
International Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern Recognitionognitionognitionognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

51

An Efficient GA with Multipoint Guided Mutation for Graph Coloring

Problems

Biman Ray
1
, Anindya J Pal

1
, Debnath Bhattacharyya

2
, and Tai-hoon Kim

2,*

1
Heritage Institute of Technology

 Kolkata 700107, India
bimray@gmail.com, anindyajp@yahoo.com

2
Department of Multimedia

Hannam University
Daejeon, Korea

debnathb@gmail.com, taihoonn@empal.com

Abstract

Proper coloring of the vertices of a graph with minimum number of colors has always been of

great interest of researchers in the field of soft computing. Genetic Algorithm (GA) and its

application as the solution method to the Graph Coloring problem have been appreciated and

worked upon by the scientists almost for the last two decades. Various genetic operators such as

crossover and mutation have been used in the GA probabilistically in the previous works, which

distributes the promising solutions in the search space at each generation. This paper introduces

a new operator, called double point Guided Mutation operator with a special feature. An

evolutionary algorithm with double point Guided Mutation for the Graph Coloring problem is

proposed here, which could advance the performance level of simple GA dramatically.

The algorithm has been tested upon a large-scale test graphs and has shown better output than

the earlier works on the same problem. This paper describes the advancement of performance of

simple GA applied upon the problem of graph coloring using a operator called double point

Guided Mutation in association of the general genetic operators Crossover and Mutation used

probabilistically. Our work is still going on for designing better algorithms.

Keywords: GA, Guided Mutation, MSPGCA

1. Introduction

Let G = (V, E) be an undirected graph. A k-coloring of G is a partition of V into k

subsets Ci, i = 1 k, such that no adjacent nodes belong to the same subset. The

graph coloring problem is to find a k-coloring of G with k as small as possible. This

smallest k corresponds to the chromatic number X(G) of graph G. It is well known that

this problem is NP-hard [11], and consequently, heuristic methods must be used for

large graphs. If two adjacent vertices x and y have the same color r, vertices x and y are

called conflicting vertices, the edge {x, y} is called a conflicting edge, and r is called a

conflicting color. If there is no conflicting edge, then the color classes are called stable

sets, and the k-coloring is said legal. The graph-coloring problem (GCP) is to determine

the smallest integer k such that there exists a legal k-coloring of G. The reasons why the

graph-coloring problem is important are twofold. First, there are several areas of

practical interest, in which the ability to color an undirected graph with a small number

of colors as possible, has direct influence on how efficiently a certain target problem

can be solved. Such areas include, timetable scheduling [1], examination scheduling

[2], register allocation [3], printed circuit testing [4], electronic bandwidth allocation

*Corresponding Author

International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

52

[5], microcode optimization [6], channel routing [7], the design and operation of

flexible manufacturing systems [8], computation of sparse Jacobian elements by finite

differencing in mathematical programming [9], etc. The other reason is that, the graph

coloring problem has been shown to be computationally hard at a variety of levels: not

only its decision problem variant is NP complete [10], but also its approximate version

is NP-hard [11]. These two reasons are important enough to justify the quest for

heuristics to solve graph-coloring problem. A variety of heuristics approaches have

been proposed to produce optimal or near optimal colorings in a reasonable amount of

time.

2. Heuristics and evolutionary algorithms for graph coloring

A well known simple heuristic method is the Genetic Algorithm. It has been being

used for coloration of graphs. In the context of genetic algorithms, cycles are referred to

as generations, the so-called crossover operators achieve the cooperation step and the

self-adaptation step consists of what is known as mutation. Costa, Hertz and Dubuis

[12] describe a procedure that combines a simple descent method to achieve self

adaptation within the general framework of a genetic algorithm. Hertz and De Werra

[13] defined the descent method, which is based on moving from a solution to a

neighbor solution. The objective function is modified to assigned weights to edges. The

weights are changed from one generation to the next to avoid always manipulating the

same conflicting edges. The mutation operator consists of replacing, with a given

probability, a solution by a randomly chosen neighbor. The mutation probability is

changed during the search, using a systematic scheme. A union crossover, originally

designed by Costa for a scheduling application, was adapted for graph coloring to

implement the cooperation step. Evolutionary algorithms have also been adapted in the

context of graph coloring. Evolutionary methods operate on a population of solutions

and seek improved outcomes by a sequence of cycles consisting of a cooperation step

and a self-adaptation step. In the cooperation step, solutions in the current population

exchange information with the goal of producing new solutions that inherit good

attributes. In the self-adaptation step, solutions modify their internal structure without

interacting with other solutions in the population. Fleurent and Ferland [14] proposed

another evolutionary method for graph coloring. This implementation uses a graph-

adapted recombination operator for the cooperation step. It also employs an entropy

measure to evaluate the diversification of the solutions in the population. If the entropy

is zero, then all the solutions in the population are identical. This measure is used both

to design stopping rules and to influence parent selection. Another important feature is

that members of the population are subject to local search. A variant of the Tabu-search

scheme is used as one of the self-adaptation steps. In another evolutionary approach,

Eiben, et al. [15] employs the 3-coloring problem to test several variants of an asexual

evolutionary algorithm. The algorithm uses an order-based representation and an

adaptation mechanism. Some other genetic algorithm heuristic method [16] has been

developed later on. Neural networks have also been applied to the graph coloring

problem. This effort was started more than 10 years ago by Dahl [17], and more

recently continued by Jagota [18]. Neural network applications in this context are based

on mapping the k-coloring problem to a Hopfield network. This process is

accomplished by first considering a reduction to the maximum independent set (MIS)

problem, followed by a mapping of MIS onto a Hopfield network. Jagota follows the

International Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern Recognitionognitionognitionognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

53

approach of choosing an initial k value and gradually decreasing it in an attempt to find

improved feasible colorings. If the algorithm fails to find a feasible coloring in one

phase, the current k value is increased and the process continues. Since k is initially set

to a sufficiently large value, the procedure is guaranteed to yield a proper coloring. The

procedure was tested on a set of 30 graphs associated with the Second DIMACS

Challenge. The results were compared with the parallel procedure Hybrid of

Lewandowski and Condon [19]. Jagota’s implementation is outperformed by Hybrid in

all but 6 instances. One such approach is Ant colony optimization [20] [21]. We have

provided a partial review of the graph coloring literature. For more information on the

graph coloring problem and a more comprehensive bibliography, we refer Michael

Trick’s “Network Resources for Coloring a Graph”

(http://mat.gsia.cmu.edu/COLOR/color.html), Joe Culberson’s “Graph Coloring Page”

(http://web.cs.ualberta.ca/~joe/Coloring/index.html).

3. Evolutionary Algorithm for graph coloring

The population-based approach of GA allows large jumps in the search space.

However GAs have not proved successful for graph coloring because of the large

degree of symmetry of the solution space. In fact, because of this symmetry mismatch,

it is very unlikely to produce a fit offspring when combining two good solutions. Thus

GAs are often considered an inappropriate approach for problems such as graph

coloring with a highly degenerate objective function. In order to compensate for this

degeneracy advanced search techniques need to be applied. This paper proposes an

evolutionary algorithm for graph coloring problem. The two main components of this

algorithm are as follows:

• Heuristic search

• Evolutionary algorithm

Here we have applied simple genetic algorithm (GAGCA) as heuristic search technique to

generate population better than the initial population. The evolutionary algorithm may be

genetic algorithm, ant colony optimization etc. Here we have considered the genetic

algorithm with a multi-point special mutation operator. This section describes the main

components of the multi-point special mutation algorithm for graph coloring. Integer strings

encode the chromosomes. For each generation blind crossover operator (like standard GA),

repair operator (to convert from invalid to valid chromosome) and a multi-point special

mutation operator (in place of random mutation) are applied.

3.1 Representation and fitness

In our algorithm, we represent the chromosomes as a set of integers (1, 2, 3….n).

These integers are nothing but the color of the nodes. The positions of these integers are

the node numbers for which those particular colors have been assigned. An example of

a chromosome for a graph of 5 vertices is shown below:

1 4 3 2 1

Here the nodes 1 and 5 have the same color 1. 2nd, 3rd and 4th nodes have the colors 4, 3 and

2 respectively. The fitness function is nothing but the total number of colors used, i.e., distinct

integers in the chromosome.

International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

54

3.2 Initial population

The algorithm first builds an initial population, by randomly assigning colors to

different nodes. In this pool, some chromosomes will denote valid coloration and some

of them are invalid. But we have not discarded these invalid colorations. Instead, we

use a repair operator rep_op, which coverts the invalid chromosome to a valid one. In

the pool, we have considered, one chromosome generated by the GAGCA. This rep_op

checks whether two adjacent nodes have the same color or not. In that particular case, it

replaces one such color by any randomly generated color.

3.3 Multi-point Special mutation

We have applied a multi-point special mutation operator to improve the fitness of the

chromosomes of the pool. Here, we have named the guided mutation as special

mutation. Finally, the improved chromosomes are considered for the next generation.

This process repeats for a prefixed number of iterations.
mp_sp_mutation

Step 1) Choose a particular chromosome

Step 2) Reduce the multiple number of colors in

that chromosome (e.g. by replacing two of the used colors by other used colors at two

places)

Step 3) If the coloration is invalid then apply the

rep_ op (here it’ll try to repair the invalid coloration to valid one using the reduced

number of colors available)

Step 4) If it succeeds or the coloration is valid then

 place this chromosome in the pool

 Else goto step 1)

3.4 Algorithm MSPGCA

Step 1) Create random initial pool of chromosomes

 (population)
Step 2) Sort the chromosomes of the pool in

 ascending order of their fitness value

Step 3) Supply the pool of chromosome to the

 GAGCA and generate new population

Step 4) Apply the rep_ op to the invalid

 chromosomes

Step 5) Calculate the fitness of the pool

Step 6) Pbest = best individual

Step 7) For generation = 1 to max_iteration

Step 7.1) Perform crossover between any

 two random pair of

 chromosomes with probability pc

Step 7.2) Apply the rep_ op to the invalid

offspring

Step 7.3) Select the best individuals from

 the newly generated offspring

Step 7.4) Apply mp_sp_mutation to the

 pool of chromosome for certain

International Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern Recognitionognitionognitionognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

55

 no_of_iteration

Step 7.5) Calculate the fitness of the pool

Step 7.6) Take improved chromosomes for

 next generation

Step 8) Output the best coloration

This evolutionary algorithm MSPGCA differs from a genetic algorithm by a special feature.

The feature is that, in place of conventional random mutation here a multi-point mutation is

applied which is nothing but a forceful decrement in number of colors. The crossover

operator remains same as the standard genetic algorithm’s blind crossover operator.

3.5 Complexity

The evolutionary algorithm based approaches have time complexity that depends on

two fold analytic approach. In our case the initial population generation needs O(n)

time complexity, where n is the number of nodes in a test graph. The second step is

somewhat open ended. Genetic algorithms are most suitable for MIMD parallel

computers and distributed computing systems (including heterogeneous systems) as

those composed by networks of workstations. The analysis partly depends on the

number of iterations at various levels and practical implementation of parallel genetic

algorithm. We are handicapped to test our algorithms on P-IV based sequential

machines. The exact time taken by the CPU is given and shows reasonable in time and

space.

4. Computational Experiments

In this section, we present experimental results obtained by MSPGCA and make

comparisons with other component algorithm (GAGCA). GAGCA is the conventional

genetic algorithm by which we have generated a population after applying it on the

initial population. In this section we present the results of our algorithm on some

benchmark graphs given at http://mat.gsia.cmu.edu/COLOR04/. MSPGCA has been

implemented in ANSI C and run on a Xeon 2.4GHz machine with 1GB of RAM running

the Linux operating system. We have considered the population size as 10. We have

considered the crossover probability pc = 0.1. The no_of_iteration for mp_sp_mutation

was set to as large as the number of vertices in the graph after trial and error. The value

of max_iteration depends on the density and number of nodes of the graph. On an

average, for the graphs with less than 100 nodes and density less than 0.5 the value of

max_iteration is order of 10. For other graphs it may vary from 20 – 100. For some

instances (the graphs of queenm_n series, some other series), GAGCA fail to produce

the optimal result, but MSPGCA gives the result. Table-1 shows the experimental

results of the two algorithms and the time taken by MSPGCA.

5. Conclusions

We have presented experimental results on some of the DIMACS benchmark graphs

and compared our algorithm’s performance with that of the other heuristic (Genetic

Algorithm GAGCA) on those graphs as well. Indeed, our MSPGCA able to find the

best-known results for most of the tested graphs. To strengthen conclusions made about

the power of the algorithm, it is worth to test it on some other classes of large graphs.

International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

56

The main purpose of this paper is to study evolutionary algorithm on graph coloring

problem. In the future, we intend to refine MSPGCA and apply it to color large

complex graphs in reasonable time.

Figure 1. Comparison of performances of GAGCA and MSPGCA

Table1. Comparison results between GAGCA and MSPGCA

Instances

|V| |E| X(G) GAGCA MSPGCA Time of

MSPGCA(S)

1-FullIns 5.col.b 282 3247 6 7 6 287

1-Insertions5.col.b 202 1227 6 7 5 148

2-FullIns 4.col.b 212 1621 6 8 6 96

2-Insertions4.col.b 149 541 5 5 5 3

3-FullIns 4.col.b 405 3524 7 8 7 450

3-Insertions 4.col.b 281 1046 5 7 5 6

4-FullIns 3.col.b 114 541 7 9 7 2

4-Insertions 4.col.b 475 1795 5 8 5 1071

5-FullIns 3.col.b 154 792 8 9 8 3

anna.col.b 138 493 11 11 11 31

david.col.b 87 406 11 11 11 1

games120.col.b 120 638 9 9 9 1

homer.col.b 561 1628 13 15 13 135

huck.col.b 74 301 11 11 11 3

jean.col.b 80 254 10 11 10 2

miles1000.col.b 128 3216 42 45 42 496

miles1500.col.b 128 5198 73 73 73 217

0
200
400
600
800
1000

1200

1400

1600

1800

2000

0 200 400 600

GAGCA

MSPGCA

Vertices

T

i

m

e

International Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern RecInternational Journal of Signal Processing, Image Processing and Pattern Recognitionognitionognitionognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

57

miles750.col.b 128 2113 31 34 31 69

mug100 25.col.b 100 166 4 5 4 18

mug88 25.col.b 88 146 4 4 4 15

mulsol.i.1.col.b 197 3925 49 52 49 393

myciel5g_col 47 236 6 7 6 1

myciel5gb_col 47 236 6 6 6 1

Instances

|V| |E| X(G) GAGCA MSPGCA Time of

MSPGCA(S)

myciel6g_col 95 755 7 10 7 4

myciel6gb_col 95 755 7 13 7 5

myciel7g_col 191 2360 8 32 8 3

myciel7gb_col 191 2360 8 37 8 37

queen5_5.col.b 25 320 5 6 5 1

queen6_6.col.b 36 580 7 9 8 3

queen7_7.col.b 49 952 7 12 7 3

queen8_8.col.b 64 1456 9 15 11 3

queen8_12.col.b 96 2736 12 23 14 22

queen9_9.col.b 81 2112 10 19 10 158

queen10_10.col.b 100 2940 11 20 14 125

DSJC125.1.col.b 125 736 5 8 6 4

6. References

[1] D. C. Wood, “A technique for coloring a graph applicable to large scale time-tabling problems”, Computer Journal,
vol. 12, pp. 317-319, 1969.

[2] F. T. Leighton, “A graph coloring algorithm for large scheduling problems”, Journal of Research of the National
Bureau of Standards, vol. 84, no. 6, pp. 489-505, 1979.

[3] F. C. Chow and J. L. Hennessy, “Register allocation by priority based coloring”, Proceedings of the ACM Sigplan
84 symposium on compiler construction New York, pp. 222-232, 1984.

[4] M. R. Garey, D.S. Johnson and H.C. So., “An application of graph coloring to printed circuit testing”, IEEE
Transactions on circuits and systems, vol. 23, pp. 591-599, 1976.

[5] A. Gamst, “Some lower bounds for class of frequency assignment problems”, IEEE Transactions on Vehicular
Technology, vol. 35, no. 1, pp. 8-14, 1986.

[6] Micheli G. D., Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[7] S. S. Sarma, R. Mondal and A. Seth, “Some sequential graph coloring algorithms for restricted channel routing”,
INT. J. Electronics, vol. 77, no. 1, pp. 81-93, 1985.

[8] K. Stecke, “Design, planning, scheduling and control problems of flexible manufacturing”. Annals of Operations
Research, vol. 3, pp. 187-209, 1985.

[9] T. F. Coleman and J. J. More, “Estimation of sparse Jacobian Matrices and graph coloring problems”, SIAM. J.
Numer. Anal., vol. 20, pp 187-209, 1983.

[10] Garey, M.R. and D. S. Johnson, Computers And Intractability: A Guide To The Theory of NP Completeness. New
York, W. H. Freeman and Co., 1979.

[11] Baase, S. and A. V. Gelder, Computer Algorithms: Introduction To Design and Analysis. Addison-Wesley, 1999.

[12] D. Costa, A. Hertz and O. Dubuis, “Embedding of a sequential procedure within an evolutionary algorithm for
coloring problems in graphs”, Journal of Heuristics, vol. 1, no. 1, pp. 105-128, 1995.

[13] A. Hertz and D. Werra, “Using tabu search techniques for graph coloring”, Computing, vol. 39, no. 4, pp. 345-351,
1988.

[14] C. Fleurent and J.A. Ferland, “Genetic and hybrid algorithms for graph coloring”, Annals of Operations Research,
vol. 63, pp. 437-464, 1996.

[15] A. E. Eiben, J. K. Hauw and J. I. Hemert “Graph coloring with adaptive evolutionary algorithms”, Technical
Report, TR-96-1, Leiden University, Netherlands, 1997.

International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010

58

[16] C. Coritoru, H. Luchian, O. Gheorghies and A. Apetrei, “A New Genetic Graph Coloring Heuristic”,
Computational Symposium on Graph Coloring and its generalizations, COLOR02, Cornell University, September
2002.

[17] E. D. Dahl, “Neural Networks algorithms for an NP complete problem: Map and graph coloring”, IEEE
International Conference on Neural Networks, vol. 3, pp. 113-120.

[18] A. Jagota, “An adaptive, multiple restarts neural network algorithm for graph coloring”, European Journal of
Operational Research, vol. 93, pp. 257-270, 1996.

[19] G. Lewandowski and A. Condon, “Experiments with parallel graph coloring heuristics”, Technical Report 1213,
University of Wisconsin, Madison, 1993.

[20] E. Bonabeau, M. Dorigo and G. Theraulaz, “Inspiration for Optimization from Social Insect Behavior”, Nature,
Vol. 406, pp. 39–42, July 2000.

[21] T. N. Bui and C. Patel, “An Ant system Algorithm for Coloring Graphs”, Computational Symposium on Graph
Coloring and its Generalizations, COLOR02, Cornell University, September 2002.

