
Recycling Continuations

Jonathan Sobel Daniel P. Friedman�

Computer Science Department

Indiana University

Bloomington, Indiana 47405
fjsobel, dfriedg@cs.indiana.edu

Abstract

If the continuations in functional data-structure-generating
programs are made explicit and represented as records, they
can be \recycled." Once they have served their purpose as
temporary, intermediate structures for managing program
control, the space they occupy can be reused for the struc-
tures that the programs produce as their output. To ef-
fect this immediate memory reclamation, we use a sequence
of correctness-preserving program transformations, demon-
strated through a series of simple examples. We then apply
the transformations to general anamorphism operators, with
the important consequence that all �nite-output anamor-
phisms can now be run without any stack- or continuation-
space overhead.

1 Introduction

The runtime architecture for a language implementation
keeps track of the continuations of procedure calls using
either a stack of call frames or a linked chain of heap-
allocated continuation structures. One advantage that may
be claimed for the stack approach is that deallocation of
frames is inexpensive, and it happens as soon as a proce-
dure returns. Heap-allocated continuations, on the other
hand, typically take up memory until the space is reclaimed
by the runtime memory manager (e.g., a garbage collector).
We show how, for a certain class of procedures, using the
continuation-based approach can lead not only to immedi-
ate reclamation of the space used by the continuations, but
also to the elimination of most of the memory overhead in-
curred by both of the aforementioned architectures.

Link-inversion algorithms (more generally, Deutsch-
Schorr-Waite algorithms) are a standard means of travers-
ing data structures with polynomial (sum-of-products) types
using little or no memory overhead. The problem with
such algorithms is that they mutate the structures dur-
ing the traversal. Thus, link inversion is generally un-
safe, except in \critical sections," during garbage collections
(the context of the original published description [14]), or

�This work was supported in part by the National Science Foun-
dation under grant CCR-9633109.

Appeared at ICFP '98 (the International Conference on
Functional Programming) in September, 1998 in Balti-
more, Maryland. Copyright c 1998 by ACM, Inc.

over uniquely referenced objects. We demonstrate a se-
ries of correctness-preserving program transformations that
takes a functional structure-generating procedure (includ-
ing anamorphisms [8, 9]) and produces one that uses a safe
variation of link inversion to reduce or eliminate the memory
overhead of recursive procedure calls.

Some of our algorithms for traversing and constructing
data structures are variations on techniques �rst published
twenty or thirty years ago; some special cases might have
been in use since the 1950s. They are now standard fare
in undergraduate data structures texts [6, 15]. The con-
tribution here is to derive these algorithms through a se-
quence of correctness-preserving program transformations.
This exercise may seem at �rst to be more entertaining
than useful, but there are two real practical bene�ts to the
transformation-based approach. First, a programmer using
this technique can begin with a formal mathematical algo-
rithm that parallels the recursive structure of the data and
then tune the program for e�ciency. Second, the transfor-
mations could be automated, allowing them to be included
in a compiler or source-to-source translator/optimizer.

We begin with a simple, concrete procedure de�nition
and follow it through a sequence of transformations. The
�rst example is a procedure that copies a list. After working
through this example, we consider a procedure that copies
binary trees. At the end, we generalize from the examples.

2 History

How to implement recursion (and, more generally, proce-
dure calls) e�ciently has been a subject of great scrutiny
in programming language design and compiler construction.
Early on, the stack-based runtime architecture was devel-
oped, with call frames being pushed onto the stack for each
procedure call. Stack frames take up memory, though, and
programmers have always been on the lookout for ways to
reduce memory consumption. One technique for traversing
trees and other inductively de�ned structures, while using
very little memory overhead, is to invert the pointers on the
way \down" into the structure, leaving a trail to follow on
the way back out. As each recursive call returns, instead of
popping a stack frame, it re-inverts a pointer back to its orig-
inal orientation. During such a traversal, however, if another
procedure needed to start from the \top" of the structure,
it would not be able to perform a correct traversal until all
the pointers were returned to their original states. Not sur-
prisingly, then, the �rst publication of such a technique [14]
speci�ed a context in which it is not only essential to use

little or no memory, but also safe to assume (at the time)
that no other traversal could happen concurrently: garbage
collection. Schorr and Waite's algorithm was developed at
the same time that Deutsch developed a similar one inde-
pendently; thus, link-inversion algorithms are now known
collectively as Deutsch-Schorr-Waite algorithms.1

The idea that programs could be transformed so that no
return information needed to be saved for procedure calls is
�rst recorded in a talk by Van Wijngaarden and a transcript
of the ensuing discussion [18]. Using explicit continuations
to represent computational contexts moved center-stage be-
ginning with Reynolds's seminal paper [13]. As implemen-
tors began to explore the possibility of replacing the stack-
based architecture with a continuation-based one, a variety
of trade-o�s were exposed.

The trade-o� of immediate interest is between the sim-
plicity of a procedure call in continuation-based systems and
the simplicity of space-reclamation upon procedure return in
stack-based systems. When a program has been written in
(or transformed into) continuation-passing style (CPS), ev-
ery call is a tail call and may be implemented as a simple
jump (or goto), but the information about what still needs
to be done after the call \returns" is encapsulated into a
structure that is usually heap-allocated. Barring the user-
level rei�cation of continuations, each continuation could be
disposed of after it has been used (thus, the stack archi-
tecture), but if continuations are treated just like any other
heap structures, they continue to occupy space until the run-
time memory manager recognizes that they are unreachable.
In a directly recursive, stack-based style, each call requires
some extra work in the creation and setup of a new stack
frame, but returning from a call is usually a simple matter
of adjusting the value of a single register. The memory used
by the frame is instantly available for reuse.

In an attempt to eliminate recursion overhead altogether,
Minamide demonstrates a new technique for representing
\un�nished" data structures [10]. Using this technique, pro-
grams that would otherwise have required the growth of a
stack or the construction of a chain of continuations can
instead run as simple loops. The style in which the pro-
grams must be written in order to bene�t from Minamide's
representation is closely related to CPS, as the author men-
tions. This relationship led us to question more deeply the
connection between the continuations that appear in cer-
tain programs and the data structures that the programs
construct. What follows is the result of that inquiry.

3 Lists

The code in the following examples is in Scheme, but in order
to maintain continuity between the list and tree examples,
the use of built-in Scheme lists (e.g., car, cdr, cons) will be
avoided. Instead, we explicitly de�ne a list datatype:

hlist datatypei�
(datatype List

(Empty-List)
(Pair head tail))

The datatype construct is not a standard Scheme form.2 It
is intended to feel similar to the homonymous form in ML.

1Schorr andWaite used link inversion during the \mark" phase of a
mark-sweep collector, so they had to chase arbitrary pointers through
a graph structure. Our focus is on functional, recursive structures,
not arbitrary graphs.

2A de�nition for (and explication of) the datatype macro appears
at http://www.cs.indiana.edu/~jsobel/.

In short, de�ning a datatype provides us with constructors
for the variants, as well as a \case" form for de-structuring
objects of the datatype. Thus, the procedure for copying
lists is:

hlist copyi�
(define list-copy

(lambda (l)
(List-case l

((Empty-List) (Empty-List))
((Pair h t) (Pair h (list-copy t))))))

Using list-copy as an example may seem a bit odd, since
it is functionally equivalent to the identity function. The
intent of these examples is to convey the nature of the pro-
gram transformations, though, and list-copy is among the
simplest of procedures that construct lists. Procedures that
actually perform interesting work, such as subst, remove,
or iota (which produces an increasing list of numbers),
are straightforward generalizations of list-copy, as long
as their non-varying parameters are abstracted out of the
recursion.

3.1 (Lists) Continuation-Passing Style

The �rst transformation to be applied to list-copy is the
standard call-by-value conversion to continuation-passing
style (CPS). All the \administrative" CPS reductions have
been left out, and constructors have been treated as primi-
tive, atomic operations.

hlist copy in CPSi�
(define list-copy-cps

(lambda (l k)
(List-case l

((Empty-List) (k (Empty-List)))
((Pair h t) (list-copy-cps t

(lambda (v)
(k (Pair h v))))))))

The original one-argument version of list-copy can be re-
covered with a simple \wrapper" for list-copy-cps.

hlist copy in CPSi+�
(define list-copy

(lambda (l)
(list-copy-cps l (lambda (v) v))))

The two versions of list-copy|direct and continuation-
passing style|compute the same result, but the work done
along the way is slightly di�erent. In the direct-style version,
the language implementation maintains the control context.
In the CPS version, every call is a tail call (equivalent to
a jump or goto); as far as the compiler can tell, there is
nothing left to do after copying the tail. Instead, the con-
tinuation is maintained explicitly in the program.

As list-copy \walks down" the list, it constructs a se-
quence of nested closures. With the display-closure repre-
sentation [5, 2, 3] in mind (in which a closure is a sequence of
memory locations containing a code pointer and the values
of the procedure's free variables), it becomes evident that
the continuation is really a linear, linked structure. Upon
reaching the end of the list, the procedure starts a chain re-
action by invoking the outermost (most recently linked) of
these closures. The �rst one constructs a new pair and then
invokes the next one, each constructing another pair until
the identity (empty, initial) continuation is reached, and the
copied list is returned.

2

3.2 (Lists) Representation Independence

The explicit treatment of the continuations in the CPS
version of list-copy is, in fact, a bit too explicit: the
continuations-as-closures representation was \hard-wired"
into the code. The next step is to make list-copy treat the
continuation more abstractly [13], so that the representation
of the continuation can be modi�ed at will. The procedures
will retain their prior form:

hlist copy in representation-independent CPSi�
(define list-copy-cps

(lambda (l k)
(List-case l

((Empty-List) (invoke L k (Empty-List)))
((Pair h t) (list-copy-cps t

hconstruct pairing continuationi)))))

(define list-copy
(lambda (l)
(list-copy-cps l hconstruct initial continuationi)))

Here the continuations will be constructed and invoked
through a more abstract interface. For invocation, the
invokeL operator su�ces to eliminate the assumption that
continuations are procedures. If, in spite of the more ab-
stract interface, continuations really are still represented as
procedures, invokeL can be de�ned as

hinvoking list continuations (procedure representation)i�
(define invoke L

(lambda (k v)
(k v)))

Having committed to a procedural representation, the con-
tinuation constructors had better produce the same closures
as in the original CPS version (with the bodies transformed
where necessary). Of course, this implies that the values
of the free variables must be passed as arguments to the
constructors.

hlist continuation constructors (procedure representation)i�
(define Initial-k

(lambda ()
(lambda (v) v)))

(define Pairing-k
(lambda (h k)
(lambda (v)

(invoke L k (Pair h v)))))

Thus, the missing part of list-copy-cps is

hconstruct pairing continuationi�
(Pairing-k h k)

and the missing part of list-copy is just

hconstruct initial continuationi�
(Initial-k)

3.3 (Lists) Representing Continuations as Records

Freed from any dependence on a particular representation,
we can now switch from procedural to record-based repre-
sentation of continuations without changing the de�nition
of list-copy. What changes is the construction and in-
vocation of the continuations: instead of explicitly de�ned
constructors, a datatype is used.

hlist continuation typei�
(datatype List-k (Initial-k) (Pairing-k head k))

Thus, the constructors de�ned in the preceding section are
replaced by trivial record constructors. The work is shifted
to the invokeL procedure. In order to preserve the seman-
tics of the invocation, we can simply copy the code from the
bodies of the old continuation procedures into the di�erent
cases of the invokeL procedure.

hinvoking list continuations (record representation)i�
(define invoke L

(lambda (k v)
(List-k-case k

((Initial-k) v)
((Pairing-k h k)
(invoke L k (Pair h v))))))

The linked structure of continuations described in Sec-
tion 3.1 is now completely explicit. Each continuation has
an explicit link (in the form of a record �eld) to the next
continuation in the chain. Consider how a call to list-copy
works now:

1. First, list-copy-cps walks down the list, creating a
Pairing-k record for each Pair in the list.

2. At the end of the list, the base case of list-copy-cps
calls invokeL with the chain of Pairing-ks and an
Empty-List as arguments.

3. Then, invokeL constructs a new Pair for each
Pairing-k, using the saved head value for the head
and the value of the v parameter for the tail.

4. When invokeL reaches the initial continuation, the
value of v (which is by now a complete copy of the
original list) is returned.

Thus, three data structures are involved in a call to
list-copy: the input list, the chain of continuations, and
the output list. In addition, the property that every call is
a tail call has been preserved from the original CPS trans-
formation.

3.4 (Lists) Link Inversion

There are two crucial observations to be made about the
last de�nition of invokeL. First, we have \accidentally"
used the name k as part of the pattern on the Pairing-k
line, shadowing the k parameter of invokeL. Hiding the k
parameter did no harm, though; it was only used to choose
a case and bind the pattern variables. The continuation
passed to invokeL is never used on the right-hand side of a
case clause. Since there are no free occurrences of k in the
clauses, its value is no longer reachable (i.e., it is garbage)
as soon as the pattern is matched [12]. In other terminology,
invokeL obeys a linear type discipline, which has important
implications about how the data structure bound to k can
be treated [4].

The second observation is that the Pair constructed in
the Pairing-k clause is similar in form and contents to the
Pairing-k itself. Both have two �elds, and both have the
same value in their �rst �elds. The only di�erence is that
the k in the Pairing-k is replaced with v in the Pair.

Taking advantage of the linearity of k, why not take the
\replacement" of k with v more literally? The input con-
tinuation will not be needed again, so why not use it as the
result? Suppose that, in addition to regular constructors
and the case form, the datatype form is extended to de-
�ne \recycling constructors" for each variant. For instance,
when the List datatype is de�ned, we get not only the Pair

3

constructor, but also a recycle-as-Pair constructor, which
is a new syntactic form that looks like this:

hform of recycle-as-Pairi�
(recycle-as-Pair record-expr [fieldname expr] ...)

Evaluating this form is roughly equivalent to evaluating the
following pseudo-expression:

hpseudo-expansion of recycle-as-Pairi�
(let ((record record-expr))

(coerce-to-Pair! record)
(set-fieldname ! record expr)
...
record)

where coerce-to-Pair! is an imagined low-level operation
that requires its argument to be the same size record as a
Pair and \re-tags" the record as a Pair. The also-imagined
set-head! and/or set-tail! update the appropriate �elds
of the record with the values of their second arguments. If no
update is speci�ed for a �eld, its value remains unchanged
after recycling. Thus, we could rewrite invokeL like this:

hrecycling list continuations (record representation)i�
(define invoke L

(lambda (c v)
(List-k-case c

((Initial-k) v)
((Pairing-k h k)
(invoke L k

(recycle-as-Pair c [tail v]))))))

This version of invokeL does exactly what has been sug-
gested. It reuses the memory formerly used by the
Pairing-k3 to construct a Pair whose contents are the same
as those of the Pairing-k, except that the tail �eld con-
tains the value of v, instead of whatever used to be there.
In other words, the Pairing-k is \re-tagged" to be a Pair,
and the tail �eld is updated to contain a new value. No
new memory is allocated.

A call to list-copy still produces the same answer as
before, but now the behavior along the way has changed
quite a bit:

1. First, list-copy-cps walks down the list, creating a
Pairing-k record for each Pair in the list.

2. At the end of the list, the base case calls invokeL with
the chain of Pairing-ks and the Empty-List as argu-
ments.

3. Then, invokeL inverts the \backward-pointing" links
(k) that connect each continuation to the next, making
them point \forward" to the tail (v) instead.

4. When invokeL reaches the initial continuation, the v
(which is by now a complete copy of the original list)
is returned.

Only two data structures are involved in a call to list-copy
now: the input list and the continuations/output list. No
extra memory is used beyond that which is necessary for
creating the result.4

This diagram represents the situation as invokeL is
called for the third time when copying a list containing the
numbers 1, 2, 3, and 4.

3Ironically, exploiting linearity requires its violation.
4Actually, a constant amount of memory is used for allocating the

Initial-k, so it is more accurate to claim that the memory use of
list-copy is constant, not counting the memory used for the output.

vk

21 3 4

The narrow box on the far right is an Empty-List. The
square on the left is the initial continuation. The records
containing 1 and 2 are Pairing-ks. The records containing
3 and 4 are Pairs.

After this last transformation, list-copy works almost
exactly like the standard link-inversion algorithm for stack-
less list traversal. The di�erence is that, whereas most pre-
sentations of link inversion treat it as a means of traversing
an existing list, list-copy uses link inversion to traverse its
freshly allocated result list. Since no external references to
the result can exist yet, the usual danger created by link
inversion goes away: two traversals cannot happen at once.

The �rst version of list-copy, at the beginning of Sec-
tion 3, had the desirable property that its recursive structure
closely matched the inductive type structure of the lists be-
ing copied. That correspondence is now less clearly present
in the code, which is why it is preferable to begin by writing
the direct-style version and to convert to the more space-
e�cient version through correctness-preserving transforma-
tions. After four transformations, the program still pro-
duces the same answer, but it uses no extra space, whereas
the original program requires extra space proportional to the
length of the list in order to compute its result. To complete
the path toward a more standard link-inversion algorithm for
lists, one can observe that maintaining the distinction be-
tween List and List-k is not necessary. Thus, the List-k
type could be eliminated in favor of Lists everywhere, in-
cluding the representation of continuations, obviating the
record coercion.

3.5 Other List Examples

The transformation technique demonstrated in the preced-
ing sections never depended on the form of the input to the
procedure being transformed. A certain control ow was
necessary in order to produce the desired output, and a cer-
tain form for the continuations was induced by the control
ow.

To clarify that the form of the output is the determining
factor, consider that from having seen only list-copy, it
would be easy to conclude that this sequence of transforma-
tions only works for programs that take a list of length n
and return a new list, also of length n. In fact, exactly the
right number of continuations are allocated for procedures
in which the lengths are two di�erent numbers n andm. For
instance, the procedure remove returns a list whose length
is less than or equal to the length of its input, eliminating
the elements that match its �rst argument.

hremovei�
(define remove

(lambda (x l)
(letrec

((rem (lambda (l)
(List-case l

((Empty-List) (Empty-List))
((Pair h t)
(if (equal? h x)

(rem t)
(Pair h (rem t))))))))

(rem l))))

4

After completely transforming this program, it becomes:

hremove with recyclingi�
(define remove

(lambda (x l)
(letrec

((rem-cps (lambda (l k)
(List-case l

((Empty-List)
(invoke L k (Empty-List)))
((Pair h t)
(if (equal? h x)

(rem-cps t k)
(rem-cps t

(Pairing-k h k))))))))
(rem-cps l (Initial-k)))))

where invokeL is de�ned exactly as in the recycling version
of list-copy. (In fact, invokeL will be the same for almost
any program that constructs lists. A counterexample is the
procedure double, which creates a list with two elements for
every one in the input list, so that the output list is twice
as long as the input list.) Here we see that a Pairing-k is
created just in case a Pair is needed in the output list. No
space is wasted by the continuations.

The input need not even be a list, though. A program
need only construct a list as its output to be suitable for our
transformation. For example, the iota procedure, which
takes a natural number n and produces a list that contains
the numbers from 0 up to (but not including) n, is also a
suitable candidate for eliminating stack overhead.

hiotai�
(define iota

(lambda (n)
(letrec

((up (lambda (i)
(cond
((= i n) (Empty-List))
(else (Pair i (up (+ i 1))))))))

(up 0))))

Since iota returns a list, it needs to construct a Pair at
each recursive step. After the transformations, we get:

hiota with recyclingi�
(define iota

(lambda (n)
(letrec

((up-cps (lambda (i k)
(cond
((= i n)
(invoke L k (Empty-List)))

(else
(up-cps (+ i 1)

(Pairing-k i k)))))))
(up-cps 0 (Initial-k)))))

The construction of the Pair has been replaced by the con-
struction of the pairing continuation, which will be con-
verted to a Pair in invokeL, after the base case is reached.

4 Trees

Lists are sometimes beguilingly simple. Their de�nition has
a single recursive reference, which makes it straightforward
to use them as their own continuations, or even to tra-
verse them iteratively. This is not possible for arbitrary,
inductively-de�ned structures. In the following sections, we
attempt to apply the same sequence of transformations to
a tree-copying procedure that we applied to the list-copying

procedure. This attempt reveals subtleties (clari�ed in Sec-
tion 4.4) that did not arise in the preceding section.

We begin, as before, with a datatype de�nition. For
simplicity and without loss of generality, there will be no
distinct leaf type; a leaf is a node with two empty subtrees.

htree datatypei�
(datatype Tree (Empty-Tree) (Node datum left right))

The direct-style copying procedure induced by this type is:

htree copyi�
(define tree-copy

(lambda (t)
(Tree-case t

((Empty-Tree) (Empty-Tree))
((Node d l r)
(Node d (tree-copy l) (tree-copy r))))))

It is the presence of two recursive calls to tree-copy|and
the accompanying two input and output subtrees|that will
act as the crucible for our sequence of transformations, help-
ing us to re�ne and generalize them.

4.1 (Trees) Continuation-Passing Style

Even the standard CPS conversion raises issues that were
hidden before. CPS is inherently sequential, but the two
recursive calls to tree-copy have no speci�ed ordering in
the direct-style programs in Scheme. We arbitrarily choose
a left-to-right evaluation ordering.

htree copy in CPSi�
(define tree-copy-cps

(lambda (t k)
(Tree-case t

((Empty-Tree) (k (Empty-Tree)))
((Node d l r)
(tree-copy-cps l

(lambda (vl)
(tree-copy-cps r

(lambda (vr)
(k (Node d vl vr))))))))))

(define tree-copy
(lambda (t)
(tree-copy-cps t (lambda (v) v))))

As in the list examples, converting the program to CPS
makes explicit the still-to-be-done computation at any point.
The procedure walks down the leftmost path in the tree, cre-
ating a sequence of nested closures formed from the (lambda
(vl) ...) continuation. Upon reaching the end of the left
branch, the last of these closures is invoked, and the proce-
dure begins to walk down a right branch. When both left
and right branches are completed, the next continuation in
the chain is invoked on a newly created node. Even though
the data structure being traversed is now a tree, the contin-
uation always remains a linear structure. This is precisely
what makes a stack-based runtime architecture feasible.

4.2 (Trees) Representation Independence

The list-copy procedure creates two di�erent kinds of con-
tinuations; the tree version creates three. The �rst is the
omnipresent empty continuation. The second is created
when descending into left branches, and the third|for right
branches|is created only when the second is invoked. Here
is a version of the CPS tree copy expressed more abstractly:

5

htree copy in representation-independent CPSi�
(define tree-copy-cps

(lambda (t k)
(Tree-case t

((Empty-Tree) (invoke T k (Empty-Tree)))
((Node d l r)
(tree-copy-cps l
hconstruct left continuationi)))))

(define tree-copy
(lambda (t)
(tree-copy-cps t (Initial-k))))

Given the procedural de�nition of invokeT ,

hinvoking tree continuations (procedure representation)i�
(define invoke T

(lambda (k v)
(k v)))

the constructor for the initial continuation is the same as
the one for lists:

htree continuation constructors (procedure representation)i�
(define Initial-k

(lambda ()
(lambda (v) v)))

Constructors for nested continuations are easiest to write
starting with the innermost and working outward.

htree continuation constructors (procedure representation)i+�
(define Right-k

(lambda (d vl k)
(lambda (v)

(invoke T k (Node d vl v)))))

This clari�es that the constructor for left continuations must
be:

htree continuation constructors (procedure representation)i+�
(define Left-k

(lambda (d r k)
(lambda (v)

(tree-copy-cps r (Right-k d v k)))))

Thus, the missing part of tree-copy can now be completed
only one way:

hconstruct left continuationi�
(Left-k d r k)

4.3 (Trees) Representing Continuations as Records

Section 3.3 ended with the observation that the types List-k
and List were isomorphic and that the distinction between
them could be dropped. This was clearly a special case,
because Tree and Tree-k are dissimilar:

htree continuation typei�
(datatype Tree-k

(Initial-k)
(Left-k datum right k)
(Right-k datum left k))

A fact that may not be readily apparent is that the right
�eld of Left-k (the r parameter above) and the left �eld of
Right-k (the vl parameter above) point into two di�erent
structures, the old tree and the new tree, respectively. The
right �eld of Left-k always refers to the old tree, the one
being copied. The left �eld of Right-k refers to the newly
constructed left subtree, which will become a part of the
output tree.

As before, the burden of behavior is lifted from the con-
tinuations and falls onto the invokeT procedure. Copying

the bodies of the continuation procedures from the preced-
ing section, we get:

hinvoking tree continuations (record representation)i�
(define invoke T

(lambda (k v)
(Tree-k-case k

((Initial-k) v)
((Left-k d r k)
(tree-copy-cps r (Right-k d v k)))
((Right-k d l k)
(invoke T k (Node d l v))))))

The linked structure of the continuations is completely
explicit again. If we were to observe the dynamic behavior of
the chain of continuations, though, we would see something
that we did not observe in the list example. The chain of
list continuations grew (monotonically) until it reached its
maximum length. Then it shrank (monotonically) until the
initial continuation was invoked. The chain of tree contin-
uations alternately grows and shrinks, matching the growth
pattern that a stack would exhibit during a traversal of the
tree being copied. The total number of continuation records
created (which is greater than the maximum length of the
chain) is the same as the number of nodes in the tree, again
inviting us to reuse the space they occupy.

4.4 (Trees) Link Inversion

Comparing the tree invokeT with the list invokeL, we ob-
serve that the �rst case clause is identical to the list version.
The last case clause is so similar to what we saw in the list
example that it is evident what to do with it: simply replace
k with v. The middle clause is new, but it is still fairly ob-
vious that the Right-k being constructed is nearly identical
to the Left-k it replaces. The only di�erence is that the
r in the Left-k is replaced with v in the Right-k. Thus,
it is again possible to recycle the continuations and avoid
allocating new records.

hrecycling tree continuations (record representation)i�
(define invoke T

(lambda (c v)
(Tree-k-case c

((Initial-k) v)
((Left-k d r k)
(tree-copy-cps r

(recycle-as-Right-k c [left v])))
((Right-k d l k)
(invoke T k

(recycle-as-Node c [right v]))))))

Let us walk through the sequence of events that begins
with a call to tree-copy on some tree.

1. As tree-copy-cps walks down the leftmost branch of
the tree, it creates for each node a Left-k record. That
record contains the node's datum and a pointer to its
right subtree, which still needs processing.

2. At the �rst empty left subtree, tree-copy-cps calls
invokeT with the chain of Left-ks and an Empty-Tree
as arguments.

3. Next, invokeT turns the Left-k into a Right-k, saving
the new left subtree (an Empty-Tree, for the �rst in the
chain of Left-ks), and redirects tree-copy-cps to the
old node's right subtree.

4. The whole process starts over with the right sub-
tree, until a node with no children is reached. Then,

6

tree-copy-cps calls invokeT , and the �rst continua-
tion in the chain is now a Right-k.

5. Later, invokeT turns the Right-k into a Node, inverting
the \upward-pointing" link (to the next continuation in
the chain) so that it points \down" to the right subtree
instead, and moves on to the next continuation.

6. When invokeT reaches the initial continuation, the
whole new tree is returned.

Suppose tree-copy is called on a balanced 3-node tree. This
diagram represents the situation as invokeT is called for the
second time:

1

2

3

k

v

1

2

The tree on the left is the tree being copied. The current
continuation is a Right-k. In the next step, the continuation
is recycled as a Node, with the right �eld updated to point
to the current v (an Empty-Tree). Then, invokeT is called
again, with new values for k and v:

1

2

3

v

k

1

2

Now the current continuation is a Left-k, and the value of
v is the Node that was just completed.

As with the list copying program, only two data struc-
tures are involved now: the input tree and the chain of con-
tinuations, which gradually becomes the output tree. It is
not possible, however, to claim that tree-copy has no mem-
ory overhead. The continuations are not isomorphic to trees
because it is necessary to distinguish between left and right
continuations, whereas trees have only one kind of node. In
link inversion terminology, a tag bit is necessary to deter-
mine which pointers have already reached their �nal state,
and which are being used to save data that still need to be
processed. Since there are only two alternatives, the dis-
tinction can be encoded in a single bit. The length of the
chain of continuations is equal to the depth of the recursion
at any moment, so the maximum amount of memory needed
is a number of bits equal to the maximum depth (i.e., the
height) of the tree. At least one undergraduate data struc-
tures textbook comes very close to expressing the connection
between the tag bit and continuations:

This method : : : does not completely eliminate
the memory used by the stack of the recursive al-
gorithm, though it does reduce it to a single bit
per cell. In essence, this bit encodes the same in-
formation as is needed in the recursive version : : :
to indicate, when a recursive call �nishes, which of
the two recursive calls in the body of the program
caused that invocation, and hence where in the
body of the program execution should continue
[6, page 114].

In comparison with the prior versions of tree-copy, a
great deal of memory overhead has been eliminated, but it is
not possible to remove all the overhead. In binary trees, the
remaining overhead is merely one bit per level of recursion,
but the situation grows worse for more general recursive
structures. For a structure with n recursive �elds, there will
be n di�erent kinds of continuations to distinguish, leading
to an overhead of lg n bits per level of recursion. In practice,
record length is constrained by memory word length, so the
overhead is bounded to one word per level of recursion.5

The preceding discussion notwithstanding, most imple-
mentations of user-de�ned types and variants actually take
an entire word to tag each variant and distinguish among
them. Thus, even though the left and right continuations
theoretically occupy more space than the tree node, they
typically take up exactly the same amount of space in prac-
tice. Otherwise, it would not really be a fair trick to recycle
a Right-k as a Node, as was done in the last de�nition of
invokeT .

5 General Polynomial Types

The transformations in the preceding sections generalize to
types other than lists and trees. In fact, most procedures
that act as generators of any polynomially typed data (sums
of product or record types [7]) can use link inversion, instead
of stack space. In particular, our sequence of transforma-
tions works for every �nite-output anamorphism [8], to be
de�ned more precisely in Section 6.

The transformations in the following three sections are
based on those in the sources already cited in the exam-
ples, but we have reconstructed and extended them to suit
the language of the examples and the needs of the fourth
transformation, which is entirely our own.

5.1 Continuation-Passing Style

The CPS algorithm we use is standard, with the following
exception: constructors and most language-de�ned primi-
tives are treated as atomic operations, like variable refer-
ence. Procedures that run user code, such as map, are not
treated atomically; they need to be rewritten by the user
(e.g., map-cps). Also, we insist on de�ning the \wrapper"
procedures that explicitly call the CPS-transformed versions
with initial continuations. For example, it would have been
di�cult to discuss the complete behavior of list-copy-cps
without referring to the list-copy wrapper.

Most complete CPS algorithms de�ne translations for
call/cc; however, in order for it to be possible to recy-
cle the continuations, they must be treated linearly (in the

5Another way to implement the algorithm is with an extra pointer
in each record, which identi�es the next �eld that still needs to be
processed. This also takes one memory word per record. Still another
implementation uses plain tree nodes plus a stack of tag bits [17].

7

sense of linear logic). The translation for call/cc creates
two references to|and multiple potential uses of|the con-
tinuation, and so we disallow it in the programs for which
recycling is desired.

5.2 Representation Independence

This transformation can be briey described as follows:

1. Replace all continuation invocations (k E) with
(invoke k E).

2. Beginning with the innermost continuation construc-
tions (lambda-expressions), transfer each continuation
to a new de�nition, using an outer lambda-expression
to bind free variables.

3. At the site of the original continuation constructions
(the ones that were just moved), insert calls to the
newly de�ned constructors, passing the values of the
free variables.

4. De�ne invoke as (lambda (k v) (k v)).

The ordering of the free-variable parameters (i.e., the pa-
rameters of the outer lambda of each constructor) provides
some room for optimization. The goal is to do as little shift-
ing as possible at the recycling stage. The most general
solutions to this problem are equivalent to register alloca-
tion strategies in compilers. A simple heuristic that works
well, though, is based on the fact that the free variables
usually match the �elds of the records over which the re-
cursion is de�ned. The value of one �eld is the argument
to the continuation; the rest of the �elds should be listed
in the order they appear in the record. Thus, there will be
one �eld fewer mentioned in the free-variable parameters of
the continuation constructors than there are in the variant
being handled by the continuation. Every continuation ex-
cept the initial one also needs to refer to exactly one other
continuation. If the other continuation is passed as the last
argument to the constructor, the total number of arguments
will be the same as the number of �elds in the variant being
handled, and the order will simplify its recycling later.

5.3 Representing Continuations with Records

In this transformation, we eliminate all the constructor def-
initions produced in the preceding transformation and re-
place them with a single datatype de�nition. The �elds
of each variant should be exactly the same as the free-
variable parameters in the corresponding procedural con-
structor. The invoke procedure is rewritten to use the case
form of the continuation datatype. Each clause contains
the body of the constructor procedure from which the vari-
ant was derived. If the interpretive (dispatch) overhead of
invoke is an important concern, the kinds of jump-table op-
timization performed by Smalltalk-style object systems can
be used to recover most of the speed of direct procedure
calls.

5.4 Link Inversion

After completing the three preceding transformations, it
should be the case that each clause of invoke constructs
a new variant. The clauses that correspond to the in-
nermost continuations will construct result types, and the
other clauses (with the exception of the initial-continuation

clause) will match and construct continuation types. As we
demonstrated in the list and tree examples, the standard
constructors for these types can be replaced with recycling
constructors,6 updating only one �eld at a time. In fact,
when each continuation is �rst constructed (and allocated),
all of its �elds will refer to the input data structure. The
�elds will be updated, one at a time, to refer to continu-
ations that have been completely recycled as output data
structures. Finally, when the last �eld (the k �eld) is up-
dated, and the continuation is recycled as an output type,
the next continuation in the chain is invoked. One of its
�elds is updated to point \down" to the newly completed
node, and thus, the link is inverted.

A potential cause for concern at this point is that the
record lengths of the continuations might not match the
record lengths of the appropriate output records. If there is
a mismatch in the lengths, either the continuation record has
fewer slots than the output structure, or it has more. In or-
der for the continuation to have too few slots, it must be �ll-
ing the output structure with data that does not come from
free variables. For instance, if the continuation were (lambda
(v) (k (Pair 88 v))), it would have only one free-variable
slot (for k). In truth, it is surprisingly hard to �nd realis-
tic examples of this problem. (The iota procedure of Sec-
tion 3.5 would at �rst seem likely to �t into this problem
class, but it does not.) If a real case does arise, the values
(like 88) can be passed to the continuation constructors as if
they were free (as in (Pairing-k 88 k)), or an alternative
translation can be used. (The \list of 88's" program could
have been written iteratively from the start.)

What about continuations with more free variables than
there are slots in the output structure? For example, what
if a continuation looks like (lambda (v) (k (Pair (+ x y)
v))) where x, y, and k are free? Clearly, it would be possi-
ble to construct this continuation with (Pairing-k (+ x y)
k), instead of (Pairing-k x y k). More generally, it is al-
ways possible to fold the free values into fewer slots, either by
shifting computations to an earlier time (as in the preceding
example) or by storing values in an additional record, and
adding an indirection. This last solution is obviously less
desirable, because it creates more memory overhead, which
is precisely what we are trying to eliminate!

Finally, we claim that in practice, the preceding \prob-
lem" cases arise very rarely. In fact, we assert|but do not
prove here, since the following section will make it clear|
that in all procedures expressed as �nite-output anamor-
phisms (to be de�ned shortly), the length of the continuation
records always matches the length of the output records.

6 Anamorphisms

We have already argued that what enables the recycling of
continuations as output structures is not the algorithm being
implemented, but a similarity of form between the contin-
uations and the output data in structure-generating proce-
dures. One canonical class of generators of inductively typed
data is the set of procedures de�ned as anamorphisms [8].
An anamorphism is a recursive function that can be de�ned
using the \lens" operator [()], a generalized version of the
list unfold functional [1]. For those not acquainted with

6In some settings, it may be more appropriate for recycling con-
structors (e.g., recycle-as-Pair) to be a low-level operation that may
not always be available to the end user, but may be available to the
compiler or to users operating in some privileged mode.

8

anamorphisms, we de�ne them briey here, but it is not es-
sential to understand these de�nitions in order to appreciate
the remaining programs.

De�nition 1 A functor F is a homomorphism between
categories, mapping objects A to objects F (A) and arrows

A
f
�! B to arrows F (A)

F(f)
���! F (B), such that identity and

composition are preserved:

F (1A) = 1F(A)

F (g � f) = F (g) � F (f)

De�nition 2 An endofunctor is a functor from a category
back to itself.

De�nition 3 Given an endofunctor F and an arrow A

�!

F (A), an anamorphism is an arrow A
[()]
��! �x(F) such that

the following diagram commutes:

A

����! F (A)

[()]

?
?
y

?
?
yF ([()])

�x(F) F (�x(F))

In other words, an anamorphism over is de�ned recur-
sively as

[()] = F ([()]) �

The preceding de�nitions allow to be such that no
closed-form solution exists for the anamorphism. In lazy
languages or languages with streams, it can be useful to ad-
mit such anamorphisms. In our setting, however, where we
wish to produce �nite structures, we require anamorphisms
over to terminate (strictly), producing �nite data struc-
tures. (Otherwise, there would never be an opportunity to
\invert the links.")

In programming, the category of interest is usually
Type, with types as objects and functions as arrows. Func-
tors are a pair of a type constructor and a higher-order func-
tion (usually named map in the purely functional program-
ming community). For example, the type constructor whose
�xpoint is the lists with elements of type � is

F = �� : (Empty-List) j (Pair � �)

The higher-order \map" function is

F = �f : � ! � :
�x : F (�) :

case x of
(Empty-List)) (Empty-List)
(Pair a t)) (Pair a f(t))

or, in Scheme (\un-curried"),
hlist mapi�

(define List-map
(lambda (f l)
(List-case l

((Empty-List) (Empty-List))
((Pair h t) (Pair h (f t))))))

The \lens" brackets [()] are written out as ana. Here is the
corresponding ana for lists:
hlist lensi�

(define List-ana
(lambda (psi)
(letrec ((f (lambda (l)

(List-map f (psi l)))))
f)))

These allow us to write list-copy, remove, and iota as
anamorphisms.

hlist copy anamorphismi�
(define list-copy

(List-ana (lambda (l) l)))

hremove anamorphismi�
(define remove

(lambda (x l)
(letrec ((psi (lambda (l)

(List-case l
((Empty-List) l)
((Pair h t)
(if (equal? x h) (psi t) l))))))

((List-ana psi) l))))

hiota anamorphismi�
(define iota

(lambda (n)
((List-ana (lambda (i)

(cond
((= i n) (Empty-List))
(else (Pair i (+ i 1))))))

0)))

But now, instead of transforming the individual procedures,
why not transform the ana operator itself (along with the
appropriate datatype functors)? If we use these completely
transformed versions:

hlist map with recyclingi�
(define List-map-cps

(lambda (f l k)
(List-case l

((Empty-List) (invoke L k (Empty-List)))
((Pair h t) (f t (Pairing-k h k))))))

hlist lens with recyclingi�
(define List-ana-cps

(lambda (psi)
(letrec ((f (lambda (l k)

(List-map-cps f (psi l) k))))
f)))

(define List-ana
(lambda (psi)
(lambda (l)

((List-ana-cps psi) l (Initial-k)))))

and use the recycling de�nition of invokeL from Section 3.4,
then the de�nitions of list-copy, remove, and iota can
remain untouched, but they now run without any stack
or continuation space overhead! Since many of the code-
transformation passes of a compiler or language preproces-
sor can be written as anamorphisms, the recycling technique
appears to be very widely applicable. In fact, the CPS trans-
formation itself can be implemented this way, inviting self-
application of the optimization.

7 Future Directions

We have demonstrated a method for transforming both
speci�c structure-producing programs and general anamor-
phism operators to eliminate the stack-space usage of re-
cursion. For lists, it is clearly possible to go further and
eliminate the link-inversion stage by inverting the links for-
ward as the pairs/continuations are constructed. This makes
list construction fully iterative, as in Minamide's paper [10].
There should be some way to extend the iterative property
to one spine of trees and other polynomial types, but we

9

have not yet discovered an elegant transformation (to follow
the link-inversion transformation) to produce this property.

Wand [16] demonstrates an elegant sequence of trans-
formations7 that exploits the connection between CPS and
accumulator-passing style. He makes a di�erent, but re-
lated, set of observations about the free variables in contin-
uation terms, enabling recursive procedures to be converted
to iterative ones with accumulators. Where Wand per-
forms his conversion by proving that the accumulated value
correctly represents the continuation, we simply switch to
another|obviously equivalent|representation. Our trans-
formations are presented rather informally, butWand's tech-
nique for formal equivalence proofs should be very easily
applicable to all but the last transformation. We expect
the introduction of side e�ects to complicate somewhat the
equivalence proof for the last transformation.

Meijer and Hutton extend anamorphisms to exponential
types (function spaces) [9]. Their work should �t naturally
into our setting, but we have not explored the implications
of this mix. Furthermore, since anamorphisms and catamor-
phisms are duals we wonder whether there is a dual to our
technique, which might provide some sort of optimization
for catamorphisms.

The relationship between continuation-passing style and
monadic style [11] invites the extension of this work to a
monadic setting. The CPS monad is but one monad that
incurs a cost in terms of space. We plan to explore the exten-
sion of these transformations to other monads or some gen-
eral monadic framework. (For related work, see Chen and
Hudak's discussion of translating functional, linear abstract
datatypes into monadic ones with updatable state [4].)

Also, one of the great powers of monads is their pro-
vision for the rei�cation and reection of monadic meta-
information. In order to retain this power, the precise im-
plications of the presence of reective operators like call/cc
must be explored in the context of recycling.

Acknowledgments

Our thanks to Erik Hilsdale for hours of discussion and
help with the datatype macro. Thanks to Erik, Matthias
Felleisen, Mitch Wand, Jon Rossie, Steve Ganz, and an
anonymous referee for thorough readings and insightful com-
ments to guide us on our way. We also appreciate the com-
ments of Michael Levin, Anurag Mendhekar, Oleg Kiselyov,
and the participants of the Friday Morning Programming
Languages Seminar at Indiana University.

References

[1] Richard Bird and Philip Wadler. An Introduction to
Functional Programming. Prentice-Hall, 1988.

[2] Luca Cardelli. The functional abstract machine. Tech-
nical Report TR-107, Bell Labs, 1983. Bell Labs Tech-
nical Memorandum TM-83-11271-1.

[3] Luca Cardelli. Compiling a functional language. In
Conference Record of the 1984 ACM Symposium on
LISP and Functional Programming, pages 208{217.
ACM Press, 1984.

7In his words, \In this paradigm, one writes a clear, correct,
though possibly ine�cient, program, and then transforms it via
correctness-preserving transformations into a program which is more
e�cient although probably less clear."

[4] Chih-Ping Chen and Paul Hudak. Rolling your own
mutable ADT: A connection between linear types and
monads. In Conference Record of POPL '97: The 24TH
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 54{66, Paris, France,
January 1997. ACM Press.

[5] R. Kent Dybvig. Three Implmentation Models for
Scheme. PhD thesis, University of North Carolina at
Chapel Hill, 1987.

[6] Harry R. Lewis and Larry Denenburg. Data Structures
and Their Algorithms. HarperCollins, 1991.

[7] Grant Malcolm. Algebraic data types and program
transformation. Science of Computer Programming,
14(2{3):255{280, September 1990.

[8] Erik Meijer, Maarten Fokkinga, and Ross Paterson.
Functional programming with bananas, lenses, en-
velopes, and barbed wire. In FPCA '91: 5th Inter-
national Conference on Functional Programming Lan-
guages and Computer Architecture, number 523 in Lec-
ture Notes in Computer Science. Springer-Verlag, 1991.

[9] Erik Meijer and Graham Hutton. Bananas in space:
Extending fold and unfold to exponential types. In
FPCA '95: 7th International Conference on Functional
Programming Languages and Computer Architecture,
pages 324{333, La Jolla, June 1995. ACM Press.

[10] Yasuhiko Minamide. A functional representation of
data structures with a hole. In Conference Record of
POPL '98: The 25TH ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San
Diego, January 1998. ACM Press.

[11] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 93(1):55{92, July 1991.

[12] Greg Morrisett, Matthias Felleisen, and Robert Harper.
Abstract models of memory management. In FPCA
'95: 7th International Conference on Functional
Programming Languages and Computer Architecture,
pages 66{77, La Jolla, June 1995. ACM Press.

[13] John C. Reynolds. De�nitional interpreters for higher-
order programming languages. In Proceedings of the
ACM National Conference, pages 717{740. ACM Press,
1972.

[14] H. Schorr and W. M. Waite. An e�cient machine-
independent procedure for garbage collection in var-
ious list structures. Communications of the ACM,
10(8):501{506, August 1967.

[15] Je�rey D. Smith. Design and Analysis of Algorithms.
PWS-KENT, Boston, 1989.

[16] Mitchell Wand. Continuation-based program transfor-
mation strategies. Journal of the Association for Com-
puting Machinery, 27(1):164{180, January 1980.

[17] Benjamin Wegbreit. A space-e�cient list structure
tracing algorithm. IEEE Transactions on Computers,
C21:1009{1010, 1972.

[18] A. VanWijngaarden. Recursive de�nition of syntax and
semantics. In Formal Language Description Languages,
pages 13{24. North-Holland, 1964.

10

