ROO — A Model for Object-Oriented Reuse

Tony Clark
Computing Department
Phoenix Building
University of Bradford
BD7 1DP
e-mail: a.n.clark@comp.brad.ac.uk
September 18, 1997

1 Abstract

Both object-orientation and the Internet make the widespread reuse of software
a possibility. Unfortunately, the potential benefits from these facilities have not
been forthcoming. One reason for this is the lack of a coherent model for software
development and reuse. This paper proposes such a model which is based upon
modelling software components using state transition machines. Reuse is made
possible by defining matching relations between component descriptions in terms
of machine simulations. Both the development process and matching relations are
given a formal semantics.

2 Introduction

The reuse of software components has long been a major aim of Software Engineer-
ing [12]. We propose that there are two major reasons why this aim has not yet
been realised. Firstly, no single organisation can afford to develop all the software
which it will subsequently need to reuse (and until recently there has been no ef-
fective mechanism which allows different organisations to pool software resources).
Secondly, if different organisations are to contribute to a shared pool of software
there must be a high degree of standardisation in terms of software components, the
mechanisms by which the components are made available for reuse and the retrieval
mechanisms which match a software requirement, with a software component.

The worldwide use of computers is currently undergoing a revolution in terms
of information availability. In principle, a computer may gain access to information
at any point in the world using standard communications networks. The scope for
information sharing and reuse is potentially enormous since information at a single
site may be shared with all other sites in the world simply by locally making it
available to the Internet [4].

The amount and format of information which is available is a problem which
must be overcome in order to effectively use the Internet as a shared resource.
In order to deal with the quantity of information, searching must be automated.
However, in order to automate the search for information, the format of the infor-
mation must be complete, usable by the recipient and understood by the search
mechanisms.

The object-oriented approach to software development offers advantages for the
reuse of software components. It is claimed that object-oriented designs and imple-
mentations are problem oriented, have a resilience to evolution and are amenable
to domain analysis [16]. Software components are organised into collections of rela-
tively small independent units, each of which performs a specific task. The object-
oriented model of computation is organised around a message passing metaphor,
where individual objects interact by sending data bearing messages.



Java is an object-oriented programming language which compiles to a standard
binary format. Different computer platforms may support Java by implementing
an interpreter for the binary format. A Java program consists of a collection of
separate class definitions. A class definition on one computer may be transported
via the Internet to another computer and executed without recompilation. This
high degree of modularity and portability makes Java an ideal candidate to support
code reuse.

This work is aimed at developing a systematic method of producing object-
oriented software which incorporates reuse. In particular we intend to target Java
as the development language since it provides excellent support for multi-platform
portability. The method will support both publication of code for reuse and the de-
velopment of new software which involves reuse. The proposed method is described
in the rest of the paper: §3 gives an overview of our model for object-oriented soft-
ware development, documentation and reuse; §4 gives a formal semantics to the
model; §5 gives some simple examples of the approach; finally, §6 concludes by
analysing the approach and outlining future work.

3 A model of development and reuse

This section gives an overview of a model for software development and reuse. The
model, called ROO, is the basis for a simple prototype tool, called ROOT, which
has been developed. The model is given a formal semantics in §4.

We view software development as a sequence of transformations which are ap-
plied to an initial system description to produce a final system description. Each
transformation adds detail to the current description and may be viewed as con-
straining the collection of all programs which will satisfy it. The development pro-
cess starts with an empty initial system description which is satisfied by all possible
programs. The development process ends when sufficient detail has been added to
ensure that only the required programs will satisfy the system description. Note
that one way of ensuring this is to transform the initial description into executable
code, i.e. to a singleton set of programs.

Once a program has been developed in this way, it may be registered as available
for reuse. Each of the system descriptions produced during a program’s development
will document the program to varying degrees of specificity. In general, the most
specific system description is used to document a program.

Once a library of system descriptions is established, it is possible to introduce
reuse to the development process. After applying a transformation to produce a sys-
tem description d, the library is searched for a program p whose system description
matches d. Given suitable matching criteria we may conclude that p implements
d. Providing that the only programs which satisfy d are those which match our
software requirements, then we conclude that p meets the software requirements
and may be reused.

This section proceeds as follows: §3.1 describes the transformations which may
be applied to system descriptions; §3.2 describes the issues which apply to matching
system descriptions; §3.3 describes a model which is used for system descriptions;
finally, §3.4 gives an example using ROO.

3.1 Refinement

Software development proceeds by performing transformations on a system descrip-
tion. Each transformation increases the specificity of the description and reduces
the number of programs which satisfy it. A system may be described at different



levels of abstraction. Transformations will change the level of abstraction. Ab-
straction levels are similar to viewing a distant object: at high levels of abstraction
(viewing from far away) it is difficult to distinguish between different elements of
an object; at low levels of abstraction (viewing from close up) individual elements
can be distinguished. In our model, development moves from a highly abstract
system description to a detailed system description. There are two types of system
transformation [22] [13]:

1. Horizontal transformations leave the level of abstraction unchanged. Such
transformations tend to modify the behaviour of the system, either by ex-
tending, replacing or removing behaviour. Horizontal transformations tend to
change the character of a system description, for example by adding persis-
tence capabilities to a data type or removing the 'reset’ button on a menu.

2. Vertical transformations change the level of abstraction but leave the essential
behaviour of the system unchanged. Vertical transformations are like taking
one step towards a system or away from it. A vertical transformation which
increases abstraction will coalesce distinct elements of a system and it will no
longer be possible to distinguish between them after the transformation; for
example, merging a collection of non-empty stack configurations into a single
atomic nonempty configuration. A vertical transformation which decreases
abstraction will decompose elements of a system into collections of elements
which were previously indistinguishable; for example, decomposing the atomic
nonempty stack back into a collection of individual stack configurations.

Software development proceeds from an initial system description by applying
a sequence of horizontal and vertical transformations. The development proceeds
from high to low abstraction until an error is discovered in the current system de-
scription. At this point the developer backtracks to the point at which the transfor-
mation which injected the error occurred and performs and different transformation.
The result of performing an entire development is a tree structure.

3.2 Matching

In order to reuse programs we require a measure of similarity between two pro-
gram descriptions. This measure is formally defined in §4.3. This section gives an
overview of the possible definitions for similarity in the context of the proposed
refinement model. We propose a denotational semantics for system descriptions,
and then use the semantics to define matching constraints.

Let d be a system description. The set D(d) contains all the sub-descriptions of
d. The set P(d) contains all the possible programs which satisfy d. For example,
if d is the empty description then P(d) contains all the possible programs which
could ever be written. If d is refined to d' in a development process then d’' contains
more detail than d but P(d') C P(d) since fewer programs will satisfy the extra
behavioural constraints.

The set N(d) contains the names in the external interface of the system d. The
set S(d) is the signature of d, i.e. the set of names and types in the interface of
d. A renaming f may be applied to a description 6(d) to change the names in the
signature of d.

Given two system descriptions d; and dy we wish to decide whether or not any
program which satisfies one will also satisfy the other. The description d; is to be
thought of as a query, arising during a development process, and description ds is
to be thought of as a library entry which documents existing code. In practice, it is
likely to be very difficult to be certain of this relationship, so we intend to introduce



a spectrum where descriptions matching at one end of the spectrum do so weakly
and descriptions matching at the other do so strongly.
At the weak end of the spectrum we consider the names and signatures of the
two descriptions. If:
N(di) C N(ds) (1)

then we can conclude that all of the names in the interface of d; are in the interface
of dy and there is a small likelihood that any program which implements d, also
implements d;. Less weakly, if:

S(dy) C S(dz) (2)

then both the names and their types in the interface of d; are contained in the
interface of dy. This increases the likelihood that any program which implements
ds also implements d.

Both weak versions of the matching relation do not take the behaviour of the
descriptions into account. This can be taken into account as follows, if:

ds € D(ds) Ady € D(dy) A P(d3) C P(8(dy)) (3)

then we conclude that the implementations of some sub-description dz of dy are
also implementations of some sub-description d4 of d; after a renaming. We must
be careful about how sub-description is defined, since the degenerate case is the
empty description. In practice, there will be some limit as to the minimum size of
a sub-description, for example one which minimally spans the behaviour of d; in
some sense.

Stronger still, is the relation induced by the following condition:

ds € D(dz) Ndy € D(d]) A P(dg) - P(d4) (4)

since no renaming is necessary. Next is the relation induced by the following con-
dition:
ds € D(d2) A P(d3) C P(6(d1)) (5)

which forces the whole of the behaviour defined by d; to be taken into account,
albeit after a renaming. Finally, the strongest condition is:

the whole of the description d; must be dealt with. Notice that equivalence P(d;) =
P(d,) is not really sensible as a constraint since it implies that d; and ds are at the
same level of abstraction at which point we have implemented the code which we
intend to reuse.

Many current matching strategies use module signatures with pre- and post-
conditions on each module operation (for example [14] [21] [1] [23]). Whilst lan-
guages which are based on such methods are very expressive they are not necessar-
ily executable and matching may involve theorem proving which may be arbitrarily
complex. The work described in [24] is an example of a strategy based on matching
signatures.

Other strategies are based on keyword matching [3] which requires foresight on
the part of the library designer in order to predict the keywords which will be used
in a library search. We propose it is better to base a library search mechanism
on the behaviour of the components, since this can be described in abstract terms
without resorting to subjective keywords. The relationship between behaviours and
subtyping is described in [2].



3.3 Modelling

The proposed software development process involves system descriptions which are
denoted by software component descriptions. We would like a software component
description language to support the object-oriented model of computation, to be
executable so that development is interactive, to support transformations and to
support matching.

The 8C model [22] requires that a software component description language
supports the following three views of a software component: concept, content and
context. The concept view describes what a component does; the content view
describes how the component achieves the behaviour; the context view describes
the domain of applicability for the component.

Object-oriented development is particularly amenable to description using the
3C model. Each software object in a development is an independent unit which often
corresponds closely to a domain object. The behaviour of an object is often loosely
coupled to that of other objects and the independent nature of objects behaviour
tends to lead to wide domains of applicability.

Many current development methods for object-oriented software (for example
[7] [15] [11] [17] [6] [18]) describe the behaviour of objects using state transition
machines [5]. Such behaviour descriptions are suitable as a vehicle for component
description since they can be used to capture the abstract behaviour of an object
(conceptual view) and they can be used to produce an implementation of an object
(content view) as a result of transformations.

The use of state transition machines for developing object-oriented software
meets our objectives since a machine is executable and is amenable to both hor-
izontal and vertical transformations (see [9] for a description of state transition
machine transformation in the context of Knowledge Based Systems). A compo-
nent description language which is based upon state transition machines can be
given a formal semantics. The criteria for component reuse can be defined in terms
of machine simulation. A request for a software component is made in terms of
the required behaviour, supplied as a state transition machine. A given software
component is a likely candidate for reuse when its behaviour description is capable
of simulating the required behaviour.

A labelled state transition machine is represented as a triple (©,%,I'). The
machines are used to represent system components and are precisely defined in
§4. Informally, © describes the states which the software component can exist
in, ¥ describes the operators which are available in the interface of the software
component and I' describes the state changes which occur in response to activating
an operator.

3.4 Example

This section gives a very simple example of a component development and shows
matching relationships between the resulting components. The aim is to produce a
simple stack behaviour using horizontal and vertical transformations. The develop-



ment is shown in the following diagram:

t1

to

ta

11

where nodes refer to components produced during the development and labelled
edges refer to horizontal and vertical transformations. The universal initial com-
ponent description, 7, contains a single state and a single operator which takes
the state to itself. This behaviour describes any component at the highest possi-
ble level of abstraction: all component states are coalesced into a single state and
all component operators are coalesced into a single operator which appears to do
nothing:

0 ={s}

X={f:7->7} (7)

F={f:s+—s}

The signature of 7 defines the type of f to be 7 — 7, i.e. it expects a value whose
behaviour is described by 7 and produces a value whose behaviour is described by
7. There is one transition for 7 which is labelled with the operator f and has s as
source and target states.

The first development transformation is to lower the level of abstraction by
distinguishing between two stack states empty and nonempty. These are mutu-
ally exclusive and are produced by applying the horizontal transformation ¢, to 7
producing 8:

© = {empty, nonempty}
Y={f:7->7}
T ={f: empty — empty,
1 emply — nonempty,
: nonempty — nonempty,
: nonempty — empty}

(8)

— =

The component 8 has two states, a single operator and four transitions. The four
transitions are produced by systematically splitting the source and target states in
the single transition f:s — sin 7.

In general, at this point in development, a number of horizontal transformations
would be applied to 8 in order to tailor the new transitions. This is not necessary for
8 since all the transitions are possible at this level of abstraction. A second vertical
transformation is applied to 8 to decrease the level of abstraction with respect to



the operation f. The transformation ¢ produces 9:

© = {empty, nonempty}

Y ={push:7—->7,
pop: T — 17,
top:7— T}

I = {push : empty — empty,
push : empty — nonempty,
push : nonempty — nonempty,
push : nonempty — empty, 9)
pop : empty — empty,
pop : emply — nonemptly,
pop : nonempty — nonempty,
pop : nonempty — emply,
top : empty — empty,
top : empty — nonempty,
top : nonempty — nonempty,
top : nonempty — empty}

The single operator f in 8 has been decomposed into three operators push, pop and
top. In 9 it is now possible to distinguish between three operators each of which
affects the stack state in the same way as operation f in 8. Notice that not all of the
transitions which are defined in 9 are required. A horizontal transformation t3 is
applied which removes undesirable transitions (in general, this would be performed
by a sequence of horizontal transformations) producing 10:

© = {empty, nonempty}

Y ={push:7—>7,
pop: T — 17,
top:7— T}

I = {push : empty — nonempty,
push : nonempty — nonempty, (10)
pop : empty — empty,
pop : nonempty — nonempty,
pop : nonempty — emptly,
top : empty — empty,
top : nonempty — nonempty}

The component 10 correctly describes the behaviour of a simple stack object. Notice
that the type of the elements which are stored in the stack are defined by 7, i.e.
they are totally unrestricted. It is unlikely that in a real development, the contents
of a particular stack would be unrestricted. To show how the model supports this,
the elements of the stack are restricted to be components of type 10, i.e. stacks of
unrestricted stacks. This is achieved by performing a vertical transformation t4 to
produce 11:
© = {empty, nonempty}
Y = {push:10 - 7,
pop: T — 17,
top: 7 — 10}
I = {push : empty — nonempty,
push : nonempty — nonempty, (11)
pop : empty — empty,
pop : nonempty — nonempty,
pop : nonempty — emply.,
top : empty — empty,
top : nonempty — nonempty}



The sequence of component descriptions 7 11 describes a simple development
process and gives an overview of the types of transformations which are used. At
each step in the process further detail is added to the description which restricts
the number of possible programs which satisfy it. At each step we would like
to search a software library in the hope of finding programs whose component
descriptions match the current step. Consider the constraints 1 6 described in
§3.2. Each constraint is discussed with respect to the development given above
where a current development component will be referred to as a d-component and
a library component will be referred to as an [-component:

e Constraint 1 requires that the operator names of the d-component to be
present in the I-component. In general, during development the d-component
names at the outset will differ from those at the end, for example N(7) = {f}
and N (11) = {push, pop, top}. Keyword matching is therefore unlikely to yield
a high number of desirable matches.

e Constraint 2 requires that the signature of the d-component is present in the
signature of the l-component. This suffers from the same problems as con-
straint 1; although, once type information has been added to d-component op-
erators, for example 11, then this can be used to distinguish the d-component
signature from l-components with the same interface of names.

e Constraint 3 requires that some sub-behaviour of the d-component be consis-
tent with some sub-behaviour of the l-component after a renaming. We must
be careful when defining the criteria for consistent sub-behaviour. One possi-
bility is that all the distinct d-states must be supported by the l-component,
i.e. for each d-state there is a set of potential 1-states. The sub-behaviour
issue arises due to the following constraint: from each d-state there is a collec-
tion of possible d-operators, also each d-state is associated with a collection of
l-states, all the d-operators must be supported by a corresponding l-operator
but each I-state need not support all the corresponding l-operators.

This constraint does not occur in the stack example, however consider the
following two component descriptions:

@Z{Sl,SQ}
S—{f:ToT) (12)
F:{fZS] '—>827f282'—>81}

@ = {p17p27p3}
Y={g:7T>7} (13)
T={g:pr—=pog:psr—pi}

where 13 has been derived from 12 using a sequence of transformations. In
12 it is possible to move freely from s; to so and back again. In 13 the state
s has been split into p, and p3 and many of the resulting transitions have
been deleted. We can associate s; with p; and associate so with ps and ps;
however only part of the behaviour allowed by 12 in state s; is supported by
13 and the behaviour allowed by 12 in state s» has been divided between po
and ps.

e Constraint 4 is similar to constraint 3 except that no renaming is possible.
This would force g and f to be the same in components 12 and 13.

e Constraint 5 requires the behaviour of the d-component to be completely sup-
ported by the l-component possibly after a renaming. Consider a d-component



7 being matched against l-components 8 11. Using suitable renamings for
f, all the l-components support the behaviour of the d-component.

Now consider a d-component 8 being matched against 1-components 7, 9 11.
The d-component does not match 7 since there are insufficient states in the
l-component. The d-component does match all of the I-components 9 — 11
using constraint 5 since the d-behaviour can be completely embedded within
the corresponding I-behaviour.

The d-component 11 does not match any of the l-components 7 10 using
constraint 5 since its behaviour is too complex to be embedded.

e Constraint 6 is similar to constraint 5 except that no renaming is possible.
For example 8 matches 10 using constraint 5, but not using constraint 6.

In conclusion, we have given an overview of ROQ, an approach to software
development using simple state transition machines and outlined a space of possible
matching constraints which can be used as criteria for reuse. The rest of this paper
gives the formal semantics of ROO and then gives an example in greater detail.

4 Semantics of development and reuse

Earlier sections in this paper have described a model for software development and
reuse. This section makes this model precise by giving it a formal semantics.

4.1 Definitions

A software component is a triple (0, X, T') where © is a set of states, X is a signature
which is a set of operators, and I' is a set of transitions.

A state § € © is an atomic value. An operator o : 71 — T € X consists of an
operator identifier o and a pair of types 7, and 75 which denote the domain and
range of the operator. A type T is a software component. A transition o : 61 —— 65
consists of an operator identifier o and a pair of states; 6, is referred to as the source
state and 65 is referred to as the target state.

The substitution [o1 /02] is used to replace oy with oq. Similarly, [6;/62] replaces
0> with 6. Substitutions are applied to operator identifier and states respectively;
the definition, where z is an operator identifier or state, is as follows:

z[z1/x2] = 1 when z = x4
x|z /x2] =2  otherwise

The infix operators ® and & are used to denote binary relations.

4.2 Transformations

A transformation may be either horizontal or vertical. Horizontal transformations
add or delete states, transitions and operators. Vertical transformations refine the
type of operators or split states and operators.

The horizontal transformations each add or delete a value from the relevant en-
tries in the software components. They are defined below without further comment:

addstate(§)(0,%X,T) = (O U {0}, %,T)
delstate(9)(0,X,T) = (60 — {6},%,T)

addop(o : 1y — 1)(0,X,T)=(0,XU{o: 7 = n},T)
delop(0)(0,%,T) = (0,X — {0},T)
addtrans(v)(0,X,T) = (0,2, T U {v})
deltrans(v)(0,%,T) = (6,%,T — {v})



The vertical transformations are slightly more complex. Each transformation is
formally defined and then explained.

splitstate(91702,03)((-), E, F) = ((G‘) — {0]}) @] {02, 93}7 E, F’)
where
I'=U{{o:0[02/61] +— 6,0 :0[03/601] — 0"} | 0 : 0 — 0" € S}
where

S=U{{o:0+—0'02/61],0:0 — 0'[05/61]} | 0 : 0 — ' € T’}

The splitstate transformation involves an existing state #; and two new states 6
and 3. The effect is to replace 6; by both 6> and 63 in a given software component.
To do this, the existing state is removed from © and the new states are added.
Then each transition in I' must be duplicated, replacing #; with both 6, and 63,
producing a new transition set T".

Split()p((fl,(fg,()':;)(@, E,F) = (®7 (E - {01}) U {02703}7FI)
where
I =J{{olo2/o1] : 61 — O2,0[05/01] : 61 —> B2} | 0 : 61 —> B2 € T}

The splitop transformation involves an existing operation o; and two new operations
o9 and o3. The effect is to replace the existing operation o; by both g2 and o3 in
a given software component. To do this, the existing operator is removed from X
and the two new operators are added. Then each transition in ' which is labelled
with the o7 is replaced with two new transitions which are labelled with o, and o3
respectively.

reﬁneop((f, T1,T2, EB)(@/ Z,F) =
{ 0,2={o:m})U{o: 7}, ) whenn &7

— otherwise

The refineop transformation involves an existing operator o whose type is 71 and a
new type 7o. The effect is to replace the existing operator type with the new operator
type only when the types are consistent with respect to the supplied relation .
Transformations may be constructed without reference to a specific software
component. Such transformations are combined using the infix operator * which is
defined as follows:
(t] ‘ktg)((‘), Z, F) = tg(t] ((‘) 27 F))

As an example of a composite transformation the following corresponds to the
transformation used in the development in §5:

1 *tog *xtopxtgx...%xlyg...
where
t1 = splitstate(s, empty, nonempty)
tag = 5plit0p(f7 push, g)
tap = splitop(g, pop, top)
ts = deltrans(push : empty — empty)
ty = refineop(push, 7 — 7,10 = 10, ®)

where ... represents a repetition of the preceding type of transformation and & is
a simulation relation as explained in §4.3.

4.3 Simulation

Matching software components is based on the notion of simulation [5]. One tran-
sition machine simulates another when some or all of the states and transitions

10



which are performed by one machine can be embedded in the other. Simulation is
total when all of the states and transitions can be embedded and is partial other-
wise. During system development, the program associated with an l-component is
a candidate for reuse when the l-component simulates the current d-component.

Simulation is formally defined using a family of relations. Each relation has the
form (s,0) where s is t when the simulation is total and is p when the simulation is
partial and where o is f when the operator names must be fixed and is 1 when the
operator names may be different. Given two components ¢; and ¢y, ¢; is said to
be simulated by co, with respect to s and o when the corresponding relation holds.
Each relation is defined in turn and then explained. The relation (p,1) is equivalent
to 3 in §3.2 and is defined as follows:

(01,%1,T1) (p,1) (O2,%s,12) iff
do g G)] X @2 [ dom(@) = (':')]/\
d® g E] X 22 [ ] dom(®) = Z]/\
(o111 2 1) R (o2 :13 2> 1) = (11 (P,]) 3) A (12 (p,1) Ta))A
Voip:01— 0y €l'q0
dog 1 03— 04 € Ty
(01 ®o2) A (61 B 03) A (62 D by)

The relation (p,1) holds between two components when the first is partially sim-
ulated by the second, i.e. every operation which is possible in state of the first
component must be possible in some corresponding state of the second component.
The names of the operations which are involved in the simulation need not be the
same in both components. The relation ¢ holds between the states of the two com-
ponents and the relation ® holds between the operations. For each transition which
can be performed by the simulated component, the simulating component must con-
tain a transition which is consistent given the state and operation relations. This
is described by the following diagram:

o1: 0 — b
® @ 52
o9 03 R — 94

The relation (p, f) is equivalent to 4 in §3.2 and is defined as follows:

(®17zlyrl) (p/f) (627227F2) Zﬂ
¢ g G)] X (‘)2 [ dom(EB) = (':')]/\
d® g E] X 22 [ ] dom(®) = Z]/\
((o1:11 = 1) R (02:13 = 1a) = (11 (P, f) 73) A(72 (P, ) T4))A
Voip:01— 0y €l'e
dog 1 03 —> 04 € Ty
(01 R a2) AN (61 ®03) A (028 04) A (01 = 09)

The relation (p,f) holds between two components under almost exactly the same

conditions as (p,1) except that the names of the corresponding operations o1 and
oo are forced to be the same; note that the types may be different in respective

11



components. The relation (t,1) is equivalent to 5 in §3.2 and is defined as follows:

(©1,%1,T1) (8,1) (02,52, 1) iff
do - O, x0O,e dom(@) =0OA
I® C ¥y x Xg @ dom(R) = 1A
((91 T — TQ) ® (92 1 T3 — T4) = (Tl (tll) T3) A (T2 (tll) T4))/\
VO, € O, 0V0, € Oy 00, G0y =
Yo, 20’1'—>03€F109’1:0] =
302205'—>04€F2.95202§
((7'1@(72)/\(03 @94)

The relation (t, 1) holds between two components when the first is totally simulated
by the second, i.e. every operation which is possible in a state of the first component
must be possible in every corresponding state of the second component. The names
of the operations need not be the same in the two components. The relation (t, f)
is equivalent to 6 in §3.2 and is defined:

(01,%1,1) (t,1) (02,52, T2) iff
do g G)] X (‘)2 [ dom(EB) = (':')]/\
A® g E] X 22 [ dom(®) = Z]/\
((91 T — TQ) & (92 T3 — T4) = (T1 (t,f) T3) A (T2 (tlf) T4))/\
VO, € ©,eV0, € O 00, B 6y =
Vo, :0 — 03 €T 00, =6, =
30’2:9’2'—)94€F2.0’2:92§
(01 ®o9) A (03 B 04) A (01 = 02)

is similar to (t,1) except that the names of the operations must be the same in both
components.

5 Example development and reuse

This section gives an example development of a factory component and shows how
matching supports its subsequent reuse. The required factory may be idle, making
chemical z or making chemical y. Both manufacturing processes are mutually exclu-
sive and are supplied with raw chemicals and produce refined chemicals as output.
The definition of a chemical is not particularly important, but to be concrete the
following is sufficient:

© = {hot, cold}
Y ={heat: 7 — 7,co0l: 7T — T}
[ = {heat : cold — hot,

heat : hot — hot,

cool : cold — cold,

cool : hot — cold}

(14)

We assume that 14 is refined into two distinct component descriptions corresponding
to two different types of chemical, these will be referred to as 14z and 14y.

The development of the factory component is presented below. We give the
transformations which are used, but skip steps which are repetitive. Starting with
7, the following transformation is applied:

splitstate(s, busy, idle) x deltrans(f : idle — idle)
to produce a basic process component:

© = {idle, busy}
S={f:7T>7) (15)
[ ={f:idle— busy, f : busy —> busy, f : busy +— idle}
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Next, the state busy is split into two states which represent manufacturing the two

chemicals:
splitstate(busy, makez, makey)

and the unrequired transitions between manufacturing processes are deleted:
deltrans(f : makex — makey) x deltrans(f : makey — makex)

producing the following component:

© = {idle, makex, makey}

Y={f:7T->7}

I'={f:idle — makez,

s idle — makey,

: makex — maker, (16)
: makex — idle,

: makey — makey,

: makey — idle}

—h ks

Next, a vertical transformation is applied to the single operator f, identifying three
operators at a lower level of abstraction:

splitop(f, process, startstop) x splitop(startstop, start, stop)
producing many unrequired transitions which are deleted:

deltrans(start : makex — idle) x deltrans(stop : idle — makex) x . . .

the result is as follows:

© = {idle, makez, makey}
Y = {start: 7 — 7,process : 7 — T, stop: 7 — 7}
I = {start: idle — makez,
start : idle — makey, (17)
stop : makexr — idle,
stop : makey — idle,
process : makex — makex,
process : makey — makey}

Next, the manufacturing process states are split to identify start and end states:
splitstate(makexz, initz, termz) % splitstate(makey, inity, termy)
the starting and stopping operators are restricted to apply to the appropriate states:

deltrans(start : idle — termz) * deltrans(stop : initz — idle) x . ..

and the processing operator is restricted:

deltrans(process : initz — termx) x deltrans(process : termx — initx) * . ..

producing the following component:

© = {idle, initz, termaz, inity, termy}
Y = {start: 7 — 7, process: 7 — T, stop: 7 — T}
T = {start: idle — initz,
start : idle — inity, (18)
stop : termx — idle,
stop : termy — idle,
process : initx — terma,
process : inity — termy}

13



Both the start and stop operators are refined in order to restrict their respective
domain and range to 14:

refineop(start, 7 — 7,14 — 7) * refineop(stop, 7 — 7,7 — 14)
producing the component: description for a factory:

© = {idle, initz, termaz, inity, termy}
Y = {start: 14 — 7, process : 7T — 7, stop : 7 — 14}
I = {start: idle — initz,
start : idle — inity, (19)
stop : termz — idle,
stop : termy — idle,
process : initx —> termx,
process : inity — termy}

After further refinement, the following factory component description is produced:

© = {idle, initz, termz, inity, termy}
Y = {startx: 140 - 7,

starty : 14y — 7,

processx : T — 7,

processy : 7T — 7,

stopx : 7 — l4zx,

stopy : 7 — 14y} (20)
[ = {startz : idle — initx,

starty : idle —> inity,

stopz : termz —— idle,

stopy : termy — idle,

processz : initr — termz,

processy : inity — termy}

To complete the software development process, the component would be imple-
mented in a programming language, perhaps C++ [19] or Java [20], and the com-
ponent would be associated with its program in a software library.

To show how reuse can be achieved using the simulation relations described in
§4.3, the factory component is re-developed. We will use the relation (p,1) to search
a library of component descriptions which contains 15 — 19.

The development starts with 7. The following transformation is applied to

produce an initial factory description:
splitstate(s, on, off) * deltrans(f : off — off)

which is
© = {on, off}
YX={f:7->7} (21)
C={f:offr— on, f:onr— on, f:onr— off}
Notice that this is essentially the same as 15 except that the names of the states
have been changed. If the library is searched using this component description then
many library components will match, so it is necessary to develop the component
further. The operator f is split into two operators:

splitop(f, start, stop)
and the unrequired transitions are removed:

deltrans(start : onv+— off) ...
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producing:
© = {on, off}
Y ={start: 7 — T,stop: 7 — T} (22)
[ = {start: off —> on, off : on — off}

Finally, the types of the operators are refined:
refineop(start, 7 — 7,14 — 7) * refineop(stop, 7 — 7,7 — 14)

which produces:
© = {on, off}
Y ={start: 14 — 7,stop: 7 — 14} (23)
[ = {start: off —> on, off : on — off}

Two components match the component 23, these are 19 and 20. The relations which
match 20 are:

® = {(start: 14 —» 7, startz: 14z — 7),
(start : chemical — 7, starty : 14y — 7),
(
(

stop : 7T — 14, stopz : 7T — 14x),
stop : 7 — 14, stopy : 7 — 14y)}

@ = {(off, idle), (on, initz), (on, termz), (on, inity), (on, termy)}

The development of a factory software component has been shown to take advan-
tage reuse with respect to the proposed ROO model of development and reuse. The
number of steps which are taken to effectively reuse a component, 21 — 23, is sig-
nificantly shorter that the number of steps taken to develop the component in the
first place, 15 20 (which includes many steps which were elided, including writing
the code!).

6 Analysis and conclusions

The aims of this work were to produce a model of software development which
supported the object-oriented programming model, was executable, had a formal
semantics and supported reuse. The work which is described in this paper has set
the foundations of such a model. The model has been implemented as a prototype
tool, called ROOT, in the programming language Scheme [10]. ROOT is text based
and supports the development and simulations of component descriptions through
a menu driven interface.

The work is novel since it attempts to provide a formal model for object-oriented
systems which encompasses both development and reuse. However, the model is
very simple are will require further refinement before it can achieve its aim of sup-
porting object-oriented development and reuse in Java with respect to the Internet.

A particular area for refinement is that of simulation and matching. The rela-
tions in 4.3 and the ROOT algorithms which test them are satisfactory for simple
component descriptions, but are unlikely to be effective when dealing with large
complex components. They do not prioritize possible matches, for example in terms
of component coverage. The matching mechanisms are likely to require human input
to help them navigate through a space of possible matches. The distinction between
exact operator name matching and arbitrary operator matching is an example of
human control. This is likely to be a fruitful area of research.

This paper deals only with machine simulation where machines must execute in
step. If we allow a single step in one machine to be simulated by a sequence of steps
in another machine then this allows greater flexibility when matching component
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descriptions. However, this introduces a collection of problems in deciding whether
or not one machine simulates another. This is an area for further research.

Another area for refinement is the expressivity of the language used to represent
components. Conditional transitions are likely to be necessary and a distinction
made between deterministic and non-deterministic components. Currently, states
are atomic and have no internal structure; it is likely that, at lower levels of ab-
straction, some form of record structure for states is desirable.

The language should support object-oriented features such a self reference and
inheritance. Inheritance may be modelled by merging two or more machines to-
gether. A problem which is encountered in object-oriented type systems is the dif-
ference between co- and contra-variance. This also occurs in ROO where the type
of one operator is compared to another. This is an area for further investigation.

Ideally, the component development process should lead to programs written
in a particular language. We intend to extend the translation operations to allow
components to be refined Java code.

The work in this paper is part of ongoing collaborative research, see [8] for more
details.

References

[1] “Formal Specification of Reusable Interface Objects”, P. Alencar, D. Cowan,
C. Lucena and L. Nova, in Proc. ACM SIGSOFT Symposium on Software
Reusability, April 1995.

[2] “Designing an Object-Oriented Programming Language with Behavioural Sub-
typing.”, P. America, LNCS 489 Proc. Rex/Fool Conf. May/June 1990.

[3] “Web crawlers to index Java”, D. Andrews, Byte 21(4), April 1996, p26.

[4] “Software Reusability and the Internet”, G. Arango, in Proc. ACM SIGSOFT
Symposium on Software Reusability, April 1995.

[5] Finite Transition Systems, A. Arnold, Prentice Hall International Series in
Computer Science, 1994.

[6] Essays on Object-Oriented Software Engineering, Vol. 1, E. Berard, Prentice
Hall International, Englewood Cliffs, N.J, 1993.

[7] Object-Oriented Analysis and Design with Applications, G. Booch, 2nd ed.,
The Benjamin/Cummings Publishing Company Inc., 1994.

[8] “Using Behavioural Object Descriptions to Reuse Java Code Over the Inter-
net”, A. Clark and I. Palmer, submitted to 3rd International Conference on
Object-Oriented Information Systems, O0OIS96.

[9] “A Formal Basis for the Refinement of Rule Based Transition Systems.”,
A. Clark. The Journal of Functional Programming 6(2), 1996.

[10] Rewvised Report on the Algorithmic Language Scheme, W. Clinger and J. Rees
(eds), November 1991.

[11] Object-Oriented Development — The Fusion Method, D. Coleman, P. Arnold,
S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes, Prentice Hall
International, Englewood Cliffs, NJ, 1994.

[12] “Research Directions in Software Reuse”, H. Gall, M. Jazayeri and R. Klosch,
in Proc. ACM SIGSOFT Symposium on Software Reusability, April 1995.

16



[13]

[14]

[15]

[16]

[17]

“Reusing and Interconnecting Software Components”, J. Goguen, IEEE Com-
puter, February, 1986.

“Melding Software Systems for Reusable Building Blocks”, G. Kaiser and
D. Garlan, IEEE Software 4(4), 1987.

Object-Oriented Methods A Foundation, J. Martin and J. Odell, Prentice
Hall International, Englewood Cliffs, NJ, 1995.

“Reusing Software: Issues and Research Directions”, H. Mili, F. Mili and
A. Mili, IEEE Trans. on Software Engineering, 21(6), June 1995.

Object-Oriented Modelling and Design, J. Runbaugh, M. Blaha, W. Premerlani,
F. Eddy and W. Lorensen, Prentice Hall International, Englewood Cliffs, NJ,
1991.

Object Lifecycles: Modeling the World in States, S. Shlaer and S. Mellor, Your-
don Press: Prentice Hall International, Englewood Cliffs, NJ, 1992.

The Annotated C++ Reference Manual, B. Stroustroup and M. Ellis, Addison
Wesley. 1990.

The Java Language Specification, Sun Microsystems Inc., 1995.

“Software Component Interface Description for Reuse”, B. Whittle and M. Rat-
cliffe, IEE BCS Software Engineering Journal, 8(6), November 1993.

“Models and Languages for Component Description and Reuse”, B. Whittle,
ACM SIGSOFT Software Engineering Notes, 20(2), April 1995.

“Specification Matching of Software Components”, A. Zaremski and J. Wing,
in Proc. Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering.

“Signature Matching: A Tool for Using Software Libraries”, A. Zaremski and
J. Wing, ACM Trans. on Software Engineering and Methodology, 4(2), 1995.

17



