
COVER PAGECONFERENCE SUBMISSIONThe 1999 International Conference onFunctional Programming (ICFP)Authors: Dr. Claudio V. RussoCorresponding Author: Dr. Claudio V. RussoPostal Address:3F1 12 Dryden St.Edinburgh, EH7 4PNScotland, UKEmail: cvr@dcs.ed.ac.ukPhone:{ +44 (131) 554 4848 (home){ +44 (131) 650 5163 (work)Fax: +44 (131) 667 7209Institute:LFCS, Division of Informatics, University of Edinburgh,JCMB, King's Buildings, May�eld Road,Edinburgh EH9 3JZ, UKTitle: First-Class Structures for Standard MLAbstract: Standard ML is a statically typed programming language that issuited for the construction of both small and large programs. \Programmingin the small" is captured by Standard ML's Core language. \Programmingin the large" is captured by Standard ML's Modules language that providesconstructs for organising related Core language de�nitions into self-containedmodules with descriptive interfaces. While the Core is used to express de-tails of algorithms and data structures, Modules is used to express the overallarchitecture of a software system. The Modules and Core languages are strat-i�ed in the sense that modules may not be manipulated as ordinary valuesof the Core. This is a limitation, since it means that the architecture of aprogram cannot be recon�gured according to run-time demands. We proposea novel extension of the language that allows modules to be manipulated as�rst-class values of the Core language. The extension greatly extends the ex-pressive power of the language, and has been shown to be compatible withboth Core type inference and a separate extension to higher-order modules.Keywords: language design, modules, Standard ML, type theory, existentialtypesPages: This page + 1 blank page + 21 pages (appendix included).COVER PAGE

THIS PAGE INTENTIONALLY LEFT BLANK

First-Class Structures for Standard ML(Extended Summary)Claudio V. RussoLFCS, Division of Informatics, University of Edinburgh,JCMB, KB, May�eld Road, Edinburgh EH9 3JZwww: http://www.dcs.ed.ac.uk/~cvr, email: cvr@dcs.ed.ac.uk(This research has been partially supported by EPSRC grant GR/K63795)Abstract. Standard ML is a statically typed programming languagethat is suited for the construction of both small and large programs.\Programming in the small" is captured by Standard ML's Core lan-guage. \Programming in the large" is captured by Standard ML's Mod-ules language that provides constructs for organising related Core lan-guage de�nitions into self-contained modules with descriptive interfaces.While the Core is used to express details of algorithms and data struc-tures, Modules is used to express the overall architecture of a softwaresystem. The Modules and Core languages are strati�ed in the sense thatmodules may not be manipulated as ordinary values of the Core. This isa limitation, since it means that the architecture of a program cannot berecon�gured according to run-time demands. We propose a novel exten-sion of the language that allows modules to be manipulated as �rst-classvalues of the Core language. The extension greatly extends the expressivepower of the language, and has been shown to be compatible with bothCore type inference and a separate extension to higher-order modules.1 IntroductionStandard ML [5] is a high-level programming language that is suited for theconstruction of both small and large programs. Standard ML's general-purposeCore language supports \programming in the small". Standard ML's special-purpose Modules language supports \programming in the large".To support algorithmic programming, the Core provides a rich range of typesand computational contructs that includes recursive types and functions, controlconstructs, exceptions and references.Constructed on top of the Core, the Modules language allows de�nitions ofidenti�ers denoting Core language types and terms to be packaged together intopossibly nested structures, whose components are accessed by the dot notation.Structures are transparent : by default, the realisation of a type component withina structure is evident outside the structure. Signatures are used to specify thetypes of structures, by specifying their individual components. A type componentmay be speci�ed opaquely, permitting a variety of realisations, or transparently,by equating it with a particular Core type. A structure matches a signature if

it provides an implementation for all of the speci�ed components, and, thanksto subtyping, possibly more. A signature may be used to opaquely constraina matching structure. This existentially quanti�es over the actual realisationof type components that have opaque speci�cations in the signature, e�ectivelyhiding their implementation. A functor de�nition de�nes a polymorphic functionmapping structures to structures. A functor may be applied to any structurethat realises a subtype of the formal argument's type, resulting in a concreteimplementation of the functor body.Despite the
exibility of the Modules type system, the notion of computa-tion at the level of Modules is actually very weak, consisting solely of functorapplication, to model the linking of structures, and projection, to provide accessto the components of structures. Moreover, the strati�cation between Core andModules means that the stronger computational mechanisms of the Core cannotbe exploited in the construction of structures. This is a severe limitation, sinceit means that the architecture of a program cannot be recon�gured according torun-time demands.In this paper, we relax the strati�cation, allowing structures to be manipu-lated as �rst-class citizens of the Core language. Our extension allows structuresto be passed as arguments to Core functions, returned as results of Core com-putations, stored in Core data structures and so on.For presentation purposes, we formulate our extension, not for Standard ML,but for a representative toy language called Mini-SML. The static semantics ofMini-SML is based directly on that of Standard ML.Section 2 introduces the syntax of Mini-SML. Section 3 gives a motivatingexample to illustrate the limitations of the Core/Modules strati�cation. Section4 reviews the static semantics of Mini-SML. Section 5 de�nes our extensionto �rst-class structures. Section 6 revisits the motivating example to show theutility of our extension. Section 7 presents a di�erent example to demonstratethat Mini-SML becomes more expressive with our extension. Section 8 discussesour contribution. The Appendix contains a sketched dynamic semantics andproof that our extension is sound.2 The Syntax of Mini-SMLMini-SML includes the essential features of Standard ML Modules but, for pre-sentation reasons, is constructed on top of a simple Core language of explicitlytyped, monomorphic functions. The author's thesis [7], on which this paper isbased, presents similar results for a generic Core language that encompassesones like Standard ML's (which supports the de�nition of parameterised types,is implicitly typed, and polymorphic). The type and term syntax of Mini-SMLis de�ned by the grammar in Figures 1 and 2, where t 2 TypId, x 2 ValId,X 2 StrId, F 2 FunId and T 2 SigId range over disjoint sets of type, value,structure, functor and signature identi�ers.A core type u may be used to de�ne a type identi�er or to specify the type ofa Core value. These are just the types of a simple functional language, extended

Core Types u ::= t type identi�erj u! u0 function typej int integersj sp:t type projectionSignature Bodies B ::= type t = u; B transparent type speci�cationj type t; B opaque type speci�cationj val x : u; B value speci�cationj structure X : S; B structure speci�cationj �B empty bodySignature Expressions S ::= sig B end encapsulated bodyj T signature identi�erFig. 1. Type Syntax of Mini-SMLwith the projection sp:t of a type component from a structure path. A signaturebody B is a sequential speci�cation of a structure's components. A type com-ponent may be speci�ed transparently, by equating it with a type, or opaquely,permitting a variety of realisations. Value and structure components are speci-�ed by their type and signature. The speci�cations in a body are dependent inthat subsequent speci�cations may refer to previous ones. A signature expres-sion S encapsulates a body, or is a reference to a bound signature identi�er. Astructure matches a signature expression if it provides an implementation for allof the speci�ed components, and possibly more.Core expressions e describe a simple functional language extended with theprojection of a value identi�er from a structure path. A structure path sp is areference to a bound structure identi�er, or the projection of one of its substruc-tures. A structure body b is a dependent sequence of de�nitions: subsequent def-initions may refer to previous ones. A type de�nition abbreviates a type. Valueand structure de�nitions bind term identi�ers to the values of expressions. Afunctor de�nition introduces a named function on structures: X is the functor'sformal argument, S speci�es the argument's type, and s is the functor's bodythat may refer to X. The functor may be applied to any argument that matchesS. A signature de�nition abbreviates a signature. A structure expression s eval-uates to a structure. It may be a path or an encapsulated structure body, whosetype, value and structure de�nitions become the components of the structure.The application of a functor evaluates its body with respect to the value of theactual argument. An opaque constraint restricts the visibility of the structure'scomponents to those speci�ed in the signature, which the structure must match,and hides the realisations of type components with opaque speci�cations.Standard ML only permits functor and signature de�nitions in the top-levelsyntax. Mini-SML allows local functor and signature de�nitions in structurebodies, which can now serve as the top-level: this generalisation avoids the needfor a separate top-level syntax.

Core Expressions e ::= x value identi�erj �x : u:e functionj e e0 applicationj i integer constantj ifzero e then e0else e00 zero testj �x e �xpoint of e (recursion)j sp:x value projectionStructure Paths sp ::= X structure identi�erj sp:X structure projectionStructure Bodies b ::= type t = u; b type de�nitionj val x = e; b value de�nitionj structure X = s;b structure de�nitionj functor F (X : S) = s; b functor de�nitionj signature T = S; b signature de�nitionj �b empty bodyStructure Expressions s ::= sp structure pathj struct b end structure bodyj F(s) functor applicationj s :> S opaque constraintFig. 2. Term Syntax of Mini-SML3 Motivating Example: the Sieve of EratosthenesWe can illustrate the limitations of Mini-SML, and thus Standard ML, by at-tempting to implement the Sieve of Eratosthenes. The example is adapted fromMitchell and Plotkin [6].The Sieve is a well-known algorithm for enumerating prime numbers. LetPrimes denote the enumeration 2; 3; 5; 7; 11 : : : of all primes.We can think of an enumeration of integers as a stream, or in�nite list, ofintegers. In turn, we can represent such a stream as a \process", de�ned by anunspeci�ed set of internal states, a designated initial or start state, a transitionfunction taking us from one state to the next state, and a speci�c integer valueassociated with each state. Reading the values o� the process's sequence of statesyields the stream.Given a stream s, let sift(s) be the substream of s consisting of those valuesnot divisible by the initial value of s. Viewed as a process, the states of sift(s)are just the states of s, �ltered by the removal of any states whose values aredivisible by the value of s's start state.If twoonwards is the stream 2; 3; 4; 5; 6; 7; 8; : : :, then the stream obtained bytaking the initial value of each stream in the sequence of streams:twoonwards = 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; : : :sift(twoonwards) = 3; 5; 7; 9; 11; : : :sift(sift(twoonwards)) = 5; 7; 11; : : :sift(sift(sift(twoonwards))) = 7; 11; : : :...

signature Stream = sig type state;val start: state;val next: state ! state;val value: state ! intend;structure TwoOnwards = struct type state = int;val start = 2;val next = �i:int.succ i;val value = �i:int.iend;Fig. 3. Using structures to implement streams.yields the stream of primes Primes .This is the intuition for constructing the Sieve of Eratosthenes. The Sieve isthe following process that generates the enumeration Primes . The states of theSieve are streams. The start state of the Sieve is the stream twoonwards . Thenext state of the Sieve is obtained by sift ing the current state. The value of eachstate of the Sieve is the �rst value of that state viewed as a stream. Observe thatour description of the Sieve also describes a stream.Consider the code in Figure 3. Given our description of stream as processes,it seems natural to use structures matching the signature Stream to imple-ment streams. For instance, the structure TwoOnwards implements the streamtwoonwards .The code in Figure 3 builds on these de�nitions to construct an implementa-tion of the Sieve. The states of the Sieve are structures matching the signatureState (i.e. Stream). The Start state of the Sieve is the structure TwoOnwards.The functor Next takes a structure S matching State and returns a sifted struc-ture that also matches State. The functor Value returns the integer value of astate of the Sieve, by returning the initial value of the state viewed as a stream.(We assume that the function mod i j returns the integral remainder of dividingi by j).Using these de�nitions, we can indeed calculate the value of the nth prime(counting from 0):structure NthState = Next(� � �Next(Start)� � �);structure NthValue = Value(NthState);val nthprime = NthValue.valueby chaining n applications of the functor Next to Start and then extracting theresulting value. The problem is that we can only do this for a �xed n: becauseof the strati�cation of Core and Modules, it is impossible to implement themathematical function that returns the nth state of the Sieve for an arbitraryn. It cannot be implemented as a Core function, even though the Core supportsiteration, because the states of the Sieve are structures that do not belong to

signature State = Stream;structure Start = TwoOnwards:>State;functor Next (S:State) =structtype state = S.state;val filter = fix �filter:state!state.�s:state. ifzero mod (S.value s) (S.value S.start)then filter (S.next s)else s;val start = filter S.start;val next = �s:state.filter (S.next s);val value = S.valueend;functor Value (S:State) =struct val value = S.value (S.start) endFig. 4. A strati�ed, but useless implementation of the Sieve.the Core language. It cannot be implemented as Modules functor, because thecomputation on structures is limited to functor application and projection, whichis to weak to express iteration. This means that our implementation of the Sieveis e�ectively useless.Notice also the discrepancy between our mathematical description of theSieve and this implementation. In the mathematical description, the Sieve isitself a stream, just like the streams from which it is constructed. In our imple-mentation, the components of the Sieve do not describe a stream in the senseof the signature Stream: the states of the Sieve are structures, not values of theCore and the state transition function is a functor, not a Core function. Be-cause of the strati�cation between Core and Modules, our implementation failsto capture the impredicative description of the Sieve as a stream constructedfrom streams.Of course, the Sieve of Eratosthenes can be implemented directly in the Coreusing other means. The point is that we cannot productively use structuresto represent the states of the Sieve: for this, we need to be able to performnon-trivial computations that return structures. Once we allow structures as�rst-class citizens of the Core language, that already supports general-purposecomputation, the problem disappears.4 Review: the Static Semantics of Mini-SMLBefore we can propose our extension of Mini-SML with �rst-class modules, weneed to brie
y present the static semantics, or typing judgements, of Mini-SML.

� 2 Var def= f�; �; �;
; : : :g type variablesM ,N ,P ,Q 2 VarSet def= Fin(Var) sets of type variablesu 2 Type ::= � type variablej u ! u 0 function spacej int integers' 2 Real def= Var �n! Type realisationsS 2 Str def= 8><>:St [Sx [SX �������St 2 TypId �n! Type ;Sx 2 ValId �n! Type;SX 2 StrId �n! Str 9>=>; semantic structuresL 2 Sig ::= �P :S semantic signaturesX 2 ExStr ::= 9P :S existential structuresF 2 Fun ::= 8P :S ! X semantic functorsC 2 Context def= 8>>>>><>>>>>:Ct [CT [Cx [CX [CF �����������Ct 2 TypId �n! Type ;CT 2 SigId �n! Sig;Cx 2 ValId �n! Type;CX 2 StrId �n! Str ;CF 2 FunId �n! Fun
9>>>>>=>>>>>; semantic contextsNotation. For sets A and B, Fin(A) denotes the set of �nite subsets of A, andA �n! B denotes the set of �nite maps from A to B. Let f and g be �nite maps.D(f) denotes the domain of de�nition of f . The �nite map f + g has domainD(f) [D(g) and values (f + g)(a) def= if a 2 D(g) then g(a) else f(a).Fig. 5. Semantic Objects of Mini-SMLReaders familiar with the De�nition of Standard ML [5] may prefer to skim thissection to assimilate the notation, and then skip ahead to Section 5.Following Standard ML [5], the static semantics of Mini-SML distinguishesbetween the syntactic types of the language and their semantic counterpartscalled semantic objects. Semantic objects play the role of types in the staticsemantics. Figure 5 de�nes the semantic objects of Mini-SML. We let O rangeover all semantic objects.Type variables � 2 Var are just variables ranging over semantic types u 2Type . The latter are the semantic counterparts of syntactic core types, andare used to record the denotations of type identi�ers and the types of valueidenti�ers.A realisation ' 2 Real maps type variables to semantic types and de�nesa substitution on type variables in the usual way. The operation of applying arealisation ' to an object O is written ' (O).Semantic structures S 2 Str are used as the types of structure identi�ers andpaths. A semantic structure maps type components to the types they denote,and value and structure components to the types they inhabit. For clarity, we

de�ne the extension functions t . u;S def= ft 7! ug+ S, x : u;S def= fx 7! ug+ S,and X : S;S 0 def= fX 7! Sg+ S 0, and let �S denote the empty structure ;.Note that �, 9 and 8 bind �nite sets of type variables.A semantic signature �P :S is a parameterised type: it describes the familyof structures ' (S), for ' a realisation of the parameters in P .The existential structure 9P :S, on the other hand, is a quanti�ed type: vari-ables in P are existentially quanti�ed in S and thus abstract. Existential struc-tures describe the types of structure bodies and expression. Existentially quan-ti�ed type variables are explicitly introduced by opaque constraints s :> S, andimplicitly eliminated at various points in the static semantics.A semantic functor 8P :S ! X describes the type of a functor identi�er: theuniversally quanti�ed variables in P are bound simultaneously in the functor'sdomain, S, and its range, X . These variables capture the type components of thedomain on which the functor behaves polymorphically; their possible occurrencein the range caters for the propagation of type identities from the functor's actualargument: functors are polymorphic functions on structures. The range X is thetype of the functor body.A context C maps type and signature identi�ers to the types and signaturesthey denote, and maps value, structure and functor identi�ers to the types theyinhabit. For clarity, we de�ne the extension functions C; t . u def= C + ft 7! ug,C;T .L def= C + fT 7! Lg, C; x : u def= C + fx 7! ug, C;X : S def= C + fx 7! Sg, andC;F : F def= C + fF 7! Fg.We let V(O) denote the set of variables occurring free in O, where the notionsof free and bound variable are de�ned as usual. Furthermore, we identify seman-tic objects that di�er only in a renaming of bound type variables (�-conversion).The operation of applying a realisation to a type (substitution) is extendedto all semantic objects in the usual way, taking care to avoid the capture of freevariables by bound variables.De�nition 1 (Enrichment Relation) Given two structures S and S 0, S en-riches S 0, written S � S 0, if and only if{ D(S) � D(S 0),{ for all t 2 D(S 0), S(t) = S 0(t),{ for all x 2 D(S 0), S(x) = S 0(x), and{ for all X 2 D(S 0), S(X) � S 0(X).Enrichment is a pre-order that de�nes a subtyping relation on semantic struc-tures (i.e. S is a subtype of S 0 if and only if S � S 0).De�nition 2 (Functor Instantiation) A semantic functor 8P :S ! X in-stantiates to a functor instance S 0 ! X 0, written 8P :S ! X > S 0 ! X 0, if andonly if ' (S) = S 0 and ' (X) = X 0, for some realisation ' with D(') = P.De�nition 3 (Signature Matching) A semantic structure S matches a sig-nature �P :S 0 if and only if there exists a realisation ' with D(') = P such thatS � ' (S 0).

C ` u . u t 2 D(C)C ` t . C(t) C ` u . u C ` u0 . u 0C ` u! u0 . u ! u 0 C ` int . intC ` sp : S t 2 D(S)C ` sp:t . S(t)C ` B . L C ` u . u C; t . u ` B . �P :S t 62 D(S) P \ V(u) = ;C ` type t = u; B . �P :t . u;S� 62 V(C) C; t . � ` B . �P :S t 62 D(S) � 62 PC ` type t; B . �f�g [P :t . �;SC ` u . u C; x : u ` B . �P :S x 62 D(S) P \ V(u) = ;C ` val x : u; B . �P :x : u;SC ` S . �P :S P \ V(C) = ; C;X : S ` B . �Q :S 0 X 62 D(S 0) Q \ (P [V(S)) = ;C ` structure X : S;B . �P [Q:X : S;S 0C ` �B . �;:�SC ` S . L C ` B . LC ` sig B end . L T 2 D(C)C ` T . C(T)Fig. 6. Denotation JudgementsThe static semantics of Mini-SML is de�ned by the denotation judgementsin Figure 6 that relate type phrases to their denotations, and the classi�cationjudgements in Figure 7 that relate term phrases to their semantic types. A de-tailed explanation of these rules may be found in [7, 8]. We deviate from thepresentation in the De�nition [5] by classifying structure expressions using ex-istentially quanti�ed structures. The De�nition classi�es structure expressionsusing bare semantic structures, but employs procedural classi�cation rules thatmaintain a state of generated type variables, updating this state each time astructure expression is constrained by an opaque signature, or a functor appliedto an argument. These approaches are equivalent, but ours is stateless and moredeclarative [7, 8].We can illustrate the semantics by considering the semantic objects assignedto some of the phrases in Figures 3 and 4.The denotation of Stream is the semantic signature:�f�g:(state . �; start : �; next : �! �; value : �! int);where the parameter � arises from the opaque speci�cation of the type state.The type of the structure expression in the de�nition of TwoOnwards is:9;:(state . int; start : int; next : int! int; value : int! int)for an empty existential quanti�er.

C ` e : u x 2 D(C)C ` x : C(x) C ` u . u C; x : u ` e : u 0C ` �x : u:e : u ! u 0 C ` e : u 0 ! u C ` e0 : u 0C ` e e0 : u C ` i : intC ` e : int C ` e0 : u C ` e00 : uC ` ifzero e then e0else e00 : u C ` e : (u ! u 0)! u ! u 0C ` �x e : u ! u 0 C ` sp : S x 2 D(S)C ` sp:x : S(x)C ` sp : S X 2 D(C)C ` X : C(X) C ` sp : S X 2 D(S)C ` sp:X : S(X)C ` b : X C ` u . u C; t . u ` b : 9P :S P \ V(u) = ;C ` type t = u; b : 9P :t . u;SC ` e : u C; x : u ` b : 9P :S P \ V(u) = ;C ` val x = e; b : 9P :x : u;SC ` s : 9P :S P \ V(C) = ; C;X : S ` b : 9Q :S 0 Q \ (P [V(S)) = ;C ` structure X = s;b : 9P [Q :X : S;S 0C ` S . �P :S P \ V(C) = ; C;X : S ` s : XC;F : 8P :S ! X ` b : X 0C ` functor F (X : S) = s; b : X 0C ` S . L C;T . L ` b : XC ` signature T = S; b : XC ` �b : 9;:�SC ` s : X C ` sp : SC ` sp : 9;:S C ` b : XC ` struct b end : XC ` s : 9P :S P \ V(C(F)) = ; C(F) > S 0 ! 9Q :S 00 S � S 0 Q \ P = ;C ` F(s) : 9P [Q:S 00C ` s : 9P :S C ` S . �Q :S 0 P \ V(�Q :S 0) = ; S � ' (S 0) D(') = QC ` s :> S : 9Q :S 0Fig. 7. Classi�cation JudgementsThe body of this type matches the signature Stream by choosing the reali-sation f� 7! intg, since:(state . int; start : int; next : int! int; value : int! int) �f� 7! intg (state . �; start : �; next : �! �; value : �! int):The signature State abbreviates the denotation of Stream so that the opaqueconstraint TwoOnwards:>State introduces the existential type:9f�g:(state . �; start : �; next : � ! �; value : � ! int):Binding this structure expression to the structure identi�er Start eliminatesthe existential quanti�er so that the type of Start, as recorded in the context,is: (state . �; start : �; next : � ! �; value : � ! int);

for some hypothetical, and thus abstract, type �.The type (i.e. semantic functor) of the sifting functor Next is the universallyquanti�ed type:8f
g:(state .
; start :
; next :
 !
; value :
 ! int)!9;:(state .
; filter :
 !
; start :
; next :
 !
; value :
 ! int)Because Next is polymorphic, it can be applied to Start by choosing thefunctor instance:(state . �; start : �; next : � ! �; value : � ! int)!9;:(state . �; filter : � ! �; start : �; next : � ! �; value : � ! int)corresponding to the realisation f
 7! �g.The range of this functor instance determines the type of the applicationNext(Start):9;:(state . �; filter : � ! �; start : �; next : � ! �; value : � ! int):By subtyping, this type, which is richer because it contains the additional com-ponent filter, also matches the signature State, since:(state . �; filter : � ! �; start : �; next : � ! �; value : � ! int) �f� 7! �g (state . �; start : �; next : �! �; value : �! int):5 Package TypesThe motivation for introducing �rst-class structures is to extend the range ofcomputations on structures. One way to do this is to extend structure expres-sions, and thus computation at the Modules level, with the general-purposecomputational constructs usually associated with the Core.Instead of complicating the Modules language in this way, we propose tomaintain the distinction between Core and Modules, but relax the strati�cation.Our proposal is to extend the Core language with a family of Core types, calledpackage types, corresponding to �rst-class structures. A package type is intro-duced by encapsulating, or packing, a structure as a Core value. A package typeis eliminated by breaking an encapsulation, opening a Core value as a structurein the scope of another Core expression. Because package types are ordinaryCore types, packages are �rst-class citizens of the Core. The introduction andelimination phrases allow computation to alternate between computation at thelevel of Modules and computation at the level of the Core, without having toidentify the notions of computation.Our extension requires just three new syntactic constructs, all of which areadditions to the Core language:Core Types u ::= . . . as beforej <S> package typeCore Expressions e ::= . . . as beforej pack s as S package introductionj open e as X : S in e0 package elimination

The syntactic Core type <S>, which we call a package type, denotes thetype of a Core expression that evaluates to an encapsulated structure value. Theactual type of this structure value must match the signature S: i.e. if S denotes�P :S, then the type of the encapsulated structure must be a subtype of ' (S),for ' a realisation with D(') = P .The Core expression pack s as S introduces a value of package type <S>.Assuming a call-by-value dynamic semantics, the phrase is evaluated by evaluat-ing the structure expression s and encapsulating the resulting structure value asa Core value. The static semantics needs to ensure that the type of the structureexpression matches the signature S. Note that the two expressions pack s as Sand pack s0 as S can have the same package type <S> even though the actualtypes of s and s0 may di�er (in particular, these types may di�er in the way theymatch the signature).The Core expression open e as X : S in e0 eliminates a value of packagetype <S>. Assuming a call-by-value dynamic semantics, the expression e isevaluated to an encapsulated structure value, this value is bound to the structureidenti�er X, and the value of the entire phrase is obtained by evaluating the clientexpression e0 in the extended environment. The static semantics needs to ensurethat e has the package type <S> and that the type of e0 does not vary withthe actual type of the encapsulated structure X. Note that the explicit signaturedetermines the package type of e.The semantic Core types of Mini-SML must be extended with the semanticcounterpart of syntactic package types. In the semantics of Mini-SML, the type ofa structure expression is an existential structure X determined by the judgementform C ` s : X . Similarly, the denotation of a package type, which describesthe type of an encapsulated structure value, is just an encapsulated existentialstructure: u 2 Type ::= . . . as beforej <X> semantic package typeWe identify package types that are equivalent up to a renaming of boundvariables.Finally, we extend the Core judgements C ` u . u and C ` e : u with thefollowing rules: C ` S . �P :SC ` <S> . <9P :S> (1)Rule 1 relates a syntactic package type to its denotation as a semantic packagetype. The parameters of the semantic signature �P :S, which arise from opaquetype speci�cations in S, simply determine the existentially quanti�ed variablesof the package type <9P :S>.

C ` s : 9P :S 0C ` S . �Q :SP \ V(�Q :S 0) = ;S � ' (S 0)D(') = QC ` pack s as S : <9Q :S 0> (2)Rule 2 is the introduction rule for package types. Provided s has existentialtype 9P :S and S denotes the semantic signature �Q :S 0, the existential quan-ti�cation over P is eliminated in order to verify that S matches the signature.The side condition P \ V(�Q :S 0) = ; prevents the capture of free variables inthe signature by the bound variables in P and ensures that these variables aretreated as hypothetical types. The semantic signature �Q :S 0 describes a familyof semantic structures and the requirement is that the type S of the structureexpression enriches, i.e. is a subtype of, some member ' (S 0) of this family. Inthe resulting package type <9Q :S 0>, the existential quanti�cation over Q hidesthe actual realisation, rendering type components speci�ed opaquely in S ab-stract. Because the rule merely requires that S is a subtype of S 0, the packagepack s as S may have fewer components than the actual structure s.C ` e : <9P :S>C ` S . �P :SP \ V(C) = ;C;X : S ` e0 : uP \ V(u) = ;C ` open e as X : S in e0 : u (3)Rule 3 is the elimination rule for package types. Provided e has packagetype <9P :S>, where this type is determined by the denotation of the explicitsyntactic signature S, the client e0 of the package is classi�ed in the extendedcontext C;X : S. The side-condition P \ V(C) = ; prevents the capture of freevariables in C by the bound variables in P and ensures that these variables aretreated as hypothetical types for the classi�cation of e0. By requiring that e0 ispolymorphic in P , the actual realisation of these hypothetical types is allowed tovary with the value of e. Moreover, because S is a generic subtype of S, the ruleensures that e0 does not access any components of X that are not speci�ed inS: thus the existence of any unspeci�ed components is allowed to vary with theactual value of e. Finally, the side condition P \ V(u) = ; prevents any variationin the actual realisation of P from a�ecting the type of the phrase.Observe that the explicit signature S in the term open e as X : S in e0uniquely determines the Core type of the expression e. This becomes signi�cantin the presence of an implicitly typed language like Standard ML's Core: theexplicit signature ensures that the type inference problem for Standard ML'sCore remains tractable and has principal solutions. Intuitively, the type inferencealgorithm never has to guess the type of an expression that is used as a package.

structure Sieve =structtype state = <Stream>;val start = pack TwoOnwards as Stream;val next = �s:state.open s as S:Stream in pack Next(S) as Stream;val value = �s:state.open s as S:Stream in S.value S.startend;val nthstate = fix �nthstate:int->Sieve.state.�n:int.ifzero nthen Sieve.startelse Sieve.next (nthstate (pred n));val nthprime = �n:int.Sieve.value (nthstate n);Fig. 8. The Sieve implemented using package types.Rules 2 and 3 are inspired by, and closely related to, the standard intro-duction and elimination rules for second-order existential types in Type Theory[6]. The main di�erence, aside from introducing and eliminating n-ary, not justunary, quanti�ers is that these rules also mediate between the universe of Moduletypes and the universe of Core types (see [7] for a detailed comparison).Readers interested in the dynamic semantics of package types and a sketchedproof of type soundness are referred to the Appendix.6 The Sieve RevisitedThe addition of package types allows us to de�ne an elegant and useful imple-mentation of the Sieve of Eratosthenes.Figure 8 shows our implementation of the Sieve as the structure Sieve. TheCore type Sieve.state is the type of packaged streams <Stream>. The Corevalue Sieve.start is the packaged stream TwoOnwards of all integers greaterthan 2. The Core function Sieve.next returns the next state of Sieve byopening a supplied state, applying the sifting functor Next to the encapsulatedstream S, and packaging the resulting stream as a Core value. The Core func-tion Sieve.value returns the value of a supplied state by opening the state andreturning the �rst value of its encapsulated stream.It is easy to verify that Sieve has type:9;:(state . u; start : u; next : u ! u; value : u ! int);where u abbreviates the type of packed streams:u � <9f�g:(state . �; start : �; next : �! �; value : �! int)>:The reason Sieve is an elegant implementation is that it captures the im-predicative, mathematical description of the Sieve as a stream constructed from

streams. This is because its type also matches the signature Stream, since:(state . u; start : u; next : u ! u; value : u ! int) �f� 7! ug (state . �; start : �; next : �! �; value : �! int)using the realisation f� 7! ug.The reason Sieve is a useful implementation is that it allows us de�ne thefunctions nthstate and nthprime of Figure 8. Because the states of Sieve arejust ordinary Core values, which happen to have package types, the functionnthstate n can use recursion on n to construct the nth state of Sieve. Inturn this permits the function nthprime n to calculate the nth prime, for anarbitrary n. Recall that, in the absence of package types, these functions couldnot be de�ned using the implementation of the Sieve we gave in Section 3.7 Another Example: Dynamically-Sized ArraysWith package types, it is possible to make the actual realisation of an abstracttype depend on the result of some Core computation. In this way, package typesstrictly extend the class of abstract types that can be de�ned in Mini-SML alone.A familiar example of a type whose representation depends on the result ofsome computation is the type of dynamically allocated arrays of size n, where nis a value that is computed at run-time. For simplicity, we implement functionalarrays of size 2n, for arbitrary n � 0 (see Figure 9).The signature Array speci�es structures implementing integer arrays andhas the following interpretation. For a �xed n, the type array represents arrayscontaining 2n entries of type int. The function init x creates an array that hasits entries initialised to the value of x. The function sub a i returns the value ofthe (i mod 2n)-th entry of the array a. The function update a i x returns anarray that is equivalent to the array a, except for the (i mod 2n)-th entry thatis updated with the value of x. Interpreting each index i modulo 2n allows us toomit array bound checks.The structure ArrayZero implements arrays of size 20 = 1. An array isrepresented by its sole entry with trivial init, sub and update functions.The functor ArraySucc maps a structure A, implementing arrays of size 2n,to a structure implementing arrays of size 2n+1. We assume that div i j returnsthe largest integral divisor of i by j and that the Core has been extended withthe cross product type, written u * u0, supporting pairing (e,e0) and projec-tions fst e and snd e whose static semantics are straightforward. The functorrepresents an array of size 2n+1 as a pair of arrays of size 2n. Entries with even(odd) indices are stored in the �rst (second) component of the pair. The functioninit x returns a pair of initialised arrays of size 2n. The functions sub a i andupdate a i x use the parity of the index i to determine which component ofthe array to subscript or update.The Core function mkArray n, returns a package implementing arrays ofsize 2n (provided n � 0). For n = 0, it simply returns the packaged structureArrayZero. For n 6= 0, it �rst creates a package of arrays of size 2n�1 by recursion

signature Array =sig type array;val init: int ! array;val sub: array ! int ! int;val update: array ! int ! int ! arrayend;structure ArrayZero =struct type array = int;val init = �x:int.x;val sub = �a:array.�i:int.a;val update = �a:array.�i:int.�x:int.xend;functor ArraySucc (A:Array) =struct type array = A.array * A.array;val init = �x:int. (A.init x, A.init x)val sub = �a:array.�i:int.ifzero mod i 2then A.sub (fst a) (div i 2)else A.sub (snd a) (div i 2);val update = �a:array.�i:int.�x:int.ifzero mod i 2then (A.update (fst a) (div i 2) x, snd a)else (fst a, A.update (snd a) (div i 2) x)end;val mkArray = fix �mkArray:int!<Array>.�n:int. ifzero nthen pack ArrayZero as Arrayelse open mkArray (pred n) as A:Array inpack ArraySucc(A) as Array;Fig. 9. mkArray n returns an abstract implementation of arrays of size 2n.on n� 1, and then uses this package to implement a package of arrays of size 2nby an application of the functor ArraySucc. Notice that the actual realisationof the abstract type array returned by mkArray depends on the value of n.8 ContributionFor presentation purposes, we have restricted our attention to an explicitlytyped, monomorphic Core language and a �rst-order Modules language. In [7],we demonstrate that the extension with package types may also be applied to aStandard ML-like Core language that supports the de�nition of parameterisedtypes and implicitly typed, polymorphic values. Moreover, this extension is for-mulated with respect to a higher-order Modules calculus that allows functors,

not just structures, to be treated as �rst class citizens of the Modules languageand, via package types, the Core language too. This proposal is practical: wepresent a well-behaved type checking algorithm that combines type inference forthe extended Core with type checking for higher-order Modules.Our approach to obtaining �rst-class structures is novel for two reasons. First,it relies on a simple extension of the Core language only, leaving the Moduleslanguage unchanged. Second, it contradicts Harper and Mitchell's claim [2] thatthe type structure of Standard ML cannot accommodate �rst-class structureswithout sacri�cing the compile-time/run-time phase distinction and decidabletype checking. While this property is true of their proposed model, which isbased on �rst-order dependent types, the property does not transfer to StandardML, because it has a purely second-order type theory [8].Our motivation for introducing �rst-class structures was to extend the rangeof computations on structures. One way to achieve this is to extend structureexpressions directly with computational constructs usually associated with theCore. Taken to the extreme, this approach relaxes the strati�cation betweenModules and the Core by removing the distinction between them, amalgamatingboth in a single language. This is the route taken by Harper and Lillibridge [1],and explored further in the subsequent work by Lillibridge [4]. Unfortunately,subtyping, and thus type checking, is undecidable in these calculi; they also lackthe principal typing property.Our approach is di�erent. We maintain the distinction between Core andModules, but relax the strati�cation by extending the Core language with pack-age types. The introduction and elimination phrases for package types allowcomputation to alternate between computation at the level of Modules andcomputation at the level of the Core, without having to identify the notionsof computation.Although not illustrated here, the advantage of distinguishing between thetwo forms of computation is that they can be designed to satisfy di�erent in-variants. For instance, the invariant needed to support Leroy style applicativefunctors [3, 7], namely that the abstract types returned by a functor dependonly on its type arguments and not the value of its term argument, is violatedif we extend Modules computation directly with general-purpose computationalconstructs. Applicative functors provide good support for programming withhigher-order Modules; general-purpose constructs are vital for a useful Core. In[7], we show that by keeping Modules computation and Core computation sepa-rate, we can accommodate both applicative functors and a general-purpose Core,without violating type soundness. The type soundness property is preserved bythe addition of package types, because these merely extend the computationalpower of the Core, not Modules. By contrast, although the amalgamated lan-guages proposed in [1, 4] have higher-order functors, because there is only a singlenotion of computation, there is a trade-o� between supporting either applicativefunctors or general-purpose computation. Since ruling out the latter is too severea restriction, the functors of these calculi are not applicative.Acknowledgements: Many thanks to Don Sannella and Healfdene Goguen.

References1. R. Harper, M. Lillibridge. A type-theoretic approach to higher-order modules withsharing. In 21st ACM Symp. Principles of Prog. Lang., 1994.2. R. Harper, J. C. Mitchell. On the type structure of Standard ML. In ACM Trans.Prog. Lang. Syst., volume 15(2), pages 211{252, 1993.3. X. Leroy. Applicative functors and fully transparent higher-order modules. In Proc.22nd Symp. Principles of Prog. Lang., pages 142{153. ACM Press, 1995.4. M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.PhD thesis, School of Computer Science, Carnegie Mellon University, 1997.5. R. Milner, M. Tofte, R. Harper, D. MacQueen. The De�nition of Standard ML(Revised). MIT Press, 1997.6. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.ACM Transactions on Programming Languages and Systems, 10(3):470{502, July1988.7. C. V. Russo. Types For Modules. PhD Thesis, Laboratory for Foundations ofComputer Science, University of Edinburgh, 1998.8. C. V. Russo. Non-Dependent Types For Standard ML Modules. Submitted to1999 Int'l Conf. on Principles and Practice of Declarative Programming (PPDP'99),(also available at http://www.dcs.ed.ac.uk/~cvr), Laboratory for Foundations ofComputer Science, University of Edinburgh, 1999.Appendix: Dynamic Semantics and Type SoundnessTo demonstrate that the extension of Mini-SML with package types is sound,we need to de�ne a dynamic semantics for the language and then prove thatevaluating well-typed expressions does not lead to type violations. Although athorough treatment of the dynamic semantics takes us beyond the scope of thispaper, in this appendix, we give a brief sketch of how this might be done anduse this sketch to prove the soundness of package elimination (Rule 3).Suppose we adopt a call-by-value semantics. One way to de�ne such a se-mantics, akin to the formulation of the dynamic semantics of Standard ML [5],is to de�ne:{ a set of core values v 2 CorVal that includes encapsulated structure val-ues <V>, integer values and function closures (whose form we shall leaveunspeci�ed);{ a set of structure values :V 2 StrVal def= fEx [EX j Ex 2 ValId �n! CorVal; EX 2 StrId �n! StrValg;{ and a set of functor closures of the form <X; E ; s>.We let E range over dynamic environments mapping value, structure andfunctor identi�ers to core values, structure values and functor closures.We can now present the dynamic semantics by de�ning evaluation judge-ments relating expressions to their values (Figure 10).

E ` e # v ...E ` s # VE ` pack s as S # <V>E ` e # <V> E [X = V] ` e0 # vE ` open e as X : S in e0 # v...E ` b # V ...E ` s # V ...E(F) = <X;E 0; s0> E ` s # V E 0[X = V] ` s0 # V0E ` F(s) # V0...Fig. 10. Evaluation JudgementsTo prove that the static semantics is sound for the dynamic semantics, weintroduce additional classi�cation judgements relating values to their (semantic)types (Figure 11).We say that an environment E has type C, written ` E : C, if, and only if,every value, structure and functor identi�er declared with a type in the contextC is assigned a value in E that inhabits this type.The type soundness property can then be stated as:Property 1 (Type Soundness){ C ` e : u � ` E : C � E ` e # v � ` v : u.{ C ` b : X � ` E : C � E ` b # V � ` V : X .{ C ` s : X � ` E : C � E ` s # V � ` V : X .Proof 1 (Sketch) We need to prove the stronger properties:{ C ` e : u � 8 ; E ; v: ` E : (C) � E ` e # v � ` v : (u),{ C ` b : X � 8 ; E ;V: ` E : (C) � E ` b # V � ` V : (X),{ C ` s : X � 8 ; E ;V: ` E : (C) � E ` s # V � ` V : (X)which can be proved by simultaneous induction on the classi�cation judgements.Here, is a realisation of type variables. Quantifying over all allows us toprove that the rules introducing and eliminating type polymorphism are sound.To give an indication of how the proof proceeds, we will give the proof of typesoundness for Rule (3). The proof remains a sketch because we do not verify theother cases, nor have we formalised the machinery necessary to do so.Rule 3 By induction we may assume:8 ; E ; v:` E : (C) � E ` e # v � ` v : (<9P :S>) ; (4)

` v : u ...` V : X` <V> : <X>...` V : S D(V) � D(S)8x 2 D(S): ` E(x) : S(x)8X 2 D(S): ` E(X) : S(X)` V : S` V : X D(') = P ` V : ' (S)` V : 9P :S` <X; E ; s> : F8': D(') = P � 8V: ` V : ' (S) � 8V0: E [X = V] ` s # V0 � ` V0 : ' (X)` <X; E ; s> : 8P :S ! XFig. 11. Classi�cation Judgements for ValuesC ` S . �P :S; (5)P \ V(C) = ;; (6)8 ; E ; v:` E : (C;X : S) � E ` e0 # v � ` v : (u) ; (7)P \ V(u) = ;: (8)We need to show:8 ; E ; v:` E : (C) � E ` open e as X : S in e0 # v � ` v : (u) :Consider arbitrary , E and v such that:` E : (C); (9)E ` open e as X : S in e0 # v: (10)It remains to show ` v : (u).W.l.o.g. we can assume: P \ V() = ;: (11)Inverting 10 by the evaluation rule for open e as X : S in e0 we must have,for some structure value V: E ` e # <V>; (12)E [X = V] ` e0 # v: (13)By induction hypothesis 4 applied to , E, <V>, 9 and 12 we obtain:` <V> : (<9P :S>); (14)

which, by assumption 11, may be re-expressed as:` <V> : <9P : (S)>: (15)Inverting 15, by the rule relating structure values to existential structures,we must have some realisation ' such that:D(') = P ; (16)` V : ' ((S)): (17)Let 0 = ['. Then, by 16, 6 and 11, we have: 0 (C) = (C) : (18)Moreover, by 16 and 11 we have: 0 (S) = ' ((S)) : (19)Combining 9 and 17 we can show:` E [X = V] : ((C));X : ' ((S));which, by 18 and 19, may be expressed as:` E [X = V] : 0 (C;X : S): (20)By induction hypothesis 7 on 0, E [X = V], v, 20 and 13 we obtain:` v : 0 (u): (21)Now 0 (u) = ' ((u)) = (u), where the �rst equation follows by 16 and11, and the second follows by 16 and 8.Hence we can re-express 21 as ` v : (u);which is the desired result.

