
A New Method for Solving Hard Satis�ability ProblemsBart SelmanAT&T Bell LaboratoriesMurray Hill, NJ 07974selman@research.att.com Hector Levesque�Dept. of Computer ScienceUniversity of TorontoToronto, Canada M5S 1A4hector@ai.toronto.edu David MitchellDept. of Computing ScienceSimon Fraser UniversityBurnaby, Canada V5A 1S6mitchell@cs.sfu.caAbstractWe introduce a greedy local search procedure calledGSAT for solving propositional satis�ability problems.Our experiments show that this procedure can be usedto solve hard, randomly generated problems that arean order of magnitude larger than those that can behandled by more traditional approaches such as theDavis-Putnam procedure or resolution. We also showthat GSAT can solve structured satis�ability problemsquickly. In particular, we solve encodings of graphcoloring problems, N-queens, and Boolean induction.General application strategies and limitations of the ap-proach are also discussed.GSAT is best viewed as a model-�nding procedure.Its good performance suggests that it may be advan-tageous to reformulate reasoning tasks that have tra-ditionally been viewed as theorem-proving problems asmodel-�nding tasks.IntroductionThe property of NP-hardness is traditionally taken tobe the barrier separating tasks that can be solved com-putationally with realistic resources from those thatcannot. In practice, to solve tasks that are NP-hard,it appears that something has to be given up: restrictthe range of inputs; allow for erroneous outputs; usedefaults outputs when resources are exhausted; limitthe size of inputs; settle for approximate outputs, andso on. In some cases, this can be done in a way thatpreserves the essence of the original task. For exam-ple, perhaps erroneous outputs occur extremely rarely;perhaps the class of allowable inputs excludes only verylarge, unlikely, or contrived cases; perhaps the approxi-mate answers can be guaranteed to be close to the exactones, and so on. In this paper, we propose an algorithmfor an NP-hard problem that we believe has some veryde�nite advantages. In particular, it works very quickly(relative to its competition) at the expense of what ap-pears to be statistically minimal errors.�Fellow of the Canadian Institute for Advanced Research,and E. W. R. Steacie Fellow of the Natural Sciences andEngineering Research Council of Canada.

The �rst computational task shown to be NP-hardby Cook (1971) was propositional satis�ability, or SAT:given a formula of the propositional calculus, decideif there is an assignment to its variables that satis�esthe formula according to the usual rules of interpreta-tion. Unlike many other NP-hard tasks (see Garey andJohnson (1979) for a catalogue), SAT is of special con-cern to AI because of its direct connection to reasoning.Deductive reasoning is simply the complement of sat-is�ability: Given a collection of base facts �; then asentence � should be deduced i� �[f:�g is not satis�-able. Many other forms of reasoning (including defaultreasoning, diagnosis, planning, and image interpreta-tion) also make direct appeal to satis�ability. The factthat these usually require much more than the propo-sitional calculus simply highlights the fact that SAT isboth a fundamental task and a major stumbling blockto e�ective reasoners.

In: Proceedings of the Tenth National Conference on Ar-ti�cial Intelligence (AAAI-92), San Jose, CA, July 1992,440{446.

Though SAT is originally formulated as decisionproblem, there are two closely related search problems:1. model-�nding: �nd an interpretation of the variablesunder which the formula comes out true, or reportthat none exists. If such an interpretation exists, thenthe formula is obviously satis�able.2. theorem-proving: �nd a formal proof (in a sound andcomplete proof system) of the negation of the formulain question, or report that there is no proof. If a proofexists, then the negated formula is valid, and so theoriginal formula is not satis�able.Whereas much of the reasoning work in AI has favoredtheorem-proving procedures (and among these, resolu-tion is the favored method), in this paper, we investi-gate the behaviour of a new model-�nding procedurecalled GSAT. We will also explain why we think that�nding models may be a useful alternative for many AIreasoning problems.The original impetus for this work was the recent suc-cess in �nding solutions to very large N-queens prob-lems, �rst using a connectionist system (Adorf andJohnston 1990), and then using greedy local search(Minton et al. 1990). To us, these results simply indi-cated that N-queens was an easy problem. We felt thatsuch techniques would fail in practice for SAT. But this

appears not to be the case. The issue is clouded by thefact that some care is required to randomly generateSAT problems that are hard for even ordinary back-tracking methods.1 But once we discovered how to dothis (and see Mitchell et al. (1992) for details), we foundthat GSAT's local search was very good at �nding mod-els for the hardest formulas we could generate.Because model-�nding is NP-hard, we cannot expectGSAT to solve it completely and exactly within toler-able resource bounds. What we will claim, however,is that the compromises it makes are quite reasonable.In particular, we will compare GSAT to another proce-dure DP (which is, essentially, a version of resolutionadapted to model-�nding) and demonstrate that GSAThas clear advantages. But there is no free lunch: wecan construct satis�able formulas for which GSAT maytake an exponential amount of time, unless told to stopearlier. However, these satis�able counter-examples doappear to be extremely rare, and do not occur naturallyin the applications we have examined.In the next section, we give a detailed description ofthe GSAT procedure. We then present test results ofGSAT on several classes of formulas. This is followedby a discussion of the limitations of GSAT and some po-tential applications. In the �nal section, we summarizeour main results.The GSAT procedureGSAT performs a greedy local search for a satisfyingassignment of a set of propositional clauses.2 The pro-cedure starts with a randomly generated truth assign-ment. It then changes (`ips') the assignment of thevariable that leads to the largest increase in the to-tal number of satis�ed clauses. Such ips are repeateduntil either a satisfying assignment is found or a pre-set maximumnumber of ips (MAX-FLIPS) is reached.This process is repeated as needed up to a maximum ofMAX-TRIES times. See Figure 1.GSAT mimics the standard local search proceduresused for �nding approximate solutions to optimizationproblems (Papadimitriou and Steiglitz 1982) in thatit only explores potential solutions that are \close" tothe one currently being considered. Speci�cally, we ex-plore the set of assignments that di�er from the currentone on only one variable. One distinguishing feature ofGSAT, however, is the presence of sideways moves, dis-1After the current paper was prepared for publication,we were surprised to discover that a procedure very similarto ours had been developed independently, and was claimedto solve instances of SAT substantially larger than those dis-cussed here (Gu 1992). It is tempting, however, to discountthat work since the large instances involved are in fact easyones, readily solvable by backtracking procedures like DP ina few seconds.2A clause is a disjunction of literals. A literal is a propo-sitional variable or its negation. A set of clauses correspondsto a formula in conjunctive normal form (CNF): a conjunc-tion of disjunctions. Thus, GSAT handles CNF SAT.

procedure GSATInput: a set of clauses �, MAX-FLIPS, and MAX-TRIESOutput: a satisfying truth assignment of �, if foundbeginfor i := 1 to MAX-TRIEST := a randomly generated truth assignmentfor j := 1 to MAX-FLIPSif T satis�es � then return Tp := a propositional variable such that a changein its truth assignment gives the largestincrease in the total number of clausesof � that are satis�ed by TT := T with the truth assignment of p reversedend forend forreturn \no satisfying assignment found"end Figure 1: The procedure GSAT.cussed below. Another feature of GSAT is that thevariable whose assignment is to be changed is chosenat random from those that would give an equally goodimprovement. Such non-determinism makes it very un-likely that the algorithm makes the same sequence ofchanges over and over.The GSAT procedure requires the setting of two pa-rameters MAX-FLIPS and MAX-TRIES, which deter-mine, respectively, how many ips the procedure willattempt before giving up and restarting, and how manytimes this search can be restarted before quitting. Asa rough guideline, setting MAX-FLIPS equal to a fewtimes the number of variables is su�cient. The settingof MAX-TRIES will generally be determined by the to-tal amount of time that one wants to spend lookingfor an assignment, which in turn depends on the ap-plication. In our experience so far, there is generallya good setting of the parameters that can be used forall instances of an application. Thus, one can �ne-tunethe procedure for an application by experimenting withvarious parameter settings.It should be clear that GSAT could fail to �nd anassignment even if one exists, i.e. GSAT is incomplete.We will discuss this below.Experimental resultsWe tested GSAT on several classes of formulas: ran-dom formulas, graph coloring encodings, N-queens en-codings, and Boolean induction problems. For purposesof comparison, we ran the tests with the Davis-Putnamprocedure (DP) (Davis and Putnam 1960).The DP procedureDP is in essence a resolution procedure (Vellino 1989).It performs a backtracking search in the space of alltruth assignments, incrementally assigning values to

formulas GSAT DPvars clauses M-FLIPS tries time choices depth time50 215 250 6.4 0.4s 77 11 1.4s70 301 350 11.4 0.9s 42 15 15s100 430 500 42.5 6s 84� 103 19 2.8m120 516 600 81.6 14s 0:5� 106 22 18m140 602 700 52.6 14s 2:2� 106 27 4.7h150 645 1500 100.5 45s | | |200 860 2000 248.5 2.8m | | |250 1062 2500 268.6 4.1m | | |300 1275 6000 231.8 12m | | |400 1700 8000 440.9 34m | | |500 2150 10000 995.8 1.6h | | |Table 1: Results for GSAT and DP on hard random 3CNF formulas.variables and simplifying the formula. If no new vari-able can be assigned a value without producing anempty clause, it backtracks. The performance of thebasic DP procedure is greatly improved by using unitpropagation whenever unit clauses arise:3 variables oc-curring in unit clauses are immediately assigned thetruth value that satis�es the clause, and the formulais simpli�ed, which may lead to new unit clauses, etc.This propagation process can be executed quite e�-ciently (in time linear in the total number of literals).DP combined with unit propagation is one of the mostwidely used methods for propositional satis�ability test-ing.Hard random formulasRandom instances of CNF formulas are often used inevaluating satis�ability procedures because they canbe easily generated and lack any underlying \hidden"structure often present in hand-crafted instances. Un-fortunately, unless some care is taken in sampling for-mulas, random satis�ability testing can end up look-ing surprisingly easy. For example, Goldberg (1979)showed experimentally how DP runs in polynomial av-erage time on a class of random formulas. However,Franco and Paull (1983) demonstrated that the in-stances considered by Goldberg were so satis�able thatan algorithm that simply guessed truth assignmentswould �nd a satisfying one just as quickly as DP! Thisissue is discussed in detail in (Mitchell et al. 1992).Formulas are generated using the uniform distribu-tion or �xed-clause length model. For each class of for-mulas, we choose the number of variables N , the num-ber of literals per clause K, and the number of clausesL. Each instance is obtained by generating L randomclauses each containing K literals. The K literals aregenerated by randomly selecting K variables, and eachof the variables is negated with a 50% probability. Asdiscussed in Mitchell et al. (1992), the di�culty of suchformulas critically depends on the ratio between N and3A unit clause is a clause that contains a single literal.

L. The hardest formulas appear to lie around the regionwhere there is a 50% chance of the randomly generatedformula being satis�able. For 3CNF formulas (K = 3),experiments show that this is the case for L � 4:3N .4We should stress that for di�erent ratios of clauses tovariables, formulas can become very easy. For example,DP solves 10,000 variable 20,000 clause 3SAT instancesin a few seconds, whereas it cannot in practice solve 250variable 1062 clause instances. In this paper, when wespeak of random formulas we mean those in the hardestregion only.Unsatis�able formulas are of little interest when test-ing GSAT, since it will always (correctly) return \nosatisfying assignment found" in time directly proposi-tional to (MAX-FLIPS � MAX-TRIES). So we �rstused DP to select satis�able formulas to use as testcases. This approach is feasible for formulas contain-ing up to 140 clauses. For longer formulas, DP simplytakes too much time, and we can no longer pre-selectthe satis�able ones. In such cases, GSAT is tested onboth satis�able and unsatis�able instances.Table 1 summarizes our results: �rst the number ofvariables and clauses in each formula, and then statis-tics for GSAT and DP. For formulas containing up to120 variables, the statistics are based on averages over100 satis�able instances; for the larger formulas, the av-erage is based on 10 satis�able formulas. For GSAT, wereport the setting of MAX-FLIPS (in the header short-ened to M-FLIPS), how many tries GSAT took beforean assignment was found, and the total time used in�nding an assignment.5 The fractional part of the num-ber of tries indicates how many ips it took on the �nalsuccessful one. So, for example, 6.4 tries in the �rst rowmeans that an assignment was not found in the �rst 64For more than 150 variables per formula, the ratio seemsto converge to 4:25N . In table 1, we have used this ratiofor the higher values of N. The exact ratio is not known;the theoretical derivation of the \50% satis�able" point is achallenging open problem.5Both GSAT and DP were written in C and ran on aMIPS machine under UNIX.

tries of 250 ips, but on the 7th try, one was found after0:4�250 = 100 ips. For DP, we give the number of bi-nary choices made during the search, the average depthof the search tree (ignoring unit propagation), and thetime it took to �nd an assignment.First, note that for each satis�able formula found byDP, GSAT had no trouble �nding an assignment. Thisis quite remarkable in itself, since one might expect itto almost always hit some local minimumwhere at leasta few clauses remain unsatis�ed. But apparently thisis not the case. Moreover, as is clear from table 1, theprocedure is substantially faster than DP.The running time of DP increases dramatically withthe number of variables with a critical increase occur-ring around 140 variables. This renders it virtually use-less for formulas with more than 140 variables.6 The be-havior of GSAT, on the other hand, is quite di�erent:300 variable formulas are quite manageable, and even500 variable formulas can be solved. As noted above,the satis�ability status of these large test cases was ini-tially unknown. Nonetheless, GSAT did still manageto �nd assignments for a substantial number of them.(See Selman et al. (1992) for more details.)Now consider in table 1 the total number of ips usedby GSAT to �nd an assignment and the total numberof binary choices in the DP search tree. Again, wesee a dramatic di�erence in the growth rates of thesenumbers for the two methods. This shows that thedi�erence in running times is not simply due to somepeculiarity of our implementation.7 So, GSAT appearsto be well-suited for �nding satisfying assignments forhard random formulas. Moreover, the procedure canhandle much larger formulas (up to 500 variables) thanDP (up to around 140 variables). Again, we shouldstress that we have shown these results for the hardestregion of the distribution. Like most other procedures,GSAT also solves the \easy" cases quickly (Selman etal. 1992).Graph coloringIn this section, we briey discuss the performance ofGSAT on graph coloring. Consider the problem of col-oring with K colors a graph with V vertices such thatno two nodes connected by an edge have the same color.We create a formula with K variables for each node ofthe graph, where each variable corresponds to assign-ing one of the K possible colors to the node. We haveclauses that state that each node must have at least onecolor, and that no two adjacent nodes have the samecolor.6A recent implementation of a highly optimized variantof DP incorporating several special heuristics is able to han-dle hard random formulas of up to 200 variables (Crawfordand Auton, personal communication 1991).7If the depth continues to grow at its current rate, theDP search tree for 500 variable formulas could have as manyas 2100 nodes. Even when processing 1010 nodes per second,DP could take 1012 years to do a complete search.

Johnson et al. (1991) evaluate state-of-the-art graph-coloring algorithms on instances of random graphs. Weconsidered one of the hardest instances discussed: a 125vertex graph for which results are given in table II ofJohnson et al. (1991). The encoding that allows for 18colors consists of 89,288 clauses with 2,250 variables,and an encoding that allows for only 17 colors consistsof 83,272 clauses with 2,125 variables. GSAT managedto �nd the 18-coloring in approximately 5 hours. (DPran for many more hours but did not �nd an assign-ment.) This is quite reasonable given that the runningtimes for the various specialized algorithms in Johnsonet al. ranged from 20 minutes to 1.7 hours. Unfortu-nately, GSAT did not �nd a 17-coloring (most likelyoptimal; Johnson (1991)).8 This is perhaps not toosurprising given that some of the methods in Johnsonet al. couldn't �nd one either, while another took 21.6hours, and the fastest took 1.8 hours. Interestingly,some of the best graph-coloring methods are based onsimulated annealing, an approach that shares some im-portant features with GSAT.So, although it is not as fast as the specialized graph-coloring procedures, GSAT can be used to �nd near op-timal colorings of hard random graphs. Moreover, theproblem reformulation in terms of satis�ability does notresult in a dramatic degradation of performance, con-trary to what one might expect. The main drawback ofsuch an encoding appears to be the inevitable polyno-mial increase in problem size.N-queensIn the N-queens problem one has to �nd a placement ofN queens on a N � N chess board such that no queenattacks another. Although a generic solution to theproblem is known (Falkowski et al. 1986), it is based onplacing the queens in a very speci�c, regularly repeatedpattern on the board. The problem of �nding arbitrarysolutions has been used extensively to test constraintsatisfaction algorithms.Using standard backtracking techniques, the problemappears to be quite hard. But in a recent paper, Mintonet al. (1990) show how one can generate solutions bystarting with a random placement of the queens (one ineach row) and subsequently moving the queens aroundwithin the rows, searching for a solution. This methodworks remarkably well: their method appears to scalelinearly with the number of queens.9To test GSAT on the N-queens problem, we �rsttranslate the problem into a satis�ability question: we8By using initial assignments that are not completelyrandom, as suggested by Geo� Hinton, we have recentlybeen able to solve also this instance (Selman et al. 1992).9There are, it should be mentioned, notable di�erencesin Minton's and our approaches. One is the use of sidewaysmoves. This appears essential in satis�ability testing, dis-cussed below. Also, GSAT chooses the variable that givesthe best possible improvement, while Minton's program se-lects an arbitrary queen and moves it to reduce conicts.

formulas GSATQueens vars clauses ips tries time8 64 736 105 2 0.1s20 400 12560 319 2 0.9s30 900 43240 549 1 2.5s50 2500 203400 1329 1 17s100 10000 1.6�106 5076 1 195sTable 2: Results for GSAT on CNF encodings of theN-queens problem.use one variable for each of the N2 squares of the board,where intuitively, a variable is true when a queen ison the corresponding square. To encode the N-queensproblem, we use N disjunctions (each with N variables)stating that there is at least one queen in each row, anda large number of binary disjunctions stating that thereare no two queens in any row, column, or diagonal.Table 2 shows the performance of GSAT on theseformulas.10 For N larger than 30; a solution is alwaysfound on the �rst try.11 Also, the number of ips isroughly 0:5 N2. This is near optimal, since a randomtruth assignment places about that many queens onthe board, and most of them must be removed. (Onthe order of N ips are needed if one starts with ap-proximately N queens randomly placed on the board inthe initial state (Selman et al. 1992).) One of the mostinteresting aspects of this approach is that so few natu-ral constraints (such as the obvious one of using only Nqueens) are maintained during the search. Nonetheless,solutions are found quickly.Boolean inductionPromising results have recently been obtained usinginteger programming techniques to solve satis�abilityproblems (Hooker 1988; Kamath et al. 1991). Mostof the experimental evaluations of these methods havebeen based on the constant-density random clausemodel, which unfortunately under-represents hard in-stances (Mitchell et al. 1992). To compare GSAT andthese methods, we considered the formulas as studiedby Kamath et al. (1991) in their work on Boolean induc-tion. In Boolean induction, the task is to derive (\in-duce") a logical circuit from its input-output behavior.Kamath et al. give a translation of this problem intoa satis�ability problem. They present test results fortheir algorithm on these formulas. We considered theformulas presented in table 4.4 in Kamath et al. (1991).Table 3 shows our results. The performance of GSATis comparable to the integer programming method,which is somewhat surprising given its relative simplic-ity. Further testing is needed to determine whether10The size of our propositional encodings prevented usfrom considering problems with more than 100 queens.11For fewer queens it may sometimes take a second try.This happens rarely though; about 1 in every 100 tries.

formula timeid vars clauses Int. progr. GSAT16A1 1650 19368 2039s 1061s16B1 1728 24792 78s 2764s16C1 1580 16467 758s 7s16D1 1230 15901 1547s 63s16E1 1245 14766 2156s 5sTable 3: Results for GSAT on encodings of Booleaninduction problems as given table 4.4 of in Kamath etal. (1991).there are classes of formulas on which the methods be-have very di�erently.Limitations and sideways movesSo far, we have concentrated mainly on the strengthsof GSAT. But it does also have some important lim-itations. The following conjunction of clauses showsthat it can be \misled" into exploring the wrong partof the search space (numbers stand for propositionalvariables):(1 _:2 _ 3) ^ (1 _ :3_ 4) ^(1 _:4 _ :2) ^ (1 _ 5 _ 2) ^(1 _:5 _ 2) ^ (:1 _:6 _ 7) ^(:1 _ :7 _ 8) ^ : : : ^(:1 _ :98 _ 99) ^ (:1 _:99 _ 6)Note that although most of clauses here contain a neg-ative occurrence of variable 1; the formula can only besatis�ed if variable 1 is assigned positively (see the �rst5 clauses). The problem is that the greedy approach re-peatly steers the search towards a negative assignment,since this does satisfy so many of the clauses. The onlyway GSAT will solve this example is if starts a searchvery close to a satisfying assignment, which could takean exponential number of tries.Finally, we consider sideways moves. In a departurefrom standard local search algorithms, GSAT continuesipping variables even when this does not increase thetotal number of satis�ed clauses.12 To show why this isimportant, we re-ran some experiments, but only allow-ing ips that increase the number of satis�ed clauses,restarting otherwise.Table 4 gives the results. All formulas consideredwere satis�able. We tried 100 instances of the randomformulas. The %-solved column shows what percentageof those instances was solved. Note that quite often noassignment was found, despite a very large number oftries. For comparison, we included our previous dataon these formulas. It is clear that �nding an assign-ment becomes much harder without the use of sidewaysmoves.12We have also seen cases where an assignment was foundafter a sequence of ips containing some that decreased thenumber of satis�ed clauses, but these are very rare. Herewe ignore such ips.

type formulas M-TRIES no sideway moves all movesvars clauses %-solved tries time %-solved tries timerandom 50 215 1000 69% 537 10s 100% 6 1.4srandom 100 430 100,000 39% 63,382 15m 100% 81 2.8m30-queens 900 43240 100,000 100% 50,000 30h 100% 1 2.5sTable 4: Comparing GSAT with and without sideway moves. (MAX-TRIES is shortened to M-TRIES.)ApplicationsAs we noted above, GSAT is a sound but incompletemodel-�nding procedure: when it succeeds in �ndingan interpretation, we know that it is correct; but neg-ative answers, although perhaps suggestive, are notconclusive. The practical value of GSAT for theorem-proving purposes, where the concern is precisely for un-satis�ability, is therefore limited. Fortunately, certainAI tasks have naturally been characterized as model-�nding tasks, for example, the visual interpretation task(Reiter and Mackworth 1990). In addition, it is oftenpossible to reformulate tasks that have traditionallybeen viewed as theorem-proving problems as model-�nding ones. One example is the formulation of plan-ning as a model-�nding task (Kautz and Selman 1992),and we suspect that there will be many others.Another potential application of GSAT lies in thegeneration of \vivid" representations (Levesque 1986)as a way of dealing with the computational problemsencountered in knowledge representation and reason-ing systems. Determining what can be deduced froma knowledge base is intractable in general, but not ifthe knowledge is vivid in form. So, instead of relyingon general theorem-proving in a knowledge-based sys-tem, one could use a two-step operation: �rst, use amodel-�nding procedure like GSAT o�-line to generateone or more vivid representations (or models) of what isknown; then, as questions arise, answer them e�cientlyby appealing to these vivid representations. E�cientmodel-�nding procedures like GSAT have therefore thepotential of making the vivid reasoning approach andthe related model-checking proposal by Halpern andVardi (1991) workable.13ConclusionsWe have introduced a new method for �nding satisfyingassignments of propositional formulas. GSAT performsa greedy local search for a satisfying assignment. Themethod is simple, yet surprisingly e�ective. We showedhow the method outperforms the Davis-Putnam proce-dure by an order of magnitude on hard random formu-las. We also showed that GSAT performs well on graph13Most applications of GSAT would require formulas of�rst-order logic. If the Herbrand universe in question is�nite, the generalization is straightforward. Otherwise, oneapproach we intend to investigate is to use a form of iterativedeepening by searching for models in ever larger Herbranduniverses.

coloring problems, N-queens encodings, and Boolean in-duction problems. The price we pay is that GSAT isincomplete.Currently, there is no good explanation for GSAT'sperformance. Some recent results by Papadimitriou(1991) and Koutsoupias and Papadimitriou (1992) do,however, provide some initial theoretical support forthe approach. Our sense is that the crucial factorhere is having some notion (however crude) of an ap-proximate solution that can be re�ned iteratively. Inthese terms, model-�nding has a clear advantage overtheorem-proving, and may lead us to AI methods thatscale up more gracefully in practice.AcknowledgmentsThe second author was funded in part by the NaturalSciences and Engineering Research Council of Canada,and the Institute for Robotics and Intelligent Systems.We thank David Johnson for providing us with thehard instances of graph coloring and Anil Kamath forthe inductive inference problems. We also thank LarryAuton, Ron Brachman, Jim Crawford, Matt Ginsberg,Geo� Hinton, David Johnson, Henry Kautz, DavidMcAllester, Steve Minton, Christos Papadimitriou,RayReiter, Peter Weinberger, and Mihalis Yannakakis foruseful discussions.ReferencesAdorf, H.M., Johnston, M.D. (1990). A discretestochastic neural network algorithm for constraintsatisfaction problems. Proc. of the Int. Joint Conf.on Neural Networks, San Diego, CA, 1990.Cook, S.A. (1971). The complexity of theorem-provingprocedures. Proceedings of the 3rd Annual ACMSymposium on the Theory of Computing, 1971, 151{158.Davis, M. and Putnam, H. (1960). A computing pro-cedure for quanti�cation theory. J. Assoc. Comput.Mach., 1960, 7:201{215.Falkowski, Bernd-Jurgen and Schmitz, Lothar (1986).A note on the queens' problem. Information Process.Lett., 23, 1986, 39-46.Franco, J. and Paull, M. (1983). Probabilistic analysisof the Davis Putnam procedure for solving the sat-is�ability problem. Discrete Applied Math. 5, 1983,77{87.Garey, M.R. and Johnson, D.S. (1979). Computers

and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, NY, 1979.Goldberg, A. (1979). On the complexity of the satis�-ability problem. Courant Computer Science Report.No. 16, New York University, NY, 1979.Gu, J. (1992). E�cient local search for very large-scalesatis�ability problems. Sigart Bulletin, vol. 3, no. 1,1992, 8{12.Halpern, J.Y. and Vardi, M.Y. (1991) Model checkingvs. theorem proving: a manifesto. Proceedings KR-91, Boston, MA, 325{334.Hooker, J.N. (1988) Resolution vs. cutting plane solu-tion of inference problems: Some computational ex-perience. Operations Research Letter, 7(1), 1988.Johnson, D.S. (1991) Personal communication, 1991.Johnson, D.S., Aragon, C.R., McGeoch, L.A., andSchevon, C. (1991) Optimization by simulated an-nealing: an experimental evaluation; part ii, graphcoloring and number partioning. Operations Re-search, 39(3):378{406, 1991.Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.,and Resende, M.G.C. (1991). A continuous approachto inductive inference. Submitted for publication.Kautz, H.A. and Selman, B. (1992). Planning as satis-�ability. Forthcoming.Koutsoupias, E. and Papadimitriou C.H. (1992) Onthe greedy algorithm for satis�ability. Forthcoming.Levesque, H.J. (1986). Making believers out of com-puters. Arti�cial Intelligence, 30, 1986, 81{108.Minton, S., Johnston, M.D., Philips, A.B., and Laird,P. (1990) Solving large-scale constraint satisfactionan scheduling problems using a heuristic repairmethod. Proceedings AAAI-90, 1990, 17{24.Mitchell, D., Selman, B., and Levesque, H.J. (1992).Hard and easy distributions of SAT problems. Forth-coming.Papadimitriou, C.H. (1991). On selecting a satisfyingtruth assignment. Proc. of 32th Conference on theFoundations of Computer Science, 1991, 163{ 169.Papadimitriou, C.H., Steiglitz, K. (1982). Combina-torial optimization. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1982.Reiter, R. and Mackworth, A. (1989). A logical frame-work for depiction and image interpretation. Arti�-cial Intelligence, 41, No. 2, 1989, 125-155.Selman, B., Levesque, H.J., Mitchell, D. (1992) GSAT:A new method for solving hard satis�ability prob-lems. Technical Report, AT&T Bell Laboratories,1992.Vellino, A. (1989) The complexity of automated rea-soning. Ph.D. thesis, Dept. of Philosophy, Universityof Toronto, Toronto, Canada (1989).

