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Abstract

In this paper, we propose a novel method for solv-
ing single-image super-resolution problems. Given a
low-resolution image as input, we recover its high-
resolution counterpart using a set of training exam-
ples. While this formulation resembles other learning-
based methods for super-resolution, our method has
been inspired by recent manifold learning methods, par-
ticularly locally linear embedding (LLE). Specifically,
small image patches in the low- and high-resolution
images form manifolds with similar local geometry in
two distinct feature spaces. As in LLE, local geometry
is characterized by how a feature vector correspond-
ing to a patch can be reconstructed by its neighbors
in the feature space. Besides using the training image
pairs to estimate the high-resolution embedding, we
also enforce local compatibility and smoothness con-
straints between patches in the target high-resolution
image through overlapping. Experiments show that our
method is very flexible and gives good empirical results.

1. Introduction

1.1. Single-image super-resolution

Super-resolution is the problem of generating a
high-resolution image from one or more low-resolution
images. While most methods have been proposed for
super-resolution based on multiple low-resolution im-
ages of the same scene (e.g., [2, 6, 8, 22]), the focus of
this paper is on generating a high-resolution image from
a single low-resolution image, with the help of a set of
one or more training images from scenes of the same
or different types. We refer to this as the single-image
super-resolution problem.

The single-image super-resolution problem arises
in a number of real-world applications. A common ap-

plication occurs when we want to increase the resolu-
tion of an image while enlarging it using a digital imag-
ing software (such as Adobe Photoshop). Another ap-
plication is found in web pages with images. To shorten
the response time of browsing such web pages, im-
ages are often shown in low-resolution forms (as the
so-called “thumbnail images”). An enlarged, higher-
resolution image is only shown if the user clicks on the
corresponding thumbnail. However, this approach still
requires the high-resolution image to be stored on the
web server and downloaded to the user’s client machine
on demand. To save storage space and communication
bandwidth (hence download time), it would be desirable
if the low-resolution image is downloaded and then en-
larged on the user’s machine. Yet another application
arises in the restoration of old, historic photographs,
sometimes known as image inpainting [5]. Besides re-
verting deteriorations in the photographs, it is some-
times beneficial to also enlarge them with increased res-
olution for display purposes.

1.2. Related previous work

Simple resolution enhancement methods based on
smoothing and interpolation techniques for noise reduc-
tion have been commonly used in image processing.
Smoothing is usually achieved by applying various spa-
tial filters such as Gaussian, Wiener, and median filters.
Commonly used interpolation methods include bicubic
interpolation and cubic spline interpolation [13]. Inter-
polation methods usually give better performance than
simple smoothing methods. However, both methods are
based on generic smoothness priors and hence are in-
discriminate since they smooth edges as well as regions
with little variations, causing blurring problems.

More recently, some learning-based methods have
been proposed by different researchers. Some methods
make use of a training set of images [1, 9, 10, 11, 12,
14, 19], while others do not require a training set but re-



quire strong image priors that are either hypothesized
[17] or learned from data [18].1 The methods based on
a training set are very similar in spirit. While the frame-
work based on image analogies [12] was proposed for
a wide variety of image texturing problems including
super-resolution, the method is less effective than other
super-resolution methods as no interaction between ad-
jacent elements (pixels or image patches) in the high-
resolution image is explicitly enforced to ensure com-
patibility. Nevertheless, all these methods use the train-
ing data in a similar way. In particular, each element in
the target high-resolution image comes from only one
nearest neighbor in the training set.

It should be noted that similar ideas have also been
explored in the context of texture synthesis [7, 23, 24].
These methods typically require only one sample tex-
ture as input, possibly with some random noise [23] or
a target model [24]. Similar to learning-based methods
for super-resolution, only one nearest sample texture is
selected to generate each synthesized pixel.

1.3. This paper

In this paper, we propose a flexible method that,
in principle, can be used for super-resolution problems
with arbitrary magnification factors up to some fun-
damental limits. More importantly, we propose a new,
more general way of using the training examples, so
that multiple training examples can contribute simulta-
neously to the generation of each image patch in the
high-resolution image. This property is very important
as generalization over the training examples is possible
and hence fewer training examples are required.

The rest of this paper is organized as follows. In
Section 2, we formulate the super-resolution problem
more precisely and introduce our method based on ideas
from manifold learning. Some details of the experimen-
tal setup are discussed in Section 3, including feature
representation, training set, and model parameters. Ex-
perimental results are then presented in Section 4. Fi-
nally, Section 5 gives some concluding remarks.

2. Neighbor embedding

2.1. Problem formulation

The single-image super-resolution problem that we
want to solve can be formulated as follows. Given a
low-resolution image Xt as input, we estimate the tar-
get high-resolution image Yt with the help of a train-

1 The model for the dynamic structure super-resolution method
[18] is designed specifically for resolution doubling (i.e., 2X
magnification) only.

ing set of one or more low-resolution images Xs and
the corresponding high-resolution images Ys.

We represent each low- or high-resolution image
as a set of small overlapping image patches. Xt and
Yt have the same number of patches, and each low-
resolution image in Xs and the corresponding high-
resolution image in Ys also have the same number of
patches. We denote the sets of image patches corre-
sponding to Xs, Ys, Xt and Yt as {xp

s}Ns
p=1, {yp

s}Ns
p=1,

{xq
t}Nt

q=1 and {yq
t }Nt

q=1, respectively. Obviously, Ns and
Nt depend on the patch size and the degree of overlap
between adjacent patches.

Ideally, each patch generated for the high-
resolution image Yt should not only be related appro-
priately to the corresponding patch in the low-resolution
image Xt, but it should also preserve some inter-patch
relationships with adjacent patches in Yt. The for-
mer determines the accuracy while the latter de-
termines the local compatibility and smoothness
of the high-resolution image. To satisfy these re-
quirements as much as possible, we would like our
method to have the following properties: (a) Each
patch in Yt is associated with multiple patch trans-
formations learned from the training set. (b) Local
relationships between patches in Xt should be pre-
served in Yt. (c) Neighboring patches in Yt are
constrained through overlapping to enforce local com-
patibility and smoothness.

2.2. Manifold learning

Our method is based on the assumption that small
patches in the low- and high-resolution images form
manifolds with similar local geometry in two distinct
spaces. This assumption is valid because the resulting
representation is stable and hence independent of the
resolution as long as the embedding is isometric. Each
patch, represented as a feature vector, corresponds to a
point in one of the two feature spaces. For convenience,
we use xp

s , yp
s , xq

t and yq
t to denote the feature vectors

as well as the corresponding image patches, and Xs, Ys,
Xt and Yt to denote the sets of feature vectors as well
as the corresponding images.

Recently, some new manifold learning (or nonlin-
ear dimensionality reduction) methods have been pro-
posed to automatically discover low-dimensional non-
linear manifolds in high-dimensional data spaces and
embed them onto low-dimensional embedding spaces,
using tractable linear algebraic techniques that are not
prone to local minima. These include isometric feature
mapping (Isomap) [20, 21], locally linear embedding
(LLE) [15, 16], and Laplacian eigenmap [3, 4]. Our
super-resolution method to be described below has been



inspired by these manifold learning methods, particu-
larly LLE.

2.3. Locally linear embedding

LLE is a promising manifold learning method that
has aroused a great deal of interest in machine learning.
It computes low-dimensional, neighborhood-preserving
embeddings of high-dimensional inputs and recovers
the global nonlinear structure from locally linear fits.

The LLE algorithm is based on simple geomet-
ric intuitions. Suppose there are N points in a high-
dimensional data space of dimensionality D, where the
N points are assumed to lie on or near a nonlinear
manifold of intrinsic dimensionality d < D (typically
d � D). Provided that sufficient data points are sam-
pled from the manifold, each data point and its neigh-
bors are expected to lie on or close to a locally linear
patch of the manifold. The local geometry of each patch
can be characterized by the reconstruction weights with
which a data point is reconstructed from its neighbors.

The LLE algorithm can be summarized as follows:

1. For each data point in the D-dimensional data
space:

(a) Find the set of K nearest neighbors in the
same space.

(b) Compute the reconstruction weights of the
neighbors that minimize the reconstruction
error.

2. Compute the low-dimensional embedding in the d-
dimensional embedding space such that it best pre-
serves the local geometry represented by the re-
construction weights.

2.4. Our neighbor embedding method

As in LLE, local geometry is characterized in our
method by how a feature vector corresponding to a
patch can be reconstructed by its neighbors in the fea-
ture space. For each patch in the low-resolution image
Xt, we first compute the reconstruction weights of its
neighbors in Xs by minimizing the local reconstruc-
tion error. The high-resolution embedding (as opposed
to the low-dimensional embedding of LLE) is then esti-
mated from the training image pairs by preserving local
geometry. Finally, we enforce local compatibility and
smoothness constraints between adjacent patches in the
target high-resolution image through overlapping.

The neighbor embedding algorithm of our method
can be summarized as follows:

1. For each patch xq
t in image Xt:

(a) Find the set Nq of K nearest neighbors in Xs.

(b) Compute the reconstruction weights of the
neighbors that minimize the error of recon-
structing xq

t .

(c) Compute the high-resolution embedding yq
t

using the appropriate high-resolution fea-
tures of the K nearest neighbors and the
reconstruction weights.

2. Construct the target high-resolution image Yt by
enforcing local compatibility and smoothness con-
straints between adjacent patches obtained in
step 1(c).

We implement step 1(a) by using Euclidean dis-
tance to define neighborhood. Based on the K nearest
neighbors identified, step 1(b) seeks to find the best re-
construction weights for each patch xq

t in Xt. Optimal-
ity is achieved by minimizing the local reconstruction
error for xq

t

Eq = ‖xq
t −

∑
xp

s∈Nq

wqpxp
s‖2, (1)

which is the squared distance between xq
t and its recon-

struction, subject to the constraints
∑

xp
s∈Nq

wqp = 1
and wqp = 0 for any xp

s /∈ Nq . Apparently, minimiz-
ing Eq subject to the constraints is a constrained least
squares problem. Let us define a local Gram matrix Gq

for xq
t as

Gq = (xq
t1

T − X)T (xq
t1

T − X),

where 1 is a column vector of ones and X is a D×K
matrix with its columns being the neighbors of xq

t .
Moreover, we group the weights of the neighbors to
form a K-dimensional weight vector wq by reorder-
ing the subscript p of each weight wqp. The constrained
least squares problem has the following closed-form so-
lution:

wq =
G−1

q 1

1T G−1
q 1

.

Instead of inverting Gq, a more efficient way is to solve
the linear system of equations Gqwq = 1, and then nor-
malize the weights so that

∑
xp

s∈Nq
wqp = 1. After re-

peating steps 1(a) and 1(b) for all Nt patches in Xt, the
reconstruction weights obtained form a weight matrix
W = [wqp]Nt×Ns

.
Step 1(c) computes the initial value of yq

t based on
W:

yq
t =

∑
xp

s∈Nq

wqpyp
s . (2)

In step 2, we use a simple method to enforce inter-patch
relationships by averaging the feature values in over-
lapped regions between adjacent patches. Other more
sophisticated methods may also be used.



3. Experiments

3.1. Feature representation

As discussed above, each image patch is repre-
sented by a feature vector. In this subsection, we will
address the issue of feature representation for both low-
and high-resolution images.

Color images are commonly represented by the
RGB channels. However, humans are more sensitive to
changes in luminance than to changes in color. Thus,
instead of using the RGB color model, we use the
YIQ color model where the Y channel represents lumi-
nance and the I and Q channels represent chromaticity.
Conversion between the RGB and YIQ color schemes
can be done easily via a linear transformation. In our
method, the chromaticity components from the I and Q
channels are not learned. They are simply copied from
the low-resolution image to the target high-resolution
image. Hence, only the luminance values from the Y
channel are used to define features.

For the low-resolution images, one possible
scheme is to define the feature vector as a concatena-
tion of the luminance values of all pixels inside the cor-
responding patch. However, this simple scheme is
not satisfactory. An alternative scheme, which we use
here, is to consider the relative luminance changes
within a patch. This feature representation scheme al-
lows us to use a relatively small training set. More
specifically, we use the first-order and second-order gra-
dients of the luminance as features. Figure 1 shows
a 5 × 5 local neighborhood of the pixel at the cen-
ter with luminance value z13. The first-order gradient
vector of z13, denoted ∇z13, and the second-order gra-
dient vector, denoted ∇2z13, can easily be derived as
follows:

∇z13 =
[

(z14 − z13) + (z13 − z12)
(z18 − z13) + (z13 − z8)

]

=
[

z14 − z12

z18 − z8

]
,

∇2z13 =
[

(z15 − z13) − (z13 − z11)
(z23 − z13) − (z13 − z3)

]

=
[

z15 − 2z13 + z11

z23 − 2z13 + z3

]
.

By combining the two gradient vectors above, we
obtain four features for each pixel.2 The feature vector

2 Feature weighting may be applied through weighted combina-
tion of the two feature types. However, this requires introducing
an additional parameter and solving the associated model selec-
tion problem by determining the best parameter value.

z1 z2 z3 z4 z5

z6 z7 z8 z9 z10

z11 z12 z13 z14 z15

z16 z17 z18 z19 z20

z21 z22 z23 z24 z25

Figure 1. A 5×5 local neighborhood in the
low-resolution image for computing the
first-order and second-order gradients of
the pixel at the center with luminance
value z13.

for each patch is then defined as the simple concatena-
tion of the features for all pixels within the patch. For
an n×n low-resolution patch, its feature vector has 4n2

features.
For the high-resolution images, we define the fea-

tures for each patch based only on the luminance val-
ues of the pixels in the patch. Since the features used
for the low-resolution patches cannot reflect the abso-
lute luminance, we subtract the mean value from the
luminance-based feature vector of each high-resolution
patch. When we construct the target high-resolution im-
age, the mean luminance value of the corresponding
low-resolution patch will be added.

3.2. Training set and model parameters

In our experiments, we use only very small train-
ing sets. There are two settings that we have explored.
The first setting uses a separate set of training images.
Figure 2 shows the images used in some of the experi-
ments. These images are from the Kodak web site.3 We
have also investigated another setting where a small por-
tion of the target high-resolution image is known and is
available as the (only) training image. Given the high-
resolution training image(s) Xs, we obtain the corre-
sponding low-resolution image(s) Ys through blurring
and then downsampling. Under the second setting, since
the training set is very small, each patch is represented
as eight different feature vectors through rotation to dif-
ferent orientations (0◦, 90◦, 180◦ and 270◦) and also ob-
taining their mirror images. This scheme could be ap-
plied to the first setting as well, but we have not done
this in our experiments.

Our method has only three parameters to deter-
mine. The first parameter is the number of nearest
neighbors K for neighbor embedding. Our experiments
show that the super-resolution result is not very sensi-

3 http://www.kodak.com/go/photoquilt



(a) (b)

(c) (d)

Figure 2. Training images used in some of
the experiments.

tive to the choice of K. We set K to 5 for all our exper-
iments. The second and third parameters are the patch
size and the degree of overlap between adjacent patches.
For the low-resolution images, we use 3 × 3 patches
with an overlap of one or two pixels between adjacent
patches. If we want to magnify a low-resolution image
by N times in each dimension, then we use 3N × 3N
patches in the high-resolution image with an overlap of
N or 2N pixels between adjacent patches.

3.3. An illustrative example

For illustration, Figure 3 shows the results of ap-
plying neighbor embedding to a small 3 × 3 patch
from a low-resolution plant image (see Figure 7).
The input low-resolution patch in (b) is downsam-
pled from a blurred version of the true high-resolution
patch in (a). Using the feature representation de-
scribed above4, five nearest-neighbor patches in (c) are
obtained from the training images and their reconstruc-
tion weights are computed according to Equation (1).
Based on the five corresponding high-resolution
patches as shown in (d), the target high-resolution
patch in (e) is constructed according to Equation (2).
The reconstructed high-resolution patch is perceptu-
ally very similar to the true high-resolution patch. None
of the nearest-neighbor high-resolution patches is bet-
ter than this reconstructed patch, showing the potential
of our method in generalizing over the training im-
ages. This provides a sound justification for the satis-
factory performance even when a small training set is
used.

4 Recall that different features are used for the low- and high-
resolution patches.

(a) (b) (c)

(d)

(e)

Figure 3. Neighbor embedding proce-
dure applied to a low-resolution patch for
3X magnification: (a) true high-resolution
patch; (b) input low-resolution patch
downsampled from (a); (c) five nearest-
neighbor low-resolution patches from
the training images; (d) high-resolution
patches from the training images corre-
sponding to the low-resolution patches in
(c); (e) target high-resolution patch con-
structed from (d).

4. Experimental results

We compare our method with median filtering and
cubic spline interpolation (or bicubic interpolation in
one case) for different super-resolution examples. For
some examples which have been studied by other re-
searchers, we also include their results here for compar-
ison.

Figure 4 shows the results of applying different
super-resolution methods to a head image to obtain 4X
magnification. All images except those of our method
are from the researchers’ web site.5 Freeman et al.’s
method [9] and our method give the best results. While
Freeman et al.’s method makes the reconstructed high-
resolution image somewhat “non-photorealistic” near
the hair region, our method smooths the texture on the
face.

Figure 5 shows a 2X magnification example for a
lizard image. We include results using median filtering
and bicubic interpolation for comparison. We also in-
clude the result of Storkey’s dynamic structure super-
resolution method [18]. All images except that of our
method are from his web site.6 For our method, we

5 http://www.ai.mit.edu/people/wtf/superres
6 http://www.anc.ed.ac.uk/˜amos/superresolution.html



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. 4X magnification of the head
image from a 70 × 70 low-resolution
image: (a) input low-resolution image;
(b) true high-resolution image; (c) cubic
spline interpolation, (d) Freeman et al.’s
method; (e) our method with training ex-
amples shown in Figures 2(a) and (b);
(f) our method with part of the true high-
resolution image as training example;
(g) training image for (f).

crop a small part of the true high-resolution image as
training image. As we can see, our method is clearly
superior to median filtering and bicubic interpolation.
Storkey’s method and our method give comparable re-
sults, although our method shows better effect on some
edges.

More examples using a separate set of training im-
ages are shown in Figure 6 and Figure 7. These exam-
ples are from the same Kodak web site as those in Fig-
ure 2. Both examples perform 3X magnification and use
the two images in Figures 2(c) and (d) as training exam-

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. 2X magnification of the lizard
image: (a) input low-resolution image;
(b) true high-resolution image; (c) me-
dian filtering; (d) bicubic interpolation;
(e) Storkey’s method; (f) our method with
part of the true high-resolution image as
training example; (g) training image for (f).

ples. It is clear that our method outperforms median fil-
tering and cubic spline interpolation for both examples.

To see how the performance changes as a function
of the number of nearest neighbors K used, we measure
the RMS error between the super-resolution image gen-
erated and the ground-truth image as K varies over a
range. Figure 8 shows the results for four examples dis-
cussed above. As we can see, the RMS error attains its
lowest value when K is 4 or 5, showing that using mul-
tiple nearest neighbors (as opposed to only one near-
est neighbor as in the existing methods) does give im-
proved results.

5. Conclusion

In this paper, we have proposed a novel method
for single-image super-resolution problems. While our



(a)

(b) (c)

(d) (e)

Figure 6. 3X magnification of the bird
image: (a) input low-resolution image;
(b) true high-resolution image; (c) me-
dian filtering; (d) cubic spline interpola-
tion; (e) our method with training images
shown in Figures 2(c) and (d).

method resembles other learning-based methods in re-
lying on a training set, our method is novel in that it uses
the training images in a more general way. More specif-
ically, generation of a high-resolution image patch does
not depend on only one of the nearest neighbors in the
training set. Instead, it depends simultaneously on mul-
tiple nearest neighbors in a way similar to LLE for man-
ifold learning. An important implication of this prop-
erty is that generalization over the training examples
is possible and hence we can expect our method to re-
quire fewer training examples than other learning-based
super-resolution methods.

Besides, we believe the use of first-order and
second-order gradients of the luminance as fea-
tures can better preserve high-contrast intensity
changes while trying to satisfy the smoothness con-
straints. We may even go further by extending our
method with the use of primal sketch priors, an in-
teresting and useful idea recently proposed by Sun et
al. [19]. We believe this extension not only can han-
dle image primitives (e.g., edges) better, but it can also
lead to significant speedup as only regions with prim-
itives have to be transformed. We will pursue this
interesting direction in our future research.

(a)

(b) (c)

(d) (e)

Figure 7. 3X magnification of the plant
image: (a) input low-resolution image;
(b) true high-resolution image; (c) me-
dian filtering; (d) cubic spline interpola-
tion; (e) our method with training images
shown in Figures 2(c) and (d).
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