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Abstract

An elementary, machine-independent, recursive algorithmfor ma-
trix multiplication C+=A*B provides implicit blocking atevery
level of the memory hierarchy and tests out faster than classically
optimal code, tracking hand-coded BLAS3 routines. Proof ofcon-
cept is demonstrated by racing the in-place algorithm against man-
ufacturer’s hand-tuned BLAS3 routines; it can win.

The recursive code bifurcates naturally at the top level into in-
dependent block-oriented processes, that each writes to a disjoint
and contiguous region of memory. Experience has shown that the
indexing vastly improves the patterns of memory access at all lev-
els of the memory hierarchy, independently of the sizes of caches
or pages and withoutad hocprogramming. It also exposed a weak-
ness in SGI’s C compilers that merrily unroll loops for the super-
scalar R8000 processor, but do not analogously unfold the base
cases of the most elementary recursions. Such deficiencies might
deter future programmers from using this rich class of recursive
algorithms.
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1 Introduction

This paper revisits matrix algebra, specifically multiplication, to
explore an algorithm nearly as simple as traditional ones, and
certainly better for hierarchical memory. We present a simple
recursive algorithm and a matrix representation suited to it that
have outperformed hand-optimized BLAS3 matrix multiplication
[10]. Hand-coded by the manufacturer for salesmen’s performance
claims, this BLAS3 multiplication is widely thought to offer opti-
mal performance.

Experiments with the algorithm have exposed weaknesses in
production compilers: loops are unrolled but recursions are not un-
folded. Moreover, they demonstrate a new way to balance the par-
allel schedules top-down, following the recursion and partitioning
the matrices for favorable run-time locality.

It is well known that linear systems are best solved by algo-
rithms that decompose matrices into blocks [9, 10]. This paper fo-
cuses on an elementary, machine-independent, recursive algorithm
for matrix multiplicationC+=A*B that provides implicit blocking
ateverylevel of the memory hierarchy and tests out faster than clas-
sically optimal code. Proof of concept is demonstrated by racing it
against hand-coded BLAS3 routines, which lose to it as they are
forced into paging.

With memory hierarchies of the future layered to still deeper
levels, in-place algorithms sensitive to the hierarchy will be nec-
essary to solve large problems. Insensitive to the exact quantum
of memory-transfer at any level, our new algorithm retains its ef-
ficiency as it decomposes and solves independent problems that
cross through cache, main RAM, paged, and distributed levels of
memory. Although additional storage may be available at dis-
tributed processors, it uses none, except for local variables in a
recursion stack of depthlg n for ordern matrices—constant space
for all practical purposes.

Four insights underlie the algorithms. First is the quadtree de-
composition of matrices [23], as well as the algorithms thatma-
nipulate them using recursive descent [24]. Second is a familiar
indexing, newly applied to the map of matrices onto the address
space. Next is a decomposition of the usual eight recursive,quad-
rant multiplications into two parallel streams, balancingcomputa-
tional loads when the factors have known padding (east or south)
with zeroes. The last insight is a careful dovetailing of successive
calls that has the effect, at a low level, of reusing data already resi-
dent in each level of memory and, at a high level, of balancingthe
computational load among sibling processes.

1.1 Whence blocking?

The reader should distinguish our introduction of blockingvia re-
cursive data structures and programs, from compile-time transfor-
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mations of conventional arrays and loops to obtain good blocking
at run time. The latter strategy uses well the compiler’s knowledge
of the hardware parameters to fit the target machine, but is also lim-
ited to patterns of source code and transformations anticipated by
the compiler writer. Recent work of this sort includes data transfor-
mations between row- and column-major [1, 6], blocking of high-
level code specifically to admit lower-level BLAS3 invocations [2],
and more recently such blocking to bypass BLAS3 entirely [5].

One could interpret our representations and algorithms as anew
way to introduce blocking into existing programs. We preferto
view them, instead, as results from a different style of expressing
the same high-level algorithms. The style is, however, one that also
inspires a new perspective, new insights, and—perhaps also—new
algorithms. Recursive and parallel versions of practical algorithms
already exist that use this structure well [24, 13]; in such contexts
this matrix multiplication is not only the most natural, it is also the
fastest. Importantly, no conversions between data representations
are necessary there (aside from the usual ones at input and output.)

Fateman’s recent treatise that, in part, distinguishes matrices
from arrays [11,x4:3] is relevant here. Matrix problems deal with
underlying vector spaces that are better decomposed top-down into
subspaces. While quadtree decomposition may not be the most
efficient one for any given problem, it does enforce the divide-and-
conquer perspective that algebra allows us. Viewing the matrix as
decomposed by rows or by columns is a bottom-up approach; sub-
spaces may still be visible, but they assemble themselves differ-
ently.

Our philosophy derives from our experience with functional
programming and our view of its critical role for parallel program-
ming [4]. Linear systems, in particular, come to us with a rich al-
gebra that is best visible in a functional program that readslike in-
terdependent formulae [13, 24]. Discovery of good formulations of
known—and maybe even unknown—techniques follows top-down,
partition-and-conquer of the underlying vector space. Ourexperi-
ence is that many insights and efficiencies are to be found here.

This paper represents our effort to carry this philosophy back to
serially addressed, hierarchical memory using concise andefficient
source code. The C programs here should be read, first, as an ide-
alized compilation of functional source code (like a multiplication
of HASKELL arrays [16]) to run well on extant high-performance
systems.

1.2 Outline of paper.

The remainder of this paper is in six parts. A short section reviews
the conventional looping algorithms that multiply using inner-,
outer-, or middle- products, and is followed by Section 3 giving
the definitions of the quadtree representation of matrices and the
indexing on it. The next section contains details on the quadtree
recursions studied here, and Section 5 presents experimental re-
sults. Section 6 offers the seminal analysis that only two blocks
need be reloaded between any block multiplications and thatsquare
blocks—like these quadrants—are optimal. The last section offers
conclusions.

2 Classic loops

The algorithms in this paper are presented in C. The benchmark
code for matrix-matrix multiplication,C+=A*B, is the conventional
inner-product code of Figure 1, as presented in most linear algebra
courses. Following the associativity of addition, the three nested-
loop controls can be permuted [14, p. 19] and reordered to obtain
outer- and middle-product alternatives. All exhibit the same prob-
lem: that elements of some of the arrays must be fetched into faster

void loop_multiply (int order, Scalar *c, Scalar *a, Scalar *b) {
/* Assert that matrix c has already been zeroed. */
for (register int i = 0; i < order; i++)
for (register int j = 0; j < order; j++)
for (register int k = 0; k < order; k++)
c[i + j*order] += a[i + k*order] * b[k + j*order];

}}

Figure 1: Matrix multiplication with three nested loops.

void loop_multiply (int order, Scalar *c, Scalar *a, Scalar *b) {
for (register int i = 0; i < order; i++)
for (register int j = 0; j < order; j++) {
accumulator = 0;
for (register int k = 0; k < order; k++)
accumulator += aT[k + i*order] * b[k + j*order];

c[i + j*order] = accumulator;
}

}

Figure 2: Three nested loops with zeroing on pre-transposedA.

memory unfortunately often. (See Section 6.)
Several transformations of this code are common. One initial-

izes the matrixC as it goes. Another transposes the default repre-
sentation of column-major order to represent theA array, instead, in
row-major order to avoid excessive cache misses on seriallyreading
from A in the inner loop. Both of these are illustrated in Figure 2.

It is usual to modify this code, particularly within BLAS3
codes, so that the nested multiply-add (orsaxpy) applies to
blocks, rather than to scalars. The size of the block is selected
to fit the machine’s register and cache capacities, so the resulting
code is not portable.

The ubiquity of such code, moreover, leads optimizing compil-
ers to unroll inner loops in order to avoid excess testing, tofill an
instruction pipe, and to take full advantage of the capacityof the in-
struction cache. Silicon Graphics’ C compiler for its MIPS R8000
chip, for instance, automatically unrolls this inner loop twice as
inline code to take advantage of its super-scalar processing.

3 Quadtree decomposition of matrices

On first reading of the definitions for the quadtree decomposition
of matrices, it is easier to assume that the order of the matrix is
a power of two. This restriction is relaxed later with negligible
overhead; the timing curves are smooth.

Definition 1 [23] A complete matrix has index0. A matrix at
index i is either scalar, or it is composed of four submatrices—
northwest, southwest, southeast, and northeast—each of half the
order and with indices4i+1, 4i+2, 4i+3, and4i+4, respectively.

Figure 3 presents a context of C declarations for developingthe
quadtree-matrix codes. The constantoffset specifies the number
of interior nodes (e.g. 5 in Figure 4). It can also be computed

typedef float Scalar;
typedef struct {
int order; /* Size of the matrix */
int offset; /* Census of nonterminal nodes */
Scalar *matrix;

} Matrix;
#define nw(i) ((i << 2) + 1) /* index to Northwest quadrant of Matrix i */
#define sw(i) ((i << 2) + 2) /* index to Southwest quadrant of Matrix i */
#define se(i) ((i << 2) + 3) /* index to Southeast quadrant of Matrix i */
#define ne(i) ((i << 2) + 4) /* index to Northeast quadrant of Matrix i */

Figure 3: An environment for matrix representation
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Figure 4: Level-order indexing of blocks in matrix of order 4.

directly fromorder:offset = dlg(order)eXi=0 4i = 4dlg(order)e � 13 :
Subtracting it from each element’s actual index yields a zero-based
indexing of just the elements in the matrix. Ignoring the offset,
this definition provides a zero-based, level-order indexing1 across
a matrix’s tree [18, p. 350, 401], as illustrated in Figure 4 [7, 3]. It
prompts several observations.� Every block/subtree is indexed consecutively at each of its

levels. The scalars in any subblock, as terminal nodes at the
same level in some subtree, are therefore indexed consecu-
tively. A good, block-oriented algorithm, one that descends
the tree to a subtree small enough to fit in cache (for instance),
experiences excellent caching behavior without any program-
mers’ worries over striding. Moreover, a multilayered mem-
ory experiences good locality simulatneously at each levelof
the memory/tree, independently of the page sizes.� Where a matrix’s order is not a power of two, it is padded (as
if with zeroes) on its south and east margins to the next larger
power,but these extra elements would never be touched by a
good algorithm. (Interior padding is also possible.) Padding
introduces gaps into the level-order indexing, but the datain
these gaps are never touched and never migrate to cache.� Padding can be detected from the size of each quadrant, or
a block purely of zeroes (padding) might be announced by a
flag in its parent node (as in Figure 8), from which all memory
accesses into that quadrant become unnecessary. That flag di-
rects the algebra around zeroes (as additive identities andmul-
tiplicative annihilators), to yield accelerated computations on
sparse matrices. A good use for a second flag is to announce,
in contrast, that the subtree is practically dense—that it con-
tains no zero blocks large enough to justify the routine zero
tests that might avoid them. Instead, all matrix operations
would descend blindly to the leaves, saving the few stalls that
would result from branch instructions.

1This indexing, like floating-point numbers and even the quadtree representation,
itself, is an internal representation that speeds computation. All three are isomorphic
to alternative representations that are more easily read byhumans, but translations
between them often are computationally difficult. In all three cases, such translations
never occur during routine computation, however, and are overlapped with trudging.
linear-time input/output whenever necessary.

int offset;
Scalar *A_matrix, *B_matrix, *C_matrix;

void naive_multiply (Matrix a, Matrix b, Matrix c) {
offset = a.offset;
A_matrix = a.matrix;
B_matrix = b.matrix;
C_matrix = c.matrix;
mult (1, 1, 1);

}

static void mult (register Index i_C,
register Index i_A, register Index i_B) {
if (i_A >= offset)
C_matrix[i_C] += A_matrix[i_A] * B_matrix[i_B];

else {
mult (nw (i_C), nw (i_A) , nw (i_B));
mult (se (i_C), sw (i_A) , ne (i_B));
mult (nw (i_C), ne (i_A) , sw (i_B));
mult (ne (i_C), nw (i_A) , ne (i_B));
mult (se (i_C), se (i_A) , se (i_B));
mult (sw (i_C), sw (i_A) , nw (i_B));
mult (ne (i_C), ne (i_A) , se (i_B));
mult (sw (i_C), se (i_A) , sw (i_B));

}
}

Figure 5: Quadtree matrix multiplication (with a strange sequenc-
ing).� Often the interior nodes of the tree are elided. The only rep-

resented nodes become its scalars (leaves) indexed across the
terminal level. Subtracting theoffset (5 in Figure 4) yields
the block indexing that is the closest analog of the classic in-
dexing of column-major matrices within a linear array.� As little as a 4% space overhead (beyond the elements) al-
lows for a byte—two flags per subtree—at every non-terminal
node. For instance, the scalars in an order-n double matrix
occupy8m2 bytes (form = 2dlgne), but its quadtree has at
most m2�13 interior nodes. In such a case, the interior and
exterior nodes can be allocated with contiguous indices, but
in separate memory partitions.

4 Recursive matrix multiplication

The algorithms in this section are the same as those sketchedabove,
except that the ordering of elementwise multiply-adds is vastly per-
muted. Taking advantage of recursion, the order of these operations
is rearranged blockwise, for blocks coinciding with subtrees at all
levels in the quadtree decomposition.

Like the algorithms above, all are written as higher-level code,
and compiled with full optimization for the experiments reported
in the next section. All this is generic code that contrasts with the
competing BLAS3 routines that have been polished over decades
to maximal performance on each architecture.

A functional programmer’s model for matrix multiplication
usesmapping functions over quadruples [24, 23] to decompose ma-
trix problems into square blocks. It is not too different from Fig-
ure 5 which exposes the blockwise algorithm, but obfuscatesboth
the functional syntax and the sparse-matrix algebra that motivated
this representation. As observed elsewhere [23, 21], the quadrants
of the answer can provide a partitioning into 4, 16, 64, . . . processes
to compute the answer independently of one another.
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4.1 Balanced parallel multiplication

Matrix multiplication can be balanced across a small pool ofpro-
cessors top-down, even at compile time if the order is known.
(Then a change of order requires recompilation to a new schedule.)
The following cases explain how to derive—top-down—a balanced
schedule for run-time parallelism as long as one more processor re-
mains to be scheduled. It is formulated for square matrices,as arise
(e.g.) in matrix decomposition. Balancing is only important near
the top of the scheduling tree, but it is very important there; the
difficult case occurs where the order is not equal to (especially, just
under) a power of two. For all orders the processing load can be bal-
anced by halving the processor resource as the recursion descends
the quadtree.

Definition 2 A stripe2 is a set of adjacent rows in a matrix. A
colonnadeis a set of adjacent columns.

Definition 3 A matrix or portion thereof isfull if it has no
known/significant internal zeroes and, if square, no zero padding
on its south and east.

The stripes and colonnades of interest here are full across the
matrix. (They identify the candidate subspaces of the underlying
vector space.) A special case occurs where a north stripe anda
west colonnade (here necessarily the same size) intersect to form a
northwestsquare.This case is distinguished and so labeled, so in
this context stripes and colonnades span the matrix with non-zero
elements, and squares land northwest-justified, filling thematrix
only as necessary to conform to a stripe as left factor or a colonnade
as right factor.

0. Balanced Square. When two full matrices are multi-
plied, eight balanced quadrant multiplications arise; they
can elegantly be partitioned among four independent parallel
threads—one for each quadrant of the product,C. This case,
illustrated at the top of Figure 6, is called abalanced square.
We split it, instead, into only two parallel threads (e.g.the east
and west colonnades ofC) to simplify process management;
other cases, below, bifurcate similarly. If a third or fourth pro-
cessor were available, then it would be committed in another
bifurcation at the next level of the quadtree.

If we would allow temporary storage to the algorithm, then
this is the case where Strassen’s recurrence [21, 15,x1.3.8]
applies best (except on sparse or tiny matrices).

Otherwise, there are seven cases where padding might unbalance
a top-down parallel dispatch, classified by the bottom sketches in
Figure 6. All of them have two subcases, depending on whetherthe
padded dimension(s) constrain nonzero entries to the northand/or
west quadrants, or whether they wash into the south and/or east.
In the former case, four (or more) of the quadrant multiplications
are annihilated. In the latter case all eight proceed, including a
northwest contribution that is, entirely, balanced squares.

In order to balance the bifurcations, Case 2a is delegated to
one branch, with its paired Case 2b going to the other. Similarly,
Case 3a and Case 3b are assigned opposing branches to balance
one, another. The more numerous Cases 0, 4, and 5 are all sched-
uled serially, anticipating their bifurcations at the nextlevel of the
tree. Cases 1, 2, and 3 occur less frequently than the others and
the bother for their balancing might at first appear silly. However,
it becomes critical nearer the root of the quadtree (where, after all,
processing resources will yet be more plentiful) to correctgross
imbalances that can be introduced by heavy padding.

2as in “Stars and Stripes,” with apologies to tigers and zebras.

+= *

+= *

+= *

+= *

+= *

+= *

Square • Colonnade   2a

Stripe • Square   2b

Colonnade • Square   3a

Square • Stripe   3b

Colonnade • Stripe   4

Stripe • Colonnade   5

+= *

+= *

Square • Square   1

Balanced Square   0

Figure 6: Classification of how south and east padding unbalances
quadrant multiplications.

1. Square�Square. In the event that the square is entirely in
the northwest quadrant, a single recursion results—including
the possibility of a balanced square (Case 0) when it fits there
(almost) exactly.

Otherwise (when it extends into the southeast), cleaving a
square matrix into quadrants results in a full northwest quad-
rant, a full stripe as the southwest quadrant, another square to
the southeast, and a full colonnade to the northeast. The size
of the stripe and colonnade conform and, so, can be used for
a priori balancing. This case reduces to eight function calls,
one of each of these eight cases. Cases 0, 1, 4, and 5 are done
serially, but the four conforming halves of Cases 2 and 3 are
scheduled as two balanced threads.

2. The following two cases generate equivalent computational
load, and so are gathered.

(a) Square�Colonnade. The resultC can be partitioned
north–south yielding two balanced threads.
If the colonnade is purely western, then there are four
nontrivial block-multiplications, each Case 2a unless
the west is full (Case 0). In either case, they can be bal-
anced across two independent threads. If the colonnade
washes into the east, then the four cases just discussed
are still needed, but there are four additional, balanced
Case 0 problems on the west half ofC.

(b) Stripe�Square.This situation is analogous to Case 2a.
The resultC can be partitioned east–west yielding two
balanced threads.
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If the full stripe doesn’t paint into the southern half of
the matrix, then there are only four subproblems, all
Case 2b or possibly 0, which can be balanced east–
west. Otherwise, there are four more Case-0 multipli-
cations in the north.

3. The next two cases also generate the same computational
load.

(a) Colonnade�Square. The resultC can be partitioned
north–south yielding two balanced threads. If the
colonnade is all in the west, then there are only two bal-
anced Case 3a recurrences (maybe Case 0), which can
be scheduled in parallel. Otherwise there are two each
of Case 0, 2a, 3a, and 4 that can form two balanced,
independent threads.

(b) Square�Stripe. The resultC can be partitioned east–
west yielding two balanced threads. If the stripe is
purely northern, then there are only two independent
Cases 3b (perhaps 0). Otherwise there are two each of
Case 0, 2b, 3b, and 4 that may form two independent
threads.

4. Colonnade�Stripe. This case augments the most elements
in the product for each non-zero element in the factors; the
extreme of this case is the outer product of two vectors. The
resultC can be partitioned north–south yielding two balanced
threads.

If the colonnade is western only, then there are four indepen-
dent, direct recursive calls that are balanced for parallelism.
If it washes into the east, there are eight recursive calls again:
four of Case 0 and four of Case 3a that also bifurcate north–
south and balance.

5. Stripe�Colonnade. This case has the fewest elements aug-
mented by the multiplication for each non-zero element in the
factors; the extreme is the inner product of two vectors.

If the colonnade is western only, then no new threads are
spawned; both recurrences are done serially. If it washes into
the east, there are eight recursive calls again: two Case 0 se-
rially, two of Case 5 serially, and two each of Case 2a and 2b
that are serial but pairwise balanced and they can be sched-
uled in parallel.

All the south and east zeroes here are presumed to be padding
on the matrix, raising its physical order to a power of two. Asa
result, Cases 1–7 are expected to be far rarer than Case 0. They
arise only fromO(n) blocks on the south and east perimeter of a
matrix, but Case 0 applies on theO(n2) blocks in its core. Even
with balancing, Case 0 arises repeatedly in all eight recurrences.

Testing for padding is run-time overhead, as suggested by the
extra base case in Figure 8. Similar tests might also handle sparse
matrices, but the extra tests take marginally extra cycles and can be
elided when the factors are known to be dense and full.

Classification on the order of a multiplication should not betoo
precise here. For instance, a square multiplication of order 1023
should be treated as 1024 (Case 0), because that case admits more
parallelism at a higher level in the tree (for fewer dispatches) than
Case 1 would, and because the cost of repeated testing as the tree
is descended becomes uneconomical here. Carrying out the scalar
products on its padding of 2047 zero elements (using simply the
Figure-7 code) has proven to be cheaper than the run-time tests at
its leaves to short circuit the annihilators.

4.2 Spinning code for cache reuse

Although the quadrant-wise recursion of Figure 5 offers parallelism
and balancing, it lacks a feature exposed analytically—thatonly
two of the three operands need be reloaded between one step and
the next. While such a quadrant recursion had been familiar to us
before that analysis, this important attribute and its realization in
Figure 7 is new.

A split of the recursive algorithm into two versions was
necessary to realize this property. Labeling of the two as
up multiplication anddn multiplication suggests that they are
duals, likeLEFT andRIGHT; the termsUP andDOWN are used be-
cause they won’t get overloaded. The assertions in Figure 7’s com-
ments form an inductive proof that only two of the three blocks
(from A,B,C) need be reloaded across any semicolon, including
bridging from each block-exit to the succeeding block-entry. One
of the three always remains resident in the primary cache, orsec-
ondary cache, or RAM (when paging) between any two steps, re-
gardless of the size of that layer of physical memory.

Blocks fromA andB are read-only, of course. Blocks fromC
become dirty as they are over-written but, if threads are balanced
top-down (as in Section 4.1), no other processor will targetthe same
subblock ofC and suffer cache-incoherency from another’s “dirt.”
Of the eight quadrant operations, therefore, those on each quadrant
of writable operandC occur consecutively, so as to emit both up-
dates while it is yet cache-resident. Quadrants fromA andB, which
are swapped more often, are read-only. Extra compound statements
are marked by otherwise superfluous braces in Figure 7 to suggest
how it bifurcates into independent, parallel threads.

This is the skeleton of the algorithm whose caching and swap-
ping is tested in the next section. It has the virtue of omitting all ar-
chitectural parameters that would interfere with its portability from
one machine to the next. It recursively decomposes the problem
until three square blocks fit nicely in cache (or pages for thesquare
blocks fit nicely in main memory), without parameterizing the size
of those blocks.

Such cache-conservation immediately halved the running
timeson a quiet system with a large cache (the SGI POWERCHAL -
LENGE). The impact was less on another system with a small data
cache (a DEC ALPHA).

Finally, we observe that this “two miss” property has intention-
ally been destroyed in Figure 5. Unless the compiler can reorder
these function calls, all three of the operands need to be reloaded
between any two steps; so, that code represents a subtle, worst case
for cache reuse. We find it interesting that a relatively obscure per-
mutation of the eight recursive calls—away from any “natural” or-
der (for instance, one that arises frommapping functions)—was
necessary to exhibit so many cache misses.

4.3 Unfolding for superscalar architecture

It is necessary to unfold the recursion slightly, both to take proper
advantage of instruction cache, and also to enable a fair comparison
with compiled C loops like Figure 1’s that are routinely unrolled.
Compilers for the SGI POWER CHALLENGE, for instance, will un-
roll inner loops twice (or more) to take advantage of its super-scalar
architecture, but recursive calls are not similarly unfolded.

Management for the instruction cache ought to be handled by
compilers, targeted as they are to specific hardware. Unfortunately,
these compilers do a poor job with ordinary function linkage, stack-
ing when it is unnecessary, and not unfolding recursions at all.
(Nothing new there [22]!) So C’s macro facility was used to un-
fold the base case manually (within constraints of the instruction
cache, as a good compiler would). A typical result of unfolding
appears in Figure 8. With the base case composed of eight in-line,
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void multiply (Matrix a, Matrix b, Matrix c) {
offset = a.offset;
A_matrix = a.matrix;
B_matrix = b.matrix;
C_matrix = c.matrix;
up_mult (1, 1, 1);

}

static void dn_mult (register Index i_C, register Index i_A, register Index i_B) {
/* All assertions about cache refer to extreme corners of */
/* the named quadrant. */

if (i_A >= offset)
C_matrix[i_C] += A_matrix[i_A] * B_matrix[i_B];

else { /* decompose C,A,B into nw, ne, sw, se. */
/* Precondition: one extreme block of C_ne,A_nw, or B_ne in cache. */

/* Load other two of C_ne, A_nw, B_ne; */
{{dn_mult (ne (i_C), nw (i_A), ne (i_B)); /* Leaving C_ne_nw in cache. */

/* Load A_ne, B_ne; */
up_mult (ne (i_C), ne (i_A), se (i_B));} /* Leaving B_se_ne in cache. */

/* Load C_se, A_se, ; */
{dn_mult (se (i_C), se (i_A), se (i_B)); /* Leaving C_se_nw in cache. */

/* Load A_se, B_se; */
up_mult (se (i_C), sw (i_A), ne (i_B));}} /* Leaving A_sw_nw in cache. */

/* Load C_sw, B_nw; */
{{up_mult (sw (i_C), sw (i_A), nw (i_B)); /* Leaving C_sw_nw in cache. */

/* Load A_se, B_sw; */
dn_mult (sw (i_C), se (i_A), sw (i_B));} /* Leaving B_sw_ne in cache. */

/* Load C_nw, A_ne ; */
{up_mult (nw (i_C), ne (i_A), sw (i_B)); /* Leaving C_nw_nw in cache. */

/* Load A_nw, B_nw; */
dn_mult (nw (i_C), nw (i_A), nw (i_B));}}

/* Postcondition: extreme blocks of C_nw, A_nw, B_nw in cache. */
}

}

static void up_mult (register Index i_C, register Index i_A, register Index i_B) {
if (i_A >= offset)

C_matrix[i_C] += A_matrix[i_A] * B_matrix[i_B];
else { /* decompose A,B,C into nw, ne, sw, se. */

/* Precondition one extreme block of C_nw,A_nw, or B_nw in cache. */
/* Load other two of C_nw, A_nw, B_nw; */

{{up_mult (nw (i_C), nw (i_A), nw (i_B)); /* Leaving C_nw_ne in cache. */
/* Load A_ne, B_sw; */

dn_mult (nw (i_C), ne (i_A), sw (i_B));} /* Leaving B_sw_nw in cache. */
/* Load C_sw, A_se, ; */

{up_mult (sw (i_C), se (i_A), sw (i_B)); /* Leaving C_sw_ne in cache. */
/* Load A_sw, B_nw; */

dn_mult (sw (i_C), sw (i_A), nw (i_B));}} /* Leaving A_sw_nw in cache. */
/* Load C_se, B_ne; */

{{dn_mult (se (i_C), sw (i_A), ne (i_B)); /* Leaving C_se_nw in cache. */
/* Load A_se, B_se; */

up_mult (se (i_C), se (i_A), se (i_B));} /* Leaving B_se_ne in cache. */
/* Load C_ne, A_ne ; */

{dn_mult (ne (i_C), ne (i_A), se (i_B)); /* Leaving C_ne_nw in cache. */
/* Load A_nw, B_ne; */

up_mult (ne (i_C), nw (i_A), ne (i_B));}}
/* Postcondition: extreme blocks of C_ne, A_nw, B_ne in cache. */

}
}

Figure 7: Two-miss algorithm for quadtree matrix multiply.
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static void dn_mult (register Index i_C, register Index i_A, register Index i_B) {
if (i_A >= adjOffset) {

C_matrix[ne (i_C)] += A_matrix[nw (i_A)] * B_matrix[ne (i_B)];
C_matrix[ne (i_C)] += A_matrix[ne (i_A)] * B_matrix[se (i_B)];
C_matrix[se (i_C)] += A_matrix[se (i_A)] * B_matrix[se (i_B)];
C_matrix[se (i_C)] += A_matrix[sw (i_A)] * B_matrix[ne (i_B)];
C_matrix[sw (i_C)] += A_matrix[sw (i_A)] * B_matrix[nw (i_B)];
C_matrix[sw (i_C)] += A_matrix[se (i_A)] * B_matrix[sw (i_B)];
C_matrix[nw (i_C)] += A_matrix[ne (i_A)] * B_matrix[sw (i_B)];
C_matrix[nw (i_C)] += A_matrix[nw (i_A)] * B_matrix[nw (i_B)];

}
else if ( isZero( A_decoration[i_A] ) || isZero( B_decoration[i_B] ) { }
else {
{dn_mult (ne (i_C), nw (i_A), ne (i_B));
up_mult (ne (i_C), ne (i_A), se (i_B));
dn_mult (se (i_C), se (i_A), se (i_B));
up_mult (se (i_C), sw (i_A), ne (i_B));}
{up_mult (sw (i_C), sw (i_A), nw (i_B));
dn_mult (sw (i_C), se (i_A), sw (i_B));
up_mult (nw (i_C), ne (i_A), sw (i_B));
dn_mult (nw (i_C), nw (i_A), nw (i_B));}

}
}

Figure 8: Typical unfolding of Figure 7’s base case.

scalar multiply-adds, a super-scalar architecture can overlap two or
more of them.

We did observeanother improvement from this unfolding of
almost a full factor of two on our POWER CHALLENGE, enabling
superscalar performance within the capacity of its R8000 processor.

Figure 8 also illustrates how a byte array of “decorations” on
the nonterminal nodes of the quadtree can be used at run time to
steer the multiplication around zero blocks. The zeroes mayarise
from padding or in empty reaches of sparse matrices. The new
base case tests such a decoration, detecting when a product is to be
annihilated instead of computed. Architectural prejudices against
tests in super-scalar code and economy-of-scale both suggest that
such tests are more effective near the root of the quadtree.

5 Experimental results

The experiments of this section were carried out principally on two
machines. The first machine is an SGI ONYX with four R4400
processors, 64 megabytes of RAM and a large swapping disk. The
second machine is an SGI POWER CHALLENGE with ten R8000
processors, 4 megabytes of secondary cache per processor, 2giga-
bytes of shared RAM, and 6 gigabytes of shared swapping space.
Both used version 6.0.1 of the manufacturer’s C compiler. The
QUADTREE algorithm was also run on a DEC ALPHA AXP7720
with 1.5 gigabytes of RAM to see how it tracks on a different ar-
chitecture.

Four algorithms were tested: (1) the naive inner-product form
of Figure 1 (INPROD); (2) the transposed inner-product of Figure 2
(TRANSINPROD); (3) theQUADTREEalgorithm of Figures 7 and 8
using the internal nodes of the quadtree to hold flags to signal zero
and dense blocks; and (4) the BLAS3 routinedgemm.

This last routine has been hand-coded by the manufacturer and
exhibits as much as 264-Mflop performance in these tests on a 300
Mflop chip. Even though this rate is not sustained across all these
tests, we take it to be a credible target. Our timings arise from a not-
very-polished high-level program; Figure 7 compares more closely
to Figure 1 than to assembly code.

0

5000

10000

15000

20000

25000

30000

1000 2000 3000 4000 5000 6000 7000 8000 9000

R
un

ni
ng

 T
im

e 
(S

ec
on

ds
)

Order of Matrix

Figure 9: Uniprocessor Performance of Quadtree Matrix-Matrix
Multiplication

5.1 Uniprocessing behavior.

Figure 9 shows the running time for theQUADTREE algorithm on
the SGI POWER CHALLENGE for variously sized matrices. De-
spite natural affinity of theQUADTREEalgorithm towards matrices
whose orders are powers of two, the decoration flags direct the al-
gorithm efficiently for matrices of all orders. The algorithm has
also been tested on consecutive orders, and running times dore-
main smooth. As the graph shows, as the order of the matrix dou-
bles, running times increase by a factor of eight, as predicted by
familiar analysis.

Table 1 presents running times for the four matrix-matrix algo-
rithms on the SGI Power Challenge. The times for INPROD pro-
gressively gets worse and worse as the order increases sincethe
striding traversal ofA is hardly cache sensitive. The other three al-
gorithms are responsive to cache needs and so experience growth
expected of anO(n3) algorithm.

5.2 Multiprocessing behavior.

Table 2 contains the multiprocessing results for the BLAS3 and
QUADTREEalgorithms on the SGI ONYX and SGI POWERCHAL -
LENGE. These times are also graphed in Figures 10 and 11. The
table also displays the running time on the DEC ALPHA.
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Order BLAS3 QUADTREE TRANSINPROD INPROD RatioQUADTREE Ratio TRANSINPROD
to BLAS3 to QUADTREE

1023 8.122 62.09 209.5 272.9 7.64 3.37
1025 8.120 65.21 211.1 279.4 8.03 3.24
2047 68.53 497.5 1738 3527 7.26 3.49
2049 68.41 530.3 1743 3536 7.75 3.39
3050 211.0 1675 5746 11940 7.94 3.43
4095 545.4 3978 13920 30590 7.29 3.50

Table 1: Uniprocessor running times for all four algorithms(on SGI POWER CHALLENGE)

Number of QUADTREE BLAS3
Processors Machine Size Time Major faults Time Major faults

1 SGI ONYX 1024 180.1 0 40.4 0
2048 1479 1,559 374.9 1,386

R4400 3030 4722 21,279 1408 18,703
4096 11970 48,285 11500 927,559

SGI POWER 1024 62.09 8.134
CHALLENGEa 2048 497.5 113.8b

R8000 3030 1538 217.1
4096 3978 544.5

DEC ALPHA 1024 85.4 N/A
2048 710.7 N/A
3030 2229 N/A

2 SGI ONYX 1024 90.92 3 27.75 13
2048 737.2 67 408.2 448

R4400 3030 2548 11,964 1247 27,330
4096 6134 24,862 6530 135,241

SGI POWER 1024 30.06 4.825
CHALLENGE 2048 237.1 59.58b

R8000 3030 773.3 106.5
4096 1898 801.2

4 SGI ONYX 1024 46.1 3 13.95 0
2048 376.3 505 204.6 499

R4400 3030 1343 5,537 1298 20,769
4096 3261 14,259 4218 67,512

SGI POWER 1024 15.09 2.622
CHALLENGE 2048 120.2 30.52b

R8000 3030 391.1 54.26
4096 953.7 410.2

8 SGI POWER 1024 8.33 1.712
CHALLENGE 2048 61.02 15.85b

R8000 3030 206.3 29.24
4096 479.3 216.3

Table 2: Running times of BLAS3 andQUADTREE

aCompare Table 1.
bSee Section 5.3.
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1 proc QUAD
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4 proc QUAD

Figure 10: Running times on SGI R4400 ONYX
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4 proc QUAD
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Figure 11: Running times on SGI R8000 POWER CHALLENGE

Several observations arise:� For matrices of order 4096, BLAS3 was severely crippled
by page faults on the ONYX . The QUADTREE algorithm,
as designed, made the most of both cache and page reuse,
and, thus, it was able to beat the manufacturer’s hand-coded
BLAS3 routines on two and four processors. This did not
occur on the POWER CHALLENGE, whose main memory is
large enough to avoid paging.� The counts of major faults are all from one processor only,
even though more were used. Even then, we do not under-
stand why there were so few faults when more processors are
active. Certainly it is because of these faults that multiproces-
sor times ofQUADTREEwere less than those of BLAS3.� On the SGI POWER CHALLENGE the QUADTREEalgorithm
never beats BLAS3 because paging was unnecessary. It
closed to within a factor of two on matrices of order 4096 with
eight processors. We believe it would win on larger problems.� In all instances theQUADTREE algorithm exhibits the pre-
dicted eight-fold slowdown—or even less—on a problem of
double the order. BLAS3 slows much more on larger prob-
lems.� The QUADTREE algorithm on the DEC ALPHA is presented
here for relative comparison; BLAS3 routines were not avail-
able for comparison. It also exhibits the eight-fold slowdown
when the order doubles.

5.3 A strange case.

All of the running times for the BLAS3 algorithm on matrices of or-
der 2048 are reproducibly out of line in Table 2 on the SGI POWER
CHALLENGE. Under multiprocessing those for order 4096 are also
surprisingly slow. This might be due to an exception to its strid-
ing strategy, of the sort that we never saw with theQUADTREE al-
gorithm. On a matrix of order 2047, however, the uniprocessing
BLAS3 code yields a running time of 69 rather than 114 seconds
(Table 1); this value scales with those of the other orders and might
be used instead. The anomaly is invisible in Figure 11.

6 Analysis

This analysis explains—as supported by experiments over theyears
[19, 12]—that matrices should be partitioned into square blocks,
independently of the size and shape of the problem, for swapping
across boundaries in a layered memory.

Definition 4 A cache missis a demand for transfer of a block of
data, contiguous in memory, to and from similarly contiguous mem-
ory elsewhere.

Figure 12 sketches the algorithm for the cumulative block prod-
uctC+ =A�B, whereC isn�m,A is sizedn�l, andB is l�m.
We seek optimal values for the blocking within each of the matri-
ces, respectivelyr � q, r � p, andp� q, to minimize the number
of misses across the algorithm.

Constraint 1 l;m; n� p; q; r:
Definition 5 Letsbe the capacity of data cache, measured in units
of (floating-point)Scalars.

Constraint 2 s; p; q; r > 0:
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Constraint 3 pq + qr + rq � s:
Definition 6 The functionf mapshl; p;m; q; n; ri (labeled ac-
cording to Figure 12) to the number of scalars transferred tocache
in a block multiply as illustrated in Figure 12.

The image off is proportional to the traditionalFLOP-count, usu-
ally lmn. For the most common iterative algorithms of three nested
for-loops (cf. Figure 1), it is well known that only two cache
misses are necessary between the innermost steps. Optimal block
sizes seem to depend on all ofl;m; n; p; q; r; we seek good values
for the last three, independent of the first three.

The six familiar algorithms [14, p. 19] for the product (two us-
ing inner–, two middle–, and two outer-products), correspond to
each of the six permutations of the threefor-loops in Figure 1.
The first theorem abstracts the inner-product version wherethehl; pi dimension is traversed in the inner of three loops, andhn; ri is
traversed in the outer. Abstracting any of the other five would arrive
at the same formula with the pairsfhl; pi; hm; qi; hn; rig permuted
according the the rearrangement of the loops.

Theorem 1f(l; p;m; q; n; r) ' q + rqr lmn+ q � pq mn+ pr (r � q)n+ pq:
Proof: Two of the three blocks for an inner-product are swapped
at a time; read-onlyr � p blocks fromA andp � q blocksB are
loaded in the innerfor-loop. At the end of that loop, however, the
two blocks are taken fromC andB (but not fromA if the code is
clever enough to reverse the direction of alternate inner loops), and
at the end of the middle loop fromC andA (similarly). The last
term, below, accounts for the initial loading of cache.f(l; p;m; q; n; r) = �nr �lmq m(l lpm� 1)(rp+ pq)+lnr m(�mq �� 1)(rq + pq)+(lnr m� 1)(rq + rp) + (rq + rp+ pq):
Using Constraint 1, we drop the ceiling functions:f(l; p;m; q; n; r) ' nr mq ( lp � 1)(rp+ pq)+nr (mq � 1)(rq + pq)+(nr � 1)(rq + rp) + (qr + pr+ pq):
This result does not yield a broadly useful minimum forp; q; r be-
cause it depends on the relative sizesl;m; n of the matrices.

Definition 7 The functiong mapshl; p;m; q; n; ri to the number
of cache misses (processor with one duplex memory port) in the
block multiply illustrated in Figure 12.

Theorem 2 g(l; p;m; q; n; r) ' 2 lmnpqr + 1:
Theorem 3 The minimal value ofg(l; p;m; q; n; r), independent
of hl;m; ni; occurs nearp = q = r =ps=3:
Proof: From Theorem 2, we need to maximizepqr such thats � p; q; r > 0 andpq + qr + rp � s. This problem can be
interpreted as maximizing the volume of ap � q � r rectangu-
lar solid, subject to the constraint that its surface area isless than2s. The maximum occurs when all ofp; q; r are

ps=3: a cube. Of
course, the integral constraints and ceiling functions temper this so-
lution relative tol; m; n. So, optimal blocks are nearly—not always
perfectly (using a Legrange multiplier)—square,independentlyofl;m; andn.

This establishes the apocryphal result: square (or nearly square)
blocks offer optimal locality, independently of whetherA, B, or C
are rectangular.

7 Conclusions

The cache-miss metric is artificial. It does not explain the mag-
nitudes of most run times that we produced. On the other hand,
it does predict their relative ordering, and also that decomposition
into square subproblems reduces swapping, and that communica-
tion time should be consideredfirst on modern architectures. That
prediction, alone, is responsible for the dovetailed code in Figure 7;
if the only impact of an abstract analysis were to inspire a good al-
gorithm, then this one has already established itself.

On one processor our quadtree algorithm runs about 3.5
times faster than inner-product codes and and only 7 or 8 times
slower than uniprocessor BLAS3. Under multiprocessing, how-
ever, BLAS3 slows and—with all its disadvantages— the recursive
quadtree algorithm was seen to overtake it. We attribute there-
versal to the time required for swapping to/from secondary cache,
which was not foreseen in tuning the BLAS3 code. On the ONYX
the swap was paging between disk and RAM.

Some of our experiments were run on computers in a quiet
environment—without competing processes; this was important on
the ONYX . Earlier tests suggested corruption, even of large caches,
from competing programs. Readers are cautioned to seek solitude
for accurate cache-watching.

Similarly, we caution programmers that recursion is excessively
awkward on compilers for super-scalar processors that do not un-
fold the base cases in the same way that they do unroll inner loops.
These two insights—code dovetailed for cache reuse and unfolding
of its base cases for superscalar architectures—alone account for
almost a four-fold improvement in running times during the course
of our development.

We have not tested the attractive hybrid composed of Strassen’s
recurrence and this one; stability [17] and in-place constraints that
are already satisfied here would have to be relaxed there. How-
ever, for the balanced, dense matrix (Case 0) Strassen’s original
18-addition presentation also bifurcates nicely into 3-and-3 paral-
lel block multiplications, followed by 1 serially. That suggests a
hybrid scheme in which our indexing and recursion is used at the
highest, unbalanced levels (Cases 1–7) and Strassen’s is used on
the intermediate, balanced subproblems. Ours again becomes ap-
propriate for the tiny blocks [20] that fit in cache. Figure 4’s index-
ing, of course, is used throughout any recurrence—of these two or
of other algorithms.
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The underlying matrix representation is critical to these re-
sults. Indexing the matrix according to the level-order traversal of
its quadtree decomposition has the effect of localizing every sub-
tree/block in contiguous addresses. The effect is acceleration of
the computation by reuse of whichever block happens to fit into a
cache or a page—without anyone specifying the size of that block.
The code is efficient and portable because it takes good advantage
of that locality.

The use of this structure and this indexing should not be limited
to this particular problem. Other solations can take good advantage
of it. For instance, inLU decomposition it provides convenient piv-
oting on any block that is a subtree [24], whose elimination needs
only a single traversal using exactly this multiplication.We are
finding that other classic algorithms can also take good advantage
of the structure, the indexing, and the recursive style.

8 Addendum

Since this paper was completed, Version 7.1 of the SGI C compiler
was installed on our site. It has the effect ofincreasingthe times
for the quadtree algorithm over those reported here.

Also since then, we experimented with the quadrant ordering
within the representation, without changing other code. Itis pre-
sented above as northwest, southwest, southeast, northeast (called
the “U” ordering.) For reasons not yet understood, an older or-
dering: northwest, northeast, southwest, southeast (called the “Z”
ordering) seems to provide better times. Simply changing the data
structure from the U ordering to the Z ordering yields a 4–6% im-
provement over the times published here. And that improvement
was obtained under the Version 7.1 compiler.
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Figure 13: Impelementation of quadtree matrices.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1000 1500 2000 2500 3000 3500 4000 4500

R
un

ni
ng

 T
im

e 
(S

ec
on

ds
)

Order of Matrix

BLAS3
Quadtree

0

50

100

150

200

250

300

350

1000 1500 2000 2500 3000 3500 4000 4500

m
flo

ps

Order of Matrix

BLAS3
Quadtree

Figure 14: Uniprocessor results on SGI POWER CHALLENGE
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Figure 15: Two-processor results on SGI POWER CHALLENGE
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Figure 16: Four-processor results on SGI POWER CHALLENGE
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Figure 17: Eight-processor results on SGI POWER CHALLENGE
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Figure 18: Uniprocessor results on SGI ONYX
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Figure 19: Two-processor results on SGI ONYX
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Figure 20: Four-processor results on SGI ONYX


