
Logical Full Abstraction and PCFJohn Longley Gordon PlotkinMarch 15, 1996AbstractWe introduce the concept of logical full abstraction, generalisingthe usual equational notion. We consider the language PCF and twoextensions with \parallel" operations. The main result is that, forstandard interpretations, logical full abstraction is equivalent to equa-tional full abstraction together with universality; the proof involvesconstructing enumeration operators. We also consider restrictions onlogical complexity and on the level of types.1 IntroductionThe study of denotational semantics seeks to provide mathematical descrip-tions of programming languages by giving denotations of programs in termsof previously understood mathematical structures. For example, if P is aprogram that takes an input and produces an output, we might take its de-notation to be a function from a set of input-values to a set of output-values.The most widely-known approach to denotational semantics is that of tra-ditional domain theory (see e.g., [14]), where the mathematical structuresinvolved are certain kinds of complete partial order (cpo). Other kinds ofmathematical structure have also been used successfully|for a selection ofdi�erent approaches see [1, 11, 13].One of the principal aims of denotational semantics is to deepen our un-derstanding of the logic of programming languages, and to provide concep-tual and mathematical tools for reasoning about programs. A more speci�cgoal is to provide mathematical foundations for \program logics" of a kindthat could be used by ordinary programmers.Denotational semantics can be used to establish relationships between aprogramming language L and a logic J . By giving interpretations of both Land J in some common mathematical structureM, we may be able to showthat if certain theorems are provable in the logic then certain properties ofprograms hold|for example, that if the sentence P (3) = 5 is provable in Jthen the program P (3) returns the answer 5. Such a result would show thatthe logic J was indeed useful for proving certain facts about programs in L.1

In this kind of situation we have a way of directly understanding themeaning of certain simple sentences of J (e.g., P (3) = 5) as statementsabout computations in L. One is then prompted to ask whether one couldextend this to all sentences of the logic, and give an interpretation of Jpurely in terms of the language L and its evaluation rules, without referenceto the structureM. For example, one might interpret quanti�ers as rangingover closed programs or terms of appropriate type. We might call this anoperational interpretation of J , in contrast to its denotational interpretationin M. Besides the intrinsic interest of such an interpretation, it seems likelythat an operational interpretation would be more easily grasped by a non-specialist than a denotational one.Now, given a logic J with both an operational interpretation in termsof L and a denotational interpretation in M, it is natural to ask whetherthese \agree" in the sense that a sentence is true under one interpretationif and only if it is true under the other. In this case, we will say that theinterpretation of L inM is logically fully abstract (or LFA) for J . A logicallyfully abstract interpretation can be used to show that all sentences provablein J express true facts about L under the operational interpretation. Notethat the familiar notion of (equational) full abstraction can be seen as a spe-cial case of logical full abstraction: consider a logic J whose only assertionsare equations between terms of L, and whose operational interpretation is\observational equivalence".Both the general concept and the name \logical full abstraction" aredue to the second author, though the idea was �rst worked out in the �rstauthor's Ph.D. thesis [11]. The idea as we have outlined it above is of courseextremely general, as it depends not only on L and J but also on the kinds ofoperational and denotational interpretation we have in mind. The aim of thepresent paper is to illustrate the basic idea by discussing one particular kindof logical full abstraction, in the context of a simple logic for the prototypicalfunctional language PCF (see [14, 3]). We anticipate that the study of othernotions of logical full abstraction (whether for PCF or other languages) willprove a very interesting area for further research.The study of equational full abstraction commonly results in theoriesof extensional objects, often of functions and data structures; these objectshave a natural mathematical structure, perhaps of order-theoretic, topo-logical or algebraic character. The study here of logical full abstractionresults rather in intensional concerns, such as the study of de�nability andso of computability. These distinctions harken back to Scott's original ex-plicit choice [16, 17] to investigate �rst extensional theories and only thento consider questions of computability and of the relation with symboliccomputation. They also bring to mind the much more recent programmeof synthetic domain theory, where one tries to integrate the di�erent ap-proaches by working in, for example, the e�ective topos [7]. One should also2

remark that intensional aspects may nonetheless play a role in the study ofequational full abstraction|see the study of games in [1, 8].The rest of the paper is structured as follows. In Section 2 we reviewthe de�nitions of the three versions of PCF that we will consider. We alsode�ne the syntax of a program logic for these languages, and propose asimple operational interpretation of this logic. In Section 3 we introducea very general notion of denotational interpretation for our languages, andshow how such an interpretation gives rise to a denotational interpretation ofthe logic. We thus obtain a notion of logical full abstraction. In Section 4 weprove the main result of the paper: a standard interpretation is LFA if andonly if it is both equationally fully abstract (EFA) and universal (meaning,roughly, that every element of the model is de�nable). We end in Section 5with a few further observations, and mention some open questions and someavenues for future investigation. In particular, we consider restrictions onlogical complexity and on the level of types. For example, it follows from ourmain theorem that a standard interpretation is LFA i� it is �2-LFA (i.e.,LFA for �2-sentences). There are standard interpretations which are EFA,but not �1-LFA; it is an open question whether there are any interpretationswhich are �1-LFA but not �2-LFA.2 PCF and its LogicPCF is an extension of the simply-typed �-calculus with arithmetic operatorsand general recursion. It can be regarded as a prototypical \sequential"functional language; an understanding of PCF is thus an important steptowards an understanding of modern functional languages such as Haskell,Miranda and ML. We begin by reviewing the syntax and evaluation rulesfor PCF, and for two extensions, PCF+ and PCF++, obtained by adding\parallel" operations. All three of these languages appear essentially in [14];the formulations here di�er in two inessential respects: one is the absence ofa Boolean type; the other is the use of a \parallel-or" constant rather thana parallel conditional (for which see [18]).The types of PCF are built up from a single ground type � (the naturalnumbers) using the right-associative binary type constructor !; we writeM :� to mean \M is a term of type �". For each type � we have a countablyin�nite set of variables of type �, ranged over by x�; y�; z�; : : :; we also havethe following collection of constants :0; 1; 2; : : : : �; cond : �! �! �! �;succ ; pred : �! �; Y� : (� ! �)! �:The terms of PCF are built up from the variables and constants as usualin the simply-typed �-calculus: 3

� if M :� , then (�x�:M) :�! � ;� if M :�! � and N :�, then (MN) :� .We frequently omit unnecessary parentheses, taking juxtaposition to be left-associative; we also omit type superscripts on variables, when this causesno ambiguity. We identify terms up to change of bound variables (�-conversion); we write M [N1=x�11 ; : : : ; Nn=x�nn] for capture-avoiding simul-taneous substitution (where N1 :�1; : : : ; Nn :�n).An environment is a �nite non-repetitive list x�11 ; : : : ; x�nn of variables(where n � 0); the empty environment is written hi. We say that M is aterm of type � in environment � (and write � ` M :�) if M :� and all thefree variables of M occur in �. If x� is a variable not in �, we write �; x�for the environment obtained by appending x� to �.The evaluation rules for PCF are given by de�ning a notion of reduction(or rewriting) on closed terms. Speci�cally, we inductively de�ne a binaryrelation M ! N on closed terms of the same type as follows (here n rangesover the numerals 0; 1; 2; : : :):� (�x�:M)N !M [N=x�];� succ n! (n+ 1), pred (n+ 1)! n, pred 0! 0, cond 0NP ! N ,cond (n+ 1)NP ! P , Y�M !M(Y�M);� if M !M 0 then MN !M 0N ;� if M !M 0 : � then succ M ! succ M 0, pred M ! pred M 0,cond MNP ! cond M 0NP .We think of ! as a \one-step reduction relation"; we write !+ for itstransitive closure, and !� for its transitive reexive closure. We say that aterm M : � terminates if M !� n for some (necessarily unique) numeral n.The language de�ned above is intuitively \sequential"|no two subtermsof a term are ever evaluated \in parallel". We now introduce two extensionsof PCF including parallel operators. The language PCF+ is de�ned in thesame way as PCF except that we add an extra constant por : � ! � ! �(\parallel-or"), together with the reduction rules:� por 0M ! 0, por M0! 0, por (m+ 1)(n+ 1)! 1;� if M !M 0 : � then por MN ! por M 0N , por NM ! por NM 0.The syntax of PCF++ is de�ned in the same way as PCF+, except that weadd a further constant exists : (�! �)! � (\existential quanti�cation"). Itsreduction rules are those for PCF+ together with the following, writing
�for Y�(�x�:x):� if Mn!+ 0 for some n, then exists M ! 0;4

� if M
� !+ m+ 1, then exists M ! 1.We say that a one-step reduction M ! M 0 is deterministic if wheneverM ! M 00 then M 0 = M 00, and write M !d M 0 for this relationship. Notethat whereas for PCF every one-step reduction is deterministic, this is notso for PCF+ and PCF++. Nevertheless, in all these languages evaluationis deterministic: if M !� n and M !� n0 then n = n0. (In fact the moregeneral Church-Rosser Property holds, that if M !� Ni, for i = 1; 2, thenfor some P , Ni !� P , for i = 1; 2).We need some standard notions. Suppose L is one of the three languagesPCF, PCF+ or PCF++. A (one-place) term context C[] of L is a term ofL with zero or more holes, to be �lled by a term of appropriate type. TwotermsM;M 0 :� are observationally equivalent (and we write M �M 0) if forall term contexts C[] such that C[M]; C[M 0] are closed terms of type � wehave C[M] !� n i� C[M 0] !� n. The Context Lemma characterises thisequivalence. When M and M 0 are both closed, the lemma asserts that for� = �1 ! � � � ! �h ! �, M � M 0 i� for all closed terms N1 :�1; : : : ; Nh :�hand numerals n, MN1 : : :Nh !� n i� M 0N1 : : :Nh !� n (a more generalversion for open terms is easily derived). An operational proof of the ContextLemma for PCF can be found in [12, 3] and similar proofs can be obtainedfor PCF+ and PCF++; for these latter two languages it is also a consequenceof the facts that the usual cpo model is adequate and that all �nite elementsare de�nable (see Section 3 below for a de�nition of adequacy). Operationalsoundness (that is, ifM !� N thenM � N) is a consequence of the ContextLemma, together with the Church-Rosser Property.Now that we have de�ned the languages of interest, we introduce thesyntax of a simple many-sorted program logic JL, much in the spirit of LCF[5]. We believe that this is the kind of logic that would in principle be usefulfor specifying and proving properties of programs. The sorts of JL are thetypes of L; the expressions of sort � in JL are precisely the terms of type �in L; and the logical variables of sort � are just the term variables of type �.The syntax of the formulae of JL is as follows (here M;N are expressionsof the same type and P : �):� ::= ? jM = N j P + j �1 ^ �2 j �1 _ �2 j �1 � �2 j 8x�:�1 j 9x� :�1:Note that JL is really a many-sorted �rst-order logic|we have a separ-ate ground sort for each type �. We identify formulae up to change ofbound variables (�-conversion); we write �[N1=x�11 ; : : : ; Nn=x�nn] for capture-avoiding simultaneous substitution into formulae (whereN1 :�1; : : : ; Nn :�n).We will not be speci�c here about the axioms and inference rules of JL,however we essentially have in mind those of classical �rst-order logic.Next we give a simple operational interpretation of JL; this gives us away of translating formulae into statements about computations in L. We5

de�ne a relation j=op � (read \� is operationally true") on sentences (i.e.,closed formulae) of JL as follows:� j=op? doesn't hold;� j=op (M = N) i� M � N ;� j=op (P +) i� P terminates;� j=op ' ^ i� j=op ' and j=op ;� j=op ' _ i� j=op ' or j=op ;� j=op ' � i� either 6j=op ' or j=op ;� j=op 8x� :' i� j=op '[M=x] for all closed M :�;� j=op 9x� :' i� j=op '[M=x] for some closed M :�.We extend the relation j=op to all formulae as follows: if � has free variablesamong x1; : : : ; xn, then j=op � i� j=op �[M1=x1; : : : ;Mn=xn] for all closedexpressions M1; : : : ;Mn of appropriate types.Notice that the notion of operational truth only requires concepts re-lating to L itself|we are thus hopeful that this interpretation of the lo-gic would be readily understood by a non-specialist. However, we shouldpoint out that operational interpretations of the formulae of JL other thanthe \classical" one we have given are possible|for an alternative (arguablymore \computational") interpretation see [11, Section 8.2].3 Denotational Interpretations of PCFWe now introduce a very general notion of denotational interpretation forour languages; it is convenient to use the language of category theory. Givena category C with �nite products, we interpret types of L by objects of C,and terms of L by morphisms of C; we also need a semantic correlate oftermination. We therefore say that an interpretation I of L in C is given bythe following data:� for each type � an object I[[�]] of C (and for each environment� = x�11 ; : : : ; x�nn we write I[[�]] for I[[�1]]� � � � � I[[�n]]);� for each L-term M :� in environment � a morphism I[[� `M]] fromI[[�]] to I[[�]] (and if M is closed we write I[[M]] for I[[hi `M]]);� a set T � Hom(1; I[[�]]) (to be thought of as the set of \fully de�ned"or \terminating" elements of I[[�]]).We impose two requirements. First, for any environment � = x�11 ; : : : ; x�nnwe require that I[[� ` x�ii]] : I[[�]]! I[[�i]] be the evident projection, for6

1 � i � n. Second, we require that I be compositional in the followingsense: if � = x�11 ; : : : ; x�nn , � `M :� and � ` Ni :�i, for 1 � i � n, thenI[[� `M [N1=x1; : : : ; Nn=xn]]] = I[[� `M]]�hI[[� ` N1]]; : : : ; I[[� ` Nn]]i:That is, tupling and composition in C corresponds to substitution in L.This de�nition of interpretation for L is extremely weak (we do notrequire C to be cartesian-closed, for instance), but it su�ces for our purposes.The most familiar concrete example is given by the category of cpos: all threeof our languages have a canonical interpretation in this category (see [14]).The following concepts will play a signi�cant role in the rest of the paper:� I is sound if M !M 0 implies I[[M]] = I[[M 0]];� I is adequate if for all closed M : � we have I[[M]] = I[[n]] i�M !� n;� I is equationally fully abstract (EFA) if for all closed M;M 0 :� we haveI[[M]] = I[[M 0]] i� M �M 0;� I is atomically fully abstract (AFA) if it is EFA and for all closed M : �we have I[[M]] 2 T i� M terminates;� I is universal if every morphism f : 1 ! I[[�]] in C is de�nable(meaning that there is a closed term M :� such that I[[M]] = f);� I is standard if every morphism 1 ! I[[�]] is de�nable and the set Tof fully de�ned elements is fI[[n]] j n is a numeralg.Our de�nitions of equational full abstraction and universality are weak inthat they involve only closed terms|in our general setting it is not possibleto deduce the corresponding stronger facts for open terms (and arbitrarymorphisms). However, the two notions of full abstraction coincide if theinterpretation models �-conversion. Further, the two notions of universalitycoincide if the interpretation is cartesian-closed (by which we mean that theunderlying category is cartesian closed, and that the higher-order types, �-abstraction and application are interpreted accordingly|see [10]; this prop-erty implies that the interpretation models ��-conversion). It follows fromoperational soundness that any EFA interpretation is sound. Note thatthe usual interpretation in cpos is sound, adequate, standard and cartesianclosed; it is AFA for PCF+ and PCF++ but not EFA for PCF (see [14]).Next we show how any interpretation I of L gives rise to a denota-tional interpretation of JL. First some notation: For each type � let S�be Hom(1; I[[�]]); we may think of S� informally as the set of \elements"of I[[�]]. For each environment � we also let S� be Hom(1; I[[�]]). Thenwhenever � `M :� we have the set-theoretic function I[[� `M]]�� : S� !S�.For any formula � with FV(�) � �, we can now de�ne a subset [[�]]� ofS�, corresponding intuitively to the set of tuples of elements for which thepredicate � holds: 7

� z 2 [[?]]� never;� z 2 [[M = N]]� i� I[[� `M]] � z = I[[� ` N]] � z;� z 2 [[P +]]� i� I[[� ` P]] � z 2 T ;� z 2 [[� ^]]� i� z 2 [[�]]� and z 2 [[]]�;� z 2 [[� _]]� i� z 2 [[�]]� or z 2 [[]]�;� z 2 [[� �]]� i� z 62 [[�]]� or z 2 [[]]�;� z 2 [[8x�:�]]� i� hz; wi 2 [[�]]�;x� for all w 2 S�;� z 2 [[9x�:�]]� i� hz; wi 2 [[�]]�;x� for some w 2 S�.(in the last two cases, we assume|without loss of generality|that x� doesnot occur in �). We say that � is denotationally true under the interpretationI (and write j=I �) if [[�]]� is the whole of S�, where � contains all the freevariables of �. In particular, if � is closed then j=I � i� � 2 [[�]], where � isthe unique element of Shi and we write [[�]] for [[�]]hi.Now that we have given both operational and denotational interpreta-tions of JL, we have a natural notion of logical full abstraction:De�nition 1 An interpretation I of L is logically fully abstract (LFA) iffor all sentences � of JL we have j=op � i� j=I �. More generally, if F isa class of sentences of JL, we say I is LFA for F if for all � 2 F we havej=op � i� j=I �.Note that if an interpretation is LFA for a class of sentences, then it isalso LFA for the Boolean closure of that class. The next lemma shows thatsuch notions as adequacy1 and equational full abstraction can be recoveredas special instances of logical full abstraction.Proposition 2 Let I be an interpretation of L. Then(i) I is EFA (respectively AFA) i� it is LFA for all sentences of the formM = N (respectively and P +);(ii) I is adequate i� it is LFA for all sentences of the form P = n;(iii) Suppose that I is adequate. Then the de�nable elements of T arethose of the form I[[n]] i� I is LFA for all sentences of the form P +.Proof (i) is immediate. For (ii), it su�ces to note that, by the ContextLemma, P � n i� P !� n for closed P : �. For (iii), note that the conditionon T is equivalent to the statement that for all closed P : �, j=I P + i�j=I P = n for some n and also that the statement that I is LFA for allsentences of the form P + holds is equivalent to the statement that for allclosed P : �, j=I P + i� j=op P +. But it is an easy consequence of adequacyand the Context Lemma that for all closed P : �, j=I P = n for some n i�j=op P +. 21This observation is due to Eugenio Moggi.8

The above lemma makes it clear that any EFA interpretation is adequate.Further, such an interpretation is AFA i� the de�nable elements of T arethose of the form I[[n]]. In particular, a standard EFA interpretation isAFA.4 A characterization of LFA InterpretationsIn this section we prove the following theorem characterizing LFA interpret-ations. This is the main result of the paper.Theorem 3 Let I be a standard interpretation of L. Then it is LFA forJL i� it is both EFA and universal.The standardness condition is a mild requirement that seems to holdin all natural interpretations. (We will see below that this condition is infact necessary for the conclusion.) Our theorem can be used to show thatLFA interpretations exist, and that particular interpretations are LFA forparticular languages; it also guides us in the search for LFA interpretations.The right-to-left implication in the theorem is fairly straightforward:Lemma 4 Let M : � be closed, z 2 S�. Then hz; I[[M]]i 2 [[�]]�;x� i�z 2 [[�[M=x]]]�.Proof First note that if �; x� ` N :� then, by the requirements placed oninterpretations, I[[�; x� ` N]] � hz; I[[M]]i = I[[� ` N [M=x�]]] � z. Theproof of the lemma is now a routine induction on �. 2Proposition 5 Suppose I is a standard, EFA and universal interpretationof L. Then it is LFA.Proof We �rst show by induction that j=op � i� j=I � for all sentences �of JL. For the sentence ? this is trivial. For sentences of the form M = Nor P + it is given by Proposition 2(i) and the fact that a standard EFAinterpretation is AFA. The cases for the connectives ^;_;� are all trivial.For sentences 8x� :�, suppose �rst that j=I 8x�:�. Then given any closedM : � we have h�; I[[M]]i 2 [[�]]x� by de�nition of [[8x�:�]], hence, byLemma 4, � 2 [[�[M=x]]] and so j=op �[M=x] by the induction hypothesis.Thus j=op 8x� :�. Conversely, suppose j=op 8x�:�. For any w 2 S�, byuniversality we have w = I[[M]] for some closed M : �. But we have thatj=op �[M=x], and so � 2 [[�[M=x]]] by the induction hypothesis. Hence byLemma 4 h�; wi 2 [[�]]x�. Thus [[�]]x� = Sx�, so j=I 8x� :�. The argumentfor 9 is similar.This completes the proof for sentences. To see that the result extendsto all formulae, just observe that if 8~x:� is the universal closure of � thenj=op � i� j=op 8~x:�, and j=I � i� j=I 8~x:�. 29

For the converse direction, we know from Proposition 2(i) that every LFAinterpretation is AFA. Thus it only remains to show that every standard LFAinterpretation is universal. To show this, we will for each type � constructa closed term E� : � ! � (called an enumerator for type �) such that forall closed M : � there exists n such that E�n � M . It is easy to see thatthis su�ces: we have j=op 8x� :9y�:E�y = x, and so if I is LFA then alsoj=I 8x�:9y�:E�y = x. That is, for all x 2 S� there exists y 2 S� suchthat I[[z� ` E�z�]] � y = x. But I is standard so y = I[[N]] say, hencex = I[[E�N]]. Thus I is universal.The fact that such enumerators exist is of some interest in its own right.In the case of PCF++, suitable terms E� are already de�ned in [14], butfor PCF and PCF+ we need a di�erent technique. The method we use is,essentially, to construct a \simulator" for the relevant language within itself.A very similar method has recently (and independently) been employed byAbramsky et al. [1] to prove a de�nability result for an interpretation ofsequential PCF based on games; a similar result has been proved by Hylandand Ong [8]. This yields an alternate semantic proof of the existence ofenumerators for PCF, analogous to that in [14] for PCF++. It is worthremarking that there is no corresponding de�nability result for PCF+. Itmay well be that there can be none; it is not at all clear, however, howto even formulate a precise statement to that e�ect. In what follows, Lstands for either PCF or PCF+, and d�e is some e�ective G�odel-numberingof L-terms as natural numbers.Proposition 6 For each type � there exists a closed term E� : � ! � of Lsuch that E�dMe �M for all closed terms M :� of L.We now �x � = �1 ! � � � ! �h ! � (h � 0) and consider the constructionofE�; we will not be completely explicit as all we require is its existence. Thebasic idea is that|given closed termsM :� and Nj :�j, for j = 1; : : : ; h|thecomputation of E�dMeN1 : : :Nh will simulate the reduction of MN1 : : :Nhvia the G�odel-numbering. The problem here is that we do not have access tothe G�odel-numbers of the Nj, but only to the terms themselves; so, in fact,we symbolically reduce (via G�odel-numbers) the termMx1 : : : xh, where thexj are variables used to stand for the Nj. This results in a further problemwhen, in the course of the symbolic reduction, we come to a term of the formxjM1 : : :Ma. In this case we do not reduce, but rather interpret, \passing"suitable simulations of M1; : : : ;Ma to Nj.For the idea to work, it turns out that we need variables not only ofthe types �j , but also of all their subtypes. Let us de�ne the relation �between types to be the transitive relation generated from all instances ofj � (1 ! � � � ! m ! �), for j = 1; : : : ; m. Let �1; : : : ; �k be the (possiblyrepetitive) enumeration of all types � � � in breadth-�rst order (regarding10

� as a binary tree). Notice that for each i with 1 � i � k there exist pi � qisuch that �i = �pi+1 ! � � � ! �qi ! �; we drop the subscripts on p and qwhen they are clear from the context. Note also that �i = �i for 1 � i � h.To simulate MN1 : : :Nh we may need arbitrarily many variables of eachtype �i. We thus suppose that we have a countably in�nite supply of vari-ables xji :�i for each i, and that the mapping (i; j) 7! dxjie is recursive; we saya term is �-open if its free variables are among the xji . To \store" the \val-ues" of these variables we will use closed terms Fi : �! �i, where Fi j storesthe value of xji . Since at any given stage only �nitely many variables willbe in use, we need a way to introduce new variables. For each i we letpushi be �v�if �!�ij��y�p+1p+1 : : : y�qq : cond j (vyp+1 : : : yq) (f(pred j)yp+1 : : : yq).The e�ect of pushi V F is to store the value given by a closed term V inthe \register" x0i , and the previous value of xji in the register xj+1i ; we havepushi V F0 � V and pushi V F (j + 1) � Fj. To compensate for the use ofpushi, we also need an operation "i on terms of L that \bumps up" theindices on the appropriate variables; the term N"i is de�ned to be the termobtained by the capture-avoiding simultaneous substitution of V ji for xji forevery xji occurring freely in N . Clearly the mapping dNe 7! dN"ie is partialrecursive.So, to de�ne E� we construct an \�-simulator" S : � (where � is thetype (� ! �1) ! � � � ! (� ! �k) ! � ! �) such that if N : � is a �-openterm then SF1 : : :FkdNe simulates N , taking xji to stand for Fi j. Followingthe idea outlined above, S will perform repeated one-step reductions, butterms of the form xjiNp+1 : : :Nq are interpreted by passing simulations ofthe arguments Np+1; : : : ; Nq to Fi j : �i. For this, we need \�i-simulators"Si of type �i = (� ! �1) ! � � � ! (� ! �k) ! � ! �i; these are de�nedfrom the �-simulator S :� by the terms �i :�! �i given in Lemma 7, below.Formally, S is obtained as a �xed-point of the term � : � ! � given inLemma 8, below; its de�nition makes use of the �i, and the terms R :� usedthere and in Lemma 7 are to be thought of as \approximants" to S.We need some special notation. First, for any vector ~F of terms F1; : : : ; Fkand termM we writeM ~F for (: : :(MF1) : : :Fk). Second, for any such vectorwe abbreviate F1; : : : ; Fp; (pushp+1Vp+1Fp+1); : : : ; (pushqVqFq); Fq+1; : : : ; Fk topushp;q(Vp+1; : : : ; Vq; ~F), where 1 � p � q � k. Third, for any term M and1 � p � q � k we write M "p;q for (: : :(M "p+1) : : : "q). Finally, the nota-tion C[jN1j; : : : ; jNaj] !+d C0[jN 01j; : : : ; jN 0a0 j] means that given PCF termsU1; : : : ; Ua such that Uj!�Nj (1�j�a) there exist PCF terms U 01; : : : ; U 0a0such that U 0j0 !� N 0j0 (1�j 0�a0) and C[U1; : : : ; Ua]!+d C 0[U 01; : : : ; U 0a0]; no-tice that the Uj and U 0j0 must be closed. (Here C[; : : : ;] and C 0[; : : : ;]are \multi-place" contexts and !d is the deterministic one-step reductionrelation de�ned in Section 2.) This is useful because the call-by-name eval-uation mechanism of L means that we cannot force subterms such as theU 0j0 to be evaluated when we would like. The consideration of deterministic11

reduction (and hence of PCF terms) is only needed for Lemma 11 below.Note that transitivity holds: if C[jN1j; : : : ; jNaj] !+d C0[jN 01j; : : : ; jN 0a0j] !+dC00[jN 001 j; : : : ; jN 00a00j] then C[jN1j; : : : ; jNaj]!+d C00[jN 001 j; : : : ; jN 00a00j].Lemma 7 There exist closed L-terms �i :� ! �i for 1 � i � k, such thatfor all �-open N :�i and closed R :�; F1 : �! �1; : : : ; Fk : �! �k we have�iR~F jdNej !+d �y�p+1p+1 : : :y�qq : R pushp;q(yp+1; : : : ; yq; ~F) jd(N"p;q)x0p+1 : : : x0qej :Proof De�ne �i to be the term�r�f �!�11 : : :f �!�kk z�y�p+1p+1 : : :y�qq : r pushp;q(yp+1; : : : ; yq; ~f)(Gz)where G : � ! � is a closed PCF term such that for any �-open N : �i,GdNe!+ d(N"p;q)x0p+1 : : : x0qe. 2We now consider the term �. Notice that the clauses given below coverall syntactic shapes for terms of type �. (The clause marked y applies onlyto PCF+.)Lemma 8 There exists a closed L-term � : � ! � such that for all closedterms R :�; F1 : �! �1; : : : ; Fk : �! �k we have�R~F jdnej !+d n;�R~F jdsucc Mej !+d succ (R~F jdMej);�R~F jdpred Mej !+d pred (R~F jdMej);�R~F jdcond LMNej !+d cond (R~F jdLej)(R~F jdMej)(R~F jdNej);�R~F jdY�N1N2 : : :Naej !+d R~F jdN1(Y�N1)N2 : : :Naej (a � 2);�R~F jd(�z� :M)N1 : : :Naej !+d R~F jdM [N1=z]N2 : : :Naej (a � 1);y �R~F jdpor MNej !+d por (R~F jdMej)(R~F jdNej);�R~F jdxjiNp+1 : : :Nqej !+d Fi j (�p+1R~F jdNp+1ej) : : :(�qR~F jdNqej):Proof (Hint) We construct � via a \case split" with at most (k+7) cases.The need for the consideration of PCF terms arises here, in order to ensuredeterministic reduction. 2Note that terms of the forms succ M , pred M , cond LMN or por MN areinterpreted rather than symbolically reduced; this is needed to handle termssuch as succ xjiNp+1 : : :Nq where the operator must be interpreted since anargument is. It is also worth noting that there is no way to interpret termssuch as Y�N1N2 : : :Na or (�z� :M)N1 : : :Na as the type � there is arbitraryand our method enables us to deal only with a �nite number of given types(here the �i). 12

We now de�ne S = Y�� and Si = �iS, for i = 1; : : : ; k. Note that:S ~F jdnej !+d n;S ~F jdsucc Mej !+d succ (S ~F jdMej);etc. and that:Si ~F jdNej !+d �y�p+1p+1 : : :y�qq : Spushp;q(yp+1; : : : ; yq; ~F) jd(N"p;q)x0p+1 : : : x0qej :Finally, we take E� : �! � to be a closed term such thatE�dMe !+d �y�11 : : :y�hh : Spush0;h(y1; : : : ; yh; ~
) jdMx01 : : :x0hejwhere ~
 is
�!�1 ; : : : ;
�!�k .We need to prove that E�dMe �M for all closed M :�. By the ContextLemma, it is enough to show that for all closed N1 :�1; : : : ; Nh :�h we haveE�dMeN1 : : :Nh !� n i� MN1 : : :Nh !� n. Clearly the following lemmasu�ces:Lemma 9 Suppose Fi j � V ji : �i for each i; j, where the Fi and V ji areclosed. Then for all �-open N : � and PCF terms U such that U !� dNe wehave S ~FU !� n i� N [V ji =xji]!� n.The notation N [V ji =xji] denotes the term obtained from N by the simultan-eous substitution of V ji for xji , for every xji occurring freely in N .The lemma is proved by relating the possible reduction sequences ofN [V ji =xji] with those of its simulation S ~FdNe. De�ne \encoding" relations� between terms of type �, �i between terms of type �i, for i = 1; : : : ; k,and � between terms of the same type as follows:� if U !� dNe where U is a PCF term and N : � is a �-open term andif Fij � V ji : �i for each i; j, where the Fi and V ji are closed, thenS ~FU � N [V ji =xji];� if U !� dNe where U is a PCF term and N :�i is a �-open term andif Fij � V ji : �i for each i; j, where the Fi and V ji are closed, thenSi ~FU �i N [V ji =xji];� if Ps � Qs or Ps �i Qs (for some 1 � i � k) for 1 � s � r, then, forany r-place context C[; : : : ;], C[P1; : : : ; Pr] � C[Q1; : : : ; Qr].Note that � is reexive; note too that � is closed under substitution in thesense that if P � Q and P 0 � Q0 : � then P [P 0=z�] � Q[Q0=z�]. We writeC[jdN1ej; : : : ; jdNaej] � Q (where a � 0), to mean that for any PCF termsU1; : : : ; Ua such that Uj !� dNje (j = 1; : : : ; a) we have C[U1; : : : ; Ua] � Q.Lemma 9 is an immediate consequence of the next two lemmas.13

Lemma 10 If P : � is closed, P � Q and Q!� n then P !� nProof The proof proceeds by induction on the length l of a shortest reduc-tion sequence from Q to n. If this is 0, then either P is n or else P � n,and so, by the remarks after Lemma 8, P !+d n. For l > 0, �xing P and Q,we �rst note that there is an r-place context C[; : : : ;] (r � 0) and thereare Ps and Qs (1 � s � r) such that Q = C[Q1; : : : ; Qr], P = C[P1; : : : ; Pr]and for 1 � s � r, Ps � Qs or Ps �i Qs, for some 1 � i � k.There are three main cases. In the �rst two C[; : : : ;] has the form[]C1[; : : : ;] : : :Ct[; : : : ;]|that is, there is a context hole in\head position"; the third is where there is not. In the �rst case, the proofproceeds either by reducing the length of the shortest reduction sequence (andapplying the induction hypothesis) or else by reducing to the third case, withthe same reduction sequence. The second case reduces to the �rst, with thesame reduction sequence. In the third case, the length is always reduced.So let us suppose there is indeed a context hole in head position. The�rst case is where C[~Q] = Qs = Q and C[~P] = Ps = P , for some 1 � s � r,and P � Q (and t = 0). The second case is where C[~Q] = QsC1[~Q] : : :Ct[~Q]and C[~P] = PsC1[~P] : : :Ct[~P], for some 1 � s � r, and Ps �i Qs, for some1 � i � k (and t = q � p).Let us now consider the �rst case. Here P = S ~FU and Q = N [V ji =xji]where N : � is �-open, where Fij � V ji : �i for each i; j, where the Fi andV ji are closed, and where U is a PCF term such that U !� dNe. The proofnow proceeds according to the form of N ; it is here that the workings of thesimulator are seen.First, let us supposeN = por N1N2. Then, by the remarks after Lemma 8we have S ~FU !+d por (S ~FU1)(S ~FU2), where U1 and U2 are PCF terms suchthat U1 !� dN1e and U2 !� dN2e. Therefore S ~FU1 � N1[V ji =xji] and simil-arly for U2. Now, as (por N1N2)[V ji =xji] = N [V ji =xji] reduces to n in l steps,then, in < l steps, either one of N1[V ji =xji], N2[V ji =xji] reduce to 0 or bothreduce to a positive numeral. So we may apply the induction hypothesis andobtain corresponding reductions of S ~FU1 and S ~FU2, and hence of S ~FU .The cases where N has any of the forms succ N1, pred N1 or cond N1N2N3are similar.Next, let us suppose that N = (�z� :M)N1 : : :Na. Then we have thatS ~FU !+d S ~F jdM [N1=z]N2 : : :Naej� (M [N1=z]N2 : : :Na)[V ji =xji] = Q0, say.We can now apply the induction hypothesis, as there is a reduction of Q0 ton in l � 1 steps since we have the deterministic reduction Q !d Q0. Thecase where N = Y�N1N2 : : :Na is similar.Finally, suppose N = xjiNp+1 : : :Nq. Here we have P = S ~FU !+dFi j (Sp+1 ~FUp+1) : : :(Sq ~FUq), where, for p < i0 � q, Ui0 is a PCF termsuch that Ui0 !� Ni0. But then, we have that V ji (Sp+1 ~FUp+1) : : :(Sq ~FUq) �V ji (Np+1[V ji =xji]) : : :(Nq[V ji =xji]) = Q, and we are in the third case with the14

same shortest reduction sequence. So, V ji (Sp+1 ~FUp+1) : : :(Sq ~FUq)!� n, byinduction, and then, as Fi j � V ji , P !+ n.In the second case, P = Si ~FU ~C[~P] (abbreviating C1[]; : : : ; Ct[] to~C[]) and Q = N [V ji =xji] ~C[~Q] where N:�i is �-open, where Fij � V ji :�i foreach i; j, where the Fi and V ji are closed, and where U is a PCF term suchthat U !� dNe. Then Si ~FU !+ �y�p+1p+1 : : : y�qq : Spushp;q(yp+1; : : : ; yq; ~F)U 0where U 0 is a PCF term such that U 0 !� d(N"p;q)x0p+1 : : : x0qe. So we havethat Si ~FU ~C[~P]!+ Spushp;q(~C[~P]; ~F)U 0.Now, for i0 = 1; : : : ; k, de�ne W ji0 so that, for i0 = p+1; : : : ; q, W 0i0 isCi0 [~Q], W j+1i0 is V ji0 and, for all other i0, W ji0 is V ji0 . Then we have thatSpushp;q(~C[~P]; ~F)U 0 � ((N"p;q)x0p+1 : : :x0q)[W ji0=xji0] = N [V ji0=xji0] ~C[~Q], andwe have reduced to the �rst case, with the same reduction sequence.Finally, we consider the third case, where no hole is in \head" positionin C[; : : : ;] (which we abbreviate to C[]). The proof divides intosubcases according to the form of C[] We consider two of these; the othersare similar. The �rst is where C[] is porC1[]C2[]. Here we havereductions to numerals in < l steps of one or both of C1[~(Q)], C2[~(Q)], asin the previous case involving por , and we can again apply the inductionhypothesis. The second is where C[] is (�z� :C0[])C1[] : : :Ca[].Here P = (�z� :C0[~P])C1[~P] : : :Ca[~P] ! (C 0[~P][C1[~P]=z])C2[~P] : : :Ca[~P] �(C 0[~Q][C1[~Q]=z])C2[~Q] : : :Ca[~Q] = Q0, say (we use the closure of � undersubstitution here). We may now apply the induction hypothesis, for, asQ!d Q0, there is a reduction of Q0 to n in l� 1 steps. 2Lemma 11 If P : � is closed, P � Q and P !� n then Q!� n.Proof By induction on the length of shortest reduction sequence from Pto n. If this is 0, the result is immediate. Otherwise, the cases are organisedas in the proof of Lemma 10(ii), but|unlike there|the length is alwaysreduced. Let us consider the �rst case, where P = S ~FU and Q = N [V ji =xji]where N : � is �-open, where Fi j � V ji :�i for each i; j, where the Fi and V jiare closed, and where U is a PCF term such that U !� dNe.Let us �rst suppose N = por N1N2. Then S ~FU !+d por (S ~FU1)(S ~FU2),where U1; U2 are PCF terms which reduce to dN1e and dN2e, respectively.As the reduction from P to por (S ~FU1)(S ~FU2) is deterministic, the shortestreduction from P to n must proceed via por (S ~FU1)(S ~FU2), and the proof isnow similar to that of Lemma 10. The cases where N has any of the formssuccN1, predN1 or cond N1N2N3 are similar.Next, let us suppose that N = (�z� :M)N1 : : :Na. Then we have thatS ~FU!+d S ~FU 0 where U 0 is a PCF term such that U 0!� dM [N1=z]N2 : : :Nae.So S ~FU 0 � (M [N1=z]N2 : : :Na)[V ji =xji], and we may now apply the induc-tion hypothesis as there is a shorter reduction sequence of S ~FU 0 to a nu-meral. The case where N = Y�N1N2 : : :Na is similar.15

Finally, suppose N = xjiNp+1 : : :Nq. Here we have P = S ~FU !+dFi j (Sp+1 ~FUp+1) : : :(Sq ~FUq) = P 0, say, where, for p < i0 � q, Ui0 is a PCFterm such that Ui0 !� Ni0. But P 0 � Fi j (Np+1[V ji =xji]) : : :(Nq[V ji =xji]), andso, by induction, we have that Fi j (Np+1[V ji =xji]) : : :(Nq[V ji =xji])!� n. Butthen as Fi j � V ji and V ji (Np+1[V ji =xji]) : : :(Nq[V ji =xji]) = Q we have thatQ!� n.In the second case, P = Si ~FU ~C[~P] and Q = N [V ji =xji] ~C[~Q] whereN : �i is �-open, where Fij � V ji : �i for each i; j, where the Fi and V jiare closed, and where U is a PCF term such that U !� dNe. We havethat Si ~FU ~C[~P] !+d Spushp;q(~C[~P]; ~F)U 0 where U 0 is a PCF term suchthat U 0 !� d(N "p;q)x0p+1 : : :x0qe. Now, de�ning W ji0 as before, we see thatSpushp;q(~C[~P]; ~F)U 0 � ((N"p;q)x0p+1 : : :x0q)[W ji0=xji0] = N [V ji0=xji0] ~C[~Q], andwe may apply the induction hypothesis.Finally, in the third case no hole is in head position in C[] and theproof again proceeds according to the form of C[]; the details are omitted.2 The proof of Theorem 3 is complete.5 Remarks and Open ProblemsWe conclude by drawing together some miscellaneous observations and sug-gesting some directions for further research.It is easy to show using Proposition 5 that standard LFA interpretationsfor each of our languages L do in fact exist. Speci�cally, let CL be the \syn-tactic category" whose objects are environments �, and whose morphismsfrom � to � are appropriate tuples of terms in environment � modulo obser-vational equivalence. Then the canonical standard interpretation IL of L inCL is clearly EFA and universal, and thus LFA. In fact IL is essentially theonly \sensible" LFA interpretation for L. For suppose that I is a standardand cartesian-closed LFA interpretation of L in D. Then, by Theorem 3 anda previous remark, it is EFA and universal in the strong sense. It followsthat the full subcategory of D consisting of the objects I[[�]] is equivalentto CL, and then that IL and I are identical, modulo the equivalence.Given that standard LFA interpretations exist, one can prove, using anappropriate form of the Upward L�owenheim-Skolem Theorem, that non-standard (and thus non-universal) LFA interpretations also exist. Thisshows that the standardness condition in Theorem 3 is indeed necessary.The syntactic interpretations CL assure us of the existence of LFA inter-pretations, but these interpretations may not be very useful since questionsabout CL are no easier than questions about L itself. It is more interestingto ask whether one can give more \semantic" constructions of LFA inter-pretations. Note that since any standard LFA interpretation is universal it16

must have some notion of \computability" built in; the classical categoryof cpos does not provide an LFA interpretation for PCF++, for instance,because of the existence of non-computable elements (this observation issharpened in Proposition 12 below). For PCF++, there are several naturalexamples of LFA interpretations: the category of e�ective Scott domains [14]and many realizability interpretations [11] provide instances. Examples ofLFA interpretations for sequential PCF are given by the recursive versionsof categories of games [1, 8]. Note in passing that the evident r.e. sub-interpretation of Milner's EFA interpretation for PCF [12] does not providean LFA interpretation, as there exist �rst-order functions that are e�ectiveand sequential but not PCF-de�nable (see e.g., [19]). We do not know ofany natural LFA interpretations for PCF+.Although in this paper we have concentrated mainly on LFA interpret-ations for the whole of JL, it is also natural to consider logical full abstrac-tion for fragments of the language. One way to obtain such a fragment isto restrict attention to sentences of a certain logical complexity, e.g., the�n-sentences, for some n. (Note that, by a previous remark, logical fullabstraction for �n-sentences and �n-sentences are equivalent.) Our proof ofTheorem 3 shows that if a standard interpretation is LFA for �2-sentencesthen it is LFA for the whole of JL. In fact, the proof shows more, that itsu�ces to be LFA for �2-sentences with equational matrix, that is, of theform 8x�:9y� :M = N|one can even take � to be �.The next result shows that logical full abstraction for �1-sentences withequational matrix is already stronger than equational full abstraction (forany of PCF+, PCF+ or PCF++).Proposition 12 Neither Milner's EFA interpretation for PCF, nor thestandard cpo interpretation, whether taken for PCF+ or PCF++, are LFAfor sentences of the form 9f �!� :M = N .Proof Let K denote Kleene's singular tree (see [2, Chapter IV])|recallthat K is a recursive pre�x-closed set of �nite binary sequences such thatK contains arbitrarily long �nite sequences but no recursive in�nite path.Let d�e be an e�ective coding of �nite binary sequences as natural numbers,and let T : � ! � be such that Tdse !+ 0 i� s 2 K. We also require a termP : � ! � ! � such that Pdsedte !+ 0 i� s is a proper pre�x of t, and aterm Z : � ! � ! � such that Z mn !+ 0 i� m = n = 0. Now consider thesentence9f �!�: (�x�: Z (T (fx)) (P (fx)(f(succ x)))) = (�x�: cond x 0 0):It is easy to see that this sentence is denotationally true in all the interpreta-tions since by K�onig's Lemma there exists an in�nite path through K, but notoperationally true as there is no recursive such path (Milner's interpretationcoincides with the cpo interpretation at type �! �). 217

The (open) problem is now to distinguish LFA for �1-sentences from LFA.Another way to obtain fragments of JL is via a notion of type complexity.The level of a type is de�ned recursively:level(�) = 0; level(�! �) = max(level(�) + 1; level(�)):The level of a formula is then taken to be the maximum of the levels of itsquanti�ed variables. (One could also consider stronger alternative de�ni-tions placing restrictions on the level of subexpressions.) A standard EFAinterpretation is (evidently) logically fully abstract for sentences of level 0.For PCF++ one can say more, but �rst we need a lemma. A type � is saidto be an L-retract of a type � if there are closed L-terms L�� : � ! � andR�� :� ! � such that �x�:R��(L�� (x)) � �x�:x holds in L.Lemma 13 Every type is a PCF++-retract of �! �.Proof We use the \e�ective universality" remarked in [15], that everye�ectively given coherent !-continuous cpo is a computable retract of T!.In the interpretation C of PCF++ provided by the classical category of cpos,every C[[�]] is such a cpo; further T! is a computable retract of the cpo C[[�!�]]. Since any computable element of any C[[�]] is PCF++-de�nable [14] wetherefore have PCF++-terms de�ning the retracts. The conclusion follows,as the classical interpretation is EFA for PCF++. 2With this we can see that a standard interpretation I of PCF++ is LFA i�it is for sentences of the form 8f �!�:9m�:M = N . Any such interpretationmust be EFA. But now we can apply the above remarks on LFA for �2-sentences, as:j=I 8x� :9m�:M = N i� j=I 8f �!�:9m�:M [R�!�� f=x] = N [R�!�� f=x]:It is an open question as to whether PCF or PCF+ permit any such reduc-tion in type complexity. It would also be interesting to understand whichretractions hold for these languages.The results in this paper should apply not just to the languages we haveconsidered but to a wider class. As regards functional languages, one wouldcertainly wish to consider the lazy and call-by-value variants of PCF [6, 11].A further useful extension would be to recursively typed languages, such asFPC [6, 4]. It would then be natural to consider polymorphic extensionsof PCF; this seems not to be a straightforward matter. It would be alsointeresting to formulate an appropriate notion that would allow our resultsto be presented at their natural level of generality. This should at leastinclude suitable extensions of PCF (in which regard see [9]), and perhaps agreater degree of abstraction is obtainable.Finally, we have said very little about axioms and inference rules forJL. It would be useful to work out the details of an axiomatization for18

our logics and show that our axioms were valid in some LFA interpreta-tion. This would establish that they were also valid under the operationalinterpretation|thus we would obtain an attractive program logic. It seemsthat the appropriate axioms would be very similar to those of LCF, witha few additional \e�ectivity" principles. Of course, in this simple situationone can imagine that the validity of the axioms could be proved just aseasily by syntactic methods, without the aid of a denotational interpreta-tion. It would therefore be interesting to carry out a similar programmefor more complex programming languages|it seems plausible that here se-mantic methods might show a distinct advantage over syntactic ones.AcknowledgmentsWe would like to thank John Power for many helpful discussions.References[1] S. Abramsky, R. Jagadeesan and P. Malacaria, Full Abstraction for PCF (Ex-tended abstract), in Proceedings of TACS '94, eds. M. Hagiya and J. Mitchell,LNCS 789, pp. 1{15, Springer-Verlag, Berlin, 1994; see also Full Abstraction forPCF, by the same authors, to appear.[2] M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, Berlin,1985.[3] P-L. Curien, Categorical Combinators, Sequential Algorithms, and FunctionalProgramming, Birkh�auser, Boston, 1993.[4] M. Fiore and G. D. Plotkin, An Axiomatisation of Computationally AdequateDomain Theoretic Models of FPC, in Proceedings of the Ninth Symposium onLogic in Computer Science, Paris, pp. 92 {102. Washington, IEEE ComputerSociety Press,1994.[5] M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, LNCS 78, Springer-Verlag, Berlin, 1978.[6] C. A. Gunter, Semantics of Programming Languages, MIT Press, Cambridge,1992.[7] J. M. E. Hyland, First Steps in Synthetic Domain Theory, in Category Theory,Proceedings, Como 1990, eds. A. Carboni, M. C. Pedicchio and G. Rosolini,LNM 1488, pp. 131{157, Springer-Verlag, Berlin, 1990.[8] J. M. E. Hyland and C.-H. L. Ong, Pi-calculus, Dialogue Games and PCF,in Proc. 7th ACM Conf. Functional Programming and Computer Architecture,ACM Press, 1995; see also On Full Abstraction for PCF: I, II and III, by thesame authors, to appear.[9] T. Jim and A. R.Meyer, Full Abstraction and the Context Lemma (PreliminaryReport), in Proceedings of TACS '91, eds. T. Ito and A. R. Meyer LNCS 526,pp. 131{151, Springer-Verlag, Berlin, 1991.19

[10] J. Lambek and P. J. Scott, Introduction to Higher-Order Categorical Logic,Cambridge University Press, Cambridge, 1986.[11] J. R. Longley, Realizability Toposes and Language Semantics, Ph.D. thesis,University of Edinburgh, LFCS technical report number ECS-LFCS-95-332,1995.[12] R. Milner, Fully Abstract Models of Typed �-calculi, Theoretical Comp. Sci.,Vol.4, pp. 1{22, 1977.[13] P. W. O'Hearn and J. G. Riecke, Kripke Logical Relations and PCF, InvitedLecture: Workshop on Logic Domains and Programming Languages, Darm-stadt, 1995, to appear in Information and Computation.[14] G. Plotkin, LCF Considered as a Programming Language, Theoretical Comp.Sci., Vol. 5, pp. 223{255, 1977.[15] G. Plotkin, T! as a Universal Domain, JCSS, Vol. 17, pp. 209{236, 1978.[16] D. Scott, Outline of a Mathematical Theory of Computation, in Proc. 4thAnnual Princeton Conference on Information Sciences and Systems, pp. 169{176, Princeton University, 1970.[17] D. Scott and C. Strachey Towards a Mathematical Semantics for ComputerLanguages, in Proc. Symp. on Computers and Automata, Microwave ResearchInstitute Symposia Series, Vol. 21, pp. 19{46, Polytechnic Press, Brooklyn, NewYork, 1971.[18] A. Stoughton, Interde�nability of Parallel Operations in PCF, TheoreticalComp. Sci., Vol. 79, pp. 357{358, 1991.[19] M. B. Trakhtenbrot, On Representation of Sequential and Parallel Functions,in Proc. 4th Symposium on Mathematical Foundations of Computer Science,LNCS 32, pp. 411{417, Springer-Verlag, Berlin, 1975.
20

