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Abstract

The relationship between leaf senescence and cell

death was investigated using tobacco with delayed

senescence due to auto-regulated production of cyto-

kinin (SAG12-IPT). Although leaf senescence ultimately

results in cell death, the results show that senescence

and cell death can be uncoupled: in nutrient-deficient,

but not in fertilized SAG12-IPT plants, necrotic lesions

were detected in old, but otherwise green leaves. By

contrast, wild-type leaves of the same age were yellow,

but not necrotic. Chlorophyll fluorescence analysis

revealed an over-reduction of the electron transport

chain in old SAG12-IPT leaves, in combination with

characteristic spatial patterns of minimum fluores-

cence (F0), quantum efficiency of open photosystem

II centres (Fv/Fm) and non-photochemical quenching

(NPQ), as determined by fluorescence imaging. The

same patterns of F0, Fv/Fm, and NPQ were induced

by incubation of leaf discs from nutrient-deficient

SAG12-IPT plants under illumination, but not in the

dark, indicating that light-dependent reactions were

responsible for the cell death. RT-PCR analysis

showed that the pathogenesis-related (PR) genes PR-

1b and PR-Q were strongly induced in old SAG12-IPT

tobacco leaves with necrotic lesions. In addition,

the ethylene-synthesis gene ACO was induced before

lesions became visible in SAG12-IPT. It is proposed

that over-reduction of the electron transport chain in

combination with decreased electron consumption due

to nutrient-deficiency led to oxidative stress, which,

mediated by ethylene formation, can induce PR gene

expression and hypersensitive cell death. Probably as

a consequence of inefficient nutrient mobilization,

flower development was prematurely aborted and

reproduction thereby impaired in nutrient-deficient

SAG12-IPT plants.

Key words: Apoptosis, cytokinin, defence, hypersensitive re-

sponse, oxidative stress, programmed cell death, senescence,

tobacco.

Introduction

The main function of leaf senescence is the recycling of
nutrients, such as nitrogen, potassium, and phosphorus
from the old leaves (Himelblau and Amasino, 2001). Leaf
senescence can therefore be defined as a nutrient remobi-
lization process that accompanies the decline in photosyn-
thetic activity in ageing leaves. To allow efficient nutrient
recycling, cellular integrity has to be maintained until late
in the senescence process. Lipid peroxidation, for example,
only occurs during the late stages of senescence (Berger
et al., 2001). There has been some debate whether or not
leaf senescence is a form of apoptosis or programmed cell
death (Noodén et al., 1997; Buchanan-Wollaston et al.,
2003; Thomas et al., 2003; Yoshida, 2003; van Doorn
and Woltering, 2004). Whereas van Doorn and Woltering
(2004) argue that senescence is part of the programme
leading to cell death, Thomas et al. (2003) conclude that
senescence is distinct from death-related processes. Experi-
mental evidence supporting both views has been published.
Although hallmarks of apoptosis, such as condensation of
chromatin (Simeonova et al., 2000) and DNA laddering
(Yen and Yang, 1998; Coupe et al., 2004) have been found
in senescing leaves of some species, Lee and Chen (2002)
found no indication of DNA laddering, condensation of
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nuclear material, fragmentation of nuclei, or formation of
apoptotic bodies in senescing rice leaves. Furthermore,
membrane integrity and cellular compartmentalization were
maintained until late into the senescence programme,
suggesting that leaf senescence is non-apoptotic (Lee and
Chen, 2002). The capacity of leaves to re-green (Zavaleta-
Mancera et al., 1999a, b) also demonstrates that senescing
mesophyll cells remain functional and that cell death is not
an inevitable consequence of senescence.
Instead of promoting cell death, senescence-dependent

processes may play an important role in preventing pre-
mature death. Often leaves are still green when photosyn-
thetic activity starts to decline (Stessman et al., 2002).
During this stage, continued capture of light energy by
chlorophyll, especially free chlorophyll released from
pigment complexes, could result in premature cell death
through the formation of reactive oxygen species (ROS).
To prevent photo-oxidative stress, the photosynthetic ap-
paratus has to be dismantled in an ordered manner.
Remobilization of the nitrogen contained in photosynthetic
proteins requires the co-ordination of several pathways for
the breakdown of soluble proteins, thylakoid proteins, and
pigments (Hörtensteiner and Feller, 2002; Thomas et al.,
2002). Although the nitrogen contained in chlorophyll
cannot be retrieved from the senescing leaf, chlorophyll
degradation is required to prevent the accumulation of
free chlorophyll and of toxic chlorophyll catabolites
(Hörtensteiner, 2004). In addition, photoprotective mecha-
nisms, including increased non-photochemical quenching
(Wingler et al., 2004) and the adjustment of minor light-
harvesting complexes (Humbeck and Krupinska, 2003),
may play an important role in protecting senescing leaves
against oxidative processes.
Transgenic plants with delayed senescence have been used

to investigate the role of leaf senescence in photoprotection
and nutrient remobilization. Delayed senescence can be
achieved by over-expression of a gene for isopentenyl
transferase (IPT) under the control of a senescence-specific
promoter, resulting in the auto-regulated production of
cytokinin (Gan and Amasino, 1995). Although the leaves of
transgenic tobacco plantswith delayed senescence stay green,
photosynthetic activity does eventually decline (Wingler
et al., 1998; Jordi et al., 2000). Interestingly, some trans-
genic Lolium multiflorum plants with delayed senescence
developed spontaneous lesions (Li et al., 2004), while leaves
of maize plants expressing the same construct progressed
directly from fully green to bleached and desiccated without
an intervening yellowing phase (Robson et al., 2004). These
observations demonstrate that age-dependent cell death is
not necessarily a consequence of senescence, but occurs
independently of the senescenceprocess. Furthermore, effects
of delayed senescence on nutrient remobilization have
been described. In transgenic tobacco with delayed senes-
cence, altered patterns of nitrogen allocation from the old
leaves led to reduced contents of protein and chlorophyll in

the young leaves (Jordi et al., 2000). Similarly, the young,
upper leaves of transgenic lettuce and maize plants with
delayed senescence were paler than those of wild-type plants
(McCabe et al., 2001; Robson et al., 2004).

Transgenic tobacco plants with delayed senescence (Gan
and Amasino, 1995) were used here to analyse the
mechanisms that lead to premature cell death. Chlorophyll
fluorescence patterns and gene expression in plants grown
under nutrient-limiting conditions suggest that increased
excitation pressure and induction of defence pathways
trigger cell death without prior senescence.

Materials and methods

Plant material and growth conditions

Wild-type tobacco (Nicotiana tabacum cv. Wisconsin) and PSAG12-
IPT plants (SAG12-IPT) with delayed senescence due to auto-
regulated production of cytokinin (Gan and Amasino, 1995) were
germinated on compost (Murphy’s Multi Purpose Compost, Murphy
Garden Products, Ipswich, UK). After 4 weeks, the plants were
transferred into 3.0 l pots containing a 1:1 v:v mixture of compost
and sand (Horticultural Silver Sand, CEM-PAK, Dewsbury, UK) for
low nutrient treatments (LN) or compost only for high nutrient
treatments (HN). HN plants were fertilized weekly with a fertilizer
solution containing N:P:K in a ratio of 14:10:27 (Plant Food,
Phostrogen, Corwen, UK). The plants were kept in a glasshouse
at a temperature of 20–24 8C under natural daylight. Additional
illumination was provided for 14 h d�1 with 400 W metal-halide
lamps (HQI-BT, Osram, München, Germany).

Incubation of leaf discs

Twelve weeks after transfer to the LN or HN conditions, leaf discs
were cut from the 5th leaf (from the bottom). At this stage, the bottom
leaves of wild-type plants grown under low nutrient supply had
started to senesce, but senescence was not yet visible in the 5th leaf.
The discs were floated on water and incubated in the dark or under
illumination for 16 h d�1 at a photon flux density of 50 lmol m�2 s�1.
The temperature was 22 8C during the photoperiod and 18 8C at night.

Chlorophyll fluorescence analysis

Chlorophyll a fluorescence was analysed using a modulated fluor-
ometer (FMS-2, Hansatech, King’s Lynn, UK). Minimum fluores-
cence (F0) was measured by exposing dark-adapted leaves to
modulated red light, before a saturating flash of white light was
applied to record maximum fluorescence (Fm). Leaves were then
illuminated with actinic light (290 lmol m�2 s�1) and saturating
flashes of 0.7 s duration were applied every 1.5 min. After 15 min
of illumination, maximum fluorescence of light-adapted leaves
ðF9mÞ; steady-state fluorescence (Fs) and minimum fluorescence ðF90Þ
were recorded. The following equations were used for calculating
photosynthetic parameters: Quantum efficiency of open photosys-
tem II centres, Fv/Fm=(Fm–F0)/Fm; photochemical quenching,
qP = ðF9m � FsÞ=ðF9m � F90Þ; non-photochemical quenching, NPQ =
ðFm � F9mÞ=F9m:
Chlorophyll fluorescence images were captured with a FluorCam

700MF imaging fluorometer (Photon Systems Instruments, Brno,
Czech Republic) as described by Wingler et al. (2004). After
determination of Fv/Fm in dark-adapted plants, the leaves were
illuminated with actinic light (200 lmol m�2 s�1) and saturating
flashes of 0.8 s duration were applied every 2 min to determine NPQ.
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RT-PCR

Seventeen weeks after transfer to the LN conditions, total RNA was
extracted following the protocol of Logemann et al. (1987) from
leaves 11 (old) and 20 (young) from the bottom. As whole leaves
were used, the material for the old SAG12-IPT leaves was a mixture
of necrotic and green tissue. First-strand cDNA was synthesized
using the Omniscript Reverse Transcription kit (Qiagen, Crawley,
UK). Reverse transcription was initiated in the presence of oligo (dT)
and random p(dN)6 (Roche Diagnostics, Lewes, UK) primers (42 8C,
1 h). The PCR was performed after heat inactivation of the reverse
transcriptase at 95 8C for 5 min. The PCR cycle profile consisted of
30 s at 95 8C, 30 s at 55 8C and 45 s at 72 8C. The following primer
pairs were used: Chlorophyll a/b binding protein (CAB, accession
number AY219853) forward: 59-GCTGGACTTTCAGCTGATCC-
39, reverse: 59-ACTGCCACCAGGGTAAAGTG-39; ACC oxidase
(ACO, accession number AB012857) forward: 59-GAGCTAAGGT-
TAGCAACTATCCA-39, reverse: 59-CTTTCTCAACTAAAGTTG-
GTGCT-39); acidic chitinase (PR-Q, accession number M29868)
forward: 59-GTTTTGGAACTACTGGTGATGAT-39, reverse: 59-AT-
GTTGGTAATTACACCGTAACC-39); pathogenesis-related protein
1b (PR-1b, accession number X05453) forward: 59-TGGATGCCC-
ATAACACAGCTG-39, reverse: 59-CCCCCCCTTAATTAAGAC-
CAC-39; elongation factor 1-a (EF1a, accession number AF120093)
forward: 59-TCACATCAACATTGTGGTCATTGG-39, reverse: 59-TT-
GATCTGGTCAAGAGCCTCAAG-39. The PCR cycle number was 25
for CAB, PR-1b, PR-Q, and EF1a genes, and 30 for the ACO gene.
No PCR products were detected in negative controls without reverse
transcriptase.

Results

Cell death in plants with delayed senescence

In nutrient-deficient, but not in fertilized (not shown)
SAG12-IPT plants, necrotic lesions became visible in the
interveinal areas of the old leaves from about week 15
onwards (Fig. 1B). The necrosis was observed in all
SAG12-IPT plants from two independent experiments, but
only in the lower leaves. In some leaves, the necrotic
lesions occurred without any visible yellowing. By con-
trast, wild-type leaves of the same position and age showed
extensive yellowing before cell death occurred (Fig. 1A).
Necrosis in the SAG12-IPT plants was accompanied by
changes in chlorophyll fluorescence characteristics. Com-
pared with the wild type (Fig. 1C, E, G), F0 was increased
in the necrotic regions (Fig. 1D), whereas Fv/Fm, was
reduced (Fig. 1F), indicating chronic photoinhibition. NPQ
was higher than in wild-type leaves, especially in the green
regions (Fig. 1H), suggesting increased dissipation of
energy as heat.

To investigate what triggered premature cell death in the
SAG12-IPT plants, chlorophyll fluorescence characteristics
were analysed more quantitatively over the development of
leaf 10 in plants grown at low nutrient supply (Fig. 2). Only
the non-necrotic areas were analysed in order to record
effects before the occurrence of cell death. The parameter
1–qP, correlating with a reduction of the photosystem II
electron acceptor QA, increased with leaf age, both in wild-
type and in SAG12-IPT plants (Fig. 2A). From week 13
onwards, values were higher in the plants with delayed

senescence. This suggests that the electron transport chain
was over-reduced, probably due to an increase in light
capture relative to electron utilization. Furthermore, as
already indicated by the fluorescence images (Fig. 1), NPQ
was significantly higher in the SAG12-IPT leaves in weeks
15 and 17 (Fig. 2B).

Light-dependent induction of cell death

Fluorescence parameters indicate that cell death in the
SAG12-IPT plants was triggered by an imbalance of light
capture and energy utilization. To confirm that cell death
was light-dependent, leaf discs taken before senescence or
cell death became apparent were incubated in the dark or
under illumination (Fig. 3). While no clear differences were
found between wild-type and transgenic leaf discs from
plants originally grown at high nutrient supply, differences
became apparent in discs from plants grown at low nutrient
supply. After 11 d in the dark, discs from wild-type plants
showed clear senescence, as indicated by reduced Fv/Fm

values (Fig. 3B) in combination with visible yellowing,

Fig. 1. Phenotype (A, B) and false colour images of F0 (C, D), Fv/Fm

(E, F), and NPQ (G, H) during late senescence (17 weeks after transfer to
low nutrient supply) in leaf 10 (from bottom) of wild type (A, C, E, G)
and transgenic tobacco with delayed senescence (SAG12-IPT; B, D, F,
H). The insert in (B) shows an enlarged area of a SAG12-IPT leaf with
necrosis, but no yellowing.
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but no necrotic lesions (not shown). In the dark, discs of
SAG12-IPT plants had higher Fv/Fm values than wild-type
discs and there was no indication of cell death. However,
illuminated discs of nutrient-deficient SAG12-IPT plants
showed the same symptoms of cell death that also occurred
in planta, i.e. necrotic lesions (not shown) with increased
F0 (Fig. 3A) and decreased Fv/Fm (Fig. 3B). In addition,
NPQ was increased in the non-necrotic areas (Fig. 3C).
These results show that cell death in the SAG12-IPT plants
grown at low nutrient supply was light-dependent.

Changes in gene expression

Since the necrotic lesions found in nutrient-deficient
SAG12-IPT tobacco resemble hypersensitive cell death,

the expression of genes involved in pathogen response was
studied (Fig. 4). The pathogenesis-related genes PR-1b and
PR-Q were strongly induced in old leaves of the SAG12-
IPT plants, but not in the old leaves of wild-type tobacco.
Expression of photosynthetic genes, such as CAB, is
typically down-regulated in senescing leaves. The finding
that CAB gene expression was higher in young than in old
leaves was therefore expected. Surprisingly, expression of
CAB was lower in old leaves of the SAG12-IPT plants than
in old leaves of the wild type. The reason for this could be
that, in the case of SAG12-IPT, whole leaves containing
necrotic and green tissue were analysed. ACO, an important
gene in ethylene synthesis, was up-regulated in old com-
pared with young leaves of wild-type tobacco, and also
more strongly expressed in young SAG12-IPT leaves than
in young wild-type leaves. Expression of the senescence-
enhanced cysteine protease gene NTCP-23 (Ueda et al.,
2000) was also determined to monitor the extent of
senescence (results not shown). However, it was found
that NTCP-23 was also strongly expressed in young leaf
tissue and the extent of senescence could therefore not be
assessed.

Effect on fecundity

Premature cell death could result in inefficient nutrient
remobilization. To assess the effect on resource allocation
to reproductive organs, flowering and fruit formation were
determined. At high nutrient supply, delayed senescence
did not affect flowering or fruit formation (Fig. 5). Nutrient

Fig. 2. 1–qP (A) and NPQ (B) in leaf 10 (from bottom) of wild-type
(closed circles) and transgenic tobacco with delayed senescence (SAG12-
ITP; open squares) after transfer of plants to low nutrient supply. Data are
means 6SD of four plants. Asterisk indicates statistically significant
differences between wild-type and transgenic plants (t-test; P <0.05).

Fig. 3. False colour images of F0 (A), Fv/Fm (B), and NPQ (C) in discs
of wild-type and transgenic tobacco with delayed senescence (SAG12-
ITP) grown at high (HN) or low (LN) nutrient supply after incubation
for 11 d in the dark or under illumination (50 lmol m�2 s�1).
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deficiency reduced flowering and fruit formation in wild-
type plants and, more severely, in the transgenic plants with
the delayed senescence. At low nutrient supply, production
of buds was delayed in SAG12-IPT plants compared with
the wild type (Fig. 5A), and fewer buds developed into
flowers and fruits (Fig. 5B, C). Although the total number
of buds, prematurely aborted buds, open flowers, and fruits
was not reduced compared with the wild type at the final
time point (Fig. 5D), this was mainly due to the presence
of prematurely aborted buds (Fig. 6A) that did not devel-
op into seed-containing fruits. As a consequence, fruit dry
weight was significantly reduced in SAG12-IPT plants
grown at low nutrient supply, but not at high nutrient
supply (Fig. 6B). In addition to effects on fruit forma-
tion, SAG12-IPT plants grown at low nutrient supply were
shorter than wild-type plants and had a lower photosyn-
thetic activity and chlorophyll content in the young leaves
(data not shown).

Discussion

The results presented here show that leaf senescence and
cell death can be uncoupled in ageing leaves (Fig. 1).
Changes in photosynthetic parameters (Figs 1, 2, 3) and in
gene expression (Fig. 4) indicate that cell death in the

Fig. 4. RT-PCR analysis of gene expression in old (o) and young (y)
wild-type and transgenic tobacco with delayed senescence (SAG12-ITP).
PR-1b, pathogenesis related protein 1b gene; PR-Q, acidic chitinase gene;
CAB, chlorophyll a/b binding protein gene; ACO, 1-aminocyclopropane-
1-carboxylic acid oxidase gene; EF1a, elongation factor 1-a gene
(constitutive control).

Fig. 5. Number of buds (A), open flowers (B), fruits (C), and total number of buds, prematurely aborted buds, open flowers, and fruits (D) of wild-type
(closed symbols) and transgenic tobacco with delayed senescence (SAG12-IPT; open symbols) after transfer of plants to high nutrient (HN; circles) or
low nutrient (LN; triangles) supply. Data are means 6SD of four plants.
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SAG12-IPT plants was due to light-dependent effects
causing photo-oxidative stress and induction of defence
pathways. Cellular integrity in wild-type leaves, on the
other hand, was maintained until late in the senescence
process, allowing efficient nutrient recycling for fruit
formation under nutrient-limiting conditions (Figs 5, 6).

Changes in photosynthetic parameters underlying the
light-dependent induction of cell death

Similar to the necrotic lesions described here, cell death has
also been observed in other transgenic plants with auto-
regulated production of cytokinin (Li et al., 2004; Robson
et al., 2004), but it does not occur under all growth
conditions in the SAG12-IPT tobacco. Even under nutri-
ent-limiting conditions, the extent of cell death varied
between different experiments and it is not clear what the
exact environmental factors are that determine this effect.

Nevertheless, this phenotype shows that senescence and
cell death are independent processes.

Cell death in the SAG12-IPT plants is light-dependent
(Fig. 3). The fact that this effect was only observed in
nutrient-starved plants suggests that an imbalance between
energy capture and consumption may be responsible. For
example, cytokinin could alter the source–sink balance in
the SAG12-IPT plants by inducing extracellular invertase
(Balibrea Lara et al., 2004). Nitrogen deficiency under
these conditions could lead to a decrease in Calvin cycle
enzymes or reduced energy consumption for nitrogen
assimilation. This hypothesis is supported by the analysis
of photosynthetic parameters. Values for UPSII (not
shown) and CO2 assimilation (Wingler et al., 1998) show
that Calvin cycle activity and electron transport rates
decline with leaf age in the SAG12-IPT plants, despite the
continued presence of chlorophyll. This could result in
over-reduction of the electron transport chain, as indicated
by increased 1–qP values (Fig. 2), and in the production
of ROS, which could trigger lipid peroxidation and cell
death. Although NPQ values increased with leaf age in the
SAG12-IPT plants, energy dissipation may not have been
sufficient to prevent cell death. Increased F0 values (Figs
1, 3) indicate that free chlorophyll that is not bound in
protein–pigment complexes may be present in the necrotic
lesions.

The changes in fluorescence characteristics observed
here resemble the effects found during a mastoparan-
induced hypersensitive response (Allen et al., 1999).
Mastoparan treatment results in an oxidative burst, an
increase in non-photochemical quenching and a decrease
in photochemical quenching. Allen et al. (1999) conclude
that light-dependent electron transport can stimulate cell
death by enhancing the oxidative burst during the hyper-
sensitive response. This is in agreement with the light-
dependent cell death in the SAG12-IPT tobacco (Fig. 3).
Despite the light-dependence of the cell death phenotype,
it cannot be completely excluded that it may have been
caused by an interaction of cytokinin accumulation with
illumination. Recently, it has been shown that cytokinins
can trigger apoptosis in cell cultures (Mlejnek and
Procházka, 2002; Mlejnek et al., 2003; Carimi et al.,
2003, 2004). However, in contrast to the effect observed
in the SAG12-IPT plants, treatment of Arabidopsis plants
with the synthetic cytokinin benzylaminopurine resulted
in leaf yellowing and not in a stay-green phenotype
(Carimi et al., 2003).

Interaction of delayed senescence with oxidative stress
and defence pathways

The necrotic lesions in the SAG12-IPT tobacco resemble
symptoms of a pathogen-induced hypersensitive response
or ozone-induced cell death. However, in contrast to the

Fig. 6. Per cent prematurely aborted buds without seed (A) and total
fruit dry weight (B) of wild-type (black bars) and transgenic tobacco with
delayed senescence (SAG12-IPT; white bars) 26 weeks after transfer of
plants to high nutrient (HN) or low nutrient (LN) supply. Data are means
6SD of four plants. Asterisk indicates statistically significant differences
between wild-type and transgenic plants (t-test; P <0.01).
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large necrotic lesions in the interveinal regions described
here, ozone stress initially becomes visible as small necrotic
spots or lesions near the mid vein (Dutilleul et al., 2003;
Pourtau et al., 2003). Rather than being caused by the
uptake of external ozone, oxidative stress in the SAG12-IPT
tobacco was, therefore, probably caused by photo-oxidative
processes within the mesophyll cells. Overall, the symp-
toms observed in the SAG12-IPT tobacco resemble the
phenotype described for the acd1 mutant of Arabidopsis
(Greenberg and Ausubel, 1993), which lacks an important
enzyme in chlorophyll catabolism, pheophorbide a oxy-
genase (Hörtensteiner, 2004). Similar to the symptoms de-
scribed here, senescence or pathogen treatment results in
necrotic lesionswithout visible chlorosis in acd1 (Greenberg
and Ausubel, 1993).

Interactions of delayed chlorophyll degradation with
activation of defence pathways are supported by induction
of PR-1b and PR-Q gene expression in old leaves from
the SAG12-IPT tobacco (Fig. 4). Increased expression of
PR genes and proteins has also been reported for plants
expressing IPT under the control of the Rubisco small
subunit promoter (Synková et al., 2004) or in the fruits
(Martineau et al., 1994). Enhanced age-dependent sugar
accumulation in the transgenic tobacco (Wingler et al.,
1998) could be responsible for the induction of PR-1b and
PR-Q (Herbers et al., 1995). In addition, the induction
of PR-1b could result from the formation of ROS (Ernst
et al., 1992; Green and Fluhr, 1995). As PR-1b is ethylene-
inducible (Xu et al., 1994) and ethylene is involved in
the ozone-dependent induction of PR-1b (Grimmig et al.,
2003), there could also be a link between oxidative stress,
increased expression of the ethylene synthesis gene ACO
in the young leaves of the SAG12-IPT tobacco and induc-
tion of PR-1b. Ethylene has also been shown to induce
lipoxygenase (Griffiths et al., 1999), which, in turn, could
lead to hypersensitive cell death. The observation that
neither PR-1b or PR-Q were induced in senescing wild-
type tobacco was surprising, since Arabidopsis PR genes
are induced during leaf senescence (Hanfrey et al., 1996;
Robatzek and Somssich, 2001).

It has been reported previously that the pathways in-
volved in senescence, defence, and oxidative stress overlap.
However, it is still not clear whether production of ROS is
required to trigger leaf senescence. Dertinger et al. (2003)
have shown that the normal senescence-dependent decline
in glutathione reductase, superoxide dismutase, and ascor-
bate peroxidase is delayed in SAG12-IPT tobacco. They
conclude that the decline in anti-oxidative activities is
a consequence and not the cause of senescence. While some
SAGs are induced by oxidative stress (Navabpour et al.,
2003) others, such as SAG12, are not stress-inducible
(Miller et al., 1999). Nevertheless, salicylic acid, a signal-
ling molecule in oxidative stress and pathogen defence, is
required for the induction of SAG12 (Morris et al., 2000):
reduced necrosis and reduced expression of SAG12 in a

salicylic acid signalling mutant indicate crosstalk between
the pathways controlling senescence and cell death.

Impact on resource allocation

The importance of senescence-dependent nutrient recycling
to young leaves has been described before (Jordi et al.,
2000; McCabe et al., 2001; Robson et al., 2004). In the
experiments described here, delayed senescence under
nutrient-limiting conditions did not only result in reduced
photosynthetic activity in the young leaves (data not shown),
but also led to premature abortion of bud development
without fruit production (Figs 5, 6). Similarly, it has been
shown that leaf senescence is related to fruit production in
different Arabidopsis ecotypes (Levey and Wingler, 2005).
However, the results also show that the importance of leaf
senescence for fecundity is largely dependent on nutrient
availability. If nutrient supply is not limiting, extended
photosynthetic activity due to delayed senescence increases
carbon availability and could thereby even result in higher
seed production as, for example, shown for stay-green
mutants of durum wheat (Spano et al., 2003) and also in the
SAG12-IPT tobacco (Gan and Amasino, 1995).

Using a SAG12–GUS construct, Grbić (2002) has shown
that the SAG12 promoter is active in senescing flowers.
Therefore it cannot be excluded that, in addition to delayed
leaf senescence, cytokinin production in the flowers affects
fruit development in the SAG12-IPT tobacco. However,
production of cytokinin in the flowers of petunia trans-
formed with the SAG12-IPT construct resulted in delayed
floral senescence rather than abortion of bud development
(Chang et al., 2003). The phenotype observed here is also
different from the effects of auto-regulated production of
cytokinin described for Nicotiana alata (Schroeder et al.,
2001). In N. alata, expression of the SAG12-IPT construct
resulted in a reduced number of flowers per branch, but also
in increased branching of the inflorescence. As a conse-
quence, the total number of flowers was slightly increased
and not reduced (Schroeder et al., 2001). It is therefore
likely that the phenotype observed here is due to limited
nutrient availability for flower and fruit development and
not to the accumulation of cytokinin.

In summary, the results suggest that, under nutrient-
limiting conditions, delayed leaf senescence in SAG12-IPT
plants can lead to premature cell death in a process
resembling the hypersensitive response during pathogen
infection. Changes in photosynthetic parameters in the
SAG12-IPT plants indicate that over-reduction of the
electron transport chain, probably resulting in oxidative
stress, was primarily responsible for the light-dependent
induction of cell death (Fig. 7). Premature cell death
could impair nutrient recycling and thereby growth and
fecundity. By contrast, ordered degradation of the photo-
synthetic apparatus in wild-type plants ensures that cell
death only occurs after nutrients have been recycled.
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