COVER PAGE

CONFERENCE SUBMISSION

The 1999 International Conference on
Functional Programming (ICFP)

Authors: Dr. Claudio V. Russo
Corresponding Author: Dr. Claudio V. Russo
Postal Address:

3F1 12 Dryden St.

Edinburgh, EH7 4PN
Scotland, UK
Email: cvr@dcs.ed.ac.uk
Phone:
— 444 (131) 554 4848 (home)
— +44 (131) 650 5163 (work)
Fax: +44 (131) 667 7209

Institute:
LFCS, Division of Informatics, University of Edinburgh,

JCMB, King'’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, UK

Title: First-Class Structures for Standard ML

Abstract: Standard ML is a statically typed programming language that is
suited for the construction of both small and large programs. “Programming
in the small” is captured by Standard ML’s Core language. “Programming
in the large” is captured by Standard ML’s Modules language that provides
constructs for organising related Core language definitions into self-contained
modules with descriptive interfaces. While the Core is used to express de-
tails of algorithms and data structures, Modules is used to express the overall
architecture of a software system. The Modules and Core languages are strat-
ified in the sense that modules may not be manipulated as ordinary values
of the Core. This is a limitation, since it means that the architecture of a
program cannot be reconfigured according to run-time demands. We propose
a novel extension of the language that allows modules to be manipulated as
first-class values of the Core language. The extension greatly extends the ex-
pressive power of the language, and has been shown to be compatible with
both Core type inference and a separate extension to higher-order modules.

Keywords: language design, modules, Standard ML, type theory, existential
types

Pages: This page + 1 blank page + 21 pages (appendix included).
COVER PAGE

THIS PAGE INTENTIONALLY LEFT BLANK

First-Class Structures for Standard ML
(Extended Summary)

Claudio V. Russo

LFCS, Division of Informatics, University of Edinburgh,
JCMB, KB, Mayfield Road, Edinburgh EH9 3JZ
www: http://wuw.dcs.ed.ac.uk/ cvr, email: cvr@dcs.ed.ac.uk
(This research has been partially supported by EPSRC grant GR/K63795)

Abstract. Standard ML is a statically typed programming language
that is suited for the construction of both small and large programs.
“Programming in the small” is captured by Standard ML’s Core lan-
guage. “Programming in the large” is captured by Standard ML’s Mod-
ules language that provides constructs for organising related Core lan-
guage definitions into self-contained modules with descriptive interfaces.
While the Core is used to express details of algorithms and data struc-
tures, Modules is used to express the overall architecture of a software
system. The Modules and Core languages are stratified in the sense that
modules may not be manipulated as ordinary values of the Core. This is
a limitation, since it means that the architecture of a program cannot be
reconfigured according to run-time demands. We propose a novel exten-
sion of the language that allows modules to be manipulated as first-class
values of the Core language. The extension greatly extends the expressive
power of the language, and has been shown to be compatible with both
Core type inference and a separate extension to higher-order modules.

1 Introduction

Standard ML [5] is a high-level programming language that is suited for the
construction of both small and large programs. Standard ML’s general-purpose
Core language supports “programming in the small”. Standard ML’s special-
purpose Modules language supports “programming in the large”.

To support algorithmic programming, the Core provides a rich range of types
and computational contructs that includes recursive types and functions, control
constructs, exceptions and references.

Constructed on top of the Core, the Modules language allows definitions of
identifiers denoting Core language types and terms to be packaged together into
possibly nested structures, whose components are accessed by the dot notation.
Structures are transparent: by default, the realisation of a type component within
a structure is evident outside the structure. Signatures are used to specify the
types of structures, by specifying their individual components. A type component
may be specified opaquely, permitting a variety of realisations, or transparently,
by equating it with a particular Core type. A structure matches a signature if

it provides an implementation for all of the specified components, and, thanks
to subtyping, possibly more. A signature may be used to opagquely constrain
a matching structure. This existentially quantifies over the actual realisation
of type components that have opaque specifications in the signature, effectively
hiding their implementation. A functor definition defines a polymorphic function
mapping structures to structures. A functor may be applied to any structure
that realises a subtype of the formal argument’s type, resulting in a concrete
implementation of the functor body.

Despite the flexibility of the Modules type system, the notion of computa-
tion at the level of Modules is actually very weak, consisting solely of functor
application, to model the linking of structures, and projection, to provide access
to the components of structures. Moreover, the stratification between Core and
Modules means that the stronger computational mechanisms of the Core cannot
be exploited in the construction of structures. This is a severe limitation, since
it means that the architecture of a program cannot be reconfigured according to
run-time demands.

In this paper, we relax the stratification, allowing structures to be manipu-
lated as first-class citizens of the Core language. Our extension allows structures
to be passed as arguments to Core functions, returned as results of Core com-
putations, stored in Core data structures and so on.

For presentation purposes, we formulate our extension, not for Standard ML,
but for a representative toy language called Mini-SML. The static semantics of
Mini-SML is based directly on that of Standard ML.

Section 2 introduces the syntax of Mini-SML. Section 3 gives a motivating
example to illustrate the limitations of the Core/Modules stratification. Section
4 reviews the static semantics of Mini-SML. Section 5 defines our extension
to first-class structures. Section 6 revisits the motivating example to show the
utility of our extension. Section 7 presents a different example to demonstrate
that Mini-SML becomes more expressive with our extension. Section 8 discusses
our contribution. The Appendix contains a sketched dynamic semantics and
proof that our extension is sound.

2 The Syntax of Mini-SML

Mini-SML includes the essential features of Standard ML Modules but, for pre-
sentation reasons, is constructed on top of a simple Core language of explicitly
typed, monomorphic functions. The author’s thesis [7], on which this paper is
based, presents similar results for a generic Core language that encompasses
ones like Standard ML’s (which supports the definition of parameterised types,
is implicitly typed, and polymorphic). The type and term syntax of Mini-SML
is defined by the grammar in Figures 1 and 2, where t € Typld, x € Valld,
X € Strld, F € Funld and T € Sigld range over disjoint sets of type, value,
structure, functor and signature identifiers.

A core type u may be used to define a type identifier or to specify the type of
a Core value. These are just the types of a simple functional language, extended

Core Types un=t type identifier

| u— function type
| int integers
| sp.t type projection
Signature Bodies B:=typet=u;B transparent type specification
| typet;B opaque type specification
| valx:u;B value specification
| structure X: S;B structure specification
| eB empty body
Signature Expressions S ::= sig B end encapsulated body
| T signature identifier

Fig. 1. Type Syntax of Mini-SML

with the projection sp.t of a type component from a structure path. A signature
body B is a sequential specification of a structure’s components. A type com-
ponent may be specified transparently, by equating it with a type, or opaquely,
permitting a variety of realisations. Value and structure components are speci-
fied by their type and signature. The specifications in a body are dependent in
that subsequent specifications may refer to previous ones. A signature expres-
sion S encapsulates a body, or is a reference to a bound signature identifier. A
structure matches a signature expression if it provides an implementation for all
of the specified components, and possibly more.

Core expressions e describe a simple functional language extended with the
projection of a value identifier from a structure path. A structure path sp is a
reference to a bound structure identifier, or the projection of one of its substruc-
tures. A structure body b is a dependent sequence of definitions: subsequent def-
initions may refer to previous ones. A type definition abbreviates a type. Value
and structure definitions bind term identifiers to the values of expressions. A
functor definition introduces a named function on structures: X is the functor’s
formal argument, S specifies the argument’s type, and s is the functor’s body
that may refer to X. The functor may be applied to any argument that matches
S. A signature definition abbreviates a signature. A structure expression s eval-
uates to a structure. It may be a path or an encapsulated structure body, whose
type, value and structure definitions become the components of the structure.
The application of a functor evaluates its body with respect to the value of the
actual argument. An opaque constraint restricts the visibility of the structure’s
components to those specified in the signature, which the structure must match,
and hides the realisations of type components with opaque specifications.

Standard ML only permits functor and signature definitions in the top-level
syntax. Mini-SML allows local functor and signature definitions in structure
bodies, which can now serve as the top-level: this generalisation avoids the need
for a separate top-level syntax.

Core Expressions en=x value identifier
Ax :u.e function
|
| ee application
i integer constant
g

| ifzero e then €’else " 7ero test

| fixe fixpoint of e (recursion)
| sp.x value projection
Structure Paths sp =X structure identifier
| sp.X structure projection
Structure Bodies b ::= typet =u;b type definition
valx =e;b value definition

b)

| structure X = s;b structure definition
| functor F (X:S) = s;b functor definition
| signature T = S; b signature definition
| eb empty body
Structure Expressions s ::= sp structure path

struct b end structure bod
Yy
| F(s) functor application
| s:>8S opaque constraint

Fig. 2. Term Syntax of Mini-SML

3 Motivating Example: the Sieve of Eratosthenes

We can illustrate the limitations of Mini-SML, and thus Standard ML, by at-
tempting to implement the Sieve of Eratosthenes. The example is adapted from
Mitchell and Plotkin [6].

The Sieve is a well-known algorithm for enumerating prime numbers. Let
Primes denote the enumeration 2,3,5,7,11... of all primes.

We can think of an enumeration of integers as a stream, or infinite list, of
integers. In turn, we can represent such a stream as a “process”, defined by an
unspecified set of internal states, a designated initial or start state, a transition
function taking us from one state to the next state, and a specific integer value
associated with each state. Reading the values off the process’s sequence of states
yields the stream.

Given a stream s, let sift(s) be the substream of s consisting of those values
not divisible by the initial value of s. Viewed as a process, the states of sift(s)
are just the states of s, filtered by the removal of any states whose values are
divisible by the value of s’s start state.

If twoonwards is the stream 2,3,4,5,6,7,8, ..., then the stream obtained by
taking the initial value of each stream in the sequence of streams:

twoonwards =2,3,4,56,7,8,9,10, 11, 12
sift(twoonwards) = 3, 5 7, 9 11,
sift(sift (twoonwards)) = 5 T, 11,

7, 11,

sift(sift(sift (twoonwards))) =

signature Stream = sig type state;
val start: state;
val next: state — state;
val value: state — int

end;
structure TwoOnwards = struct type state = int;
val start = 2;
val next = Ai:int.succ i;
val value = Ai:int.i
end;

Fig. 3. Using structures to implement streams.

yields the stream of primes Primes.

This is the intuition for constructing the Sieve of Eratosthenes. The Sieve is
the following process that generates the enumeration Primes. The states of the
Sieve are streams. The start state of the Sieve is the stream twoonwards. The
next state of the Sieve is obtained by sifting the current state. The value of each
state of the Sieve is the first value of that state viewed as a stream. Observe that
our description of the Sieve also describes a stream.

Consider the code in Figure 3. Given our description of stream as processes,
it seems natural to use structures matching the signature Stream to imple-
ment, streams. For instance, the structure TwoOnwards implements the stream
twoonwards.

The code in Figure 3 builds on these definitions to construct an implementa-
tion of the Sieve. The states of the Sieve are structures matching the signature
State (i.e. Stream). The Start state of the Sieve is the structure TwoOnwards.
The functor Next takes a structure S matching State and returns a sifted struc-
ture that also matches State. The functor Value returns the integer value of a
state of the Sieve, by returning the initial value of the state viewed as a stream.
(We assume that the function mod i j returns the integral remainder of dividing
i by j).

Using these definitions, we can indeed calculate the value of the nt" prime
(counting from 0):

structure NthState
structure NthValue

Next (- - -Next (Start)---);
Value(NthState) ;
val nthprime = NthValue.value

by chaining n applications of the functor Next to Start and then extracting the
resulting value. The problem is that we can only do this for a fized n: because
of the stratification of Core and Modules, it is impossible to implement the
mathematical function that returns the nth state of the Sieve for an arbitrary
n. It cannot be implemented as a Core function, even though the Core supports
iteration, because the states of the Sieve are structures that do not belong to

signature State = Stream;
structure Start = TwoOnwards:>State;

functor Next (S:State) =
struct
type state = S.state;
val filter = fix Afilter:state—state.
As:state. ifzero mod (S.value s) (S.value S.start)
then filter (S.next s)
else s;
val start = filter S.start;
val next = As:state.filter (S.next s);
val value = S.value
end;

functor Value (S:State) =
struct val value = S.value (S.start) end

Fig. 4. A stratified, but useless implementation of the Sieve.

the Core language. It cannot be implemented as Modules functor, because the
computation on structures is limited to functor application and projection, which
is to weak to express iteration. This means that our implementation of the Sieve
is effectively useless.

Notice also the discrepancy between our mathematical description of the
Sieve and this implementation. In the mathematical description, the Sieve is
itself a stream, just like the streams from which it is constructed. In our imple-
mentation, the components of the Sieve do not describe a stream in the sense
of the signature Stream: the states of the Sieve are structures, not values of the
Core and the state transition function is a functor, not a Core function. Be-
cause of the stratification between Core and Modules, our implementation fails
to capture the impredicative description of the Sieve as a stream constructed
from streams.

Of course, the Sieve of Eratosthenes can be implemented directly in the Core
using other means. The point is that we cannot productively use structures
to represent, the states of the Sieve: for this, we need to be able to perform
non-trivial computations that return structures. Once we allow structures as
first-class citizens of the Core language, that already supports general-purpose
computation, the problem disappears.

4 Review: the Static Semantics of Mini-SML

Before we can propose our extension of Mini-SML with first-class modules, we
need to briefly present the static semantics, or typing judgements, of Mini-SML.

a€ Var & {a,8,0,7,...} type variables

M ,N,P,Q € VarSet ef Fin(Var) sets of type variables

u € Type 1= « type variable

| u— o function space

| int integers

¢ € Real ' Yar B Type realisations
S;U | St € Typld By Type,

Se str ™ SxU | S, € Valld fin Type, semantic structures

Sx Sx € Strld 33 Str

L € Sig = AP.S semantic signatures

X € EzStr :=3P.S existential structures

F € Fun :=VYP.S§ - X semantic functors

C:. € Typld fiy Type,
Ct U fin
Cr U | Ct € Sigld = Sig,
C € Context def CxU |(C, € Valld fig Type, semantic contexts

SX U Cx € Strld fiy Str,
" Cr € Funld ﬁ—“) Fun

Notation. For sets A and B, Fin(A) denotes the set of finite subsets of A, and

A ™ B denotes the set of finite maps from A to B. Let f and g be finite maps.

D(f) denotes the domain of definition of f. The finite map f + g has domain

D(f) UD(g) and values (f + g)(a) “ifge D(g) then g(a) else f(a).

Fig. 5. Semantic Objects of Mini-SML

Readers familiar with the Definition of Standard ML [5] may prefer to skim this
section to assimilate the notation, and then skip ahead to Section 5.

Following Standard ML [5], the static semantics of Mini-SML distinguishes
between the syntactic types of the language and their semantic counterparts
called semantic objects. Semantic objects play the role of types in the static
semantics. Figure 5 defines the semantic objects of Mini-SML. We let, O range
over all semantic objects.

Type variables o € Var are just variables ranging over semantic types u €
Type. The latter are the semantic counterparts of syntactic core types, and
are used to record the denotations of type identifiers and the types of value
identifiers.

A realisation ¢ € Real maps type variables to semantic types and defines
a substitution on type variables in the usual way. The operation of applying a
realisation ¢ to an object O is written ¢ (O).

Semantic structures S € Str are used as the types of structure identifiers and
paths. A semantic structure maps type components to the types they denote,
and value and structure components to the types they inhabit. For clarity, we

define the extension functions t > u,S {t—u}+S,x:u,S def {x—u}+S,

and X : S, S’ def {X+— 8} + &', and let €5 denote the empty structure §.

Note that A, 3 and V bind finite sets of type variables.

A semantic signature AP.S is a parameterised type: it describes the family
of structures ¢ (S), for ¢ a realisation of the parameters in P.

The existential structure IP.S, on the other hand, is a quantified type: vari-
ables in P are existentially quantified in S and thus abstract. Existential struc-
tures describe the types of structure bodies and expression. Existentially quan-
tified type variables are explicitly introduced by opaque constraints s :> S, and
implicitly eliminated at various points in the static semantics.

A semantic functor VP.S — X describes the type of a functor identifier: the
universally quantified variables in P are bound simultaneously in the functor’s
domain, §, and its range, X'. These variables capture the type components of the
domain on which the functor behaves polymorphically; their possible occurrence
in the range caters for the propagation of type identities from the functor’s actual
argument: functors are polymorphic functions on structures. The range X is the
type of the functor body.

A context C maps type and signature identifiers to the types and signatures
they denote, and maps value, structure and functor identifiers to the types they

. f
inhabit. For clarity, we define the extension functions C,t > u et {t = u},

C,TDEdgC+{T|—>£},C,X:udgC-{—{Xb—)11,}, C,X:SdéfC-{—{xr—)S}, and

CF:FYC+{Fm 7).

We let V(O) denote the set of variables occurring free in O, where the notions
of free and bound variable are defined as usual. Furthermore, we identify seman-
tic objects that differ only in a renaming of bound type variables (a-conversion).

The operation of applying a realisation to a type (substitution) is extended
to all semantic objects in the usual way, taking care to avoid the capture of free
variables by bound variables.

Definition 1 (Enrichment Relation) Given two structures S and S', S en-
riches &', written S = S', if and only if

- D(S) 2 D(S"),

— for allt € D(S"), S(t) = S'(t),

— for all x € D(S'), S(x) = S'(x), and
— for all X € D(S"), S(X) = §'(X).

Enrichment is a pre-order that defines a subtyping relation on semantic struc-
tures (i.e. S is a subtype of S’ if and only if S = §').

Definition 2 (Functor Instantiation) A semantic functor VP.S — X in-
stantiates to a functor instance 8" — X', written VP.S - X > 8 — X', if and
only if p(S) =S8" and ¢ (X) = X', for some realisation ¢ with D(p) = P.

Definition 3 (Signature Matching) A semantic structure S matches a sig-
nature AP.S" if and only if there exists a realisation ¢ with D(¢) = P such that
S=p(S).

t € D(C) Cruvu CrFu' b
Curu n n " -
CHt>C(t) Cru—upru—u CFintdint
Cksp:S§S teD(S)
CtsptpS(t)
Ctuvpu CitpubBrAPS t¢€D(S) PNV(u)=10
Cktypet=u;B>rAP.t>u,S
agV(C) CitrakFBrAPS t¢D(S) a¢gP
Cktypet;Bp A{a}UPt>a, S
Ctuvu C,x:ubBpAP.S x¢D(S) PNV(u)=10
Ckvalx:uy;B>rAP.x:u,S
CFSpAPS PNVEC)=0 C,X:SFBprAQ.S X¢gDS') Qn(PUVS)) =10
C + structure X : S;B>APU Q.X: 8,8’

CHk €B D> A@.Es
T € D(C)

CFBpr L
'_ e
CtsigBend> L CHTv>C(T)

Fig. 6. Denotation Judgements

The static semantics of Mini-SML is defined by the denotation judgements
in Figure 6 that relate type phrases to their denotations, and the classification
judgements in Figure 7 that relate term phrases to their semantic types. A de-
tailed explanation of these rules may be found in [7,8]. We deviate from the
presentation in the Definition [5] by classifying structure expressions using ex-
istentially quantified structures. The Definition classifies structure expressions
using bare semantic structures, but employs procedural classification rules that
maintain a state of generated type variables, updating this state each time a
structure expression is constrained by an opaque signature, or a functor applied
to an argument. These approaches are equivalent, but ours is stateless and more
declarative [7, 8].

We can illustrate the semantics by considering the semantic objects assigned
to some of the phrases in Figures 3 and 4.

The denotation of Stream is the semantic signature:

A{a}.(stated> a, start : a,next : @ = @, value : @ — int)

3

where the parameter a arises from the opaque specification of the type state.
The type of the structure expression in the definition of TwoOnwards is:

30.(state > int, start : int, next : int — int, value : int — int)

for an empty existential quantifier.

x€DIC) Crubu Cx:ute:vw Cre:u su CrHe :u
CFx:C(x) CHXx:ue:u—u Chee :u CFi:int

Ckhe:u

Che:int Che:u Cre':u Che:(uou)ou—ou Chsp:S xeD(S)
C F ifzero e then e'else e’ : u Ckfixe:u—u CFspx:S(x)
XeDlC) Crsp:S XeD(S)
CFX . C(X) CFspX:8(X)
Ctuvu Citpubb:3P.S PNV(u)=10
Cktypet=u;b:3Pt>u,S
Cre:u C,x:ukb:3P.S PNV(u)=0
Ckvalx=e;b:3Px:u,S
Cks:3P.S PNVEC)=0 C,X:SFb:3Q.8" QnN(PUV(S) =10
CF structure X = s;b: IPUQR.X:S,S

CHSp>AP.S PNY(C)=0 C,X:Sks: X
C,F:YP.S 5 X+b:X

CF functor F (X:S) = s;b: &’
C-SpL C,ToLEb:X
C F signature T = S; b: X

CFep:Ies
Chsp:§ Ckb:X
Chs: X Crsp:30.8 CFstruct bend : X

CFs:3P.S PNVECF)=0 CF)>S8 —=3Q8" §=8 QnP=90
CFF(s):3PUQ.S"

Chs:3P.S CHS»AQS PAV(AQS) =0 S»¢(S) Dlg) =Q
Cks:>S:3Q.8

Fig. 7. Classification Judgements

The body of this type matches the signature Stream by choosing the reali-
sation {a + int}, since:

(state > int,start : int,next : int — int, value : int — int) >
{a — int} (state > a,start : @,next : @ — a,value : @ — int).

The signature State abbreviates the denotation of Stream so that the opaque
constraint TwoOnwards:>State introduces the existential type:

3{p}.(state> [, start : §,next : § — (,value: § — int).

Binding this structure expression to the structure identifier Start eliminates
the existential quantifier so that the type of Start, as recorded in the context,
is:

(state> 3, start : B,next : 8 — (3, value: § — int)

3

for some hypothetical, and thus abstract, type .
The type (i.e. semantic functor) of the sifting functor Next is the universally
quantified type:

V{~}.(state> v, start : y,next : v = y,value : v — int) —
Jp.(state>y,filter : 7y — 7, start : 7,next : v — 7,value : v — int)

Because Next is polymorphic, it can be applied to Start by choosing the
functor instance:

(state> 3, start : B,next : — [3,value: § — int) —
30.(state> 8, filter: B — (3, start: B,next : § — (3,value: § — int)

corresponding to the realisation {y — (}.
The range of this functor instance determines the type of the application
Next (Start):

30.(state> (8, filter : 3 — (3,start: B,next : § — (,value: § — int).

By subtyping, this type, which is richer because it contains the additional com-
ponent filter, also matches the signature State, since:

(state> 3, filter: 8 — (,start: B,next : 8 — [(,value: § — int) =
{a — B} (state>a,start : @,next : @« = a,value: o — int).

5 Package Types

The motivation for introducing first-class structures is to extend the range of
computations on structures. One way to do this is to extend structure expres-
sions, and thus computation at the Modules level, with the general-purpose
computational constructs usually associated with the Core.

Instead of complicating the Modules language in this way, we propose to
maintain the distinction between Core and Modules, but relax the stratification.
Our proposal is to extend the Core language with a family of Core types, called
package types, corresponding to first-class structures. A package type is intro-
duced by encapsulating, or packing, a structure as a Core value. A package type
is eliminated by breaking an encapsulation, opening a Core value as a structure
in the scope of another Core expression. Because package types are ordinary
Core types, packages are first-class citizens of the Core. The introduction and
elimination phrases allow computation to alternate between computation at the
level of Modules and computation at the level of the Core, without having to
identify the notions of computation.

Our extension requires just three new syntactic constructs, all of which are
additions to the Core language:

Core Types un=... as before
| <S> package type

Core Expressions e ::= ... as before
| packsasS package introduction
|

openeas X :Sine package elimination

The syntactic Core type <S>, which we call a package type, denotes the
type of a Core expression that evaluates to an encapsulated structure value. The
actual type of this structure value must match the signature S: i.e. if S denotes
AP.S, then the type of the encapsulated structure must be a subtype of ¢ (S),
for ¢ a realisation with D(p) = P.

The Core expression pack s as S introduces a value of package type <S>.
Assuming a call-by-value dynamic semantics, the phrase is evaluated by evaluat-
ing the structure expression s and encapsulating the resulting structure value as
a Core value. The static semantics needs to ensure that the type of the structure
expression matches the signature S. Note that the two expressions pack s as S
and pack s’ as S can have the same package type <S> even though the actual
types of s and s’ may differ (in particular, these types may differ in the way they
match the signature).

The Core expression open e as X : S in €' eliminates a value of package
type <S>. Assuming a call-by-value dynamic semantics, the expression e is
evaluated to an encapsulated structure value, this value is bound to the structure
identifier X, and the value of the entire phrase is obtained by evaluating the client
expression €’ in the extended environment. The static semantics needs to ensure
that e has the package type <S> and that the type of ¢ does not vary with
the actual type of the encapsulated structure X. Note that the explicit signature
determines the package type of e.

The semantic Core types of Mini-SML must be extended with the semantic
counterpart of syntactic package types. In the semantics of Mini-SML, the type of
a structure expression is an existential structure X determined by the judgement
form C F s : X. Similarly, the denotation of a package type, which describes
the type of an encapsulated structure value, is just an encapsulated existential
structure:

u € Type ::= ... as before
| <X> semantic package type

We identify package types that are equivalent up to a renaming of bound
variables.

Finally, we extend the Core judgements CFup>w and C + e : u with the
following rules:

CFES>AP.S
Ck<S>p<3P.S> (1)

Rule 1 relates a syntactic package type to its denotation as a semantic package
type. The parameters of the semantic signature AP.S, which arise from opaque
type specifications in S, simply determine the existentially quantified variables
of the package type <3P.S>.

Cks:3P.S

CHSpAQ.S
PNV(AQ.S)=10
S=p(S)
D(y) = @
CFpacksasS:<3Q.8> (2)

Rule 2 is the introduction rule for package types. Provided s has existential
type 3P.S and S denotes the semantic signature AQ.S’, the existential quan-
tification over P is eliminated in order to verify that S matches the signature.
The side condition PN V(AQ.S") = () prevents the capture of free variables in
the signature by the bound variables in P and ensures that these variables are
treated as hypothetical types. The semantic signature AQ.S" describes a family
of semantic structures and the requirement is that the type S of the structure
expression enriches, i.e. is a subtype of, some member ¢ (S') of this family. In
the resulting package type <3Q.S'>, the existential quantification over @ hides
the actual realisation, rendering type components specified opaquely in S ab-
stract. Because the rule merely requires that S is a subtype of S, the package
pack s as S may have fewer components than the actual structure s.

Cke:<3P.5>
CHSp> AP.S
PnvE) =10
C,X:SFke:u
PnV(u)=90

CHopeneasX:Sine' :u (3)

Rule 3 is the elimination rule for package types. Provided e has package
type <3P.S>, where this type is determined by the denotation of the explicit
syntactic signature S, the client €' of the package is classified in the extended
context C,X : 8. The side-condition P N V(C) = () prevents the capture of free
variables in C by the bound variables in P and ensures that these variables are
treated as hypothetical types for the classification of €¢'. By requiring that e’ is
polymorphic in P, the actual realisation of these hypothetical types is allowed to
vary with the value of e. Moreover, because S is a generic subtype of S, the rule
ensures that e does not access any components of X that are not specified in
S: thus the existence of any unspecified components is allowed to vary with the
actual value of e. Finally, the side condition P N V(u) = () prevents any variation
in the actual realisation of P from affecting the type of the phrase.

Observe that the explicit signature S in the term open e as X : S in €’
uniquely determines the Core type of the expression e. This becomes significant
in the presence of an implicitly typed language like Standard ML’s Core: the
explicit signature ensures that the type inference problem for Standard ML’s
Core remains tractable and has principal solutions. Intuitively, the type inference
algorithm never has to guess the type of an expression that is used as a package.

structure Sieve =
struct
type state = <Stream>;
val start = pack TwoOnwards as Stream;
val next = As:state.open s as S:Stream in pack Next(S) as Stream;
val value = As:state.open s as S:Stream in S.value S.start
end;

val nthstate = fix Anthstate:int->Sieve.state.
An:int.ifzero n
then Sieve.start
else Sieve.next (nthstate (pred n));

val nthprime = An:int.Sieve.value (nthstate n);

Fig. 8. The Sieve implemented using package types.

Rules 2 and 3 are inspired by, and closely related to, the standard intro-
duction and elimination rules for second-order existential types in Type Theory
[6]. The main difference, aside from introducing and eliminating n-ary, not just
unary, quantifiers is that these rules also mediate between the universe of Module
types and the universe of Core types (see [7] for a detailed comparison).

Readers interested in the dynamic semantics of package types and a sketched
proof of type soundness are referred to the Appendix.

6 The Sieve Revisited

The addition of package types allows us to define an elegant and useful imple-
mentation of the Sieve of Eratosthenes.

Figure 8 shows our implementation of the Sieve as the structure Sieve. The
Core type Sieve.state is the type of packaged streams <Stream>. The Core
value Sieve.start is the packaged stream TwoOnwards of all integers greater
than 2. The Core function Sieve.next returns the next state of Sieve by
opening a supplied state, applying the sifting functor Next to the encapsulated
stream S, and packaging the resulting stream as a Core value. The Core func-
tion Sieve.value returns the value of a supplied state by opening the state and
returning the first value of its encapsulated stream.

It is easy to verify that Sieve has type:

3@.(state > u,start : u,next : u = u,value: u — int),
where u abbreviates the type of packed streams:
u = <3{a}.(state> a,start : a,next : @ = a,value : @ — int)>.

The reason Sieve is an elegant implementation is that it captures the im-
predicative, mathematical description of the Sieve as a stream constructed from

streams. This is because its type also matches the signature Stream, since:

(state > u,start : u,next : u — u,value: u — int) =
{a+— u} (state> ,start : a,next : @ = a,value : a — int)

using the realisation {a — u}.

The reason Sieve is a useful implementation is that it allows us define the
functions nthstate and nthprime of Figure 8. Because the states of Sieve are
just ordinary Core values, which happen to have package types, the function
nthstate n can use recursion on n to construct the n*" state of Sieve. In
turn this permits the function nthprime n to calculate the n** prime, for an
arbitrary n. Recall that, in the absence of package types, these functions could
not be defined using the implementation of the Sieve we gave in Section 3.

7 Another Example: Dynamically-Sized Arrays

With package types, it is possible to make the actual realisation of an abstract
type depend on the result of some Core computation. In this way, package types
strictly extend the class of abstract types that can be defined in Mini-SML alone.

A familiar example of a type whose representation depends on the result of
some computation is the type of dynamically allocated arrays of size n, where n
is a value that is computed at run-time. For simplicity, we implement functional
arrays of size 2", for arbitrary n > 0 (see Figure 9).

The signature Array specifies structures implementing integer arrays and
has the following interpretation. For a fixed n, the type array represents arrays
containing 2" entries of type int. The function init z creates an array that has
its entries initialised to the value of . The function sub a i returns the value of
the (i mod 2")-th entry of the array a. The function update a i z returns an
array that is equivalent to the array a, except for the (i mod 2")-th entry that
is updated with the value of z. Interpreting each index 7 modulo 2™ allows us to
omit, array bound checks.

The structure ArrayZero implements arrays of size 2° = 1. An array is
represented by its sole entry with trivial init, sub and update functions.

The functor ArraySucc maps a structure A, implementing arrays of size 2",
to a structure implementing arrays of size 2"+, We assume that div i j returns
the largest integral divisor of ¢ by j and that the Core has been extended with
the cross product type, written u * u’, supporting pairing (e,e’) and projec-
tions fst e and snd e whose static semantics are straightforward. The functor
represents an array of size 2°*! as a pair of arrays of size 2". Entries with even
(odd) indices are stored in the first (second) component of the pair. The function
init x returns a pair of initialised arrays of size 2”. The functions sub a 4 and
update a i x use the parity of the index ¢ to determine which component of
the array to subscript or update.

The Core function mkArray n, returns a package implementing arrays of
size 2" (provided n > 0). For n = 0, it simply returns the packaged structure
ArrayZero. For n # 0, it first creates a package of arrays of size 2" ! by recursion

signature Array =
sig type array;

val init: int — array;

val sub: array — int — int;

val update: array — int — int — array
end;

structure ArrayZero =
struct type array = int;
val init = Ax:int.x;
val sub = Aa:array.Ai:int.a;
val update = Aa:array.Ai:int.Ax:int.x
end;

functor ArraySucc (A:Array) =
struct type array = A.array * A.array;
val init = Ax:int. (A.init x, A.init x)
val sub = Aa:array.Ai:int.
ifzero mod i 2
then A.sub (fst a) (div i 2)
else A.sub (snd a) (div i 2);
val update = Aa:array.Ai:int.Ax:int.
ifzero mod i 2
then (A.update (fst a) (div i 2) x, snd a)
else (fst a, A.update (snd a) (div i 2) x)
end;

val mkArray = fix AmkArray:int—<Array>.
An:int. ifzero n
then pack ArrayZero as Array
else open mkArray (pred n) as A:Array in
pack ArraySucc(A) as Array;

Fig. 9. mkArray n returns an abstract implementation of arrays of size 2".

on n — 1, and then uses this package to implement a package of arrays of size 2"
by an application of the functor ArraySucc. Notice that the actual realisation
of the abstract type array returned by mkArray depends on the value of n.

8 Contribution

For presentation purposes, we have restricted our attention to an explicitly
typed, monomorphic Core language and a first-order Modules language. In [7],
we demonstrate that the extension with package types may also be applied to a
Standard ML-like Core language that supports the definition of parameterised
types and implicitly typed, polymorphic values. Moreover, this extension is for-
mulated with respect to a higher-order Modules calculus that allows functors,

not just structures, to be treated as first class citizens of the Modules language
and, via package types, the Core language too. This proposal is practical: we
present, a well-behaved type checking algorithm that combines type inference for
the extended Core with type checking for higher-order Modules.

Our approach to obtaining first-class structures is novel for two reasons. First,
it relies on a simple extension of the Core language only, leaving the Modules
language unchanged. Second, it contradicts Harper and Mitchell’s claim [2] that
the type structure of Standard ML cannot accommodate first-class structures
without sacrificing the compile-time/run-time phase distinction and decidable
type checking. While this property is true of their proposed model, which is
based on first-order dependent types, the property does not transfer to Standard
ML, because it has a purely second-order type theory [8].

Our motivation for introducing first-class structures was to extend the range
of computations on structures. One way to achieve this is to extend structure
expressions directly with computational constructs usually associated with the
Core. Taken to the extreme, this approach relaxes the stratification between
Modules and the Core by removing the distinction between them, amalgamating
both in a single language. This is the route taken by Harper and Lillibridge [1],
and explored further in the subsequent work by Lillibridge [4]. Unfortunately,
subtyping, and thus type checking, is undecidable in these calculi; they also lack
the principal typing property.

Our approach is different. We maintain the distinction between Core and
Modules, but relax the stratification by extending the Core language with pack-
age types. The introduction and elimination phrases for package types allow
computation to alternate between computation at the level of Modules and
computation at the level of the Core, without having to identify the notions
of computation.

Although not illustrated here, the advantage of distinguishing between the
two forms of computation is that they can be designed to satisfy different in-
variants. For instance, the invariant needed to support Leroy style applicative
functors [3, 7], namely that the abstract types returned by a functor depend
only on its type arguments and not the value of its term argument, is violated
if we extend Modules computation directly with general-purpose computational
constructs. Applicative functors provide good support for programming with
higher-order Modules; general-purpose constructs are vital for a useful Core. In
[7], we show that by keeping Modules computation and Core computation sepa-
rate, we can accommodate both applicative functors and a general-purpose Core,
without violating type soundness. The type soundness property is preserved by
the addition of package types, because these merely extend the computational
power of the Core, not Modules. By contrast, although the amalgamated lan-
guages proposed in [1, 4] have higher-order functors, because there is only a single
notion of computation, there is a trade-off between supporting either applicative
functors or general-purpose computation. Since ruling out the latter is too severe
a restriction, the functors of these calculi are not applicative.

Acknowledgements: Many thanks to Don Sannella and Healfdene Goguen.

References

1. R. Harper, M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In 21st ACM Symp. Principles of Prog. Lang., 1994.

2. R. Harper, J. C. Mitchell. On the type structure of Standard ML. In ACM Trans.
Prog. Lang. Syst., volume 15(2), pages 211-252, 1993.

3. X. Leroy. Applicative functors and fully transparent higher-order modules. In Proc.
22nd Symp. Principles of Prog. Lang., pages 142 153. ACM Press, 1995.

4. M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997.

5. R. Milner, M. Tofte, R. Harper, D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

6. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470-502, July
1988.

7. C. V. Russo. Types For Modules. PhD Thesis, Laboratory for Foundations of
Computer Science, University of Edinburgh, 1998.

8. C. V. Russo. Non-Dependent Types For Standard ML Modules. Submitted to
1999 Int’l Conf. on Principles and Practice of Declarative Programming (PPDP’99),
(also available at http://www.dcs.ed.ac.uk/cvr), Laboratory for Foundations of
Computer Science, University of Edinburgh, 1999.

Appendix: Dynamic Semantics and Type Soundness

To demonstrate that the extension of Mini-SML with package types is sound,
we need to define a dynamic semantics for the language and then prove that
evaluating well-typed expressions does not lead to type violations. Although a
thorough treatment of the dynamic semantics takes us beyond the scope of this
paper, in this appendix, we give a brief sketch of how this might be done and
use this sketch to prove the soundness of package elimination (Rule 3).

Suppose we adopt a call-by-value semantics. One way to define such a se-
mantics, akin to the formulation of the dynamic semantics of Standard ML [5]
is to define:

3

— a set of core values v € CorVal that includes encapsulated structure val-
ues <V>, integer values and function closures (whose form we shall leave
unspecified);

— a set of structure values:

V € StrVal ' {£, UEx | & € Valld 3 CorVal, &x € Strld 23 StrVal};

— and a set of functor closures of the form <X, &,s>.

We let £ range over dynamic environments mapping value, structure and
functor identifiers to core values, structure values and functor closures.

We can now present the dynamic semantics by defining evaluation judge-
ments relating expressions to their values (Figure 10).

EFslV
£k packsasS | <V>
ErFel<V> EX=V]relv
EFopeneasX:Sine | v

EF)=<X,E',¢> EFslV EX=V]Fs |V
EFF(s) LV

Fig. 10. Evaluation Judgements

To prove that the static semantics is sound for the dynamic semantics, we
introduce additional classification judgements relating values to their (semantic)
types (Figure 11).

We say that an environment £ has type C, written - £ : C, if, and only if|
every value, structure and functor identifier declared with a type in the context
C is assigned a value in £ that inhabits this type.

The type soundness property can then be stated as:

Property 1 (Type Soundness)

—CFe:uD FE:CD EFelvD Fv:u.
—CFb: XD FE:CDEFDLLVD EV X,
—CFs: XD FE:CD EFSIVD FVIA.L

Proof 1 (Sketch) We need to prove the stronger properties:

—Cre:uDd V,Ev. FE:WY(C)D EFelvD Fv:y(u),
CCEbL:iXDVHENV. FE () D EFDLIVD FVig(X),
CCFs: XD VEV. FEPC) D EFsLVD FV:¢h(X)

which can be proved by simultaneous induction on the classification judgements.

Here, v is a realisation of type variables. Quantifying over all ¢ allows us to
prove that the rules introducing and eliminating type polymorphism are sound.
To give an indication of how the proof proceeds, we will give the proof of type
soundness for Rule (3). The proof remains a sketch because we do not verify the
other cases, nor have we formalised the machinery necessary to do so.

Rule 3 By induction we may assume:

Vi, EvEE Y (C) D EFelvD Fv:y(<IP.S>), (4)

T
<

-

-

T U :
FV: X
F<V>:<X>

\4

D(V) 2 D(S)

Vx € D(S). FE(x):S8(x)

VX e D(S). FEX):8(X)
FV:S

\Y%

Dp)=P FEV:p(S)
FV:3P.S

F<X,E,5>: F

Vo. D(p) =P DVYV. FV:p(S)DVV. EX=V]Fs] V' DF V' :p(X)
F<X,€,s>:VP.S > X

Fig. 11. Classification Judgements for Values

CHS> AP.S, (5)
PNY(C) =10, (6)
Vi, E,vEE Y (C,X:8)D EFe L vD Fv:iy(u), (7)
PnV(u) =0. (8)
We need to show:
Vip,E,vEE Y (C) D EFHopeneasX:Sine [vD Fv:y(u).
Consider arbitrary ¢, € and v such that:
& (C), (9)
EtopeneasX:Sine | v. (10)
It remains to show b v : ¢ (u).
W.l.0.9. we can assume:
PNV(y) = 0. (11)

Inverting 10 by the evaluation rule for open e as X : S in € we must have,
for some structure value V:

Erel <V>, (12)
EX=V]Felv. (13)

By induction hypothesis 4 applied to ¢, £, <V>, 9 and 12 we obtain:
F<V>:¢(<3aP.S>), (14)

which, by assumption 11, may be re-expressed as:
F<V>: <3Py (S)>. (15)

Inverting 15, by the rule relating structure values to existential structures,
we must have some realisation ¢ such that:

D(p) = P, (16)
Ve (S). (17)
Let ¢ = U. Then, by 16, 6 and 11, we have:
P(C) =9 (C). (18)
Moreover, by 16 and 11 we have:
PH(S) =@ (¥ (S)) (19)

Combining 9 and 17 we can show:
FEX = V] (6(C)), X (1 (S)),
which, by 18 and 19, may be expressed as:
FEX =V]:9'(C,X:S). (20)
By induction hypothesis 7 on @', E[X = V], v, 20 and 13 we obtain:
v (u) 21)

Now ' (u) = ¢ (¢ (u)) = ¢ (u), where the first equation follows by 16 and
11, and the second follows by 16 and 8.
Hence we can re-express 21 as

Fv:y(u),

which is the desired result.

