
Basics on Geometric Constraint Solving

Robert Joan-Arinyo ∗

Abstract

We survey the current state of the art in geometric constraint solving. Both 2D and 3D constraint

solving is considered, and different approaches are characterized.
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1 Introduction and Scope

2D geometric constraint solving is arguably a core technology of computer-aided design (CAD) and,
by extension, of managing product design data. Since the introduction of parametric design by
Pro/Engineer in the 1980s, every major CAD system has adopted geometric constraint solving into
its design interface. Most prominently, 2D constraint solving has become an integral component of
sketchers on which most systems base feature design.

Beyond applications in CAD and, by extension, in manufacturing, geometric constraint solving
is also applicable in virtual reality and is closely related in a technical sense to geometric theorem
proving. For solution techniques, geometric constraint solving also borrows heavily from symbolic
algebraic computation and matroid theory.

In this paper, we review basic techniques that are widely available for solving 2D and 3D geometric
constraint problems. We focus primarily on the basics of 2D solving and touch lightly on spatial
constraint solving and the various ways in which geometric constraint solvers can be extended with
relations, external variables, and parameter value enclosures. These and other extensions and problem
variants have been published in the literature. They are recommended to the interested reader as
follow-on material for study.

2 The Geometric Constraint Solving Problem

A geometric constraint problem can be characterized by means of a tuple (E, O, X, C) where E is the
geometric space constituting a reference framework into which the problem is embedded. E is usually
Euclidean, O is the set of specific geometric objects which define the problem. They are chosen from
a fixed repertoire including points, lines, circles and the like, and C is the set of geometric constraints.
They are relationships between geometric elements chosen from a predefined set, e.g., distance, angle,
tangency, etc.

The geometric constraint solving problem can now be stated as follows: Given a set O with n

geometric elements and a set C with m geometric constraints defined on them

1. Is there a placement of the n geometric elements such that the m constraints are fulfilled? If the
answer is positive,
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2. given an assignment of values to the m constraints tags, is there an actual construction of the n

geometric elements satisfying the constraints?

When dealing with geometric constraint solving, the first issue that needs to be settled is the
dimension of the embedding space E. In 2D Euclidean space, E = R2, a number of techniques have
been developed that successfully solve the geometric constraint solving problem. For an in-depth review
see Jermann, [29]. However, there remain open questions such as characterizing the competence (also
called domain) of the known techniques.

Spatial constraint solving, where E = R3, include problems in fields like molecular modeling,
robotics, and terrain modeling. Here, both a good conceptualization and an effective solving method-
ology for the geometric constraint problem has proved to be difficult. Pioneering work has been
reported by Hoffmann and Vermeer, [27] and by Durand, [13].
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Figure 1: Piston, crankshaft and connecting rod mechanism.

Figure 1 depicts a piston-crankshaft mechanism, [12], a geometric constraint solving problem in 2D.
The left side shows the geometric problem, the right side shows the actual mechanism so abstracted.
The mechanism transforms the translational motion of point p5 along the straight line l1 into a ro-
tational motion of point p4, on a circular path with center p3 and radius d3. The piston-crankshaft
mechanism can be abstracted as a geometric constraint solving problem comprising five points pi,
1 ≤ i ≤ 5, and a straight line l1. The set of constraints is given in Figure 2 and includes point-point
distances, dpp(), and coincidences, on().

2.1 Problem Categorization

The CAD/CAM community focuses on the design and manufacture of rigid objects, that is, objects
that are fully determined up to a global coordinate system. Similarly, we seek solutions to a constraint
problem that are determined up to a global coordinate system, that is, where solutions are congruent
under the rigid-body transformations of translation and rotation. We call a configuration of geometric
objects in Euclidean space rigid when all objects are fixed with respect to each other up to translation
and rotation.

1. dpp(p1, p2) = d1 6. on(p1, l1)
2. dpp(p2, p3) = d2 7. on(p2, l1)
3. dpp(p3, p4) = d3 8. on(p3, l1)
4. dpp(p4, p5) = d4 9. on(p5, l1)
5. dpp(p1, p5) = d5

Figure 2: A set of geometric constraints for the piston-crankshaft mechanism.



d2

d1

d2

d1

P
α

β

P

β

α

Figure 3: Left: General configuration. Right: Degenerate configuration for α + β = 90◦. Fudos and
Hoffmann, [15].

An intuitive way to introduce rigidity comes from considering the number of solutions that a geo-
metric constraint problem has. There are three categories: A problem is structurally under constrained
if there are infinitely many solutions that are not congruent under rigid transformation, structurally
well-constrained, if there are finitely many solutions modulo rigid transformation, and structurally
over constrained if the deletion of one or more constraints results in a well-constrained problem. A
constraint problem naturally corresponds to a set of (usually nonlinear) algebraic equations.

Defined in this way, the concept of rigidity appears to be simple but it is not quite in accord with
the intuition about rigidity. The categories so defined only refer to the problem’s structure and do not
account for other issues such as inconsistencies that could originate from specific values assigned to the
constraints. Clearly a problem that is structurally well-constrained could actually be underconstrained
for specific values of the constraints. For example, consider the structurally well constrained problem
given in Figure 3, see Fudos and Hoffmann, [15]. Point P is properly placed whenever α+β 6= 90◦ and
the problem is well-constrained. But if α + β = 90◦, then the placement for point P is undetermined
and, therefore, the problem is no longer well constrained.

Different formal definitions of rigidity have been explored in the literature. See, for example, the
work by Henneberg, [19], and Laman, [40], or the more recent works by Graver et al. [17], Fudos and
Hoffmann, [15], Hoffmann et al., [24], and Whitley, [64].

3 Major Approaches

Geometric constraint solving methods can be roughly classified as graph-based, logic-based, or alge-
braic. For 2D solvers, the graph-based approach has become dominant in CAD. A problem closely
related to geometric constraint solving is Automated Theorem Proving.

3.1 Graph-Based Approach

In the graph-based approach, the constraint problem is translated into a graph (or hyper graph) whose
vertices represent the geometric elements and whose edges the constraints upon them . The solver
analyzes the graph and formulates a solution strategy whereby subproblems are isolated and their
solutions suitably combined. A subsequent phase then solves all subproblems and combines them.
The advantage of this type of solver is that the subproblems often are very small and fall into a few
simple categories. The disadvantage is that the graph analysis of a fully competent solver is rather
complicated. The graph-based approach can be further subdivided into constructive, degree of freedom
analysis, and propagation.



3.1.1 Constructive Approach

The constructive approach generates the solution to a geometric constraint problem as a symbolic
sequence of basic construction steps. Each step is a rule taken form a predefined set of operations that
position a subset of the geometric elements. For example, the operations may restrict to ruler-and-
compass constructions. Clearly, this approach preserves the geometric sense of each operation involved
in the solution. Note that the sequence of construction steps allows to compactly represent a possibly
exponential number of solution instances. However, the constructive approach cannot solve problems
with symbolic constraints or external variables.

Depending on the technique used to analyze the problem, two different categories of constructive
approaches can be distinguished: top-down and bottom-up.

The top-down technique recursively splits the problem until it has isolated simpler, basic problems
whose solutions are known. In this category, Todd, [60], defines the r-tree concept and derives a
geometric constraint solving algorithm. Owen, [51], describes a more general method based on the
recursive decomposition of the constraints graph into triconnected components. Inspired by Owen’s
work, Fudos reported a new decomposition method in [15]. Efficient algorithms with a running time
O(n2), where n is the number of geometric elements, are known for the methods of Owen, [51], and
Fudos, [15].

In the bottom-up approach, the solution is built by suitably combining recursively solutions to sub-
problems already computed, starting from the constraints in the given set, considering each constraint
as a single element.

Constraints may be represented implicitly as a collection of sets of geometric elements where the
elements of each set are placed with respect to a local framework. Sets are merged; e.g., by application
of rewriting rules until all the geometric elements are included in just one set. The advantage of this
representation is that the sets of constraints capture the relationships between geometric elements
compactly. Fudos et al., in the method described in [15], use one type of sets of constraints, called
cluster, and one generic rule that merges three clusters which pairwise share two elements.

Lee et al., [43], describe a constructive method that associates with each vertex in the graph a
status which can be defined, half defined or not defined. Inference rules are used to modify the status
of the vertices.

Efficient algorithms with a running time O(n2), where n is the number of geometric elements, are
known for the methods listed above. However, the constructive approach is not complete, therefore
assessing the competence of solvers in this category is an important issue. Verroust, [63], partially
characterizes the set of relevant problems solved by the solver described. Joan-Arinyo et al., [32],
describe a formalization that unifies the methods reported by Fudos, [15], and Owen, [51]. In [33],
Joan-Arinyo et al. show that the sets of problems solved by Fudos’ and Owen’s approaches are the
same.

In [23] Hoffmann and Joan-Arinyo describe a technique that extends constructive methods with the
capability of managing functional relationships between geometric and externals variables. Essentially,
the technique combines two methods: one is a constructive constraint solving method, and the other
is a systems of equations analysis method. Joan-Arinyo and Soto-Riera, [31], further improved the
technique and formalized it as a rewriting system.

Constructive methods work well in 2-space. Several attempts to extend them to 3-space have been
reported. See, for example, Brüderlin [6], Verroust [62], and Hoffmann and Vermeer [27].

3.1.2 Degrees of Freedom Analysis

Degrees of Freedom Analysis assigns degrees of freedom to the geometric elements by labeling the
vertices of the graph of the problem. Each edge of the graph is labeled with the number of degrees of
freedom canceled by the associated constraint. Then the method solves the problem by analyzing the
resulting labeled graph.



Kramer, [38], developed a method to solve specific problems from the kinematics of mechanisms.
The method applies techniques borrowed from the process planning field to yield a symbolic solution.
Since the set of rules used to generate the plan preserves geometric sense, the entire method also
preserves it. Kramer, [38], proves that his method is correct by showing that the set of rules together
with the labeled graph is a canonical rewriting system. The method runs in time O(nm), where n is
the number of geometric elements and m the number of constraints in the problem. Since m is typically
O(n), the method has the same complexity as the constructive approach. Bhansali et al., [3], describe
a method that generates automatically segments of the symbolic solution in Kramer’s approach.

Salomons et al., [52], represent objects and constraints as a graph and apply geometric and equa-
tional reasoning following the lines given by Kramer’s method.

In [28], Hsu reports a method with two phases. First, a symbolic solution is generated. Then, the
actual construction is carried out. The method applies geometric reasoning and, if this fails, numerical
computation.

Latham et al., [42], decompose the labeled graph in minimal connected components called balanced
sets. If a balanced set corresponds to one of the predefined specific geometric constructions, then it
can be solved. Otherwise the underlying equations are solved numerically. The method also deals with
symbolic constraints and identifies over- and under constrained problems. Assigning priorities to the
constraints allows them to solve over constrained problems. A proof of correctness is also given.

Hoffmann et al., [25], have developed a flow-based method for decomposing graphs of geometric
constraint problems. The method generically iterates to obtain a decomposition of the underlying
algebraic system into small subsystems called minimal dense subgraphs. The method fully generalizes
degree-of-freedom calculations, the approaches based on matching specific subgraphs patterns, as well
as the prior flow-based approaches. However, the decomposition rendered does not necessarily have
geometric sense since minimal dense subgraphs can be of arbitrary complexity far exceeding problems
that yield to classical geometric construction.

3.1.3 Propagation Approach

Propagation methods represent the set of algebraic equations with a symmetric graph whose vertices
are variables and equations and whose edges are labeled with the occurrences of the variables in the
equations.

Propagation methods try to orient the edges in the graph in such a way that each equation vertex
is a sink for all the edges incident on it except one. If the process succeeds, then there is a general
incremental solution. That is, the system of equation can be transformed into a triangular system and
solved using back substitution.

Among the techniques to orient a graph we find in the literature degrees of freedom propagation and
propagation of known values, [14, 53, 61]. Propagation methods do not guarantee finding a solution
whenever one exists. They fail when the orientation algorithm finds a loop. Propagation methods
can combined with numerical methods for equation solving to ameliorate circularity, [5, 39, 56, 59].
Veltkamp and Arbab, [61], apply other techniques to break loops created while orienting the graph.

Leler, [44], describes propagation methods in depth and proposes augmented rewriting terms, a tool
which consists of a classical rewriting system along with an association of atomic-value and object-type.
This tool has had success in solving certain systems of nonlinear equations.

In [4], Borning et al., describe an local propagation algorithm that can deal with inequalities.

3.2 Logic-Based Approach

In the logic-based approach, the problem is translated into a set of assertions and axioms characterizing
the constraints and the geometric objects. By employing reasoning steps, the assertions are transformed



in ways that expose solution steps in a stereotypical way and special solvers then compute coordinate
assignments.

Aldefeld, [1], Brüderlin, [7], Sohrt, [55] and, Yamaguchi et al., [66], use first order logic to derive
geometric information applying a set of axioms from Hilbert’s geometry. Essentially these methods
yield geometric loci at which the elements must be.

Sunde, [58], and Verroust, [63], consider two different types of sets of constraints: sets of points
placed with respect to a local framework, and sets of straight line segments whose directions are fixed
with respect to a local framework. The reasoning is basically performed by means of a rewriting system
on the sets of constraints. The problem is solved when all the geometric elements belong to a unique
set. Joan-Arinyo and Soto-Riera, [30], extended these sets of constraints with a third type consisting
of sets containing one point and one straight line such that the perpendicular point-line distance is
fixed.

3.3 Algebraic Methods

In the algebraic approach, the constraint problem is translated directly into a set of nonlinear equations
and is solved using any of the available methods for solving nonlinear equations. The main advantages
of algebraic solvers are their generality, dimension independence and the ability to deal with symbolic
constraints naturally.

In principle, an algebraic solver can be fully competent. However, algebraic solvers may have low
efficiency or may have difficulty constructing solutions reliably. When used to pre-process and study
specific constraint systems, however, algebraic techniques can be extremely useful and very practical.

As a result of mapping the geometric domain problem into an equational one, the geometric sense
of the solutions rendered is lost. Moreover, well constrained problems are mapped to under constrained
systems of equations because constraints fix the placement for each geometric element with respect
each other only modulo translation and rotation. Therefore a set of additional equations must be
joined to cancel these remaining degrees of freedom.

Algebraic methods can be further classified according to the specific technique used to solve the
system of equations, namely into numerical, symbolic, and analysis of systems of equations.

3.3.1 Numerical Methods

Numerical methods provide powerful tools to solve iteratively large systems of equations. In general, a
good approximation of the intended solution should be supplied to guarantee convergence. This means
that if, as it is customary, the starting point is taken from the sketch defined by the user, then the
sketch should be close to the intended solution. The numerical methods may offer little control over
the solution in which the user is interested. To achieve robustness, numerical iterative methods must
be carefully designed and implemented.

Borning, [5], Hillary and Braid, [21], and Sutherland, [59] use a relaxation method. This method
is an alternative to the propagation method. Basically, the method perturbs the values assigned to
the variables and minimizes some measure of the global error. In general, convergence to a solution is
slow.

The method most widely used is the well-known Newton-Raphson, [34] iteration. It is used in the
solvers described in [20, 45, 46, 50]. Newton-Raphson is a local method and converges much faster
than relaxation. The method does not apply to consistently over constrained systems of equations
unless special provisions are made such as combining it with least-squares techniques.

Homotopy or continuation, [2], is a family of methods with a growing popularity. These methods are
global and guarantee convergence. Moreover, they are exhaustive and allow to determine all solutions
of a constraint problem. However, their efficiency is worse than that of Newton-Raphson. Lamure and
Michelucci, [41], and Durand, [13], apply this method to geometric constraint solving.



Other, less conventional methods have also been proposed. For example, in [18], Hel-Or et al.,
introduced the relaxed parametric design method where the constraints are soft, that is, they do not
have to be met exactly, the problem is modeled as a static stochastic process, and the resulting system
of probabilistic equations is solved using the Kalman filter familiar from control theory. The Kalman
filter was developed to efficiently compute linear estimators and when applied to nonlinear systems, it
does not necessarily finds a solution even if one exists.

Kin et al., [35], reported on a numerical method based on extended Boltzmann machines which are
a sort of neural network whose goal is to minimize a given polynomial that measures the energy of the
system.

3.3.2 Symbolic Methods

Symbolic algebraic methods compute a Gröbner basis for the given system of equations. Algorithms
to compute these bases include those by Buchberger [9], and by Wu-Ritt [10, 65]. These methods,
essentially, transform the system of polynomial equations into a triangular system whose solutions are
those of the given system. In effect, triangularization reduces solving a simultaneous, nonlinear system
to univariate root finding. Forward or a backward substitution must be used.

Buchanan et al., [8], describe a solver built on top of the Buchberger’s algorithm. In [36], Kondo
reports a symbolic algebraic method. In [37], Kondo improves that work by generating a polynomial
that summarizes the changes undergone by the system of equations.

3.3.3 Analysis of Systems of Equations

Methods based on the analysis of systems of equations determine whether a system is under-, well- or
over-constrained from the system structure. These methods can be extended to decompose systems of
equations into a set of minimal graphs which can be solved independently, [49, 57]. They can be used
as a pre-processing phase for any other method, reducing the number of variables and equations that
must be solved simultaneously.

Serrano, [54], applies analysis of systems of equations to select from a set of candidate constraints
a well constrained, solvable subsets of equations.

3.4 Theorem Proving

Solving a geometric constraint problem can be seen as automatically proving a geometric theorem.
However, automatic geometric theorem proving requires more general techniques and, therefore, meth-
ods which are much more complex than those required by geometric constraint solving.

Wu Wen Tsün pioneered the Wu-Ritt method, an algebraic-based geometric constraint solving
method. In [65], he uses it to prove geometric theorems. The method automatically finds necessary
conditions to obtain non-degenerated solutions.

In [10], Chou applies Wu’s method to prove novel geometric theorems. Chou et al., in [11], report
on a work in automatic geometric theorem proving which allows to interpret, from a geometric point
of view, the proof generated by computation.

4 Spatial Constraint Solving

In 2D sketching applications, a major application area of constraint solving, graph-based solvers have
become dominant. The underlying reason is that for the constructs common in 2D sketching a small
set of subgraphs suffices, and that the associated algebraic solution problems are rather simple. In



constrast, spatial constraint solving does not appear to have a simple and small core that suffices for
most practical applications.

When approached using graph decomposition, the problem of spatial constraint solving is that
simple subgraphs of, even up to 6 vertices, are numerous and many of them correspond to associated
algebraic problems that are rather difficult. Note that a subgraph with 6 vertices is the smallest
simultaneous spatial constraint problem involving only points and planes.

There is also the problem that no consensus has arisen of the characteristic spatial constraint
problems of relevance to, say, CAD, so that there is little guidance on how to select a subset from the
subgraph patterns to arrive at a compact solver that is widely applicable. In this section we review
some of these issues in the context of a graph decomposition solver architecture. We begin with the
problem of solving the equations associated with a selection of spatial constraint problems.

4.1 Sequential Construction Problems

The simplest 3-space constraint problems require placing a single geometric element (point, plane or
line) with respect to a set of geometric elements whose position and orientation are known. We call
such problems sequential, since the elements are placed one-by-one sequentially.

Many, but not all, sequential problems are easy to solve. For example, placing a point with respect
to three known points requires the intersection of three spheres. Elementary algebraic manipulation
reduces this task to solving a univariate quadratic equation. On the other hand, a difficult sequential
problem is placing a line such that it is at prescribed distance from four known points in 3-space.
Geometrically, this is equivalent to finding common tangents to four given spheres.

A lower bound on the number of tangents to four spheres was established by Macdonald et al., [47],
who exhibited four unit spheres that have 12 distinct, common tangents. That this bound is sharp was
proved by Hoffmann and Yuan in [22] by deriving a nonlinear system of equations whose solutions give
all common tangents. It was shown that the geometric degree of the system is 12, thus establishing
the missing upper bound. Note that solving this system is not trivial.

4.2 Algebraic and Geometric Solutions

In the algebraic approach to solving specific constraint problems, one formulates a system of algebraic
equations. The system is then simplified using algebraic manipulation and geometric reasoning, and if
the resulting system is simple enough, its solutions can be computed with high reliability and accuracy.
For spatial constraint problems, it is not necessarily easy to find such simple systems, and so computing
solutions may require sophisticated algorithms, e.g., [13]. As we have seen, sequential problems may
already require solving algebraic systems of degree 12.

A geometric aspproach to finding the solutions of a nonlinear equation system is the locus method,
[16]. Instead of relying only on root finding techniques, a geometric idea is introduced:

Drop one constraint from the problem, say a dimensional constraint c, resulting in an
underconstrained problem. Evaluate the underconstrained configuration and measure the
actual value of the dimension. Different configurations lead to different values, resulting in
a curve that can be traced. This curve is the locus of c. Intersect the locus of c with the
nominal constraint value, usually a straight line. The resulting intersection configurations
are solutions to the original system.

The method can be extended to computing the locus of more than one cut constraint, resulting in
geometric manifolds of higher dimensions. Cutting two constraints we would obtain a surface that
would be intersected with two planes, cutting three constraints a spatial manifold is obtained, and so
on. We will illustrate the idea for octahedral problems.



Figure 4: Octahedral graph.

Figure 5: Octahedral graph. In red, dependent distances.

4.3 Octahedral Problems

Consider a constraint graph with six vertices and with edges arranged as shown in Figure 4. We call
such a graph octahedral on account of the fact that the topology is that of the vertices and edges of
a regular octahedron. The vertices represent points or planes in 3-space, and the edges therefore a
distance between two points, a distance between a point and a plane, and/or an angle between two
planes. There are seven major configurations according to the number of planes in the problem. Two
of them, namely configurations with 5 or 6 planes, are structurally under determined. The other five
configurations can be solved algebraically; [26].

An elegant approach to formulating the equation system is due to Michelucci, [48]1 who employs
the Cayley-Menger determinant as follows. The determinant expresses the distances between the five
points:
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where the dik = ‖pi − pk‖
2 is the squared distance between the points pi and pk. Choosing two sets of

five points in the configuration, we can express the squared distances indicated by a red, dashed line in
Figure 5 as function of the given distances. This results in two bivariate equations of degree 4 each in
the two unknown distances, indicating at most 16 distinct solutions. That the bound of 16 solutions is
sharp was shown earlier by Hoffmann and Vermeer in [26]. Suitable extensions of the Cayley-Menger
determinant can be used for the remaining cases comprising both points and planes.

A solution of the two quartic equations can be obtained by the locus method, for example. Each

1The URL is no longer valid.
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Figure 6: Octahedral problem. The locus method.

quartic equation taken separately yields a plane curve. Tracing these curves can then give initial values
for an iterative numerical method that isolates the up to 16 roots of the system.

The locus method can also be used to plot directly the value of a cut constraint, and we explain the
approach assuming only points in the configuration. Consider Figure 6. Select the three blue vertices,
labeled B, and cut the red, dotted-line constraint (between two green vertices labeled G). The three
blue vertices B can be positioned using the blue constraints only, indicated by dashed lines, in the
xy-plane for example.

Each of the green vertices, labeled G in the figure, together with the adjacent blue vertices, labeled
B, can be thought of as a rigid triangle that pivots about a blue, dashed edge, and so each green
vertex moves on a circle whose plane is perpendicular to the xy-plane. Select one green vertex and
parameterize its position on the circle on which it moves, say by θ. For a given θ value, we can now
compute the position of the remaining two green vertices using the black constraints, indicated by
solid lines between the G vertices, intersecting a circle and a sphere. Once these vertices have been
placed, we can compute the distance d between the two vertices adjacent to the cut, red constraint, so
plotting a curve in the θd-plane. Intersecting the curve with the line d = d0, where d0 is the distance
stipulated by the red constraint, we obtain all solutions to the original problem.

4.4 Line Configurations

In the discussion of sequential problems before, we have seen that sequential line problems in 3-
space may yield algebraic equation systems of considerable complexity. In addition, there is a large
number of individual problems involving only a small number of geometric elements. We illustrate
the combinatorial explosion of cases involving constraint graphs with 6 or fewer vertices representing
points, lines and planes.

Note that between two planes, between to points, and between a point and a plane we can have at
most one constraint, namely of angle, of distance, and of distance, respectively. Hoffmann and Vermeer
show in [26] that the octahedron problem is the simplest, nonsequential problem involving only points
and planes. As shown in that paper, there are exactly seven distinct major2 configurations, two of
them underconstrained.

We can have at most a single constraint between a point and a line (distance), and a single constraint
between a plane and a line (angle). However, between two lines we can have up to two constraints
(distance and angle). As Gao et al. show in [16], there are two distinct nonsequential constraint
problems with four lines, shown in Figure 7.

2Some of the major configurations have several sub configurations. For instance, in a problem with two planes, the

planes could have an angle constraint between them, or no constraint them, leading to two sub configurations for this

case.
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Figure 7: The four lines problem.

The blue, solid lines represent two constraints, of angle and distance, and the black, dashed line
represents a distance constraint. The two configurations differ in the red, dotted line constraint, a
distance constraint in one and an angle constraint in the other configuration.

In [16], Gao et al. also establish that there are 17 distinct configurations with 5 geometric ele-
ments, including lines, but more than 680 configurations with 6 geometric elements. These numbers
show that a solver, based on decomposing a spatial constraint problem into a (recursive) set of small
subproblems must have a very large repertoire of subproblem patterns, even when allowing only up to
six geometric elements. Moreover, the algebraic structure of the many configurations involving lines
remain unexplored.
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[62] A. Verroust. Etude de Problèmes Liés à la Définition, la Visualisation et l’Animation d’Objects
Complexes en Informatique Graphique. PhD thesis, Universite de Paris-Sud, Centre d’Orsay, 1990.
(Written in French).

[63] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for parameterized computer-aided
design. Computer Aided Design, 24(10):531–540, October 1992.

[64] W. Whiteley. Rigidity and scene analysis. In J.E. Goodman and J. O’Rourke, editors, Handbook
for discrete and computational geometry, pages 893–916. CRC Press LLC, 1998.

[65] W.-T. Wu. Mechanical theorem proving in geometries. In B. Buchberger and G. E. Collins,
editors, Texts and monographs in symbolic computations. Springer-Verlag, 1994.

[66] Y. Yamaguchi and F. Kimura. A constraint modeling system for variational geometry. In
J.U. Turner M.J. Wozny and K. Preiss, editors, Geometric Modeling for Product Engineering,
pages 221–233. Elsevier North Holland, 1990.


