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Abstract 

Proper coloring of the vertices of a graph with minimum number of colors has always been of 

great interest of researchers in the field of soft computing. Genetic Algorithm (GA) and its 

application as the solution method to the Graph Coloring problem have been appreciated and 

worked upon by the scientists almost for the last two decades. Various genetic operators such as 

crossover and mutation have been used in the GA probabilistically in the previous works, which 

distributes the promising solutions in the search space at each generation. This paper introduces 

a new operator, called double point Guided Mutation operator with a special feature. An 

evolutionary algorithm with double point Guided Mutation for the Graph Coloring problem is 

proposed here, which could advance the performance level of simple GA dramatically. 

The algorithm has been tested upon a large-scale test graphs and has shown better output than 

the earlier works on the same problem. This paper describes the advancement of performance of 

simple GA applied upon the problem of graph coloring using a operator called double point 

Guided Mutation in association of the general genetic operators Crossover and Mutation used 

probabilistically. Our work is still going on for designing better algorithms. 
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1. Introduction 

Let G = (V, E) be an undirected graph. A k-coloring of G is a partition of V into k 

subsets Ci, i = 1 ..... k, such that no adjacent nodes belong to the same subset. The 

graph coloring problem is to find a k-coloring of G with k as small as possible. This 

smallest k corresponds to the chromatic number X(G) of graph G. It is well known that 

this problem is NP-hard [11], and consequently, heuristic methods must be used for 

large graphs. If two adjacent vertices x and y have the same color r, vertices x and y are 

called conflicting vertices, the edge {x, y} is called a conflicting edge, and r is called a 

conflicting color. If there is no conflicting edge, then the color classes are called stable 

sets, and the k-coloring is said legal. The graph-coloring problem (GCP) is to determine 

the smallest integer k such that there exists a legal k-coloring of G. The reasons why the 

graph-coloring problem is important are twofold. First, there are several areas of 

practical interest, in which the ability to color an undirected graph with a small number 

of colors as possible, has direct influence on how efficiently a certain target problem 

can be solved. Such areas include, timetable scheduling [1], examination scheduling 

[2], register allocation [3], printed circuit testing [4], electronic bandwidth allocation 
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[5], microcode optimization [6], channel routing [7], the design and operation of 

flexible manufacturing systems [8], computation of sparse Jacobian elements by finite 

differencing in mathematical programming [9], etc. The other reason is that, the graph 

coloring problem has been shown to be computationally hard at a variety of levels: not 

only its decision problem variant is NP complete [10], but also its approximate version 

is NP-hard [11]. These two reasons are important enough to justify the quest for 

heuristics to solve graph-coloring problem. A variety of heuristics approaches have 

been proposed to produce optimal or near optimal colorings in a reasonable amount of 

time. 

 

2. Heuristics and evolutionary algorithms for graph coloring 

A well known simple heuristic method is the Genetic Algorithm. It has been being 

used for coloration of graphs. In the context of genetic algorithms, cycles are referred to 

as generations, the so-called crossover operators achieve the cooperation step and the 

self-adaptation step consists of what is known as mutation. Costa, Hertz and Dubuis 

[12] describe a procedure that combines a simple descent method to achieve self 

adaptation within the general framework of a genetic algorithm. Hertz and De Werra 

[13] defined the descent method, which is based on moving from a solution to a 

neighbor solution. The objective function is modified to assigned weights to edges. The 

weights are changed from one generation to the next to avoid always manipulating the 

same conflicting edges. The mutation operator consists of replacing, with a given 

probability, a solution by a randomly chosen neighbor. The mutation probability is 

changed during the search, using a systematic scheme. A union crossover, originally 

designed by Costa for a scheduling application, was adapted for graph coloring to 

implement the cooperation step. Evolutionary algorithms have also been adapted in the 

context of graph coloring. Evolutionary methods operate on a population of solutions 

and seek improved outcomes by a sequence of cycles consisting of a cooperation step 

and a self-adaptation step. In the cooperation step, solutions in the current population 

exchange information with the goal of producing new solutions that inherit good 

attributes. In the self-adaptation step, solutions modify their internal structure without 

interacting with other solutions in the population. Fleurent and Ferland [14] proposed 

another evolutionary method for graph coloring. This implementation uses a graph-

adapted recombination operator for the cooperation step. It also employs an entropy 

measure to evaluate the diversification of the solutions in the population. If the entropy 

is zero, then all the solutions in the population are identical. This measure is used both 

to design stopping rules and to influence parent selection. Another important feature is 

that members of the population are subject to local search. A variant of the Tabu-search 

scheme is used as one of the self-adaptation steps. In another evolutionary approach, 

Eiben, et al. [15] employs the 3-coloring problem to test several variants of an asexual 

evolutionary algorithm. The algorithm uses an order-based representation and an 

adaptation mechanism. Some other genetic algorithm heuristic method [16] has been 

developed later on. Neural networks have also been applied to the graph coloring 

problem. This effort was started more than 10 years ago by Dahl [17], and more 

recently continued by Jagota [18]. Neural network applications in this context are based 

on mapping the k-coloring problem to a Hopfield network. This process is 

accomplished by first considering a reduction to the maximum independent set (MIS) 

problem, followed by a mapping of MIS onto a Hopfield network. Jagota follows the 
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approach of choosing an initial k value and gradually decreasing it in an attempt to find 

improved feasible colorings. If the algorithm fails to find a feasible coloring in one 

phase, the current k value is increased and the process continues. Since k is initially set 

to a sufficiently large value, the procedure is guaranteed to yield a proper coloring. The 

procedure was tested on a set of 30 graphs associated with the Second DIMACS 

Challenge. The results were compared with the parallel procedure Hybrid of 

Lewandowski and Condon [19]. Jagota’s implementation is outperformed by Hybrid in 

all but 6 instances. One such approach is Ant colony optimization [20] [21]. We have 

provided a partial review of the graph coloring literature. For more information on the 

graph coloring problem and a more comprehensive bibliography, we refer Michael 

Trick’s “Network Resources for Coloring a Graph” 

(http://mat.gsia.cmu.edu/COLOR/color.html), Joe Culberson’s “Graph Coloring Page” 

(http://web.cs.ualberta.ca/~joe/Coloring/index.html). 

 

3. Evolutionary Algorithm for graph coloring 

The population-based approach of GA allows large jumps in the search space. 

However GAs have not proved successful for graph coloring because of the large 

degree of symmetry of the solution space. In fact, because of this symmetry mismatch, 

it is very unlikely to produce a fit offspring when combining two good solutions. Thus 

GAs are often considered an inappropriate approach for problems such as graph 

coloring with a highly degenerate objective function. In order to compensate for this 

degeneracy advanced search techniques need to be applied. This paper proposes an 

evolutionary algorithm for graph coloring problem. The two main components of this 

algorithm are as follows: 

• Heuristic search 

• Evolutionary algorithm 

 

Here we have applied simple genetic algorithm (GAGCA) as heuristic search technique to 

generate population better than the initial population. The evolutionary algorithm may be 

genetic algorithm, ant colony optimization etc. Here we have considered the genetic 

algorithm with a multi-point special mutation operator. This section describes the main 

components of the multi-point special mutation algorithm for graph coloring. Integer strings 

encode the chromosomes. For each generation blind crossover operator (like standard GA), 

repair operator (to convert from invalid to valid chromosome) and a multi-point special 

mutation operator (in place of random mutation) are applied. 

 

3.1 Representation and fitness 

In our algorithm, we represent the chromosomes as a set of integers (1, 2, 3….n). 

These integers are nothing but the color of the nodes. The positions of these integers are 

the node numbers for which those particular colors have been assigned. An example of 

a chromosome for a graph of 5 vertices is shown below: 

1 4 3 2 1 

Here the nodes 1 and 5 have the same color 1. 2nd, 3rd and 4th nodes have the colors 4, 3 and 

2 respectively. The fitness function is nothing but the total number of colors used, i.e., distinct 

integers in the chromosome. 

 

 



International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition    

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

 

 

54 

 

3.2 Initial population 

The algorithm first builds an initial population, by randomly assigning colors to 

different nodes. In this pool, some chromosomes will denote valid coloration and some 

of them are invalid. But we have not discarded these invalid colorations. Instead, we 

use a repair operator rep_op, which coverts the invalid chromosome to a valid one. In 

the pool, we have considered, one chromosome generated by the GAGCA. This rep_op 

checks whether two adjacent nodes have the same color or not. In that particular case, it 

replaces one such color by any randomly generated color. 
 

3.3 Multi-point Special mutation 

We have applied a multi-point special mutation operator to improve the fitness of the 

chromosomes of the pool. Here, we have named the guided mutation as special 

mutation. Finally, the improved chromosomes are considered for the next generation. 

This process repeats for a prefixed number of iterations.  
mp_sp_mutation  

Step 1) Choose a particular chromosome  

Step 2) Reduce the multiple number of colors in   

that chromosome (e.g. by replacing two of the used colors by other used colors at two 

places)  

Step 3) If the coloration is invalid then apply the  

rep_ op (here it’ll try to repair the invalid coloration to valid one using the reduced 

number of colors available)  

Step 4) If it succeeds or the coloration is valid then  

             place this chromosome in the pool  

             Else goto step 1)  

  

3.4 Algorithm MSPGCA 

Step 1) Create random initial pool of chromosomes  

             (population) 
Step 2) Sort the chromosomes of the pool in  

             ascending order of their fitness value 

Step 3) Supply the pool of chromosome to the  

             GAGCA and generate new population 

Step 4) Apply the rep_ op to the invalid  

             chromosomes 

Step 5) Calculate the fitness of the pool 

Step 6) Pbest = best individual 

Step 7) For generation = 1 to max_iteration 

Step 7.1) Perform crossover between any  

 two random pair of    

 chromosomes with probability pc  

Step 7.2) Apply the rep_ op to the invalid  

offspring 

Step 7.3) Select the best individuals from  

 the newly generated offspring 

Step 7.4) Apply mp_sp_mutation to the  

 pool of chromosome for certain    
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 no_of_iteration 

Step 7.5) Calculate the fitness of the pool 

Step 7.6) Take improved chromosomes for  

 next generation 

Step 8) Output the best coloration  

 

This evolutionary algorithm MSPGCA differs from a genetic algorithm by a special feature. 

The feature is that, in place of conventional random mutation here a multi-point mutation is 

applied which is nothing but a forceful decrement in number of colors. The crossover 

operator remains same as the standard genetic algorithm’s blind crossover operator.  

 

3.5 Complexity 

The evolutionary algorithm based approaches have time complexity that depends on 

two fold analytic approach. In our case the initial population generation needs O(n) 

time complexity, where n is the number of nodes in a test graph. The second step is 

somewhat open ended. Genetic algorithms are most suitable for MIMD parallel 

computers and distributed computing systems (including heterogeneous systems) as 

those composed by networks of workstations. The analysis partly depends on the 

number of iterations at various levels and practical implementation of parallel genetic 

algorithm. We are handicapped to test our algorithms on P-IV based sequential 

machines. The exact time taken by the CPU is given and shows reasonable in time and 

space. 

 

4. Computational Experiments 

In this section, we present experimental results obtained by MSPGCA and make 

comparisons with other component algorithm (GAGCA). GAGCA is the conventional 

genetic algorithm by which we have generated a population after applying it on the 

initial population. In this section we present the results of our algorithm on some 

benchmark graphs given at http://mat.gsia.cmu.edu/COLOR04/. MSPGCA has been 

implemented in ANSI C and run on a Xeon 2.4GHz machine with 1GB of RAM running 

the Linux operating system. We have considered the population size as 10. We have 

considered the crossover probability pc = 0.1. The no_of_iteration for mp_sp_mutation 

was set to as large as the number of vertices in the graph after trial and error. The value 

of max_iteration depends on the density and number of nodes of the graph. On an 

average, for the graphs with less than 100 nodes and density less than 0.5 the value of 

max_iteration is order of 10. For other graphs it may vary from 20 – 100. For some 

instances (the graphs of queenm_n series, some other series), GAGCA fail to produce 

the optimal result, but MSPGCA gives the result. Table-1 shows the experimental 

results of the two algorithms and the time taken by MSPGCA. 

 

5. Conclusions 

We have presented experimental results on some of the DIMACS benchmark graphs 

and compared our algorithm’s performance with that of the other heuristic (Genetic 

Algorithm GAGCA) on those graphs as well. Indeed, our MSPGCA able to find the 

best-known results for most of the tested graphs. To strengthen conclusions made about 

the power of the algorithm, it is worth to test it on some other classes of large graphs. 
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The main purpose of this paper is to study evolutionary algorithm on graph coloring 

problem. In the future, we intend to refine MSPGCA and apply it to color large 

complex graphs in reasonable time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of performances of GAGCA  and  MSPGCA 
 

 

Table1. Comparison results between GAGCA and MSPGCA 
 

Instances 

 

|V| |E| X(G) GAGCA MSPGCA Time of 

MSPGCA(S) 

1-FullIns 5.col.b 282 3247 6 7 6 287 

1-Insertions5.col.b 202 1227 6 7 5 148 

2-FullIns 4.col.b 212 1621 6 8 6 96 

2-Insertions4.col.b 149 541 5 5 5 3 

3-FullIns 4.col.b 405 3524 7 8 7 450 

3-Insertions 4.col.b 281 1046 5 7 5 6 

4-FullIns 3.col.b 114 541 7 9 7 2 

4-Insertions 4.col.b 475 1795 5 8 5 1071 

5-FullIns 3.col.b 154 792 8 9 8 3 

anna.col.b 138 493 11 11 11 31 

david.col.b 87 406 11 11 11 1 

games120.col.b 120 638 9 9 9 1 

homer.col.b 561 1628 13 15 13 135 

huck.col.b 74 301 11 11 11 3 

jean.col.b 80 254 10 11 10 2 

miles1000.col.b 128 3216 42 45 42 496 

miles1500.col.b 128 5198 73 73 73 217 
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miles750.col.b 128 2113 31 34 31 69 

mug100 25.col.b 100 166 4 5 4 18 

mug88 25.col.b 88 146 4 4 4 15 

mulsol.i.1.col.b 197 3925 49 52 49 393 

myciel5g_col 47  236 6 7 6 1 

myciel5gb_col 47  236 6 6 6 1 

Instances 

 

|V| |E| X(G) GAGCA MSPGCA Time of 

MSPGCA(S) 

myciel6g_col 95  755 7 10 7 4 

myciel6gb_col 95  755 7 13 7 5 

myciel7g_col 191  2360 8 32 8 3 

myciel7gb_col 191 2360 8 37 8 37 

queen5_5.col.b 25 320 5 6 5 1 

queen6_6.col.b 36  580 7 9 8 3 

queen7_7.col.b 49 952 7 12 7 3 

queen8_8.col.b 64  1456 9 15 11 3 

queen8_12.col.b 96  2736 12 23 14 22 

queen9_9.col.b 81 2112 10 19 10 158 

queen10_10.col.b 100 2940 11 20 14 125 

DSJC125.1.col.b 125 736 5 8 6 4 
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