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Initial data for fluid bodies in general relativity
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Abstract

We show that there exist asymptotically flat almost-smooth initial
data for Einstein-perfect fluid’s equation that represent an isolated
liquid-type body. By liquid-type body we mean that the fluid energy
density has compact support and takes a strictly positive constant
value at its boundary. By almost-smooth we mean that all initial
data fields are smooth everywhere on the initial hypersurface except
at the body boundary, where tangential derivatives of any order are
continuous at that boundary.

PACS: 04.20.Ex, 04.40.Nr, 02.30.Jr

1 Introduction

There is still missing a description by an initial value formulation in general
relativity of a self-gravitating ideal body in a general situation. By an ideal
body we mean a perfect fluid where the thermodynamical variables and the
fluid velocity have spatially compact support. Examples are, within some
approximation, a star, a neutron star, or a fluid planet. By a general situation
we mean first, a body without symmetry, because spherically symmetric
bodies are already described, whether static [27] or in radial motion [17],
and second, a situation including nearly static objects.
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It is remarkable the lack of this type of description. Stars are common
objects in the universe, and a perfect fluid is the simplest matter model
for them. General relativity is the currently accepted theory of gravitation
to describe stars, as well as planets, white dwarfs, and neutron stars. An
initial value formulation will be a useful tool to predict the time evolution of
such objects as predicted by Einstein’s equation, without any approximation
besides the choice of the matter model.

The main difficulty is to find a solution in a neighborhood of the time-like
hypersurface corresponding to the fluid-vacuum interface, where Einstein-
Euler’s equation transforms into vacuum Einstein’s equation. It is known
how to describe regions not including this interface, since an initial value
formulation for vacuum Einstein’s equation was first given in [5], and for
Einstein-Euler’s equation with everywhere non-vanishing energy density, in
[7]. The problem at the interface is inherent in the fluid equations and it is
also present in a Newtonian description. A summary of known results on free
boundary problems is given in Sec. 2.5 in [26], in the context of Newton’s
theory as well as of general relativity.

A first step to set up an initial value formulation for Einstein-Euler’s
equation in a neighborhood of the fluid-vacuum interface requires to find,
from the complete system of equations, a symmetric hyperbolic system that
remains symmetric hyperbolic even at that interface. A first system of this
type was found in [25] for a certain class of fluid state functions. However,
spherically symmetric static situations can not be described by these state
functions. The reason is that every solution found in that reference satisfies
that the fluid particles at the body boundary follows a time-like geodesic.
But this is not the case for a spherically symmetric static star, as the fol-
lowing argument, already given in [25], shows. Consider a static spherically
symmetric stellar model. The fluid 4-velocity must be proportional to the
timelike, hypersurface orthogonal Killing vector. The proportionality factor
achieves that the 4-velocity be a unitary vector field. In the vacuum region
the space-time must coincide with Schwarzschild’s. At the star boundary
the timelike Killing vector field must coincide with the timelike Killing vec-
tor in Schwarzschild’s space-time. However, the 4-velocity obtained with
this Killing vector field is not geodesic. Therefore, spherically symmetric
stellar models are not included among the solutions given in [25] and so, one
does not expect that nearly static stellar models can be described with these
solutions.

A second system of the type mentioned above was found, for a general
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class of state functions, in [14]. However, the initial value formulation that
describes nearly static objects is still missing. Fix some smooth state function
such that both the energy density and the sound velocity vanish at pressure
zero, and then consider the system given in [14] for that fluid. Assume that
there exists a smooth solution that describes such a fluid body. Then, one
can check that the fluid particles at the boundary of the body follow a time-
like geodesics. In other words, smooth perfect fluid solutions of system given
in [14] can not describe nearly static situations.

Therefore, a first attempt to describe nearly static perfect fluid bodies by
an initial value formulation would be that the fluid state function satisfies the
following condition: Neither the fluid energy density nor the sound velocity
must not vanish when the pressure vanishes. Because at the boundary of
the body the pressure vanishes, we are then requiring that the border of the
body have non-zero energy density. We call them “liquid-type” bodies, and
“liquid-type” state functions. Therefore, it is natural to study what are the
appropriate initial data for a liquid-type body. It turns out that the answer
to this question was not known, it is subtle, and is the subject of this work.

Fix once for all a simple perfect fluid, that is a perfect fluid with 1-
dimensional manifold of fluid states; for example one with a state function
of the form p(ρ), where p is the fluid pressure and ρ the fluid co-moving
energy density. Assume that this state function is smooth and of liquid-
type. By liquid-type ideal body initial data we mean a three dimensional
initial hypersurface, its first and second fundamental forms, and the fluid
initial 3-velocity and co-moving energy density. The first two fields must
be asymptotically flat, the last two must have the compact support, the
support of the fluid velocity must be included in to the support of the energy
density; and all of them must be a solution of the constraint equations, and
satisfy some energy condition. In addition, there exists an extra constraint
on the initial fluid fields: The fluid co-moving energy density must be strictly
positive and constant at the border of its support. Constant because the
simple perfect fluid state function implies that there exists only one single
value of the fluid co-moving energy density such that the pressure vanishes,
and this is the value of the energy density at the border of the body. Notice
that only the energy density as measured by a fluid co-moving observer must
be constant. This extra condition only arises for liquid-type fluids, because
it is trivially satisfied in the case where the fluid co-moving energy density
vanishes at the border of the body. [See Eqs. (5)-(6).] Also notice that
this data must have a C1 first fundamental form, that is, with at least one
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continuous derivative everywhere; if not, Dirac’s delta appears in the fluid
energy density.

Initial data of this type was not known in the literature. The only result
on solutions of the constraint equations with discontinuous matter sources
and C1 first fundamental form, [8], does not guarantee that the fluid co-
moving energy density be constant at the border of the body. Here is why.
The solutions with discontinuous matter sources are found by the usual con-
formal rescaling that also rescales the matter sources. Then, the initial phys-
ical energy density [the energy density as measured by an observer at rest
with the initial surface, function µ̃ in Eq. (5)] is the product of the initial
unphysical energy density (free data) times the conformal factor at power
minus eight. We do not know any procedure to choose the free initial data
such that the solutions given in [8] guarantee both, that the fluid co-moving
energy density [function ρ in Eq. (5)] be constant at the border of the body
and the conformal factor be C1, simultaneously. We should mention that
there are also found in [8] solutions of the constraints without rescaling the
energy density, but in this case, only continuous energy densities are consid-
ered, that is they vanish at the border of the body.

Here, we conformally rescale all the fields except the initial physical en-
ergy density, which is now free data, given positive and constant at the
boundary of the body. We impose that the fluid 3-velocity vanishes at the
body boundary. These two conditions imply that the fluid co-moving energy
density is positive and constant at the body boundary. [See Eq. (7).] The
subtle part now is to solve, with the initial physical energy density as free
data, the equation for the conformal factor. This is a semi-linear elliptic
equation, with the non-linear term given by a discontinuous function (the
initial physical energy density) times the unknown (the conformal factor) at
the power plus five. In other words, a non-decreasing function of the un-
known, times a discontinuous given function (in contrast with [8] where this
function is continuous). We introduce a compact manifold, and we prove ex-
istence of a C1 conformal factor, based on Schauder’s fixed-point Theorem.
The proof follows the ideas given in an appendix of [4], and in [12]. There is
only one (technical) requirement on the initial physical energy density: Its
L2-norm, computed with the unphysical metric, must not exceed some given
upper bound. We show in the appendix that, although this condition ex-
cludes possible initial data, it is mild enough to include interesting physical
situations, such as neutron stars.

We also give a statement on the regularity of these data. They can
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not be smooth, because the liquid-type energy density is, by definition, a
discontinuous function of the space variables. How regular can it be? The
smoothest liquid-type body is almost-smooth; that is, smooth everywhere
except at the body boundary, where tangential derivatives (appropriated
defined) of any order are continuous. In other words, we prove the following:
If the unphysical metric is a smooth field on the initial hypersurface, and
the fluid free initial data are smooth up to the body boundary with every
derivative tangential to the boundary continuous through that boundary,
then the same holds for all the initial data fields. A crucial requirement to
prove this statement is that the conformal factor be C1 on a neighborhood
of the body boundary. (See Sec. 3.3.)

Summarizing, we prove that almost-smooth initial data representing liquid-
type simple perfect fluid bodies can be obtained as solutions of the constraint
equations, in the case where the fluid 3-velocity vanishes at the body-boundary,
through a suitable modification of the usual conformal rescaling techniques.

Finally, some technical remarks: (i) We rescale the initial fluid momentum
density but not the initial fluid energy density, in order to solve the constraint
equations. Therefore, we have to choose the rescaled momentum density
small enough, in the sense given in Sec. 4.1, in order to have physical data
satisfying the dominant energy condition. (ii) We impose that the fluid 3-
velocity vanish at the body boundary. There is no physical justification
for this assumption, it is made because is the only way we know, with the
rescaling of the initial data field that we have chosen, to guarantee that the
fluid co-moving physical energy density be constant at the body boundary.
[See Eq. (7).] We give an interpretation of this condition in Sec. 2.2. (iii)
Besides the conformal rescaling to solve the constraint equations we perform
a conformal compactification in order to solve elliptic equations on some
unphysical compact manifold. Asymptotic decay properties of fields in the
physical initial hypersurface are translated into differentiability properties of
these fields at a particular point in the unphysical compact manifold. These
differentiability properties at the point at infinity are completely independent
of the differentiability of the fields near the body boundary.

In Sec. 2 we introduce the main definitions we need in order to present
the principal result, Theorems 1 and 2. We also give a proof based on results
obtained in Secs. 3 and 4. In Secs. 3.1 and 3.2 we give the main existence
proofs for the semi-linear and linear elliptic equation associated with the
Hamiltonian and momentum constraint, respectively. In Sec. 3.3 we prove
the regularity statements, Theorems 7 and 8. In Sect 4.1 we explain why this
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discussion on an energy condition appears, and we give a simple condition
on the free data such that the physical initial data satisfies the dominant
energy condition. The constraint equations are naturally written in terms
of the initial fluid energy density and the initial fluid momentum density.
Eqs. (5)-(6) relate them to the fluid pressure, co-moving energy density,
and 3-velocity. In Sec. 4.2, we prove that these equations are invertible.
In Sec. 5, we comment on the initial value formulation for liquid-type ideal
bodies. In Theorem 3 we need to assume that the fluid initial energy density
satisfies an inequality [Eq. (24)] involving both the unphysical manifold and
the unphysical rescaled metric. In Appendix A, we study this inequality. In
Sec. A.1, we show (Lemma 4) that a similar (but weaker) inequality holds
for every initial data. By an explicit example, in Sect A.2, we prove that the
inequality required for the existence theorems is in fact a restriction on the
allowed initial data. This example also suggests that this restriction is mild,
in the sense that interesting physical systems, like neutron stars, satisfy it.

2 Definitions and main result

2.1 Liquid-type ideal body data

We first introduce what we mean by initial data for a liquid-type ideal body.
Afterwards, we split the concept of almost-smooth into two pieces. Given a
field and an open bounded set Ω on some manifold, we introduce the concept
of an Ω-piecewise smooth and Ω-tangentially smooth field. Finally, in the
next subsection, we present our main result.

Consider an initial data set for Einstein’s equation with matter. That is,
consider a 3-dimensional, smooth, connected manifold M̃ , a positive definite
metric, q̃ab, and a symmetric tensor field, p̃ab, on M̃ , together with a vector
field, j̃a, and a positive scalar function, µ̃, subject to the condition j̃aj̃

a ≤ µ̃2,
and solution on M̃ of

D̃ap̃
ab − D̃bp̃a

a = −κj̃b, (1)

R̃ + (p̃a
a)2 − p̃abp̃

ab = 2κµ̃, (2)

where D̃a and R̃ are the Levi-Civita connection and the Ricci scalar associ-
ated with q̃ab, and κ = 8π. Indices on tensors with “tilde” are raised and
lowered with q̃ab and q̃ab, respectively, where q̃acq̃

cb = δa
b. Latin letters a,
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b, c, represent abstract indices. The fields solving (1)-(2) have a meaning
as part of a 4-dimensional space-time solution of Einstein’s equation with
matter sources. The manifold M̃ represents a three dimensional space-like
hypersurface such that q̃ab and p̃ab are their first and second fundamental
forms. This hypersurface will be a maximal slice if and only if p̃a

a = 0.
The fields µ̃ and j̃a represent the normal-normal and the (negative) normal-
parallel components to M̃ of the stress-energy tensor. The dominant energy
condition on the stress-energy tensor in the space-time implies j̃aj̃

a ≤ µ̃2 on
M̃ . This condition is the reason why one does not, in general, pick any q̃ab

and p̃ab and then define j̃a and µ̃ by (1)-(2). Because if one does that, the
resulting fields form an initial data set iff the energy condition is satisfied by
these j̃a and µ̃. It is an open question whether there exists a procedure to
find appropriate q̃ab and p̃ab besides the conformal rescaling one.

The initial data set is asymptotically flat if the complement of a compact
set in M̃ can be mapped by a coordinate system x̃j diffeomorphically onto
the complement of a closed ball in R

3 such that we have in these coordinates

q̃ij = (1 + 2m/r̃) δij + O(r̃−2), (3)

p̃ij = O(r̃−2), (4)

as r̃ :=
√

δij x̃ix̃j → ∞, where m is a constant that represents the ADM mass
of the data. Latin letters i, j, k, denote coordinates indices and take values
1, 2, 3, while δij = diag(1, 1, 1).

Fix as matter source a simple perfect fluid. That is, first, introduce on
M̃ a non-negative scalar field ρ, interpreted as the fluid co-moving energy
density, a vector field ṽa, interpreted as the fluid initial 3-velocity, and fix a
function p(ρ), the state function, interpreted as the fluid pressure as function
of the co-moving energy density. Second, introduce on M̃ the equations

µ̃ =
ρ + pṽ2

1 − ṽ2
, (5)

j̃b =
(ρ + p)ṽa

1 − ṽ2
, (6)

with ṽ2 = ṽaṽ
a < 1. In the space-time solution of Einstein’s equation with

matter sources, the normal-normal and the (negative) normal-parallel com-
ponents to M̃ of the usual perfect fluid stress-energy tensor are precisely
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the left hand side of Eqs. (5)-(6), respectively. If ua denotes the unit
fluid 4-velocity, and na the unit normal to the initial hypersurface, then
ua = (na + ṽa)/

√
1 − ṽ2. For this matter model the dominant energy con-

dition is equivalent to ρ ≥ p. In addition one can prove that ρ ≥ p implies
j̃aj̃

a < µ̃2. The sketch of the proof is the following: from Eqs. (5)-(6) define

f(ρ, ṽ) :=
√

j̃aj̃a/µ̃. Notice that f(ρ, 0) = 0, and f(ρ, 1) = 1. One can prove
that ρ ≥ p implies ∂f/∂ṽ > 0, for 0 ≤ ṽ < 1; then, follows that f < 1 for
0 ≤ ṽ < 1.

Consider a liquid-type ideal body data set. That is, an asymptotically
flat initial data with a simple perfect fluid whose state function is of liquid-
type, and both the fluid 3-velocity and the co-moving energy density have
the same compact support, Ω ⊂ M̃ . By a liquid-type state function we
mean a non-negative, non-decreasing, smooth function p(ρ) that vanishes
at ρ0 > 0. As an example consider a big water drop (in order to neglect
surface tension effects), or a fluid planet, or a neutron star. The support of
the energy density represents the place occupied by the body. The value of
the co-moving energy density at the border is determined by the function of
state as the value where the pressure vanishes. (Otherwise, the acceleration
of fluid particles lying on this border becomes infinite.) Therefore, a liquid-
type ideal body satisfies ρ|∂Ω = ρ0. Eqs. (5)-(6) translate this condition for
the co-moving energy density into a constraint on the fields µ̃ and j̃a at ∂Ω,
where they are not longer free but they must satisfy

[

µ̃
(

1 − j̃aj̃
a/µ̃2

)]
∣

∣

∂Ω
= ρ0. (7)

As a summary, we state the following:

Definition 1. A liquid-type ideal body initial data set consists of fields q̃ab,
p̃ab, ṽa, and ρ on M̃ , and a state function p(ρ), such that: (i) q̃ab is a Rie-
mannian metric, p̃ab is a symmetric tensor, and both are asymptotically flat;
(ii) p(ρ) is liquid-type, and vanishes at ρ0 > 0; (iii) supp(ṽa) ⊂ supp(ρ) = Ω
compact; (iv) ρ|∂Ω = ρ0; (v) These fields are solutions of Eqs. (1)-(2), (5)-(6)
on M̃ .

Given an open set Ω′ ⊂ R
3, we denote by Cs(Ω′) and Cs,α(Ω′) the spaces

of s-times continuously and Hölder continuously differentiable functions, re-
spectively, with s ≥ 0 integer, and 0 < α < 1. We use the notation
Cα(Ω′) = C0,α(Ω′). We also denote by Lp(Ω′), W s,p(Ω′), and by Lp

loc(Ω
′),

W s,p
loc (Ω′) the Lebesgue and Sobolev spaces, and the local Lebesgue and local
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Sobolev spaces, respectively, where 1 < p < ∞. We follow the definitions
given in [1, 16], and the generalizations for smooth manifolds, M ′, given in
[3]. Finally, we say that a tensor field on Ω′ ⊂ M ′ belongs to one of the
functional spaces mentioned above, if all its components, in some smooth
atlas of M ′, belong to such a space.

It is convenient to split the concept of an almost-smooth field, presented
in the introduction, into the following two definitions. The first one is an
Ω-piecewise smooth field. Consider a smooth manifold M ′, a tensor field u
on that manifold, and a open set Ω ⊂ M ′, with compact closure. We say
that u is Ω-piecewise smooth, if u ∈ C∞(Ω) ∩ C∞(M ′ \ Ω). Note that this
definition involve conditions on the field both in Ω and its complement. An
example of an Ω-piecewise smooth but not smooth function is any f such
that, 0 < f ∈ C∞(Ω) and f = 0 on M ′ \ Ω. The fluid energy density of a
liquid-type body is such a function.

The second concept is an Ω-tangentially smooth field. Let qab a smooth,
positive definite, metric on M ′. Assume that ∂Ω is a smooth submanifold of
codimension one. Let n̂a a normal vector to ∂Ω with respect to qab. Con-
sider a Gaussian normal foliation in a neighborhood of ∂Ω, that is, a foliation
orthogonal to the geodesics tangent to n̂a at every point of ∂Ω. Define n̂a out-
side ∂Ω to be tangent to these geodesics. Let V a

∂Ω any smooth tangent vector
field to this foliation, i.e.; any smooth vector field such that V a

∂Ωn̂a = 0. We
say that an Ω-piecewise smooth field u is Ω-tangentially smooth if for all k ≥ 1
the tangential derivatives V

(k)
∂Ω (u) are continuous; where V

(1)
∂Ω (u) := V a

∂ΩDau,

and V
(k)
∂Ω (u) := V a

∂ΩDa[V
(k−1)
∂Ω (u)], for k ≥ 1. For example, choose the field

to be the energy density of a liquid-type ideal body, and Ω the interior of its
support. A necessary condition for this field to be Ω-tangentially smooth is
to be constant at ∂Ω.

2.2 Main result

The strategy is, first, to find fields q̃ab, p̃ab, j̃a, and µ̃, solution of (1)-(2)
with the desired properties. Conformal rescaling techniques are used in this
part. We also introduce a compact manifold where equations associated with
(1)-(2) are solved with boundary conditions chosen in such a way that, the
de-compactification of these solutions gives asymptotically flat initial data.
Then we prove that under specific assumptions on the state function, Eqs.
(5)-(6) can be inverted for all ρ ≥ ρ0 and for ṽa with 0 ≤ ṽ < 1.
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Fix a 3-dimensional, orientable, connected, compact, smooth manifold.
Fix i ∈ M , and M̃ := M \ {i}. The choice M = S3, and so M̃ = R

3, de-
scribes, for example, ordinary stars. A restriction of this type in the topology,
however, plays no role in what follows. Let hab ∈ C∞(M) be a Riemannian
metric on M . Let xi be its associated Riemann normal coordinate system at
i, and r the geodesic distance. Let ~ab ∈ C∞(M) a symmetric tensor such
that

xi
~ij = 0. (8)

Latin indices i, j, k denote tensor components on coordinates xi. Let qab ∈
C∞(M̃), be a Riemannian metric on M with scalar curvature R. Let Bǫ be
an open ball of geodesic radius ǫ centered at i. Assume that there exists
ǫ > 0, such that the metric qab on Bǫ has the form

qij = hij + r3
~ij, (9)

in the coordinates xi. Since we have assumed (8), these coordinates are also
normal coordinates of the metric qab. The motivation for Eq. (9) is given in
the remarks below Theorem 1.

Fix a non negative scalar field µ̃ and a vector field ja on M with supp(ja) ⊂
supp(µ̃) = Ω, where Ω is some open set with compact closure Ω ⊂ M̃ , such
that its boundary ∂Ω is a smooth submanifold of codimension one. Introduce
on M̃ the fields θ and pab, with pa

a = 0, solutions of

Dap
ab = −κjb, (10)

Lq(θ) = −pabp
ab

8θ7
− κ

4
µ̃θ5, (11)

where Lq(θ) := qabDaDbθ − Rθ/8, and Da is the Levi-Civita connection
associated to qab. Indices of “non-tilde” tensors are raised and lowered with
qab and qab, respectively, where qacq

cb = δa
b. Fix the boundary condition

pij = O(r−4), (12)

lim
r→0

rθ = 1. (13)

The main part of this work is to prove existence of solution to Eqs. (10)-
(13), and then to show that if the source function µ̃ and ja are Ω-piecewise
and tangentially smooth, then so are the solutions pab and θ. Once these fields
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θ and pab are known the initial data set is given by the following conformal
rescaling

q̃ab = θ4qab, p̃ab = θ−10pab, j̃a = θ−10ja. (14)

Notice that we do not rescale the energy density µ̃, but we do rescale the
momentum density j̃a. In this way we achieve both that µ̃ be a free data,
and that the momentum constraint decouples the Hamiltonian constraint,
respectively. One can check that if θ and pab are solutions of Eqs. (10)-(11)
then the rescaled fields in Eqs. (14) satisfy Eqs. (1)-(2). One can also check
that the boundary conditions (12)-(13) on θ and pab imply that the rescaled
initial data is asymptotically flat. (See [4, 12].)

Let γ be the Green function of the operator Lq given in Eq. (11), which
is defined in Eq. (20)-(21). Our first main theorem is concerned with the
momentum constraint (10), (12).

Theorem 1. Fix M , M̃ , Ω, and qab as above. Let sab a symmetric trace-free
tensor in W 1,q(M) ∩ C∞(M̃), q > 3. Let pab be given by (37). Assume that

(i) supp(ja) ⊂ Ω ⊂ M̃ .
(ii) ja ∈ Lq(M) and it is Ω-piecewise and Ω-tangentially smooth.
(iii) Condition (42) is satisfied.
Then, there exist a unique tensor pab given by (41) solution of Eq. (10),

(12). Moreover, pab is Ω-piecewise and Ω-tangentially smooth and satisfies

pabp
ab/γ7 ∈ L2(M). (15)

The existence part of this theorem is essentially the standard York split-
ting (cf. [33]) adapted to our setting. It is given in Theorem 5, under a
weaker hypothesis. sab is free data related to the arbitrary amount of gravi-
tational radiation that can be added to the system keeping the matter sources
fixed. pab contains the linear and angular momentum of the initial data, it
can also be prescribed freely unless there are conformal symmetries. In this
case it has to satisfies condition (iii), which is the corresponding Fredholm
condition (see the remark after Theorem 5 for a physical interpretation). The
regularity part of the theorem is proved in Sec. 3.3.

We have chosen the unphysical metric, qab, smooth on M \ {i}. This is
a reasonable physical assumption. However to also impose smoothness at i
it is too restrictive. In this case initial data for stationary space-times are
ruled out (see [11]). The differentiability at i of the unphysical metric is
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related with decay at infinity of the associated physical metric q̃ab, imposing
smoothness at i means a restriction in the fall off which is, in particular,
incompatible with the stationary solutions. In order to include these data,
we have made the assumption (9). Although the functions hij and ~ij are
smooth, the metric belongs to C2,α(Bǫ) but it does not belong to C3(Bǫ).
The data for stationary space-times have precisely this form (see [11]). In
order to prove the theorem one certainly does not need smoothness of hij

and ~ij , only a finite number of derivatives. But the important point is that
in order to prove the last part, Eq. (15), it is not enough to require that, for
example, qab ∈ C2,α(M). Eq. (15) is essential in order to prove our second
theorem. We prove (15) in Theorem 6.

Proof. The metric given by Eq. (9) satisfies that qab ∈ W 4,p(M), p > 3/2.
By assumption ja and sab belong to W 1,q(M). Therefore Assumption (iii)
and Theorem 5 imply that there exists pab ∈ W 1,q′(M), 1 < q′ < 3/2, given
by Eq. (41) which solves Eqs. (10), (12). The hypothesis on the metric given
in (9) and Theorem 6 imply Eq. (15). Assumptions (i), (ii), and Theorems 7
and 8 imply that pab is Ω-piecewise smooth and Ω-tangentially smooth.

In order to write the next theorem we need to define some constants.
Set Cp = ||pabp

ab/(8γ7)||L2(M), γ+ = maxΩ γ, γ− = minΩ(γ) and j+ =
maxΩ

√
jaja . Let K, k, be the positive constants defined in Sec. 3.1. They

essentially depend on the metric qab and the manifold M . Finally, let ǫ0 > 0
solution of the following equation

ǫ0j+γ−8
−

=
K

|Ω|1/2(γ+ + kǫ2
0Cp)4

, (16)

where |Ω| is the volume of Ω with respect to the metric qab. There always
exists a unique positive solution to Eq. (16), since for ǫ0 > 0 the right-hand
side of (16) is a positive, decreasing function of ǫ0 which goes to zero at
infinity.

Theorem 2. Assume that the hypothesis of Theorem 1 holds. Let pab be
the tensor field given in that Theorem. Assume that R > 0. Fix a smooth
liquid-type state function, p(ρ), with zero-pressure energy density, ρ0 > 0,
compatible with condition (iii). Assume that 0 < ∂p/∂ρ < 1. Let µ̃ be such
that

(i) supp(µ̃) = Ω. µ̃|∂Ω = ρ0, and ja|∂Ω = 0.
(ii) µ̃ is Ω-piecewise and Ω-tangentially smooth.
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(iii) For ǫ < ǫ0, µ̃ satisfies

ǫj+γ−8
−

< ρ0 ≤ µ̃ ≤ K

|Ω|1/2(γ+ + kǫ2Cp)4
. (17)

Then there exist a positive solution θ ∈ C1,α(M̃) of Eqs. (11), (13) with
sources given by µ̃ and ǫpab, where 0 ≤ ǫ < ǫ0 and 0 < α < 1.

Moreover, the initial data computed with q̃ab = θ4qab, p̃ab = θ−10ǫpab,
j̃a = θ−10ǫja, and µ̃ is of liquid-type, as stated in Definition 1. They are Ω-
piecewise smooth, and Ω-tangentially smooth, q̃ab ∈ C1,α(M̃), p̃ab ∈ Cα(M̃).
The fluid 3-velocity, ṽa, vanishes at ∂Ω.

We use a non-typical conformal rescaling given in Eq. (14). The positive
outcome is that, in this way, µ̃ is essentially free data, and so, we can choose
it constant at ∂Ω. A negative outcome is that this µ̃ must satisfy the bound
(17). The upper bound in (17) is related with the existence of solution,
given in Theorem 3. In the Appendix we give arguments to show that this
bound is only technical, that is, there exist solutions which do not satisfy
it. However, the example presented there suggest that this bound will be
satisfied for every realistic star. The lower bound in (17) is related to the
energy condition. It is sufficient condition for the dominant energy condition
to hold, see Sec. 4.1.

A second negative outcome is that, in order to satisfy the liquid-type
constraint (7), we impose ja|∂Ω = 0, this implies ṽa|∂Ω = 0. In order to
understand the implications of this condition on the motion of the fluid,
assume that we have a simple, liquid type, fluid solution of Einstein-Euler’s
equation. That is, a 4-dimensional Lorentzian metric gab and a unit time
like vector field ua, representing the fluid 4-velocity, solutions of Einstein-
Euler’s equation. The boundary B of the fluid is the 3-dimensional, time
like, hypersurface where p = 0. Since we have a simple fluid, this implies
that ρ is constant on B, hence the vector defined by Na = gab∇bρ is normal
to B, where ∇b is the covariant derivative with respect to gab. By assumption
Na is not zero on B. Fix an arbitrary space like foliation, with normal vector
na; let M̃ a member of this foliation. Define ∂Ω = M̃ ∩ B, we will assume
that both B and ∂Ω are smooth submanifolds. The 3-velocity ṽa, defined by
ua = (na + ṽa)/

√
1 − ṽ2, will vanish at ∂Ω if and only if the following Eqs.

hold

Nan
a|∂Ω = 0, (18)
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Naω
a|∂Ω = 0, (19)

where ωa = ǫabcdub∇cud is the twist of ua (ǫabcd is the volume element of
gab and the indexes are moved with gab). Eq. (18) is a condition on the
foliation: the slice M̃ has to be tangent to Na. Eq. (19) is a condition on ua,
independent of the foliation: the normal component, with respect to the fluid
boundary, of the twist of ua must vanish on ∂Ω. Eq. (19) is a consequence
of the Frobenius’s theorem (see for example [31]) and the fact that ∂Ω is a
smooth submanifold and Na is hypersurface orthogonal. Note that ωa itself
can be different from zero at ∂Ω. Condition (19) is not time-propagated by
ua. This condition is imposed only on the initial slice, not in the subsequent
evolution. Although it is a restriction, it is not clear if it is a strong restriction
or not.

Another outcome of this particular conformal rescaling is a lack of unique-
ness of solutions to (1)-(6) in terms of the free data.

We do not require that Ω be connected. A non-connected domain can
describe several compact bodies.

This is not the most general result one can obtain with these methods.
One can also find solutions which are not piecewise smooth, but with some
finite differentiability in the interior of the support of ρ. One can even obtain
solutions where the support of ρ itself has some finite differentiability. The
obtainment of such more general data from the techniques used to get our
result does not present a substantial difficulty but only a greater level of
technical complication, which could obscure the main ideas necessary to find
these type of data.

Proof. The upper bound on µ̃ given by Eq. (17) and Theorem 3 imply that
there exists a strictly positive solution θ = γ + ϑ ∈ C1,α(M̃) of Eqs. (11),
(13). Hypothesis (i), (ii) and Theorems 7 and 8 imply that θ is Ω-piecewise
smooth and Ω-tangentially smooth.

Let q̃ab, p̃ab, j̃a be as stated in Theorem 2. Those fields are also Ω-
piecewise smooth and Ω-tangentially smooth, and they satisfy q̃ab ∈ C1,α(M̃),
p̃ab ∈ Cα(M̃). The lower bound in Eq. (17) and Lemma 3 imply that
the dominant energy condition is satisfied, that is j̃aj̃

a < µ̃2. Assumption
(i) implies that the liquid-type constraint (7) is trivially satisfied. Finally,
Theorem 9 implies that Eqs. (5)-(6) are invertible. The state function p(ρ)
is a smooth function of ρ, so Eqs. (5)-(6) imply that the fields ṽa and ρ are
Ω-piecewise smooth and Ω-tangentially smooth. Eq. (6) and Assumption (i)
imply that ṽa|∂Ω = 0.

14



3 Existence and regularity

3.1 Hamiltonian constraint

Consider Eqs. (11), (13). To obtain a solution θ we first transform this
problem on M̃ with a singular boundary condition at i ∈ M , into a regular
problem on M for another function. The metric qab has strictly positive
scalar of curvature R and the assumption given in Eq. (9) implies that
qab ∈ W 4,p(M), p > 3/2. Therefore, Lemma 3.2 and Corollary 3.3 in [12],
imply that there exist a unique, positive solution γ ∈ C1,α(M̃) of the equation

Lq(γ) = −4πδi, (20)

where δi is Dirac’s delta distribution with support at i. It is also true that
γ−1 ∈ Cα(M) and

lim
r→0

rγ = 1. (21)

We introduce the function ϑ = θ − γ. Then, Eq. (11) for θ on M̃ becomes
the following equation for ϑ on M ,

Lq(ϑ) = − pabp
ab

8(γ + ϑ)7
− κ

4
µ̃(γ + ϑ)5. (22)

Before stating the Theorem concerning existence of solutions to Eq. (22),
we need some notation. Given any function g ∈ W 2,2(M) and the operator
Lq, we introduce k to be the constant such that |g|C0(M) ≤ k‖Lq(g)‖L2(M).
This constant can be written as k = cscL, where the Sobolev coefficient cs is
the constant such that |g|C0(M) ≤ cs ‖g‖W 2,2(M), while cL is the constant of the
elliptic estimate ‖g‖W 2,2(M) ≤ cL ‖Lq(g)‖L2(M). (See [1, 3].) We introduce, as
well, the constants Cp := ‖pabp

ab/(8γ7)‖L2(M), and γ+ := supΩ γ. Therefore,

pabp
ab/γ7 ∈ L2(M) (23)

is equivalent to the condition Cp < ∞.

Theorem 3. (Existence) Let M and M̃ be as in Sec. 2.2. Let qab be a
Riemannian metric on M , such that qab ∈ W 4,p(M), p > 3/2, and R > 0.
Assume that pab satisfies that Cp < ∞. Let µ̃ be a positive function of compact
support in Ω ⊂ M̃ , such that

‖µ̃‖L2(Ω) ≤
K

(γ+ + kCp)4
, (24)
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where K = 45/(55κk). Then there exists a non-negative solution ϑ ∈ W 2,2(M)
of equation (22). The solution is strictly positive unless both pab and µ̃ are
zero. Moreover, it satisfies ϑ ≤ (γ+ + 5kCp)/4.

Remark: The proof is based on Schauder’s fixed-point Theorem (see for
example [34]): Let B ⊂ X be a nonempty, closed, convex set in a Banach
space X, and F : B → B be a continuous mapping. If F (B) is precompact,
then F has a fix point. The construction of the functional F is similar to the
one made in [12] for Theorem 3.4. The only difference is the choice of the set
B, and the main work is to prove that for this choice we have F (B) ⊂ B.

Proof. Consider X = C0(M), which is a Banach space under the supremum
norm. Given a constant c > 0, define Bc = {u ∈ X : 0 ≤ u ≤ c}. One
can check that Bc is a convex and closed. Define a non-linear operator
F : Bc → X, by setting

F := L−1
q ◦ f

where the f : Bc → L2(M) is the continuous map given by

f(u) := − pabp
ab

8(γ + u)7
− κ

4
µ̃(γ + u)5. (25)

Under the assumptions qab ∈ W 4,p(M), p > 3/2, and R > 0 it has been
proved in [12] that the non-linear map F is continuous and F (Bc) is pre-
compact. The only difference between the map F and the analogous map T
defined in [12] is the second term in the right hand side of (25). This term is
continuous. Note that γ is singular at i but we assume that µ̃ has support
in Ω and the point i is not included in Ω.

We only have to choose the constant “c” such that F (Bc) ⊂ Bc. The rest
of the proof shows how to find “c”. In what follows we will use Lemma 3.1
of [12] many times.

Introduce the functions ϕc ∈ L2(M) and φc ∈ W 2,2(M) as follows:

ϕc := −pabp
ab

8γ7
− κ

4
µ̃ (γ + c)5

φc := L−1
q (ϕc).

Then, for all u ∈ Bc we have that f(u) − ϕc ≥ 0. This is equivalent to
Lq(F (u) − φc) ≥ 0, and then F (u) ≤ φc. We now choose the best constant
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“c” such that φc ≤ c. This is done as follows. Given the bound

φc ≤ k||Lq(φc)||L2(M),

≤ k
[

Cp +
κ

4
(γ+ + c)5‖µ̃‖L2(Ω)

]

(26)

we impose that the right hand side of (26) be less or equal to c. We then
obtain

‖µ̃‖L2(Ω) ≤
4

κk

c − kCp

(γ+ + c)5
. (27)

This inequality has to be valid for some c, in particular for its maximum
value given by c0 = (γ+ + 5kCp)/4. Eq. (27) evaluated at c0 gives Eq. (24).
Therefore, choosing B = Bc0 , condition (24) implies F (B) ⊂ B. Finally,
Schauder’s fixed-point Theorem implies that F has a fix point in B. This fix
point is the solution ϑ.

We now show that, under slightly stronger assumptions on the source
functions µ̃ and pab, the function θ belongs to C1,α(M̃). (This differentiability
is important for Theorem 8.)

Theorem 4. [C1,α(M̃)-regularity] Assume the hypothesis on Theorem 3
hold, and let θ = γ + ϑ, with ϑ ∈ W 2,2(M) solution of (22). In addition,
assume that µ̃ ∈ Lq(Ω), with q > 3, and that pabp

ab/γ7 ∈ Lq
loc

(M̃).
Then, θ ∈ W 2,q

loc
(M̃) ⊂ C1,α(M̃) is a solution of Eqs. (11), (13).

Proof. From the hypothesis on µ̃ and pab, we have f(ϑ) ∈ Lq
loc(M̃). Elliptic

regularity implies ϑ ∈ W 2,q(M̃). (See [16].) Sobolev embedding and q > 3
imply ϑ ∈ C1,α(M̃). Therefore, γ ∈ C1,α(M̃) imply that θ ∈ C1,α(M̃). Eq.
(21) implies that θ satisfies the boundary condition (13).

3.2 Momentum constraint

Consider Eqs. (10), (12). The main idea is, as in Sec. 3.1, to transform these
equations on M̃ with a singular boundary condition into an equation on M
for a regular variable. Solutions of this regular equation can be found by
the transverse, traceless decomposition of symmetric tensors. See [21] for a
transverse decomposition, and [33] for a transverse, traceless decomposition.
See also [9], and references therein.
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All this procedure is performed, however, not in Eq. (10) itself, but in
a properly conformal rescaled version of that equation. The new rescaled
metric is chosen such that its Ricci tensor vanishes at i. (The restriction
that the unphysical metric, qab, have strictly positive Ricci scalar on M is
not needed in this subsection.) The positive outcome of this new rescaling is
that it is not hard to prove that solutions pab with non-vanishing total linear
momentum are included.

The plan of this subsection is, first, to introduce some notation; second,
to set up the procedure to prove existence of solutions pab in a weak sense
(Theorem 5); and third, to prove that, under a slightly stronger assumption
on the matter source, the solution satisfies Eq. (23). (Theorem 6.)

We start with the new conformal rescaling. Let M , M̃ , qab, xi, r, and
Bǫ as in Sec. 2.2. Let χ be a cut function, that is a smooth function with
support in B2ǫ and such that χ = 1 in Bǫ. Fix on M the metric q̂ab given by

q̂ab = ω4
0 qab, (28)

where the conformal factor ω0 has the form

ω0 = eχf0 , f0 =
1

2
xjxk Ljk(i), (29)

and we have evaluated at i the tensor field

Lab := Rab −
1

4
Rqab, (30)

with Rab the Ricci tensor of qab. Therefore, q̂ab = qab on M \ B2ǫ, and they
differ only on B2ǫ. One can check that R̂abc

d(i) = 0, that is the Riemann
tensor of q̂ab evaluated at i vanishes. (An explicit computation shows R̂ab(i) =
0. Since q̂ab is a 3-dimensional metric, R̂abc

d(i) = 0.) This property implies
that in its associated Riemann normal coordinate system at i, x̂j , the metric
q̂ab has the form

q̂ij = δij + O(r̂3), Γ̂i
j

k = O(r̂2), (31)

where r̂ is the geodesic distance from i measured by q̂ab. This is the reason
for doing the new conformal rescaling.

We complete the rescaling introducing the fields p̂ab and ĵa as

p̂ab = ω−10
0 pab, ĵa = ω−10

0 ja.
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Therefore, Eqs. (10), (12) transform into

D̂ap̂
ab = −κĵb, p̂ij = O(r̂−4), (32)

where D̂a is the metric connection associated to q̂ab. Latin indices on “hatted”
quantities represent components in the coordinate system x̂i.

We now start the procedure to transform Eq. (32) on M̃ with a singular
boundary condition, into an equation on M for a regular variable. The
singular behavior at i of a solution θ of Eqs. (11), (13) was captured by the
Green function γ. In the case of Eq. (32), the role analogous to γ is played
by a tensor pab. The construction of this tensor field, that follows, is detailed
in [12], Secs. 4.1-4.2, but we briefly sketch it here.

Consider the manifold (M, q̂ab). Let B2ǫ̂ ⊂ U a ball of q̂ab-geodesic radius
2ǫ̂ centered at i, and χ̂ the associated cut function, that is, a smooth function
that vanishes on M \ B2ǫ̂ and χ̂ = 1 in Bǫ̂. Let n̂a = D̂ar̂. Introduce on
B2ǫ̂ \ {i} the tensor fields1

φab
(1) =

3

2r̂2

[

2Q(an̂b) − (δab − n̂an̂b)n̂cQ
c
]

, (33)

φab
(2) =

A

r̂3
(δab − 3n̂an̂b), (34)

φab
(3) =

6

r̂3
n̂(aǫb)cdJcn̂d, (35)

φab
(4) = − 3

2r̂4

[

2P (an̂b) + (δab − 5n̂an̂b)n̂cP
c
]

, (36)

where A is constant, and P a, Ja, and Qa are constants in the coordinate
system x̂i. Here n̂b = n̂aδ

ab, and in Riemann normal coordinates, n̂j = x̂j/r̂.
These tensors are transverse and traceless with respect to the flat metric.
Let pab

(k) := χ̂(φab
(k) − q̂abq̂cdφ

cd
(k)/3). Finally, introduce pab as follows

pab :=
4
∑

k=1

pab
(k). (37)

By construction, the tensor pab depends on 10 parameters, is smooth on M̃ ,
vanishes on M\B2ǫ̂, is symmetric and q̂ab-traceless, and satisfies pij = O(r̂−4),

1In the particular case where q̂ab = δab, that is the flat metric, these tensor fields
arise as appropriate derivatives of the tensor γa

b := (7δa
b + n̂an̂b)/(8r̂) which satisfies

(Lδγb)
a = (−4πδi)δb

a. The operator Lδ is defined after Eq. (44).
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as r̂ → 0. It also satisfies

D̂ap
ab = O(r̂−2) as r̂ → 0. (38)

The last equation is obtained as follows: write D̂ap
ab explicitly, and then note

that first, the tensor fields φab
(k) are divergence and trace free with respect to

the flat metric, and second, that in the coordinates x̂k the metric connection
coefficients satisfy (31).

We finally recall some needed properties of conformal Killing vector fields.
Consequently, this paragraph is applicable to both qab and q̂ab. We point out
the differentiability of the various fields, for later purposes. Fix a manifold
(M, qab), with qab ∈ W 4,p(M), with p > 3/2. A conformal Killing vector
field, ξa, is defined by (Lqξ)

ab := 2[D(aξb) − qabDcξ
c/3] = 0, where Lq is the

conformal Killing operator associated to the metric qab. There are at most
ten conformal Killing vector fields for a 3-dimensional metric. Given a vector
field ωa ∈ Lp′(M), with p′ > 1, we say that it is orthogonal to ξa if

∫

M

ξaω
a dV = 0, (39)

where the volume element is computed with the unphysical metric qab. Notice
that the differentiability assumption on the metric implies that ξa ∈ C2,α(M).
This, in turn, with the Hölder inequality, implies that the integral above is
well defined. We also introduce the conformal Killing data at i, that is,

ka =
1

6
DaDbξ

b(i), Sa = ǫabcDbξc(i), qa = ξa(i), a =
1

3
Daξ

a(i). (40)

Since M is connected, the integrability conditions for conformal Killing fields
(cf. [32]) entail that these ten “conformal Killing data at i” determine the
field ξa uniquely on M .

We have the following existence theorem, which is a generalization of
Theorem 16 proved in [12].

Theorem 5. (Existence) Let M , and M̃ be as in Sec. 2.2. Assume qab ∈
W 4,p(M), p > 3/2. Let pab be defined by (37), and and q̂ab as in (28). Let
sab ∈ W 1,p′(M) be a symmetric traceless tensor, and ja ∈ Lp′(M), with
p′ > 1.

(i) If the metric qab admits no conformal Killing vectors on M , then
there exists a unique vector field wa ∈ W 2,q(M), with q = p′ if p′ < 3/2 and
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1 < q < 3/2 if p′ ≥ 3/2 such that the tensor field

pab = ω10
0

[

pab + sab + (Lq̂w)ab
]

(41)

satisfies Eqs. (10), (12).
(ii) If the metric qab admits a conformal Killing vector ξa on M , corre-

sponding to the conformal Killing data given in Eq. (40), then a vector field
wa as specified above exists if and only if the following condition holds,

P a ka + Ja Sa + A a + (P b Lb
a(i) + Qa) qa = κ

∫

M

jaξ
a dV, (42)

where the constants P a, Ja, A, and Qa characterize the tensor pab as in
(33)-(37).

Proof. Because of (38) we can consider D̂a(p
ab + sab) as a function in Lq(M),

1 < q < 3/2. The equation Dap
ab = −κjb is equivalent to

D̂a[p
ab + sab + (Lq̂w)ab] = −κω−10

0 jb, (43)

which can be written like

(Lq̂w)b = −κω−10
0 jb − D̂a(p

ab + sab), (44)

where (Lq̂w)a := D̂b(Lq̂w)ab is an elliptic operator. Its kernel consists of all
conformal Killing vectors, ξa, of q̂ab, and so, of qab. Following [12], one can
prove that the right hand side of (44) is orthogonal [in the sense given in
(39)] to every conformal Killing vector field, ξa, if and only if Eq. (42) holds.
Therefore, the assumptions on the metric, qab, and the Fredholm alternative
for this operator imply there exists a unique solution wa ∈ W 2,q(M). (For
smooth metric this is a standard result, for metric in the Sobolev space
W 4,p(M) see [6].)

The quantities P a and Ja in tensor pab represent the total linear and an-
gular momentum of the data. These quantities can be prescribed freely in
case (i), so they are not related with the matter sources ja. The interpre-
tation is that gravitational waves can carry an arbitrary amount of linear
and angular momentum. In the case that the unphysical metric has confor-
mal symmetries these quantities are restricted by condition (42). In order to
understand this condition, consider the case where only one Killing vector
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ξa exists, and it is a rotation. That is, only Sa is different from zero. We
can always choose Sa to be a unit vector. (This vector is parallel to the
axis of the rotational symmetry.) Construct the following initial data: first,
choose any Ja pointing in the same direction as Sa, and second, choose the
other part of the free data preserving the symmetry. Then, all the fields in
the initial data set have this symmetry, and therefore the whole space-time
obtained from this initial data set will also have a Killing vector ξa, suitably
extended outside the initial hypersurface. Condition (42) reduces to

J = κ

∫

M

jaξ
a dV, (45)

where J =
√

JaJa. Eq. (45) is just the standard Komar integral. (See
for example [31].) This is consistent with the interpretation that axially
symmetric gravitational waves do not carry angular momentum.

Notice that, with the assumptions we have made, we do not even know
if wa is a continuous vector field. We start with the final part of this sub-
section, namely, to show that under a slightly stronger assumption on the
differentiability of ja on M , and on the metric qab at i, the tensor pab given
by (41) satisfies Eq. (23). We have assumed that qab ∈ W 4,p(M). We now
impose on the metric an extra condition given in Eq. (9). Then, we have the
following result:

Theorem 6. (Regularity on M̃) Assume that hypothesis in Theorem 5
hold. Assume that the metric satisfies (9). If ja ∈ Lq(M), sab ∈ W 1,q(M),
where q > 3, then, wa ∈ C1,α(M̃) and the tensor pab satisfies pabp

ab/γ7 ∈
L2(M).

That wa ∈ C1,α(M̃) is deduced from standard elliptic regularity theorems.
The second part is more difficult. The problem is that (Lq̂w)a is not contin-
uous at i, and so conditions that involve products of tensors are difficult to
prove. Since the origin of the discontinuity in (Lq̂w)a is the singular behavior
of pab, which we know explicitly, we proceed as follows. We split wa into a
regular part at i (called ωa in the proof) plus some divergent terms. These
divergent terms are explicitly computed in terms of pab by an integration
procedure based on Meyers’ result [22]. Finally we show that this ωa satisfies
a linear elliptic equation with a source in Lq(Bǫ) with q > 3. Therefore it is
C1,α at i. Once this splitting near i on wa is established, condition (23) is
proved by explicit computation.
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Proof. The source ja ∈ Lq(M), while pab, being smooth on M̃ , belongs to
Lq

loc(M̃). Therefore, standard elliptic regularity theorems given in [16] imply
wa ∈ W 2,q

loc (M) ⊂ C1,α(M̃).
We now begin the proof of the second part of the theorem. We work

always with the rescaled metric q̂ab and its corresponding covariant derivative
D̂a. We explicitly compute the divergent terms of wa at i. These terms are
appropriate Meyers’ potentials of the divergent terms present on D̂ip

ij
(k). (See

Lemma 1 below.)
Let Bǫ̂ ⊂ M be an open ball centered at i of geodesic radius ǫ̂ > 0. Let

us choose ǫ̂ small enough such that the metric has the form (31) in Riemann
normal coordinates at i, and the cut function χ̂ is identically equal to 1 in
Bǫ̂. An explicit computation shows

D̂ip
ij =

3
∑

k=2

p̊j
(k)

r̂k−1
+ ϕj,

with ϕi = O(1) and smooth on Bǫ̂ \ {i}, and continuous at i. The p̊i
(k) are

functions of n̂a. We adopt the convention that a small circle over a quantity
means that this quantity depends smoothly on n̂a, and does not depend on
r̂.

Let V i
(k) denote the Meyers potentials of p̊j

(k)/r̂
(k−1), for each k = 2, 3,

that is, vector fields V i
(k) =

(

∑2
l=0[ln(r̂)]lv̊i

(kl)

)

/r̂(k−3) defined on Bǫ̂, with

v̊i
(kl) appropriate functions of n̂a that can be explicitly computed in terms of

p̊i
(k), and satisfying

(LδV(k))
i =

p̊i
(k)

r̂(k−1)
.

So, here is our decomposition of the vector field wi, on Bǫ̂,

wi =

3
∑

k=2

V i
(k) + ωi.

The rest of the proof shows that ωi is indeed differentiable at i.
Thus ωi satisfies,

(Lq̂ω)i = −κω−10
0 ji −

3
∑

k=2

(L̃q̂V(k))
i − ϕi − D̂js

ij,
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where (L̃q̂V(k))
i := (Lq̂V(k))

i − (LδV(k))
i. One can check that (L̃q̂V(k))

i =

O(r̂−(k−3)). Therefore the terms (L̃q̂V(k))
i with k = 2, 3, belong to Lq(M)

with q > 3. Standard elliptic regularity implies that ωi ∈ W 2,q(M) ⊂
C1,α(M).

We have proved that the solution wi ∈ C1,α(M̃) has the following expres-
sion in Bǫ̂,

wi =
3
∑

k=2

1

r̂k−3

(

2
∑

l=0

[ln(r̂)]lv̊i
(kl)

)

+ ωi.

Notice that the conformal factor ω0 is smooth on M , then an explicit com-
putation implies that pab given by Eq. (41) satisfies Eq. (23).

We present here the generalization of Meyers’ result, used in the proof of
Theorem 6.

Lemma 1. (Meyers’ potential for Lδ) Consider the manifold (R3, δab),
with δab the flat metric, ∂a the metric connection, and let (LδV )a = ∂b∂

bV a +
∂a∂bV

b/3. Consider the equation

(LδV )a = rk−2
ℓ
∑

l=0

[ln(r)]l p̊a
(l)(n) (46)

where ℓ ≥ 0 is a fix integer, r the geodesic distance from an arbitrary point
p ∈ R

3, and p̊a
(l)(n) is a CK,α(R3) function of na = ∂ar, with K ≥ 0.

Then, there exists CK+2,α(R3) functions V̊ a
(l)(n), with l = 0, · · · , ℓ + 2,

such that

V a = rk

ℓ+2
∑

l=0

[ln(r)]l V̊ a
(l)(n) (47)

is a solution of (46).

Proof. We look for solutions of Eq. (46) of the form

V a = va − 1

4
∂aλ
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with

∂b∂
bva = rk−2

ℓ
∑

l=0

[ln(r)]l p̊a
(l)(n)

∂a∂
aλ = ∂av

a.

Lemma 4 in [22] implies that there exist CK+2,α(R3) functions v̊a
(l), with

l = 0, · · · , ℓ + 1, such that

va = rk

ℓ+1
∑

l=0

[ln(r)]l v̊a
(l)(n)

satisfies the first equation above. Then, one can explicitly compute ∂av
a,

and again Lemma 4 in [22] implies that there exist CK+3,α(R3) functions
λ̊(l), with l = 0, · · · , ℓ + 2, such that

λ = rk+1

ℓ+2
∑

l=0

[ln(r)]l λ̊(l)(n)

is a solution of the second equation above. Therefore, an explicit computation
gives (47).

3.3 Local regularity

Consider a solution θ, pab of Eqs. (10)-(13). Assume now that the free data
sab, µ̃ and ja are Ω-piecewise and tangentially smooth. In the first part of this
subsection we then prove that the fields θ and pab are Ω-piecewise smooth.
(Theorem 7.) This proof is based on standard elliptic regularity theorems.
In the second part of this subsection we prove that these fields are also Ω-
tangentially smooth. This result is split into two parts, first for linear elliptic
systems, (Lemma 2), and then for Eqs. (10)-(13). (Theorem 8.)

Theorem 7. (Ω-piecewise smooth) Let both, qab and sab, in C∞(M̃). Let
θ and pab be solutions of (10)-(13) given by Theorem 4 and Theorem 5. If
the source functions µ̃ and ja are Ω-piecewise smooth then so are θ and pab.

Proof. By the assumption qab ∈ C∞(M̃) we have that the two elliptic opera-
tors Lq and Lq have smooth coefficients in M̃ . Applying the standard interior
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elliptic regularity to the domains Ω and M̃ \ Ω we obtain that if ja is Ω-
piecewise smooth then wa is also Ω-piecewise smooth. Because pab ∈ C∞(M̃),
and by assumption sab ∈ C∞(M̃), then pab is Ω-piecewise smooth.

In the case of θ we note first that by the elliptic regularity γ is smooth in
M̃ . Consider now equation (22) for ϑ. Denote by f(x, ϑ) the right hand side
of this equation. By the assumption on µ̃ and the previous argument regard-
ing wa, we have that the function f(x, ϑ) satisfies the following property: if
ϑ belongs to Cs,α(Ω), [or to Cs,α(M̃ \Ω)] then the composition f(x, ϑ(x)) de-
fines a function that belongs to Cs,α(Ω) [or to Cs,α(M̃ \Ω), respectively]. By
Theorem 4 we know that the solution ϑ ∈ C1,α(M̃). (The argument works
also with ϑ ∈ Cα(M̃).) Then we make an iteration, applying the elliptic
regularity for the domains Ω and M̃ \ Ω in each step, to obtain that ϑ is
Ω-piecewise smooth. Therefore, so is θ.

Let Ω ⊂ Ω′, and V a a smooth vector field on Ω′. Let u any ten-
sor field on M . Denote V (0)(u) := u, V (1)(u) := V aDau, and V (k)(u) :=
V aDa[V

(k−1)(u)], for k ≥ 1. In order to prove tangential regularity we prove
first the following lemma.

Lemma 2. Let L be a linear elliptic operator of second order on some open,
bounded set Ω′ ⊂ M̃ with smooth coefficients. Let V a be a smooth vector field
on Ω′s, with Ω ⊂ Ω′. Let u ∈ W 2,p(Ω′), with p > 1, be a tensor field on Ω′

solution of the elliptic equation L(u) = f . Let k ≥ 0, an integer.
(i) If V (k)(f) ∈ Lp(Ω′), then V (k)(u) ∈ W 2,p(Ω′).
(ii) If V (k)(f) ∈ Cα(Ω′), then V (k)(u) ∈ C2,α(Ω′).

Proof. The proof is by induction on k. Consider the part (i) of the Lemma.
The case k = 0 is the standard interior elliptic regularity. See [16] for second
order elliptic equations and [2, 13, 23] for systems. Assume now that (i) is
true for k − 1. Consider now the following identity

V (k)(L(u)) =
k
∑

l=0

(

k

l

)

(l)[V, L](V (k−l)(u)), (48)

where
(

k
l

)

= k!/[l!(k − l)!] and we have introduced the notation

(0)[V, L](u) := L(u)
(1)[V, L](u) := [V, L](u) = V (L(u)) − L(V (u))

(l+1)[V, L](u) := [V, (l)[V, L]](u).
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Notice that, for all l ≥ 0, the operator (l)[V, L] is a second order operator
with smooth coefficients on M̃ . Assume now that V (k)(f) ∈ Lp(Ω′), and
V (l)(u) ∈ W 2,p(Ω′), for all 0 ≤ l ≤ k − 1. If we write the identity (48) as

L(V (k)(u)) = V (k)(f) −
k
∑

l=1

(

k

l

)

(l)[V, L](V (k−l)(u)) (49)

then all the terms in the right hand side belongs to Lp(Ω′). Then the elliptic
regularity theorems imply that V (k)(u) ∈ W 2,p(Ω′), p > 1. The case (ii) is
similar.

Theorem 8. (Ω-tangentially smooth) Assume the hypothesis on Theo-
rem 7. If µ̃ and ja are Ω-tangentially smooth then so are the fields θ and pab

which solve Eqs. (10)-(13).

Proof. Fix Ω′, any open set in M̃ such that Ω ⊂ Ω′. Let V a to be the tangent
vector field V a

∂Ω defined in Sec. 2.1. Since Eq. (44) is linear, Lemma 2 implies
that wa is Ω-tangentially smooth.

Eq. (22) is semi-linear. However, there exists a solution ϑ ∈ W 2,q(Ω′)
for q > 3. Therefore, ϑ ∈ C1,α(Ω′). This is the subtle step. Because ϑ ∈
C1,α(Ω′), it implies that V (f(x, ϑ(x))) ∈ Lq(Ω′), for q > 3. The reason is
that when we compute V (f), appear terms of the form “function in Lp(Ω′)”
times “V (ϑ).” If ϑ was only continuous, then, these terms would be not, in
general, in Lp(Ω′). Then Lemma 2 implies that V (ϑ) ∈ W 2,q(Ω′) ⊂ C1,α(Ω′).
Thus V (2)(ϑ) ∈ Cα(Ω′). Then V (2)(f(x, ϑ(x))) ∈ Lq(Ω′) and we obtain
V (2)(ϑ) ∈ C1,α(Ω′). Iterating this argument, the conclusion follows.

4 Further requirements

4.1 Energy condition

In order to understand the origin of this discussion on energy conditions it
is useful to compare the usual procedure to find solutions of the constraint
equations with matter sources. In that procedure, one rescales both, the
energy density µ̃ as well the momentum current density j̃a. The rescaled
j̃a = θ−10ja is fixed from the requirement that the momentum constraint be
independent of θ, while the rescaled µ̃ = θ−8µ is chosen such that j̃/µ̃ = j/µ,
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where we have introduced j̃ :=
√

q̃abj̃aj̃b, and j :=
√

qabjajb. Therefore, if
the energy condition is satisfied by the rescaled fields ja and µ, with respect
to the unphysical metric, then the physical fields j̃a and µ̃ do satisfy the
energy condition. That is the usual procedure. Here we can not rescale the
energy density, because we need the extra condition that the physical energy
density µ̃ be constant at the border of its support.

We show here that the lower bound for µ̃ given in (iii) in Theorem 2 is
sufficient to guarantee that the physical matter fields satisfy the dominant
energy condition. The idea is this: Initial data with ja = 0 and µ̃ satisfy
trivially the energy condition. Therefore the same applies for arbitrary small
j. Condition (iii) is just a rough bound on the smallness on j that also guar-
antees the energy condition. Let γ− = minΩ(γ), with γ the Green function
solution of Eqs. (20)-(21). Then we have the following:

Lemma 3. Let M , M̃ , qab, µ̃, and pab be as in Theorem 4. Let θ be the
corresponding solution of Eqs. (11), (13). Let µ̃ and ja have support in Ω
and in C0(Ω). If j < ρ0(γ−)8 then the fields q̃ab = θ4qab, j̃a = θ−10ja, and µ̃,
satisfy j̃ < µ̃.

Proof. Since ϑ is positive (see Theorem 3), θ ≥ γ on M̃ . Then we have

j̃ = θ−8j ≤ (γ−)−8j < ρ0 ≤ µ̃.

4.2 Inversion of Eqs. (5)-(6)

We show here that Eqs. (5)-(6) are invertible, that is given the functions
µ̃, j̃a then there exists unique functions ρ, ṽa satisfying these equations. In
other words, the fluid 4-momentum density as seen by an arbitrary observer
determines the fluid co-moving 4-momentum density. It turns out that the
proof is not obvious and we did not find it in the literature.

The main difficulty is that the map defined by Eqs. (5)-(6) is non-linear.
Furthermore, it contains an unknown function, the state function, subject to
minimally restrictive properties. Since ṽa and j̃a are parallel, these equations
reduce to

µ̃ =
ρ + pṽ2

1 − ṽ2
(50)

j̃ =
(ρ + p)ṽ

1 − ṽ2
, (51)
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with j̃ =
√

j̃aj̃a and ṽ =
√

ṽaṽa. We define the map Φ between subsets of
R

2 as

Φ(ρ, ṽ) =

(

ρ + pṽ2

1 − ṽ2
,
(ρ + p)ṽ

1 − ṽ2

)

. (52)

Eqs. (50)-(51) can be rewritten as (µ̃, j̃) = Φ(ρ, ṽ). Given a positive constant
ρ0 we define the following two subsets of R

2

D : = {(ρ, ṽ) ∈ R
2 : ρ0 ≤ ρ, 0 ≤ ṽ < 1} (53)

I : = {(µ̃, j̃) ∈ R
2 : µ̃0(j̃) ≤ µ̃, 0 ≤ j̃}, (54)

where µ̃0(j̃) := ρ0/2 +
√

ρ2
0/4 + j̃2. Our result is:

Theorem 9. Let p(ρ) be a C1 state function such that: (i) p(ρ) ≥ 0 for
ρ ≥ ρ0 > 0; (ii) p(ρ0) = 0; (iii) 0 < ∂p/∂ρ < 1. Then, the map Φ : D → I
is a diffeomorphism.

Proof. First we prove that Φ is bijective.
Surjectivity: The essential tool is Brouwer’s fixed-point theorem. (See for

example [34].) Eqs. (50)-(51) are equivalent to

ρ = µ̃ − j̃ṽ (55)

ṽ =
j̃

µ̃

ρ + pṽ2

ρ + p
. (56)

Fix a point (µ̃, j̃) ∈ I. Consider the map F given by

F (x, y) :=

[

(µ̃ − j̃y),

(

j̃

µ̃

x + p(x)y2

x + p(x)

)]

.

Introduce the compact convex set C := [ρ0, µ̃] × [0, 1] ⊂ R
2.

We claim that F : C → C. We write F (x, y) = (F1(x, y), F2(x, y)). Then,
by definition of I, j̃/µ̃ < 1 and so, for all (x, y) ∈ D, we have 0 ≤ F2(x, y) < 1.
We now show that, for all (x, y) ∈ D, ρ0 ≤ F1(x, y) ≤ µ̃. The assumption
0 ≤ y ≤ 1 implies µ̃− j̃ ≤ µ̃− j̃y ≤ µ̃. But ρ0 ≤ µ̃0(j̃)− j̃ ≤ µ̃− j̃. Therefore
ρ0 ≤ µ̃ − j̃y ≤ µ̃.

The map F is also continuous. Therefore, by Brouwer’s fixed-point the-
orem, there exists a fix point F (x, y) = (x, y).
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Notice that j̃ < µ̃0(j̃) ≤ µ̃ implies that there exists no fix point of the
form (x, 1). Therefore, we conclude that, given a point (µ̃, j̃) ∈ I, there exists
a point (ρ, ṽ) ∈ D which solves Eqs. (50)-(51).

Injectivity: Consider Eqs. (50)-(51), written as

µ̃ = ρ + j̃ṽ

j̃ =
(ρ + p)ṽ

1 − ṽ2
.

Assume that there exist two points (ρ1, ṽ1) and (ρ2, ṽ2) which are solutions of
these above equations for the same value of (µ̃, j̃). If ṽ1 = 0 then the second
equation above implies j̃ = 0, and so ṽ2 = 0, which in turn implies ρ1 = ρ2.
If ṽ1 = ṽ2 then the first equation below implies ρ1 = ρ2.

Assume now that ṽ1 6= 0, ṽ2 6= 0, and ṽ1 6= ṽ2. Then

(ρ2 − ρ1) + j̃(ṽ2 − ṽ1) = 0

(ρ2 − ρ1)(1 − ν2) = j̃

[

1 − (ṽ2)
2

ṽ2
− 1 − (ṽ1)

2

ṽ1

]

,

where ν2 = (∂p/∂ρ)|ρ′ , with ρ′ ∈ [ρ1, ρ2] and we have used the mean value
theorem for p(ρ). Then the above equations and the assumptions on ṽ1 and
ṽ2 imply

ν2ṽ1ṽ2 = 1.

But by assumption ν2 < 1, so that we have a contradiction. Therefore,
injectivity follows.

It remains to prove that Φ and Φ−1 are differentiable. By direct compu-
tation and the assumptions on p(ρ) one can check that the derivative map
of Φ is invertible at each point of D. Then, by the inverse function theorem,
Φ−1 is also differentiable.

Notice that the proof fails if ρ0 = 0 because the derivative of Φ is not
invertible at this point. This will be the case for an equation of state of
the form p = aργ , where a and γ are constants. On the other hand, in this
work we are interested in equations of state of liquid-type, i.e. such that the
pressure vanish for a positive value of the density at the border of the fluid.
For example p = a[(ρ/ρ0)

γ −1]. For suitable constants a and ρ0 this equation
describes water. (See [10].)
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5 Discussion

The principal interest in the initial data given here is to use them to set
up an initial value formulation. This formulation should be able to describe
isolated, nearly static fluid bodies. That is why we have concentrated on
finding liquid-type data and, inside this class, the smoothest possible data,
i.e. the simplest to evolve. We have shown here that these data are not
simple to obtain.

The discontinuity of the fluid energy density at the boundary of its sup-
port and extra constraints at that boundary [see Eq. (7)] were the main
difficulties. One main idea was to not rescale the fluid energy density and
so, being free data, trivially solve the extra constraint Eq. (7). (While also
requires that the fluid 3-velocity vanish at the body boundary.) This un-
conventional rescaling of the fluid fields introduces difficulties in the task of
finding solutions to the Hamiltonian constraint. These difficulties were solved
in Theorem 3. Smoothest liquid-type data are almost-smooth, i.e. smooth
except in the normal direction to the body boundary. The main step in
establishing this result is Lemma 2. The rest is standard elliptic regularity.

We have shown that at the body boundary, the first fundamental form is
only in W 2,q

loc (M̃), q > 3. This differentiability is below the threshold required
by the known existence theorems on symmetric hyperbolic equations to prove
existence of solutions associated with such a data. Theorems in Sec. 5.1
in [30] require initial data in W s,2(Ω′), with s > 5/2, where Ω′ ⊂ R

3, is
open and bounded. (See [19] for a related improvement of this result and
also [18] for a discussion on the possible future development of the subject)
Imbedding Theorems imply that W s,2(Ω′) ⊂ W 2,p(Ω′), with p > 3, but not
in the other way around. Therefore, data in W 2,p(Ω′) is not enough for the
known theorems to guarantee existence of solutions.

We guess two possible ways to set up an initial value formulation for
these liquid-type bodies. The first one is to study in detail the Einstein-
Euler system given in [14], with the hope that particular features of this
system allows enough decrease in the differentiability threshold on the initial
data to include the data given here. A second way is to set up two initial
boundary value formulations, one for the interior of the body and one for
the exterior, and then match both, in an appropriate way, at the boundary
of the body (see [15] and [29]). It is far from being clear if either of these
alternatives works.
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A Appendix

We discuss here the bound on the physical energy density given by Eq. (24) in
Theorem 3. In the first subsection, we show an inequality that is true for all
maximal, asymptotically flat initial data with matter sources. This inequality
is similar to Eq. (24) in the sense that relates the same quantities, but only
the L1(Ω) norm of the energy density appears. In the second subsection we
show that (24) is in fact a restriction, that is, there exist solutions of the
constraint equations which do not satisfy it. Nevertheless we give arguments
to show that physical systems like neutron stars do satisfy the bound (24).

A.1 An inequality

Consider the following result.

Lemma 4. Let M , M̃ , and qab be as in Sec. 2.2. Let pab and θ be any
solution of (10)-(13) with pa

a = 0. Fix a point p ∈ M̃ , and denote by Br an
open ball centered at p, of geodesic radius r. Then, for a sufficient small r,
we have

‖µ̃‖L1(Br) ≤
46

55

2πr

κ(γ−)4
(57)

where γ− := inf∂Br
γ, where γ is defined in Eq. (20).
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Proof. Consider any solution, θ of Eq. (11) on M̃ . Then,

κ

4
µ̃ ≤ −Lq(θ)

θ5
. (58)

Introduce ϑ as in Subsection 3.1, that is, θ = γ + ϑ. We parametrize all
possible solutions, instead by ϑ, by a function σ := Lq(ϑ). Denoting by
L−1

q (σ)(x) = −(1/4π)
∫

M
σ(y)γ(x − y) dV (y), then, inequality above trans-

lates into

κ

4
µ̃ ≤ − σ

[γ + L−1
q (σ)]5

.

The Green function has the form, γ(x − y) = 1/|x − y| + g, where g ≥ 0
on Br. (See [20, 28].) The inequality γ(x − y) ≥ 1/(2r), that is true for all
x, y ∈ Br, implies that L−1

q (σ) ≥ ‖σ‖L1(Br)/(8πr), and this, in turn, implies

κ

4
‖µ̃‖L1(Br) ≤

‖σ‖L1(Br)

[γ− + ‖σ‖L1(Br)/(8πr)]5
.

The last step of the proof is to maximize the right hand side of inequality
above with respect to all possible functions σ. The maximum value is taken
for ‖σ‖L1(Br) = 2πrγ−, and inequality above gives Eq. (57).

A.2 Static spherical body

In this subsection we explicitly construct an initial data set for a static,
spherically symmetric, liquid-type body. We match, in appropriate coordi-
nates and in a C1 way, a 3-sphere endowed with its standard metric, with a
3-dimensional Schwarzschild slice. The reason for re-doing this known con-
struction (see [24]) is twofold. First, this example, for suitable choices of
the parameters, violates the bound (24). Second, we want to answer the
following question: What kind of physical systems satisfy the bound (24)?
We show that the answer turns out to be (at least for this example): stars
with radius R ≥ 1.08Rs, where Rs = 2m is the Schwarzschild radius and m
is the total mass. Note that this bound is bellow to R ≥ 9

8
Rs, which is the

necessary condition for hydrostatic equilibrium in General Relativity (see for
example [31]), then this bound is expected to be satisfied for every star near
equilibrium.
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Let M = S3, the conformal metric q0
ab be the standard metric, unit radius,

of S3, the point i be the North Pole of S3, and the domain Ω be a ball centered
at the South Pole of S3.

Let δab be the flat metric, and r be the corresponding spherical radius.
Consider the following initial data set

q̃ab = θ̂4δab, p̃ab = 0. (59)

The conformal factor θ̂ is given by

θ̂ =







1 + m
2r

if r ≥ r0,

a1/4
(

2r1

r2

1
+r2

)1/2

if r ≤ r0,
(60)

where the positive constants a, r0, r1, and m, satisfy the following relations

r2
1 =

2r3
0

m
, a =

(r0 + m/2)6

2mr3
0

. (61)

Using (61) one check that θ̂, and hence q̃ab, is a C1 function in R
3. There

are two free parameters, for example we can take m and r0, m is the total
mass of the data. The metric q̃ab for r ≥ r0 is the Schwarzschild metric in
isotropic coordinates and for r ≤ r0 is the standard metric on S3 of radius
a1/2. The Ricci scalar of the metric q̃ab is given by

R̃ =

{

0 if r > r0,
6
a

if r ≤ r0,
(62)

and the physical energy density is

µ̃ =

{

0 if r > r0,
6mr3

0

κ(r0+m/2)6
if r ≤ r0.

(63)

We see that the energy density µ̃ has support in a closed ball of radius r0.
In order to make contact with the assumptions in theorem 3 we write this
initial data as follows. Using the well known relation

γ4q0
ab = δab, γ =

(

r2
1 + r2

2r1

)1/2

, (64)
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we obtain

q̃ab = θ4q0
ab, θ = θ̂γ.

For convenience, we have chosen a different normalization for the Green
function γ than (20) and (21), in order to fix q0

ab to be exactly the unit radius
standard metric of S3. This difference in the normalization will, of course,
play no role in what follows.

We want to prove that for some choices of the free parameters r0 and
m, this initial data violate the bound (24). In order to do that we calculate
explicitly the right and left hand side of (24). Since µ̃ is constant we have

||µ̃||L2(Ω) = µ̃[Volq0(Ω)]1/2, (65)

where Volq0(Ω) denotes the volume with respect to the metric q0
ab. From Eq.

(64) we have

γ+ =

(

r2
1 + r2

0

2r1

)1/2

. (66)

Since Cp = 0 in this example, using (65) and (66) we obtain that inequality
(24) is equivalent to

[Volq0(Ω)]1/2 ≤ β(1 +
m

2r0
)4, (67)

where β = 45/(3 ·55k) ≈ 0.77 (the constant k, which depends only on S3 and
q0
ab, can be calculated explicitly for this case k =

√
2). Note that Volq0(Ω)

depends only on the dimensionless parameter m0/(2r0). For m0/(2r0) = 0
we have that Volq0(Ω) = Volq0(S3) = 2π2 > β2, then there exist values of
m0/(2r0) such that the bound (24) is not satisfied. We use that Volq0(Ω) ≤
Volq0(S3) for arbitrary m0/(2r0), to obtain a sufficient condition in order to
satisfy Eq. (67)

m/(2r0) ≥ 1.75. (68)

Since the exterior metric is the Schwarzschild metric with mass m we can
write this condition in terms of the physical radial area coordinate R to
obtain

R ≥ 2.16 m. (69)
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