample data. For example, statistic

(5 for column a in table R can be estimated as:

n(a)

03 = |R‘ ¥ =5
|S]

where |R|, n(a), and |S| are the cardinality of R, the number of distinct values in the sample set, and the
cardinality of the sample set, respectively. Note that a sample set can be improved by applying horizontal
piggybacking or multi-query piggybacking. (III) The third case occurs when the retrieved values of an
indexed column cover range a < (; but not range a > (2. In this case, statistic C; can be obtained
accurately, but not statistic C;. For Ci, the following condition” can be used to check if current Cj is

out-of-date:
(3z € S such that x > C1) = (Ci is out — of — date), (5)

where S is the set of retrieved values and ‘=’ denotes the logic implication. The obtainability of other
statistics is the same as that in Case (II). (IV) The fourth case occurs when the retrieved values of an
indexed column cover range a > [, but not range a < ;. In this case, statistic C; can be obtained
accurately, but not statistic Cy. For Cy, the following condition can be used to check if current Cy is

out-of-date:
(3z € S such that ¢ < Cy) = (Cs is out — of — date). (6)

The obtainability of other statistics is the same as that in Case (II). (V) The last case occurs when it is
unknown whether the retrieved values of a column (indexed or not) contain maximum or minimum. For
example, it is not known what condition is satisfied for the values of a non-indexed column that are obtained
from the rows retrieved via the indexed column. In this case, statistics C7 and Cy can be validated by using
the conditions (5) and (6), respectively. The obtainability of other statistics is the same as that in Case (II).

For the index-only access method, the obtainability of statistics is similar to the index scan method.
The only difference is that no statistics related to the data file of a table or the table itself can be obtained
since the data file is not accessed. Only the statistics about the referenced index(es) (excluding the related
data file) and the corresponding indexed column(s) can be obtained, estimated or validated. Note that table
statistic 71 may be obtained or estimated when the referenced index(es) is a unique index.

For the hash access method, conditions (5) and (6) can be used to validate statistics C; and Cs, respec-
tively. Other column statistics and most table statistics can be estimated by taking data in the hit bucket(s)

of the hash file as a set of sample data. It is clear that no index statistics can be obtained.

7Unfortunately, it is only a sufficient condition for an out-of-date statistic, not a necessary and sufficient condition.

11

Note that there is another class of statistics — the ones for user-defined functions, such as the number
of I/0’s required for execution of such a function. This type of statistics are supported in recent object-
relational DBMSs They are not listed in Table 1. It is easy to see that this type of statistics cannot be
collected or estimated via scanning the data objects in a database. Therefore, they cannot be updated by
using the utility method. The current solution adopted in commercial products to this problem is to ask users

manually update such statistics in the catalog by using update commands!? 7.

However, such statistics can
be obtained via piggyback analysis during the execution of a query that invokes the user-defined function(s).
For example, the measured elapse time of a user-defined function can be used as an estimate of the cost

statistic for the function. This is another advantage of the piggyback method.

4 Piggybacking Levels

Piggyback analysis can be performed at different levels. At one end of the spectrum, no piggyback analysis
is performed during query processing. Statistics for query optimization can be collected by applying the
utility method. There is no piggyback overhead in this case. However, as mentioned in Section 1, there are a
number of serious drawbacks with this approach. At the other end of the spectrum, a full piggyback analysis
is performed during query processing, i.e., all pertinent statistics related to the accessed data objects are
obtained. A full piggyback analysis usually requires significant overhead since all relevant data (no matter
qualified or not for the query) for the accessed data objects is retrieved. As pointed out before, it is possible
to perform piggyback analysis at some level such that useful statistics are obtained with slightly additional
cost because unqualified data may exist in the retrieved pages of a data file.

Our goal is to obtain as many statistics as possible within a given tolerance of piggyback overhead. The
more the overhead allowed, the more statistics, together with accuracy, may be obtained. To achieve this
goal, we define six levels of piggybacking. In general, the higher the piggybacking level, the more and better
statistics may be obtained = however, more overhead may also be incurred.

Level 0: No piggyback analysis is performed during query processing.

Level 1: Frequencies of tables/indexes accessed by queries are recorded, and the validity of relevant statistics

is checked during query processing.

Level 2: Statistics on the accessed index(es), column(s) and table(s) are collected and/or estimated during

query processing.

Level 3: Statistics at level 2 as well as those on other indexed columns in a referenced table are collected

and/or estimated during query processing.

Level 4: Statistics at level 3 as well as those on other key-related columns in a referenced table are collected

and/or estimated during query processing.

Level 5: Statistics at level 4 as well as those on the remaining columns in a referenced table are collected
and/or estimated during query processing.

At piggybacking level 0, the piggybacking option of the system is disabled by a user. Since no piggyback
analysis is performed during query processing, there is no overhead. Statistics have to be collected by
invoking the statistics collecting utility manually.

At piggybacking level 1, no statistics are directly collected or estimated during query processing. Only

the access frequency of each data object (table or index) is counted during query processing. The set S of

12

most frequently accessed data objects is identified. Clearly, it is important to keep the statistics on data
objects in S up-to-date because they are used frequently to optimize user queries. In fact, there is no need
to update statistics for the data objects that are never accessed by users. On the other hand, it is possible
that the statistics on a data object = in S is already up-to-date. In this case, there is no need to update
the statistics on z. To determine which data object whose statistics are out-of-date, the validity of statistics
is checked by inspecting the retrieved data during query processing. Let W be the set of data objects
whose statistics are found to be out-of-date. Then the set V' = S N W contains the data objects whose
statistics should be updated. The statistics collecting utility is now invoked to collect statistics only for data
objects in V. Since the statistics collecting utility is not invoked for all data objects indiscriminately or
for some data objects selected subjectively, the utility is used more effectively. Furthermore, the utility can
be automatically invoked by the system without user’s interference once set V' is found. Hence the user’s

burden of manually invoking the utility is relieved. Figure 2 shows such a useful lightweight piggybacking

procedure.
Query
user query ———= Processing —= query result
S
frequent|

- agceﬁedeq dgta) e
Piggyback L — Statistics eful
Analysis Collecting —= grgidics

\ Utility

w.
(datawith
old statistics)

Figure 2: Useful Lightweight Piggybacking

At piggybacking level 2, statistics are collected and/or estimated for the data objects (index(es), col-
umn(s) and table(s)) that are referenced in a query. These are, in fact, the statistics that can be obtained
via traditional dynamic query optimization.

At piggybacking levels 3 5, statistics on extra columns that are included by the vertically-piggybacked
queries at levels 2 to 4 (respectively, see Section 2.1) are collected and/or estimated.

Note that piggybacking levels 2 — 5 can be further divided into sublevels by using horizontally piggybacked
queries. At the first sublevel, all data in the retrieved pages from a file are used in piggyback analysis during
query processing. At the second sublevel, data in additional sample pages are used in piggyback analysis. At
the third level, data from multiple queries are combined and utilized by the piggyback statistical analysis.
Usually, the higher the sublevel is, the higher the quality of collected statistics would be.

For the sublevel 2 at piggybacking level 5, if all pages in relevant data and index files are chosen as sample
pages, it actually is the full piggybacking. Such a full piggybacking may not be practically feasible due to
its high overhead. A proper piggybacking level in a system can be determined according to a user-specified

tolerance of overhead.

5 Related Issues

Initial statistics

The piggyback method collects statistics during query processing. A basic question is how to get the initial
statistics for processing the first query. There are several possible solutions to this problem.

13

One solution is to use the default values for statistics. The piggyback method provides the system with
a self-tuning capability. In other words, the system will generate increasingly better access plans since
more accurate statistics are collected or estimated by the piggyback method as the database is used. A
shortcoming with this approach is that the system may produce poor access plans at the initial stage.

A better way to solve the problem is to perform heuristic-based query optimization initially. After
the system has collected sufficient statistics by using the piggyback method, it starts to optimize queries
based on cost analysis. Unfortunately, not all DBMSs supports both heuristic-based and cost-based query
optimization.

Another approach to solve the problem is to use the utility method to get the initial statistics. The

piggyback method is then used to maintain up-to-date statistics automatically.

Piggybacking time

There is no need to perform piggyback analysis for every user query, since statistics may not be out-of-date
and are not required to be exact either. However, query performance may degrade severely if statistics are
far from accurate. A question arises as to when is the proper time to perform piggyback analysis.

There are several possible ways to solve this problem. The simplest way is to perform piggyback sta-
tistical analysis periodically, e.g., every 100 queries. This method may not be effective since the change of
statistics may not follow a fixed pattern. Another way is to let the DBA to manually enable and disable the
piggybacking option at proper times. The drawback of this method is that the user’s burden is not relieved.

A better way is to let the system automatically activate and deactivate the piggybacking option based on
the system performance and load. When the performance of a query become worse, it has a reason to believe
that the relevant statistics may not be up-to-date. Piggybacking at a proper level can be activated. The
heavier the current system load, the lower the piggybacking level should be activated. If the piggybacking
level 1 is activated, the statistics collecting utility can be invoked automatically for the identified data objects
when the system load is not heavy.

Alternatively, the piggybacking level 1 can be set as the default level. When a significant amount of
statistics are found to be out-of-date during query processing, either the piggybacking level is raised or the
statistics collecting utility is invoked to update statistics. When it is found that not many statistics need to
be updated for a long time, the piggybacking option for the system can be deactivated automatically.

Note that the piggyback method may not completely replace the utility method. They can complement
each other. The piggyback method usually reduces the invocation frequency of the statistics collecting
utility and makes the utility automatically collect statistics only for frequently accessed data objects, while
the utility method can be used to collect statistics that cannot (or too expensive) be collected via piggyback
analysis. Using them effectively can greatly improve the system efficiency and reduce user’s burden.

Parallelism in piggybacking

Typically, the statistical information obtained via piggybacking is not used for processing the current query.
Hence, query processing and piggyback analysis can be performed in parallel. In this way, system performance
and resource utilization can be improved. In a uniprocessor system, the piggyback analysis task can be run
in background. In a multiprocessor system, the query processing task and the piggyback analysis task
can be run on separate processors in parallel. Note that since statistical information needs not be exact,
locks on data items can be released once query processing is done. There is no need to hold locks for

piggyback analysis. Due to the limitation of the paper length, how to perform parallel piggyback analysis

14

and synchronize parallel tasks will be discussed in a separate paper.

6 Conclusion

In today’s database applications, data tends to change very frequently. Existing techniques for maintaining
statistics on data cannot meet this demand. Out-of-date statistics may lead to poor system performance.
On the other hand, it is not convenient for a user to manually update statistics as required in most current
commercial DBMSs. To solve these problems, a new piggyback method for collecting query optimization
statistics is proposed in this paper.

The key idea of the piggyback method is to ride some side retrievals piggyback on the processing of a
user query. Statistics obtained via analyzing the results of both the given query and the side retrievals are
used to update the system catalog. The improved statistics can be utilized to optimize subsequent queries.

Several types of piggybacking have been introduced in this paper. Vertical piggybacking, which retrieves
extra unrequested columns from an operand table, can increase the quantity of obtainable statistics; while
horizontal piggybacking, which retrieves extra unrequested rows from an operand table, can improve the
quality of obtained statistics. Typically, a mixed vertical and horizontal piggybacking should be employed
to provide good statistics in terms of both quantity and quality. Multi-query piggybacking, which makes
use of data retrieved by multiple (piggybacked) queries in piggyback analysis, can be used to provide higher
quality statistics with low overhead. The basic vertical and horizontal piggybacking operators are defined to
describe different types of piggybacked queries.

Piggyback analysis can be performed at different levels in a system. The higher the piggybacking level is,
the more the piggyback overhead although more statistics could be obtained. A proper piggybacking level
can be chosen according to the system load and the user-specified tolerance of piggyback overhead. A useful
lightweight piggyback analysis is to count the access frequencies of data objects and check the validity of their
statistics without actually updating the statistics during query processing. The statistics collection utility
is then automatically invoked for the identified data objects that are frequently accessed by user queries
and whose statistics are out-of-date. Such an integration of the piggyback method and the utility method
provides an effective solution to the problem of collecting statistics for query optimization in a DBMS. The
discussion in the paper also shows that statistics can be obtained with different degrees of accuracy (i.e.,
accurately calculated, approximately estimated, or effectively validated) via piggyback analysis from different
access methods.

The main advantages of the piggyback method are:

o The user’s burden for manually invoking a utility to update statistics is relieved, since statistics are up-
dated during query processing or automatic execution of the statistics collection utility. This advantage

offers a great convenience to users.

e The cost of maintaining statistics about rarely-used data is reduced, since the piggyback method updates
statistics only for the data accessed by or related to a user query. This advantage saves the time wasted

by the utility method for maintaining useless statistics.

e More useful statistical information is collected, since extra unrequested data, which was not considered
in the dynamic method, is considered and the user-defined functions, which were not handled in the

utility method, are handled.

e The changing of statistics is more smooth, since statistics are updated more promptly. This advantage

reduces the chance for the system to be jammed with the tasks of re-optimizing queries.

15

It is expected that a DBMS incorporating the piggyback method can better meet users’ satisfaction in

term of performance and convenience.

Acknowledgements

The authors would like to thank Peter Haas, John McPherson, David Ready, Enzo Cialini, Gabby Silberman,
Weidong Kou, Per-Ake Larson, Alberto Mendelzon, Patrick Martin, Qi Cheng, and Roger Zheng for their

valuable suggestions and comments for the work reported in this paper.

References

[1] G. Antoshenkov. Dynamic query optimization in Rdb/VMS. In Proceedings of the 9th International
Conference on Data Engineering, pages 538 47, Vienna, Austria, 1993.

[2] D. Chamberlin. Using the New DB2: IBM’s Object-Relational Database System. Morgan Kaufmann
Publishers, Inc., 1996.

[3] S. Christodoulakis. Estimating record selectivities. Information System, 8(2):105-115, 1983.

[4] G. Copeland et al. Buffering schemes for permanent data. In Proceedings of the Int’l Conf. on Data
Engineering, pages 214-21, Los Angeles, Calif., 1986.

[5] D. Gardy and G. Louchard. Dynamic analysis of some relational database parameters. Theoretical
Computer Science, 144(1-2):125 59, 1995.

[6] P. J. Haas, J. F. Naughton, et al. Sampling-based estimation of the number of distinct values of an
attribute. In Proceedings of the 21st VLDB Conference, pages 311 22, Zurich, Swizerland, 1995.

[7] IBM. DB2 Universal Server Administration Guide Version 5. International Business Machines Corpo-
ration, 1997.

[8] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing Surveys, 16(2):111-
152, June 1984.

[9] J. Kirkwood. Sybase Architecture and Administration. Ellis Horwood, 1993.

[10] R. J. Lipton and J. F. Naughton. Practical selectivity estimation through adaptive sampling. In
Proceedings of SIGMOD, pages 1 11, 1990.

[11] L. Mackert and G. Lohman. Index scans using a finite LUR buffer: A validated i/o model. Technical
Report RJ4836, IBM Almaden Research Center, 1985.

[12] C. Malamud. INGRES Tools for Building an Information Architecture. Van Nostrand Reinhold, 1989.

[13] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database systems. ACM Com-
puting Surveys, 20(3), September 1988.

[14] J. McNally et al. Informiz Unleashed. SAMS Publishing, 1997.

[15] C. S. Mullins. DB2 Developer’s Guide. SAMS Publishing, 1994.

16

[16]

[17]

[18]

[19]

[20]

P. G. Selinger and M. Adiba. Access path selection in distributed data base management systems. In

Proceedings of the International Conference on Data Bases, pages 204-15, Aberdeen, Scotland, 1980.

G. P. Shapiro and C. Connel. Accurate estimation of the number of tuples satisfying a condition. In
Proceedings of SIGMOD, pages 256 76, 1984.

W. Sun, W. Meng, and C. Yu. Query optimization in distributed object-oriented database systems.
Comput. J. (UK), 35(2):98 107, April 1992.

E. Whalen. Oracle Performance Tuning and Optimization. SAMS Publishing, 1996.

C. T. Yu and C. C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399 433,
Dec. 1984.

C.T. Yu, L. Lilien, K. C. Guh, M. Templeton, D. Brill, and A. Chen. Adaptive techniques for distributed
query optimization. In IEEFE 1986 International Conference on Data Engineering, pages 86-93, Los
Angeles, USA, 1986.

M. J. Yu and P. C.-Y. Sheu. Adptive query optimization in dynamic databases. International Journal
on Artificial Intelligence Tools, 7(1):1 30, 1998.

V. Zander, B. Taylor, et al. Estimating block accesses when attributes are correlated. In Proceedings
of the 12th Int’l Conf. on Very Large Databases, pages 119-27, Kyoto, Japan, 1986.

Qiang Zhu. Query optimization in multidatabase systems. In Proceedings of the 1992 IBM CAS
Conference, vol.II, pages 111-27, Toronto, Canada, Nov. 1992.

Qiang Zhu. An integrated method of estimating selectivities in a multidatabase system. In Proceedings
of the 1993 IBM CAS Conference, pages 832 47, Toronto, Canada, Oct. 1993.

Qiang Zhu and P.-A. Larson. Global query processing and optimization in the CORDS multidatabase
system. In Proceedings of the 9th ISCA International Conference on Parallel and Distributed Computing
Systems, pages 640-6, Dijon, France, Sept. 1996.

17

