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Abstract

An elementary, machine-independent, recursive algorfitmma-
trix multiplication C+=A* B provides implicit blocking atevery
level of the memory hierarchy and tests out faster than iclakbg
optimal code, tracking hand-coded BLAS3 routines. Proafaf-
cept is demonstrated by racing the in-place algorithm agaman-
ufacturer’'s hand-tuned BLAS3 routines; it can win.

The recursive code bifurcates naturally at the top leve int
dependent block-oriented processes, that each writes isjand
and contiguous region of memory. Experience has shown lieat t
indexing vastly improves the patterns of memory accesd &hal
els of the memory hierarchy, independently of the sizes ohea
or pages and withowtd hocprogramming. It also exposed a weak-
ness in SGI's C compilers that merrily unroll loops for thepsr:
scalar R8000 processor, but do not analogously unfold tilse ba
cases of the most elementary recursions. Such deficienégdg m
deter future programmers from using this rich class of reiver
algorithms.

Categories and subject descriptors:

G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Ilare
systems; E.1 [Data Structures]: Arrays; D.4.2 [Operatipst&ms]:
Storage Management—segmentation, swapping, virtual mgmor
B.3.2 [Memory Structures]: Design Styles—primary memory;
F.2.1 [Analysis of Algorithms and Problem Complexity]: Nam
ical Algorithms and Problems—computations on matrices; G.4
[Mathematical Software]: Algorithm analysis.

General Term: Performance.

Additional Key Words and Phrases: storage management, index-
ing, quadtrees, swapping, cache misses, paging.
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1 Introduction

This paper revisits matrix algebra, specifically multiplion, to
explore an algorithm nearly as simple as traditional onesl a
certainly better for hierarchical memory. We present a &mp
recursive algorithm and a matrix representation suitect tihat
have outperformed hand-optimized BLAS3 matrix multiptioa
[10]. Hand-coded by the manufacturer for salesmen’s peréoice
claims, this BLAS3 multiplication is widely thought to offepti-
mal performance.

Experiments with the algorithm have exposed weaknesses in
production compilers: loops are unrolled but recursiorsrant un-
folded. Moreover, they demonstrate a new way to balancedhe p
allel schedules top-down, following the recursion andifiarting
the matrices for favorable run-time locality.

It is well known that linear systems are best solved by algo-
rithms that decompose matrices into blocks [9, 10]. Thisspdp-
cuses on an elementary, machine-independent, recurgiggthm
for matrix multiplicationC+=A* B that provides implicit blocking
ateverylevel of the memory hierarchy and tests out faster than clas-
sically optimal code. Proof of concept is demonstrated lojngit
against hand-coded BLAS3 routines, which lose to it as they a
forced into paging.

With memory hierarchies of the future layered to still deepe
levels, in-place algorithms sensitive to the hierarchyl b nec-
essary to solve large problems. Insensitive to the exaattqoa
of memory-transfer at any level, our new algorithm retaissef-
ficiency as it decomposes and solves independent problesms th
cross through cache, main RAM, paged, and distributed deviel
memory. Although additional storage may be available at dis
tributed processors, it uses none, except for local vagbh a
recursion stack of depfly » for ordern matrices—constant space
for all practical purposes.

Four insights underlie the algorithms. First is the quaslte-
composition of matrices [23], as well as the algorithms that
nipulate them using recursive descent [24]. Second is alifami
indexing, newly applied to the map of matrices onto the askire
space. Next is a decomposition of the usual eight recurgived-
rant multiplications into two parallel streams, balancemmputa-
tional loads when the factors have known padding (east ahyou
with zeroes. The last insight is a careful dovetailing ofcassive
calls that has the effect, at a low level, of reusing dateaalyaesi-
dent in each level of memory and, at a high level, of balantieg
computational load among sibling processes.

1.1 Whence blocking?

The reader should distinguish our introduction of blockirg re-
cursive data structures and programs, from compile-tiranstior-
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mations of conventional arrays and loops to obtain goodkihgc
at run time. The latter strategy uses well the compiler'siedge
of the hardware parameters to fit the target machine, buséslimh-
ited to patterns of source code and transformations aatiethby
the compiler writer. Recent work of this sort includes dasasfor-
mations between row- and column-major [1, 6], blocking @thi
level code specifically to admit lower-level BLAS3 invoats [2],
and more recently such blocking to bypass BLASS3 entirely [5]
One could interpret our representations and algorithmaasva
way to introduce blocking into existing programs. We prefer
view them, instead, as results from a different style of egping
the same high-level algorithms. The style is, however, baédlso
inspires a new perspective, new insights, and—perhaps alse—n
algorithms. Recursive and parallel versions of practitgd@thms
already exist that use this structure well [24, 13]; in suohtexts
this matrix multiplication is not only the most natural, stalso the
fastest. Importantly, no conversions between data reptasens
are necessary there (aside from the usual ones at input &matgu
Fateman’s recent treatise that, in part, distinguishegicesat
from arrays [11§4.3] is relevant here. Matrix problems deal with
underlying vector spaces that are better decomposed twp-iido

subspaces. While quadtree decomposition may not be the mos

efficient one for any given problem, it does enforce the aivéohd-
conquer perspective that algebra allows us. Viewing theimas
decomposed by rows or by columns is a bottom-up approach; su
spaces may still be visible, but they assemble themsel\fes-di
ently.

Our philosophy derives from our experience with functional
programming and our view of its critical role for parallelggram-
ming [4]. Linear systems, in particular, come to us with drad-
gebra that is best visible in a functional program that rdiesin-
terdependent formulae [13, 24]. Discovery of good formiola of

known—and maybe even unknown—techniques follows top-down,

partition-and-conquer of the underlying vector space. &peri-
ence is that many insights and efficiencies are to be fourel her

This paper represents our effort to carry this philosoplgktia
serially addressed, hierarchical memory using conciseeffiailent

source code. The C programs here should be read, first, agan id

alized compilation of functional source code (like a muitation
of HASKELL arrays [16]) to run well on extant high-performance
systems.

1.2 Outline of paper.

The remainder of this paper is in six parts. A short sectioieres

the conventional looping algorithms that multiply usingném-,

outer-, or middle- products, and is followed by Section 3irgiv
the definitions of the quadtree representation of matricesthe

indexing on it. The next section contains details on the tead
recursions studied here, and Section 5 presents expeahment
sults. Section 6 offers the seminal analysis that only twacks

need be reloaded between any block multiplications andsthsre
blocks—Ilike these quadrants—are optimal. The last sectifanrof
conclusions.

2 Classic loops

The algorithms in this paper are presented in C. The bendhmar

code for matrix-matrix multiplicationC+=A* B, is the conventional
inner-product code of Figure 1, as presented in most linke@baa
courses. Following the associativity of addition, the ¢hnested-
loop controls can be permuted [14, p. 19] and reordered taimbt
outer- and middle-product alternatives. All exhibit thengaprob-
lem: that elements of some of the arrays must be fetchedasterf

void loop_multiply (int order, Scalar *c, Scalar *a, Scalar *b) {
/* Assert that matrix c¢ has already been zeroed. */
for (register int i =0; i < order; i++)
for (register int j =0; j < order; j++)
for (register int k = 0; k < order; k++)
c[i + j*order] += a[i + k*order] * b[k + j*order];

Figure 1: Matrix multiplication with three nested loops.

void loop_multiply (int order, Scalar *c, Scalar *a, Scalar *b) {
for (register int i =0; i <order; i++4)
for (register int j =0; j <order; j++) {
accunul ator = 0;
for (register int k = 0; k < order; k++)
accunul ator += aT[k + i*order] * b[k + j*order];
c[i + j*order] = accunulator;

Figure 2: Three nested loops with zeroing on pre-transpésed

memory unfortunately often. (See Section 6.)
Several transformations of this code are common. One lnitia

lizes the matrixC as it goes. Another transposes the default repre-

sentation of column-major order to representAtaaray, instead, in
row-major order to avoid excessive cache misses on seréljing

b from Ain the inner loop. Both of these are illustrated in Figure 2.

It is usual to modify this code, particularly within BLAS3
codes, so that the nested multiply-add &axpy) applies to
blocks, rather than to scalars. The size of the block is sedec
to fit the machine’s register and cache capacities, so thdtires
code is not portable.

The ubiquity of such code, moreover, leads optimizing cémpi
ers to unroll inner loops in order to avoid excess testindiltan
instruction pipe, and to take full advantage of the capatfithe in-
struction cache. Silicon Graphics’ C compiler for its MIP8IRO
chip, for instance, automatically unrolls this inner loagide as
inline code to take advantage of its super-scalar proogssin

3 Quadtree decomposition of matrices

On first reading of the definitions for the quadtree decontjmrsi
of matrices, it is easier to assume that the order of the rmatri
a power of two. This restriction is relaxed later with nedlig
overhead; the timing curves are smooth.

Definition 1 [23] A complete matrix has inddx A matrix at
index i is either scalar, or it is composed of four submatrices—
northwest, southwest, southeast, and northeast—eachlfothiea
order and with indicedi+1, 4i+2, 4i+3, and4i+4, respectively.

Figure 3 presents a context of C declarations for develoftiag
quadtree-matrix codes. The constahf set specifies the number
of interior nodes €.g. 5 in Figure 4). It can also be computed

typedef float Scalar;
typedef struct {

int order; /* Size of the matrix */

int offset; /* Census of nonterninal nodes */

Scal ar *matrix;
} Matrix;
#define nw(i) ((i << 2) + 1) /* index to Northwest quadrant of Matrix i */
#define sw(i) ((i << 2) + 2) /* index to Southwest quadrant of Matrix i */
#define se(i) ((i << 2) + 3) /* index to Southeast quadrant of Matrix i */
#define ne(i) ((i << 2) + 4) /* index to Northeast quadrant of Matrix i */

Figure 3: An environment for matrix representation
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518 17 20
6 7 18 19
9 212 13316
10 11|14 15

Figure 4: Level-order indexing of blocks in matrix of order 4

directly fromor der :

[lg(order)]

. Mg(oraer)] _ ¢
offset = 42 —_—

3

i=0

int offset;

Scalar *A matrix, *B matrix, *C_matrix;

void naive_nultiply (Matrix a, Matrix b, Matrix c) {

of fset = a.offset;
A matrix = a.matrix;
B matrix = b.matrix;
Cmatrix = c.matrix;
mult (1, 1, 1);

}

static void mult (register Index i_C,
register Index i _A register Index i_B) {
if (i_A >= offset)
Cmatrix[i_C| += A matrix[i_A] * B matrix[i_B];

el se {
mult (nw (i_O), nw (i _A) , nw (i_B));
mult (se (i_O, sw (i _A) , ne (i_B));
mult (nw (i_QO, ne (i_A) , sw (i_B));
mult (ne (i_0O, nw (i_A) , ne (i_B));
mult (se (i_0O, se (i_A) , se (i_B));
mult (sw(i_O), sw (i _A) , nw (i_B));
mult (ne (i_0O, ne (i_A) , se (i_B));
mult (sw(i_0O, se (i_A) , sw (i_B));

}
}

Figure 5: Quadtree matrix multiplication (with a strangejsenc-
ing).

Subtracting it from each element’s actual index yields a#wsed
indexing of just the elements in the matrix. Ignoring theseff
this definition provides a zero-based, level-order indgxiacross
a matrix’s tree [18, p. 350, 401], as illustrated in Figurer43]. It
prompts several observations.

e Everyblock/subtree is indexed consecutively at each of its
levels. The scalars in any subblock, as terminal nodes at the
same level in some subtree, are therefore indexed consecu-
tively. A good, block-oriented algorithm, one that descend
the tree to a subtree small enough to fit in cache (for insjance
experiences excellent caching behavior without any progra
mers’ worries over striding. Moreover, a multilayered mem-
ory experiences good locality simulatneously at each lefel
the memory/tree, independently of the page sizes.

Where a matrix’s order is not a power of two, it is padded (as
if with zeroes) on its south and east margins to the next targe
power,but these extra elements would never be touched by a
good algorithm. (Interior padding is also possible.) Paddi
introduces gaps into the level-order indexing, but the data
these gaps are never touched and never migrate to cache.

Padding can be detected from the size of each quadrant, or
a block purely of zeroes (padding) might be announced by a
flag in its parent node (as in Figure 8), from which all memory
accesses into that quadrant become unnecessary. Thatflag di
rects the algebra around zeroes (as additive identitiemahd
tiplicative annihilators), to yield accelerated compigtas on
sparse matrices. A good use for a second flag is to announce,
in contrast, that the subtree is practically dense—thatrit co
tains no zero blocks large enough to justify the routine zero
tests that might avoid them. Instead, all matrix operations
would descend blindly to the leaves, saving the few stads th
would result from branch instructions.

This indexing, like floating-point numbers and even the duesrepresentation,
itself, is an internal representation that speeds comiputaf\ll three are isomorphic
to alternative representations that are more easily realuoyans, but translations
between them often are computationally difficult. In alledrcases, such translations
never occur during routine computation, however, and asglapped with trudging.
linear-time input/output whenever necessary.

e Often the interior nodes of the tree are elided. The only rep-
resented nodes become its scalars (leaves) indexed aloeoss t
terminal level. Subtracting thef f set (5 in Figure 4) yields
the block indexing that is the closest analog of the classic i
dexing of column-major matrices within a linear array.

e As little as a 4% space overhead (beyond the elements) al-
lows for a byte—two flags per subtree—at every non-terminal
node. For instance, the scalars in an ordeteubl e matrix
occupy8m? bytes (form = 2M'#"1), but its quadtree has at

2 . . . .
most"’T’1 interior nodes. In such a case, the interior and
exterior nodes can be allocated with contiguous indices, bu
in separate memory partitions.

4 Recursive matrix multiplication

The algorithms in this section are the same as those skettivee,
except that the ordering of elementwise multiply-adds &lyger-
muted. Taking advantage of recursion, the order of thesetipas
is rearranged blockwise, for blocks coinciding with subgat all
levels in the quadtree decomposition.

Like the algorithms above, all are written as higher-levade,
and compiled with full optimization for the experiments oged
in the next section. All this is generic code that contrasth the
competing BLAS3 routines that have been polished over decad
to maximal performance on each architecture.

A functional programmer’s model for matrix multiplication
usegrapping functions over quadruples [24, 23] to decompose ma-
trix problems into square blocks. It is not too differentrfrd-ig-
ure 5 which exposes the blockwise algorithm, but obfusdateis
the functional syntax and the sparse-matrix algebra thaitvated
this representation. As observed elsewhere [23, 21], themqunts
of the answer can provide a partitioning into 4, 16, 64, . ocpsses
to compute the answer independently of one another.
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4.1 Balanced parallel multiplication

Matrix multiplication can be balanced across a small pogbrof
cessors top-down, even at compile time if the order is known.
(Then a change of order requires recompilation to a new sgagd
The following cases explain how to derive—top-down—a baldnce
schedule for run-time parallelism as long as one more penres-
mains to be scheduled. Itis formulated for square matrezearise
(e.g) in matrix decomposition. Balancing is only important near
the top of the scheduling tree, but it is very important thehe
difficult case occurs where the order is not equal to (espegiast
under) a power of two. For all orders the processing load edvel
anced by halving the processor resource as the recursiceits
the quadtree.

Definition 2 A strip€ is a set of adjacent rows in a matrix. A
colonnadss a set of adjacent columns.

Definition 3 A matrix or portion thereof isfull if it has no
known/significant internal zeroes and, if square, no zerddizg
on its south and east.

The stripes and colonnades of interest here are full achmss t
matrix. (They identify the candidate subspaces of the upider
vector space.) A special case occurs where a north stripeaand
west colonnade (here necessarily the same size) intecsfnt a
northwestsquare. This case is distinguished and so labeled, so in
this context stripes and colonnades span the matrix withzeoo
elements, and squares land northwest-justified, fillingrtizrix
only as necessary to conform to a stripe as left factor oracwde
as right factor.

0. Balanced Square. When two full matrices are multi-

* Balanced Square 0

Square » Square 1

&

Square « Colonnade 2a

ek

i

Stripe » Square 2

* Colonnade * Square 3a

Square ¢ Stripe 3

B

* Colonnade ¢ Stripe 4

= * Stripe » Colonnade 5

Figure 6: Classification of how south and east padding unbaka
quadrant multiplications.

plied, eight balanced quadrant multiplications arise;ythe
can elegantly be partitioned among four independent prall
threads—one for each quadrant of the prod@cftThis case,
illustrated at the top of Figure 6, is calletbalanced square.
We splitit, instead, into only two parallel threadsd. the east
and west colonnades @) to simplify process management;
other cases, below, bifurcate similarly. If a third or fdupro-
cessor were available, then it would be committed in another
bifurcation at the next level of the quadtree.

If we would allow temporary storage to the algorithm, then
this is the case where Strassen’s recurrence [21§153,8]
applies best (except on sparse or tiny matrices).

Otherwise, there are seven cases where padding might mceala
a top-down parallel dispatch, classified by the bottom $lestdn
Figure 6. All of them have two subcases, depending on whétleer
padded dimension(s) constrain nonzero entries to the modior
west quadrants, or whether they wash into the south andatr ea
In the former case, four (or more) of the quadrant multiflmas
are annihilated. In the latter case all eight proceed, oy a
northwest contribution that is, entirely, balanced sgsare

In order to balance the bifurcations, Case 2a is delegated to
one branch, with its paired Case 2b going to the other. Silpila

Case 3a and Case 3b are assigned opposing branches to balance

one, another. The more numerous Cases 0, 4, and 5 are all sched
uled serially, anticipating their bifurcations at the néegel of the

tree. Cases 1, 2, and 3 occur less frequently than the othdrs a
the bother for their balancing might at first appear silly.wéwer,

it becomes critical nearer the root of the quadtree (whdter all,
processing resources will yet be more plentiful) to corrgiiss
imbalances that can be introduced by heavy padding.

2as in “Stars and Stripes,” with apologies to tigers and zbra

1. SquaresSquare. In the event that the square is entirely in
the northwest quadrant, a single recursion results—inotydi
the possibility of a balanced square (Case 0) when it fitether
(almost) exactly.

Otherwise (when it extends into the southeast), cleaving a
square matrix into quadrants results in a full northwesidgua
rant, a full stripe as the southwest quadrant, another sgoar

the southeast, and a full colonnade to the northeast. The siz
of the stripe and colonnade conform and, so, can be used for
a priori balancing. This case reduces to eight function calls,
one of each of these eight cases. Cases 0, 1, 4, and 5 are done
serially, but the four conforming halves of Cases 2 and 3 are
scheduled as two balanced threads.

2. The following two cases generate equivalent computation
load, and so are gathered.

(@) SquaresColonnade. The resultC can be partitioned
north—south yielding two balanced threads.

If the colonnade is purely western, then there are four
nontrivial block-multiplications, each Case 2a unless
the west is full (Case 0). In either case, they can be bal-
anced across two independent threads. If the colonnade
washes into the east, then the four cases just discussed
are still needed, but there are four additional, balanced
Case 0 problems on the west half@f

StripeeSquare. This situation is analogous to Case 2a.
The resultC can be partitioned east—west yielding two
balanced threads.

(b)
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If the full stripe doesn’t paint into the southern half of
the matrix, then there are only four subproblems, all
Case 2b or possibly 0, which can be balanced east—
west. Otherwise, there are four more Case-0 multipli-
cations in the north.

4.2 Spinning code for cache reuse

Although the quadrant-wise recursion of Figure 5 offersaplalism

and balancing, it lacks a feature exposed analytically—timdy

two of the three operands need be reloaded between one step an
the next. While such a quadrant recursion had been famdiast

3. The next two cases also generate the same computationabefore that analysis, this important attribute and itsizeibn in

load.

(a) ColonnadesSquare. The resultC can be partitioned
north—-south vyielding two balanced threads. If the

colonnade is all in the west, then there are only two bal-

Figure 7 is new.

A split of the recursive algorithm into two versions was
necessary to realize this property. Labeling of the two as
up_mul tiplication anddn_nul t iplication suggests that they are
duals, likeLEFT andRIGHT; the termsuP andDOWN are used be-

anced Case 3a recurrences (maybe Case 0), which cancause they won't get overloaded. The assertions in Figsreofh-

be scheduled in parallel. Otherwise there are two each
of Case 0, 2a, 3a, and 4 that can form two balanced,
independent threads.

SquaresStripe. The resultC can be partitioned east—
west yielding two balanced threads. If the stripe is
purely northern, then there are only two independent

(b)

Cases 3b (perhaps 0). Otherwise there are two each of

Case 0, 2b, 3b, and 4 that may form two independent
threads.

4. ColonnadesStripe. This case augments the most elements
in the product for each non-zero element in the factors; the
extreme of this case is the outer product of two vectors. The
resultC can be partitioned north—south yielding two balanced
threads.

If the colonnade is western only, then there are four indepen
dent, direct recursive calls that are balanced for paisitel

If it washes into the east, there are eight recursive calisnag
four of Case 0 and four of Case 3a that also bifurcate north—
south and balance.

. StripeeColonnade. This case has the fewest elements aug-
mented by the multiplication for each non-zero element @ th
factors; the extreme is the inner product of two vectors.

If the colonnade is western only, then no new threads are
spawned; both recurrences are done serially. If it washes in

the east, there are eight recursive calls again: two Case 0 se
rially, two of Case 5 serially, and two each of Case 2a and 2b

that are serial but pairwise balanced and they can be sched-

uled in parallel.

ments form an inductive proof that only two of the three bkck
(from A, B, C) need be reloaded across any semicolon, including
bridging from each block-exit to the succeeding block-gn®ne

of the three always remains resident in the primary cachsgor
ondary cache, or RAM (when paging) between any two steps, re-
gardless of the size of that layer of physical memory.

Blocks fromA andB are read-only, of course. Blocks fro@®
become dirty as they are over-written but, if threads ararzdd
top-down (as in Section 4.1), no other processor will tatigesame
subblock ofC and suffer cache-incoherency from another’s “dirt.”
Of the eight quadrant operations, therefore, those on eaatirgnt
of writable operandC occur consecutively, so as to emit both up-
dates while it is yet cache-resident. Quadrants ffoamdB, which
are swapped more often, are read-only. Extra compounchstaiis
are marked by otherwise superfluous braces in Figure 7 tcestigg
how it bifurcates into independent, parallel threads.

This is the skeleton of the algorithm whose caching and swap-
ping is tested in the next section. It has the virtue of ommittll ar-
chitectural parameters that would interfere with its plittey from
one machine to the next. It recursively decomposes the @mobl
until three square blocks fit nicely in cache (or pages forstingare
blocks fit nicely in main memory), without parameterizing tize
of those blocks.

Such cache-conservation immediately halved the running
timeson a quiet system with a large cache (the SGIWER CHAL -
LENGE). The impact was less on another system with a small data
cache (a DEC APHA).

Finally, we observe that this “two miss” property has intent
ally been destroyed in Figure 5. Unless the compiler candesor
these function calls, all three of the operands need to lnaded
between any two steps; so, that code represents a subtkt, case

Al the south and east zeroes here are presumed to be padding©r cache reuse. We find it interesting that a relatively obsper-

on the matrix, raising its physical order to a power of two. @&s
result, Cases 1-7 are expected to be far rarer than Case §. The
arise only fromO(n) blocks on the south and east perimeter of a
matrix, but Case O applies on tid&n?) blocks in its core. Even
with balancing, Case 0 arises repeatedly in all eight recwoes.

Testing for padding is run-time overhead, as suggested éy th
extra base case in Figure 8. Similar tests might also hapaiess
matrices, but the extra tests take marginally extra cyabelscan be
elided when the factors are known to be dense and full.

Classification on the order of a multiplication should notbe
precise here. For instance, a square multiplication of rot@23
should be treated as 1024 (Case 0), because that case adméts m
parallelism at a higher level in the tree (for fewer dispaithan
Case 1 would, and because the cost of repeated testing asehe t
is descended becomes uneconomical here. Carrying out ke sc
products on its padding of 2047 zero elements (using sinpy t
Figure-7 code) has proven to be cheaper than the run-tinedes
its leaves to short circuit the annihilators.

mutation of the eight recursive calls—away from any “natucet
der (for instance, one that arises frampping functions)—was
necessary to exhibit so many cache misses.

4.3 Unfolding for superscalar architecture

It is necessary to unfold the recursion slightly, both tcetakoper
advantage of instruction cache, and also to enable a faipadson
with compiled C loops like Figure 1's that are routinely uihed.
Compilers for the SGI BWeR CHALLENGE, for instance, will un-
roll inner loops twice (or more) to take advantage of its stgmalar
architecture, but recursive calls are not similarly unéald
Management for the instruction cache ought to be handled by
compilers, targeted as they are to specific hardware. Uniately,
these compilers do a poor job with ordinary function linkagfack-
ing when it is unnecessary, and not unfolding recursionsllat a
(Nothing new there [22]') So C’s macro facility was used te un
fold the base case manually (within constraints of the uasion
cache, as a good compiler would). A typical result of unfoigdi
appears in Figure 8. With the base case composed of eighmen-|
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void nultiply (Matrix a, Matrix b, Matrix c) {
of fset = a.offset;
A matrix = a.matrix;
B matrix = b.matrix;
C matrix = c.matrix;
up_mult (1, 1, 1);
}

static void dn_nmult (register Index i _C, register Index i_A, register Index i_B) {

/* Al assertions about cache refer to extrene corners of */
/* the naned quadrant. */
if (i_A>= offset)
Cmatrix[i_C| += A matrix[i_Al * B_matrix[i_B];
else { /* deconpose C, A/ Binto nw, ne, sw, se. */
/* Precondition: one extreme block of C ne, A nw, or B ne in cache.
/* Load other two of C.ne, A nw, B ne;

{{dn_mult (ne (i_O, nw (i_A), ne (i_B)); /* Leaving C_ne_nw in cache.
/* Load A _ne, B_ne;

up_mult (ne (i_C, ne (i_A), se (i_B));} /* Leaving B_se_ne in cache.
/* Load C se, A se, ;

{dn_nult (se (i_O, se (i_A), se (i_B)); /* Leaving C_se_nw in cache.
/* Load A se, B_se;

up_mult (se (i_C, sw(i_A), ne (i_B));}} /* Leaving A _sw nwin cache.
/* Load C_sw, B nw;

{{up_mult (sw (i_O, sw (i_A), nw(i_B)); /* Leaving C_sw nw in cache.
/* Load A se, B sw

dn_mult (sw (i_C), se (i_A), sw(i_B));} /* Leaving B_sw ne in cache.
/* Load C_nw, A ne ;

{up_mul't (nw (i_C), ne (i_A), sw (i_B)); /* Leaving C_nw nw in cache.
/* Load A nw, B nw

dn_mult (nw (i _O), nw (i_A), nw (i_B));}}
/* Postcondition: extreme blocks of Cnw, A nw, B nwin cache.
}
}

static void up_nult (register Index i_C, register Index i _A register |ndex i

if (i_A>= offset)
Cmatrix[i_C| += A matrix[i_Al * B_matrix[i_B];
else { [/* deconpose A B,Cinto nw, ne, sw, se. */
/* Precondition one extreme block of Cnw,A nw, or B nwin cache.
/* Load other two of Cnw, A nw, B nw

{{up_mult (nw (i_O, nw (i_A), nw (i_B)); /* Leaving C_nw ne in cache.
/* Load A ne, B sw

dn_mult (nw (i _CQ), ne (i_A), sw(i_B));} /* Leaving B_sw nw in cache.
/* Load C sw, A se, ;

{up_mult (sw (i_O, se (i_A), sw(i_B)); /* Leaving C_sw. ne in cache.
/* Load A sw, B nw

dn_mult (sw (i_C), sw (i_A), nw (i_B));}} /* Leaving A _sw nwin cache.
/* Load C_ se, B ne;

{{dn_nmult (se (i_O, sw (i_A), ne (i_B)); /* Leaving C_se_nw in cache.
/* Load A se, B_se;

up_mult (se (i_C, se (i_A), se (i_B));} /* Leaving B_se_ne in cache.
/* Load C ne, A ne ;

{dn_mult (ne (i_O, ne (i_A), se (i_B)); /* Leaving C_ne_nw in cache.
/* Load A nw, B _ne;

up_mult (ne (i_C, nw (i_A), ne (i_B));}}
/* Postcondition: extreme blocks of Cne, A nw, B_ne in cache.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

B {

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

Figure 7: Two-miss algorithm for quadtree matrix multiply.
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static void dn_nult (register Index i_C, register Index i _A register Index i_B) {
if (i_A>= adjOfset) {
Cmtrix[ne (i_C] += A matrix[nw (i_A)] * B.matrix[ne (i_B)];
Cmtrix[ne (i_C] += A nmatrix[ne (i_A)] * B matrix[se (i_B)];
Cmatrix[se (i_C] += A matrix[se (i_A)] * B matrix[se (i_B)];
Cmatrix[se (i_CO] += A matrix[sw (i_A)] * B matrix[ne (i_B)];
Cmatrix[sw (i_C] += A matrix[sw (i_A)] * B matrix[nw (i_B)];
Cmtrix[sw (i_C] += A natrix[se (i_A)] * B.matrix[sw (i_B)];
Cmtrix[nw (i _C] += A nmatrix[ne (i_A)] * B.matrix[sw (i_B)];
Cmatrix[nw (i_C] += A matrix[nw (i_A)] * B matrix[nw (i_B)];

else if ( isZero( A _decoration[i_A] ) || isZero( B_decoration[i_B] ) { }
el se {

{dn_mult (ne (i_O), nw (i _A), ne (i_B));
up_mult (ne (i_O, ne (i_A), se (i_B));

dn_nult (se (i_O, se (i_A), se (i_B));

up_mult (se (i_O, sw (i_A), ne (i_B));}
{up_mult (sw (i_O), sw (i _A), nw (i_B));

dn_mult (sw (i_O, se (i_A), sw (i_B));

up_mult (nw (i_O), ne (i_A), sw (i_B));

dn_mult (nw (i_O), nw (i_A), nw (i_B));}

}
}

Figure 8: Typical unfolding of Figure 7's base case.

30000

scalar multiply-adds, a super-scalar architecture canayéwo or
more of them. 25000 |
We did observenother improvement from this unfolding of
almost a full factor of two on our FOWER CHALLENGE, enabling
superscalar performance within the capacity of its R800@gssor.
Figure 8 also illustrates how a byte array of “decorations” o
the nonterminal nodes of the quadtree can be used at run dime t
steer the multiplication around zero blocks. The zeroes arme

20000

15000 |

10000 |

Running Time (Seconds)

from padding or in empty reaches of sparse matrices. The new 5000 f
base case tests such a decoration, detecting when a predodid . -~
annihilated instead of computed. Architectural prejugiegainst 1000 2000 3000 4000 5000 6000 7000 8000 9000

Order of Matrix

tests in super-scalar code and economy-of-scale both sutige

such tests are more effective near the root of the quadtree. Figure 9: Uniprocessor Performance of Quadtree MatrixeMat

) Multiplication
5 Experimental results

The experiments of this section were carried out princypaii two

machines. The first machine is an SGN@ with four R4400 5.1 Uniprocessing behavior.

processors, 64 megabytes of RAM and a large swapping digk. Th o .

second machine is an SGORER CHALLENGE with ten R8000 Figure 9 shows the running time for ti|ADTREE algorithm on
bytes of shared RAM, and 6 gigabytes of shared swapping space SPite natural affinity of the@uADTREEalgorithm towards matrices
Both used version 6.0.1 of the manufacturer's C compilere Th Whose orders are powers of two, the decoration flags direcakh

QUADTREE algorithm was also run on a DECLRHA AXP7720 gorithm efficiently for matrices of all orders. The algorithhas
with 1.5 gigabytes of RAM to see how it tracks on a different ar @S0 been tested on consecutive orders, and running times-do
chitecture. main smooth. As the graph shows, as the order of the matrix dou

Four algorithms were tested: (1) the naive inner-produonfo ~ bles, running times increase by a factor of eight, as preditty
of Figure 1 (NPROD); (2) the transposed inner-product of Figure 2 familiar analysis.

(TRANSINPRODY); (3) theQUADTREEalgorithm of Figures 7and 8~ Table 1 presents running times for the four matrix-matrgoal
using the internal nodes of the quadtree to hold flags to kigna rithms on the SGI Power Challenge. The times foPRoD pro-
and dense blocks; and (4) the BLAS3 routidgenm gressively gets worse and worse as the order increases tsiace

This last routine has been hand-coded by the manufactuder an Striding traversal oA is hardly cache sensitive. The other three al-
exhibits as much as 264-Mflop performance in these tests 60a 3 Jgorithms are responsive to cache needs and so experiensthgro

Mflop chip. Even though this rate is not sustained acrosai expected of ad)(n”) algorithm.
tests, we take it to be a credible target. Our timings ariseafa not-
very-polished high-level program; Figure 7 compares mawsaty 5.2 Multiprocessing behavior.

to Figure 1 than to assembly code. ) ) .
Table 2 contains the multiprocessing results for the BLA&E a

QUADTREEalgorithms on the SGI @yx and SGI RWER CHAL -
LENGE. These times are also graphed in Figures 10 and 11. The
table also displays the running time on the DECPAIA.
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Order || BLAS3 | QUADTREE | TRANSINPROD | INPROD || RalioQUADTREE | Ratio TRANSINPROD
to BLAS3 to QUADTREE
1023 8.122 62.09 209.5 272.9 7.64 3.37
1025 8.120 65.21 211.1 279.4 8.03 3.24
2047 68.53 497.5 1738 3527 7.26 3.49
2049 68.41 530.3 1743 3536 7.75 3.39
3050 211.0 1675 5746 11940 7.94 3.43
4095 545.4 3978 13920 30590 7.29 3.50

Table 1: Uniprocessor running times for all four algorith(oa SGI ROWER CHALLENGE)

Number of QUADTREE BLAS3
Processordy  Machine Size || Time | Major faults Time | Major faults
1 SGI ONYX 1024 || 180.1 0 40.4 0
2048 || 1479 1,559 374.9 1,386
R4400 3030 4722 21,279 1408 18,703
4096 || 11970 48,285| 11500 927,559
SGIPOWER | 1024 ] 62.09 8.134
CHALLENGE? | 2048 | 497.5 113.8°
R8000 3030 1538 217.1
4096 || 3978 544.5
DEC ALPHA | 1024 85.4 N/A
2048 || 710.7 N/A
3030 2229 N/A
2 SGI ONYX 1024 || 90.92 3 27.75 13
2048 || 737.2 67 408.2 448
R4400 3030 | 2548 11,964 1247 27,330
4096 6134 24,862 6530 135,241
SGIPower | 1024 || 30.06 4.825
CHALLENGE | 2048 | 237.1 59.58°
R8000 3030 773.3 106.5
4096 | 1898 801.2
4 SGI ONYX 1024 46.1 3 13.95 0
2048 || 376.3 505 204.6 499
R4400 3030 1343 5,537 1298 20,769
4096 || 3261 14,259 4218 67,512
SGIPOWER | 1024 ] 15.09 2.622
CHALLENGE | 2048 120.2 30.52°
R8000 3030 391.1 54.26
4096 || 953.7 410.2
8 SGI Power | 1024 8.33 1.712
CHALLENGE | 2048 || 61.02 15.85°
R8000 3030 | 206.3 29.24
4096 || 479.3 216.3

Table 2: Running times of BLAS3 anmgUADTREE

aCompare Table 1.
bSee Section 5.3.
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Figure 11: Running times on SGI R800@WER CHALLENGE

Several observations arise:

e For matrices of order 4096, BLAS3 was severely crippled
by page faults on the ©vx. The QUADTREE algorithm,
as designed, made the most of both cache and page reuse,
and, thus, it was able to beat the manufacturer's hand-coded
BLASS routines on two and four processors. This did not
occur on the PWER CHALLENGE, whose main memory is
large enough to avoid paging.

e The counts of major faults are all from one processor only,
even though more were used. Even then, we do not under-
stand why there were so few faults when more processors are
active. Certainly it is because of these faults that muitips-
sor times ofQUADTREEwere less than those of BLASS.

e Onthe SGI PWER CHALLENGE the QUADTREE algorithm
never beats BLAS3 because paging was unnecessary. It
closed to within a factor of two on matrices of order 4096 with
eight processors. We believe it would win on larger problems

¢ In all instances th&UADTREE algorithm exhibits the pre-
dicted eight-fold slowdown—or even less—on a problem of
double the order. BLAS3 slows much more on larger prob-
lems.

e The QUADTREE algorithm on the DEC APHA is presented
here for relative comparison; BLAS3 routines were not avail
able for comparison. It also exhibits the eight-fold slowto
when the order doubles.

5.3 A strange case.

All of the running times for the BLAS3 algorithm on matricesoo-

der 2048 are reproducibly out of line in Table 2 on the SGIWER
CHALLENGE. Under multiprocessing those for order 4096 are also
surprisingly slow. This might be due to an exception to it&dst

ing strategy, of the sort that we never saw with theaDTREE al-
gorithm. On a matrix of order 2047, however, the uniproaassi
BLASS3 code yields a running time of 69 rather than 114 seconds
(Table 1); this value scales with those of the other ordedsmight

be used instead. The anomaly is invisible in Figure 11.

6 Analysis

This analysis explains—as supported by experiments oveyeidues
[19, 12]—that matrices should be partitioned into squareksdp
independently of the size and shape of the problem, for singpp
across boundaries in a layered memory.

Definition 4 A cache misss a demand for transfer of a block of
data, contiguous in memory, to and from similarly contigeiowem-
ory elsewhere.

Figure 12 sketches the algorithm for the cumulative bloddpr
uctC+ =A-B,whereC isnxm, Aissizedn x [, andB isl x m.
We seek optimal values for the blocking within each of therimat
ces, respectively x ¢, 7 x p, andp x ¢, to minimize the number
of misses across the algorithm.

Constraintl I,m,n > p,q,r.

Definition 5 Letsbe the capacity of data cache, measured in units
of (floating-point)scalars.

Constraint2 s,p,q,r > 0.
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-5 —»
>

Figure 12:C+=A* Bwith C's blocks sized" x ¢; A's blocksr x p;
andB's, p x q.

Constraint 3 pq + qr + rq < s.

Definition 6 The functionf maps(l,p, m,q,n,r) (labeled ac-
cording to Figure 12) to the number of scalars transferre¢ache
in a block multiply as illustrated in Figure 12.

The image off is proportional to the traditionaLopr-count, usu-
ally Imn. For the most common iterative algorithms of three nested
f or -loops €f. Figure 1), it is well known that only two cache
misses are necessary between the innermost steps. Optookl b
sizes seem to depend on allipfn, n, p, q, r; we seek good values
for the last three, independent of the first three.

The six familiar algorithms [14, p. 19] for the product (twe-u
ing inner—, two middle—, and two outer-products), corregpto
each of the six permutations of the threer -loops in Figure 1.
The first theorem abstracts the inner-product version wlhieee
(I, p) dimension is traversed in the inner of three loops, @nd:) is
traversed in the outer. Abstracting any of the other five wautive
at the same formula with the paifél, p), (m, ¢), (n, r)} permuted
according the the rearrangement of the loops.

Theorem 1

q+rlmn+ umn
q

f(l,p,m,q,n,r)g +§(T_Q)n+pq
Proof: Two of the three blocks for an inner-product are swapped
at a time; read-only: x p blocks fromA andp x ¢ blocks B are
loaded in the innef or -loop. At the end of that loop, however, the
two blocks are taken fromd’ and B (but not from A if the code is
clever enough to reverse the direction of alternate inngpdd, and

at the end of the middle loop fror and A (similarly). The last
term, below, accounts for the initial loading of cache.

[21[2]([£] = e+ pa)

n m

2] ea+m

fl,p,m,q,n,r)

it g
+( [ﬂ = 1)(rq+rp) + (rq +rp + pg).

Using Constraint 1, we drop the ceiling functions:

nm
f(l,p,m,q,n,r) ;7;(__1)(Tp+pq)
n, m
rmoy
+T(q )(ra + pa)
n

—I—(; —1)(rg+rp) + (gr +pr +pg). A

This result does not yield a broadly useful minimum fog, r be-
cause it depends on the relative sizes, n of the matrices.

10

Definition 7 The functiong maps(l, p, m, q, n, r) to the number
of cache misses (processor with one duplex memory port)ein th
block multiply illustrated in Figure 12.

Theorem 2 g(1,p,m,q,n,7) % 21;“;':

+ 1.

Theorem 3 The minimal value o§(l, p, m,q,n,r), independent
of (I, m,n),occurs neap = g =r = /s/3.

Proof: From Theorem 2, we need to maximizgr such that
s > p,q,r > 0andpqg + qr + rp < s. This problem can be
interpreted as maximizing the volume ofpax ¢ x r rectangu-
lar solid, subject to the constraint that its surface ardads than
2s. The maximum occurs when all pf ¢, r are/s/3: acube. Of
course, the integral constraints and ceiling functiongaenthis so-
lution relative ta, m, n. So, optimal blocks are nearly—not always
perfectly (using a Legrange multiplier)—squanedependentlyof
I, m, andn.

This establishes the apocryphal result: square (or nequigre)
blocks offer optimal locality, independently of wheth&rB, or C
are rectangular.

7 Conclusions

The cache-miss metric is artificial. It does not explain thegm
nitudes of most run times that we produced. On the other hand,
it does predict their relative ordering, and also that degosition

into square subproblems reduces swapping, and that comazuni
tion time should be considerdiuist on modern architectures. That
prediction, alone, is responsible for the dovetailed cod€gure 7;

if the only impact of an abstract analysis were to inspire adgal-
gorithm, then this one has already established itself.

On one processor our quadtree algorithm runs about 3.5
times faster than inner-product codes and and only 7 or 8stime
slower than uniprocessor BLAS3. Under multiprocessingy-ho
ever, BLAS3 slows and—with all its disadvantages— the reeers
guadtree algorithm was seen to overtake it. We attributergéhe
versal to the time required for swapping to/from secondaghe,
which was not foreseen in tuning the BLAS3 code. On ther®
the swap was paging between disk and RAM.

Some of our experiments were run on computers in a quiet
environment—without competing processes; this was impbda
the ONYX. Earlier tests suggested corruption, even of large caches,
from competing programs. Readers are cautioned to sedldm®li
for accurate cache-watching.

Similarly, we caution programmers that recursion is exive$s
awkward on compilers for super-scalar processors that damo
fold the base cases in the same way that they do unroll inogslo
These two insights—code dovetailed for cache reuse anddingpl
of its base cases for superscalar architectures—alone rtctau
almost a four-fold improvement in running times during tloeise
of our development.

We have not tested the attractive hybrid composed of Stm&sse
recurrence and this one; stability [17] and in-place caists that
are already satisfied here would have to be relaxed there.- How
ever, for the balanced, dense matrix (Case 0) Strassegjmati
18-addition presentation also bifurcates nicely into 8-8rparal-
lel block multiplications, followed by 1 serially. That syests a
hybrid scheme in which our indexing and recursion is useteat t
highest, unbalanced levels (Cases 1-7) and Strassen’sdsams
the intermediate, balanced subproblems. Ours again becape
propriate for the tiny blocks [20] that fit in cache. Figurs #dex-
ing, of course, is used throughout any recurrence—of thegetw
of other algorithms.
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The underlying matrix representation is critical to these r
sults. Indexing the matrix according to the level-ordeveéraal of
its quadtree decomposition has the effect of localizingyegeb-
tree/block in contiguous addresses. The effect is accaaraf
the computation by reuse of whichever block happens to fit ant
cache or a page—without anyone specifying the size of thakblo
The code is efficient and portable because it takes good ty@an
of that locality.

The use of this structure and this indexing should not bedichi
to this particular problem. Other solations can take googathge
of it. Forinstance, irLU decomposition it provides convenient piv-
oting on any block that is a subtree [24], whose eliminatieads
only a single traversal using exactly this multiplicatiokVe are
finding that other classic algorithms can also take good ratdge
of the structure, the indexing, and the recursive style.

8 Addendum

Since this paper was completed, Version 7.1 of the SGI C dempi
was installed on our site. It has the effectio€reasingthe times
for the quadtree algorithm over those reported here.

Also since then, we experimented with the quadrant ordering
within the representation, without changing other codds [ire-
sented above as northwest, southwest, southeast, nartbatead
the “U” ordering.) For reasons not yet understood, an older o
dering: northwest, northeast, southwest, southease(tétie “2”
ordering) seems to provide better times. Simply changiegitita
structure from the U ordering to the Z ordering yields a 4—686 i
provement over the times published here. And that improveme
was obtained under the Version 7.1 compiler.
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Appendix: Slides newly presented at PPoPP '97
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Figure 13: Impelementation of quadtree matrices.
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Figure 14: Uniprocessor results on SGOWER CHALLENGE
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Figure 15: Two-processor results on SGIWER CHALLENGE
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Figure 16: Four-processor results on SGIWER CHALLENGE
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Figure 17: Eight-processor results on SGIWeR CHALLENGE
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Figure 19: Two-processor results on SGHN&X
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Figure 18: Uniprocessor results on SGN©X
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Figure 20: Four-processor results on SGIYX



