Strategic Advice for Hierarchical Planners

Karen L. Myers
Artificial Intelligence Center
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

myers@ai.sri.com

Abstract

AT planning systems have traditionally oper-
ated as stand-alone blackboxes, taking a de-
scription of a domain and a set of goals, and
automatically synthesizing a plan for achiev-
ing those goals. Such designs severely restrict
the influence that users can have on the re-
sultant plans. This paper describes an Ad-
visable Planner framework that marries an
advice-taking interface to Al planning tech-
nology. The framework is designed to enable
users to interact with planning systems at
high levels of abstraction in order to influence
the plan generation process in terms that are
meaningful to them. Advice consists of task-
specific constraints on both the desired solu-
tion and the refinement decisions that under-
lie the planning process. The paper empha-
sizes strategic advice, which expresses recom-
mendations on how goals and actions are to
be accomplished. The main contributions are
a formal language and semantics for strate-
gic advice, and a sound and complete HTN-
style algorithm for generating plans that sat-
1sfy advice.

1 Introduction

Artificial Intelligence (AT) planning technology pro-
vides powerful tools for solving problems that involve
the coordination of actions in the pursuit of speci-
fied goals. The AI community has produced several
planning systems whose demonstrations on realistic
problems attest to the value of automated planning
techniques. Nevertheless, there has been limited suc-
cess in transitioning this technology to user communi-
ties. A major reason for the lack of technology transfer
lies with the difficulty of using planning systems. Al
planners have traditionally been designed to operate
as ‘blackboxes’: they take a description of a domain
and a set of goals and automatically synthesize a plan

for achieving the goals. This design has several draw-
backs. First, it explicitly limits the amount of influ-
ence that a user can have on the generated plans. Sec-
ond, it requires complete and accurate formalizations
of the domain, since the system is expected to operate
without user intervention. Providing such comprehen-
sive domain information is time-consuming and expen-
sive, and represents a significant investment for each
new application.

Recent trends toward mized-initiative styles of plan-
ning have led to support for certain low-level interac-
tions on the part of humans, such as ordering goals for
expansion, selecting operators to apply, and choosing
instantiations for planning variables [3, 16]. While a
step in the right direction, these interactions are too
fine-grained for most users, who want to be involved
with the planning process at a higher, more strategic
level.

This paper describes an effort to make Al planning
technology more accessible and controllable via the
paradigm of advice-taking. An advisable planner (AP)
will accept a variety of instructions and advice from
a user and employ those directives to guide plan con-
struction. Advice can encompass a broad range of con-
structs, including partial sketches of plans for achiev-
ing a set of goals, specific subgoals to be used in pur-
suit of the overall objectives, and proscriptions and
prescriptions on the use of specific objects and actions
in certain contexts. Such advice will enable users to in-
teract with a planning system at high levels of abstrac-
tion in order to guide and influence the planning pro-
cess, with the planning system performing the time-
consuming work of filling in necessary low-level details.
As such, the AP model of planning embodies a shift
in perspective on how planning systems should be de-
signed: an Advisable Planner is a tool for enhancing
the skills of domain users, not a replacement for them.

Within our model, advice differs from the forms of
knowledge traditionally used to represent a plan-
ning domain (operator schemas, world models, etc.).
Rather than expressing general properties of the do-

main, advice encodes sesston-specific recommenda-
tions on the application of traditional planning knowl-
edge. As such, advice is an adjunct to the underlying
domain knowledge rather than an extension to it. As
will be seen, advice serves as a filter on the set of
solutions to a given planning problem, thus enabling
customizations to suit the needs of individual users.

To illustrate the utility of advice, we present exam-
ples from a travel planning domain. A typical HTN
planner would allow a user to sketch a high-level out-
line of a trip, specifying information such as which
locations to visit at what times and for what overall
cost. The planner would then fill in the appropriate
details. Most individuals, however, want to influence
their itineraries to a much greater extent, specifying
details such as the modes of transportation for var-
ious legs, individual carriers to use, accommodation
requirements, and restrictions on costs for various as-
pects of the trip. Our theory of advice enables user
customization of generated plans in this way.

This paper lays the foundations for the Advisable
Planner. Here we emphasize strategic advice, which
expresses recommendations on how goals and actions
are to be accomplished. Section 2 presents an over-
all framework for an advisable planner. Section 3
describes strategic advice and its uses. Section 4
presents the formal model of HTN planning that un-
derlies our theory of advice. Section 5 defines a formal
language for representing strategic advice, while Sec-
tion 6 defines satisfaction for advice. Section 7 defines
a sound and complete HTN-style algorithm for gen-
erating plans that satisfy strategic advice. Section 8
discusses related work.

2 The Advisable Planner

This section outlines our vision for an adwvisable plan-
ner (AP), describing both the overall architecture and
the principal classes of advice that an AP should sup-
port. Assuch, it establishes a conceptual framework in
which to ground the more technical work that follows.

2.1 AP Framework

The Advisable Planner model consists of an advice-
taking interface layered on top of a core planning sys-
tem. Advice-taking augments the capabilities of the
underlying planning system in the sense that the sys-
tem does not require advice for its operation. Rather,
advice simply influences the set of solutions that the
system will provide for a given task. Overall, the AP
contains two distinct phases: the advice translation
phase, and the problem-solving phase.

Advice translation involves mapping from user-
supplied advice into appropriate internal representa-
tions for the planner. The translation process involves

User Advice

Parsing
Normalized Advice
Compilation

Advice Constraints

Figure 1: Phases of Advice Representation and Trans-
lation

several stages (see Figure 1). User advice, specified in
some natural (or pseudo-natural) language, is parsed
into an intermediate normalized representation. The
normal form provides a planner-independent represen-
tation of the advice, thus enabling a clean semantic
definition and portability amongst different planners.
Advice compilation is the planner-dependent transla-
tion from normalized advice to internal constraints de-
fined in terms of planner-specific operators, goals, and
individuals. These constraints will be used to direct
the plan construction process.

The problem-solving phase takes the compiled advice
representations, and generates only solutions that sat-
isfy the advice (referred to as advice enforcement).
Planning proceeds in a mixed-initiative style whereby
the user can make planning-time requests to modify
current plans or previously stated advice. The AP
may request additional domain information from the
user during planning to aid in resolving detected trade-
offs in the plan, to recover from planning failures, or
to clarify user-supplied advice.

This paper focuses on the presentation of a basic the-
ory of strategic advice and accompanying algorithms
for advice enforcement, ignoring the many complex is-
sues related to advice parsing. In particular, we as-
sume the provision of normalized advice in a language
shared with the underlying planning system. For ex-
position reasons though, we generally use natural-
language style presentations of advice.

2.2 Advice Categories

Many kinds of advice can be fruitfully employed for
generative planning. 7Task advice designates specific
goals to be achieved and actions to be performed, thus
amounting to partial specification of a solution to a
planning task. A plan sketch constitutes a form of
task advice, as do directives such as Do Task-1 before
Task-2 and Include Task-b in the plan. FEwvaluational
advice encompasses constraints on some metric defined
for the overall plan, such as resource usage, execution
time, or solution quality. The directive Spend less than
$800 on all accommodations is an example.

This paper focuses on strategic advice, which expresses
constraints on how to solve tasks, in terms of both
specific approaches to pursue and entities to employ.
Strategic advice comes in two forms: role and method.
Role advice constrains the use of domain entities in
solving tasks, while method advice constrains the type
of approach used. As will be seen, strategic advice
designates not only properties of the resultant partially
ordered set of actions that is generally viewed as ‘the
plan’, but also the underlying justifications for that
solution. For this reason, advice enforcement requires
explicit representation of those justification structures.

Our model of advice does not encompass control of
problem-solving [2, 14], such as the order in which to
expand goals or instantiate variables. While control
is an important 1ssue for automated planning systems,
effective control of the planning process requires deep
insight into the mechanics of the planning system it-
self. As such, it is not a responsibility that should be
borne by the user (who generally will not be an expert
in AT planning) and thus is not an appropriate topic
for user advice.

3 Strategic Advice

Strategic advice is formulated in terms of prescriptions
and restrictions on roles, fillers, and activities. Activ-
ities represent abstract operations relative to the un-
derlying planning domain, and are defined in terms of
features and roles. A feature designates a character-
istic of interest for an activity. For travel planning,
there may be transport activities, vacation activities,
bike activities, and accommodation activities; each of
these characteristics could be modeled as a feature. A
given activity can have multiple features; for example,
an activity corresponding to a bike tour could have the
features Vacation, Bike, and Inexpensive. Roles corre-
spond to capacities in which domain individuals are to
be used in an activity. For instance, transport activi-
ties could have roles such as Origin, Destination, and
Carrier. Fullers are specifications of objects to be used
in certain roles; they may name explicit individuals,
or consist simply of a set of required and prohibited
attributes.

As described later, activities, roles, and fillers are
grounded in planning constructs such as goals, oper-
ators, variables, and bindings. The benefit of the ac-
tivities/roles framework is that it provides users with
a simpler, more abstract model for expressing advice
than do the low-level planning constructs.

3.1 Role Advice

Role advice either prescribes or restricts the use of
domain entities for filling certain capacities in the
plan. Role advice is characterized by the tem-
plate: <Use/Don’t Use> <object> in <role> for

<target-activity>.

In general, role advice consists of one or more object-
role specifications (called a role-fill), a target activity,
and a polarity indicating whether the advice is pre-
scribing or prohibiting the role-fill. The following di-
rectives provide examples of role advice:

Stay in 3-star ensuite hotels while vacationing
in Scotland.

Layovers longer than 90 minutes are unaccept-
able for domestic flights.

The first directive imposes requirements on accommo-
dations during vacations in a given area. The second
prohibits flights with long layovers. Here, we use nat-
ural language renderings of advice to aid understand-
ability, but 1t is easy to map to our structured model.
For the first example, the target activity is defined as
operations with feature Vacation, and with role Lo-
cation filled by Scotland. The advice dictates that the
filler for the role Accommodation be a 3-star hotel with
ensuite facilities.

3.2 Method Advice

Method advice imposes restrictions on the ap-
proaches that can be used in solving a goal or
class of goals. It is characterized by the tem-
plate: <Use/Don’t use> <advised-activity> for
<target-activity>. Thus, method advice consists
of target and advised activities, along with a polarity
expressing prescription or proscription. For example:

Find a package bike tour starting in Athens for
the vacation in Greece.

Don't fly between cities less than 200 miles
apart.

The first piece of method advice declares that the ap-
proach used for a particular portion of the trip should
have certain features (i.e., Bike, Package) and role con-
straints (i.e., start location is Athens). The second
specifies restrictions on the approach to be taken for
solving a class of transport goals.

3.3 Observations

Advice can be either abstract or grounded. The former
constitutes recommendations that apply to a class of
goals and operations; the latter provides recommen-
dations relative to a specific goal or activity. For in-
stance, the advice Use TWA for transatlantic flights is
abstract, relating to travel for a class of destinations;
in contrast, the advice Use TWA to fly to London relates
to a specific city (and hence, a specific travel goal).

Ascertaining whether a piece of advice is satisfied re-
quires more than an examination of the final set of
partially-ordered actions that are generally viewed as

‘the plan’. As an illustration, consider the advice Stay
in 3-star ensuite hotels while vacationing in Scotland, in
the context of a trip that includes both business and
holiday travel. A final plan for this trip would con-
sist of a set of actions at the level of movements to
destinations, stays in accommodations, and tours of
various sights. Direct examination of a particular ac-
commodation action in the final plan will not reveal its
purpose (business or pleasure); hence, it is not possible
to verify that the supplied advice has been followed.
In general, verification of advice satisfaction requires
examination of the overall problem-solving context in
which planning decisions were made.

3.4 Parsing Issues

The examples above illustrate that a range of differ-
ent surface forms can be mapped into the advice tem-
plates. As noted earlier, the advice parser is respon-
sible for this mapping. While a discussion of advice
parsing is beyond the scope of this paper, we briefly
mention some relevant issues.

Advice parsing will generally involve domain-specific
interpretation of words to extract role-fills and activ-
ities, and to identify use prescription or prohibition.
For example, interpretation of Stay in 3-star hotels in
Scotland as advice requires an understanding that Stay
corresponds to a use prescription.

Roles may not be named explicitly in advice. In the
advice Use JAL to fly to Japanese destinations, the role
Destination is explicit but the role Carrier 1s not. In
many cases, inference can be used to extract implicit
roles. For instance, since JAL is an air carrier, its
role could be deduced by identifying variables of the
appropriate type in air-travel operators.

Surface-level advice such as Travel first-class on trains
can be interpreted in multiple ways. The most basic
interpretation is as a directive to employ a particular
approach for tasks that involve train travel (should the
need for such transportation arise). A more complex
interpretation would further attribute an implicit goal
to use trains (say, rather than driving). The former
corresponds to strategic advice, the latter to a com-
bination of strategic and task advice. The intended
interpretation is impossible to ascertain without addi-
tional information. Because our focus here is on strate-
gic advice, we ignore any such implicit task designa-
tions.

4 Planning Model

Our definition of advice satisfaction requires a model
for the underlying planning framework. We employ
a Hierarchical Task Network (HTN) model, based
loosely on that in [4].

4.1 HTN Planning

The cornerstones of HTN planning are task networks
and operator schemas. Informally, a task network is
a partially-ordered set of tasks (goals and actions)?
to be achieved, along with conditions on the world
state before and after tasks are executed. Operator
schemas specify methods for reducing an individual
goal to some new set of subgoals and actions, under ap-
propriate conditions. HTN planning consists of taking
a description of an initial world state, an initial task
network, and a set of operator schemas for goal refine-
ment, and then repeatedly applying operator schemas
until no further reductions are possible. Each such re-
finement may contribute additional task-ordering and
world constraints to the successive HTNs.

Formally, we define a task network = = (T, L, W),
where 7' is a set of tasks, L is a set of ordering con-
straints on tasks, and W is a set of world constraints.
Tasks can be either primitive or nonprimitive, with the
former having no possible further refinements. We say
that a task network is primitive when it contains only
primitive tasks. In this document, we use the terms
task network and plan interchangeably; partial plan is
used to designate a nonprimitive task network.

An HTN planning problem P = (O, g, So) is mod-
eled as a set of operator schemas O, an initial task
network 7¢, and a set of propositions Sy denoting the
initial world state. An operator schema is character-
ized by its purpose Purpose(O) (i.e., the goals to which
it can be applied), the preconditions for applying the
schema Preconds(0), and the task network Tasks(O)
to which a goal matching the purpose can be reduced
by applying the schema. The world state, goals, pur-
pose, and preconditions are modeled using a first-order
language £ = (Vars, Preds, Consts). A solution to an
HTN problem is a refinement of the original task net-
work that contains only primitive tasks, provided that
all constraints in the task network can be resolved. We
call the resultant resolved task network a completed
task network.

To enable representations of strategic advice, an
HTN domain is extended to include declarations of
feature and role information for operator schemas.
Such declarations constitute metalevel information
about the domain and generally are not captured
in standard planning models. We use the notation
Features(O) to designate the features of an opera-
tor schema; role information is captured by a role-
resolution function RoleVar(O, R) that maps an op-
erator schema and a role to the variable that imple-
ments the role in the schema (if one exists). Ad-
vice is represented in a metalanguage defined over
L' = (Vars, Preds, Consts, Features, Roles).

1We adopt an action-oriented rather than state-based
interpretation of goals, as is consistent with HTN planning.

An AP problem AP generalizes an HTN problem to
include a set of advice A; that is, AP = (O, 1y, So, A).
Informally, a plan is a solution to an AP problem iff
it 1s a solution to the underlying HTN problem and
further satisfies the advice in A (as formalized in Sec-
tion 6). Thus, advice acts as a filter on the set of
acceptable solutions to a given planning problem.

4.2 Plan Refinement Structures

As noted above, advice imposes restrictions not only
on the completed plan but also on the task refinement
process by which the plan is derived. For this reason, a
model of advice satisfaction must reference the overall
context in which plan refinement decisions were made.
We define the (partial) plan refinement structure for a
(partial) plan (similar to the hierarchical task network
for a plan in [8]) to be 7 = (P, N, D) where P is the
set of task networks produced, A is the set of nodes
in any of the task networks, and D defines a directed
acyclic graph of the refinement relations from a node
to each of its descendants.

Each node in a plan refinement structure has at-
tributes defined by its associated task network. One
key attribute for processing advice is the partial world
model State(n), which captures the relations that nec-
essarily hold prior to the execution of the node’s task
[1]. Additional node attributes include the goal/task
for the node Goal(n), the operator schema that has
been used to expand that node OprSchema(n), and
the operator bindings for the expansion o(n). Desc(n)
designates a node and its descendants.

5 Advice Representation Language

In this section, we define a formal language in which to
represent strategic advice, and show how instances of
the advice templates map into these representations.
For simplicity, we assume a common language of fea-
tures, roles, and relations for the representations of
normalized advice and the planning domain, thus ob-
viating the need for a translation step between them.

Representations for advice are constructed from role
restrictions and generalized activities.

Role Restrictions A role restriction (R, F[z]) con-
sists of a role identifier R from the set of role symbols
Roles, and a filler F[x] represented as a propositional
formula defined over variable z. This formula is com-
posed from the language £ of the underlying planning
domain.

Generalized Activities A generalized activity is a
pair < F, R > consisting of a set of required and pro-
hibited operator features F = F* U F~, and a set of
role restrictions R. A generalized activity does not

necessarily map to an instance of any particular oper-
ator. In particular, a generalized activity may include
role restrictions that span multiple levels of task re-
finement (i.e., operator application). As such, a gen-
eralized activity represents an abstract specification of
a plan wedge.

Role and Method Advice As described in Section 3,
role advice consists of one or more role-fill descrip-
tions, a target activity, and a polarity (prescribing
positive or negative use). Similarly, method advice
is characterized as an advised activity, a target activ-
ity, and a polarity. A piece of role advice with role-fill
p and target activity aq is translated into the rep-
resentation (ROLET p ag) if the advice is positive,
and (ROLE™ p ag) if negative. Similarly, a piece of
method advice with advised activity ays and target
activity a 1s represented as (METHOD+ ay ag) if
the advice is positive, and (METHOD™ app o) if neg-
ative.

6 Advice Satisfaction

We now proceed with the definition of satisfaction for
advice, which is grounded in plan refinement struc-
tures for primitive task networks. Overall, we say that
a plan refinement structure satisfies a piece of advice
if each node in the structure satisfies the advice. Sat-
isfaction of advice by a node is defined below, building
on definitions for satisfaction for role restrictions and
matches for generalized activities.

Here, we adopt certain notational conventions. We
write v : ¢ € o to indicate that variable v 1s bound
to the value ¢ in the substitution o. Instantiations
of an operator schema O or formula ¢ for bindings in
o are written as O and ¢?. The notation ¢ is used
to represent the logical complement of a formula ¢.

Finally, we define Opr(n) = OprSchema(n)U(n).

Satisfaction of a role restriction p by a node requires
that the variable that models the role for the node’s
operator be bound to a term that satisfies the fill con-
straints in p.

Definition 1 (Role Restriction: Node) Let n be
a node wn a plan refinement structure with O =
OprSchema(n), and let p be a role restriction

(R, Flz]). Then:

e n violates p iff RoleVar(O, R) = v is defined, v :
¢ € o(n), and State(n) & Flc],

o n directly satisfies p iff RoleVar(O, R) = v is de-
fined, v : ¢ € o(n) and State(n) E Fle].

Note that a node n may neither directly satisfy nor
violate a role restriction. Such a situation arises when

there is no variable in O = OprSchema(n) that models

the designated role (i.e., RoleVar(O, R) is undefined).

Building on the above definition, we define satisfaction
of a role restriction by a plan wedge. We distinguish
two categories of satisfaction, strong or weak, corre-
sponding to the cases where some descendant node
does or does not directly satisfy the role restriction.

Definition 2 (Role Restriction: Wedge) Lel

n be a node in a plan refinement structure with plan
wedge Wp. Then Wy, weakly satisfies the role restric-
tion p iff no node in Desc(n) violates p. Also, Wp
strongly satisfies p iff there is some node in Desc(n)
that directly satisfies p, and no node that violates p.

A node is said to maich a generalized activity if its op-
erator schema satisfies the feature requirements and
its plan wedge satisfies the role restrictions for the
activity. Intuitively, a generalized activity describes
conditions for an actual operation; hence, the strong
version of satisfaction for role restrictions i1s imposed
(thus ensuring that the specified roles are defined and
properly filled).

Definition 3 (Match: Feature Set)

An operator schema O matches a set of feature spec-
ifications F = FT U F~ iff F© C Features(O) and
F~ N Features(O) = 0. A goal g matches F iff there
1s some operator schema O € O that matches F for
which Purpose(O) matches g.

Definition 4 (Match: Generalized Activity)

A node n in a plan refinement structure matches a
generalized activity (F* U F~,R) iff OprSchema(n)
satisfies FTUF™ and Wy, strongly satisfies every role
restriction in R.

Satisfaction of positive role advice by a plan struc-
ture node requires that either the node not match the
target activity, or the advised role restrictions are sat-
isfied by that node or one of its descendants. Here, we
require only weak satisfaction for the advised role con-
straints, which better matches the intuitive character
of role advice. For negative role advice, no descendant
of a node matching the target activity should directly
satisfy the role restriction.

Definition 5 (Role Advice) A node n in a plan
structure weakly (strongly) satisfies (ROLE™ p ag) iff
either n does not match ag, or Wn weakly (strongly)
satisfies p. Also, n satisfies (ROLE™ p ag) iff n does
not match ag, or no n' € Desc(n) directly satisfies p.

The weak and strong versions of satisfaction for posi-
tive role advice are equivalent when the roles in the ad-
vice are necessarily defined for the wedge underneath
the node matching the target activity. This condition
often holds. For instance, consider the advice Use TWA

for transatlantic flights. All plans for such flights will
involve one or more operators that contain the roles
Destination and Carrier. We refer to this condition of
guaranteed existence in the expansion as role compre-
hensiveness.

Definition 6 (Role Comprehensiveness) A role
R is comprehensive with respect to a goal g ff
every expanston of g contains a node n such that

RoleVar(OprSchema(n), R) is defined.

Proposition 1 Let n be a node in a plan refinement
structure with plan wedge Wy,. If role R is comprehen-
sive with respect to Goal(n) then Wy weakly satisfies
a role restriction p iff it strongly satisfies p.

Role comprehensiveness guarantees the duality of
ROLE™ and ROLET, as captured by the following
proposition. This result is significant in that it enables
positive and negative role advice to be processed in a
uniform manner when role comprehensiveness holds.

Proposition 2 If role R is comprehensive with re-
spect to goals that match the feature set of ag then
(ROLE™ (R, F[z]) ag) is satisfied precisely when
(ROLE™ (R, F[z]) ag) is satisfied.

Satisfaction for negative method advice is straightfor-
ward: it requires that no descendant of a node match-
ing the target activity matches the advised activity.

Definition 7 (Method Advice: Negative) A
plan structure node n satisfies (METHOD™ apr ag)
iff n does not match ag, or there is no planning node
n’ € Desc(n) that matches apy.

Satisfaction for positive method advice presents a more
complex case. Consider an approach that requires
only that any node matching the target activity have
some descendant node that matches the advised ac-
tivity. Such a semantics is unsuitable for advice such
as Fly between locations further than 200 miles apart;
given this advice, a traveler would be unhappy with a
plan in which he or she did not fly both legs of a trip
from Boston through Chicago to Seattle. At the other
extreme, the advice should not necessarily apply ‘ev-
erywhere’: consider a trip that includes a destination
D that is both inaccessible by air and more than 200
miles from any other location to be visited. In this
case, 1t should be acceptable to generate a plan that
involves driving to D.

We adopt the middle ground for satisfaction of pos-
itive method advice: given a node that matches the
target activity, it requires both the existence of some
descendant node that matches the advised activity and
a restriction that operators matching the advised ac-
tivity are applied to the ‘maximum extent possible’.
We believe that this definition best matches user in-
tent for method advice.

Definition 8 (Method Advice: Positive) A plan
structure node n satisfies (METHOD+ ap ag) iff n
does not match ag, or the following conditions hold:

o there is some node n’ € Desc(n) that matches apy
(Existence),

e no descendant of n that does not match aps could
be replaced by a node that does (Prescription).

It is not the case that a node
satisfies (METHOD™ ap ag) iff it does not satisfy
(METHODT ap ag). For example, a node can fail to
satisfy the positive version in situations where there
are multiple descendant nodes for which an operator
matching the advised activity could be applied, and
some but not all are used. In this case, the negative
version of the advice is also unsatisfied.

Advice satisfaction for a plan refinement structure is
defined as follows.

Definition 9 (Advice Satisfaction) A plan struc-
ture node satisfies the sel of advice A iff it salisfies
each piece of advice in A. A plan structure m satisfies

A iff each node in w satisfies A.

We note that our definitions of satisfaction for both
role and method advice are nondirectional in that the
conditions of the target activity and the role or method
prescriptions mutually constrain each other. For ex-
ample, consider the advice Don't drive in cities with
more than 300,000 people. In a partial itinerary that
includes a visit to a city with more than 300,000 peo-
ple, this advice prohibits the use of a personal automo-
bile for local transport. In addition, it would restrict
the choice of cities to visit for time periods in which a
rental car has already been secured.

7 Advice Enforcement

Strategic advice acts as a filter on the set of solutions
to a planning problem. As such, it is straightforward
to define an algorithm that generates advice-satisfying
plans: use a Generate-and-Test scheme with a system-
atic plan-generation engine and a filter that validates
the advice satisfaction conditions. Such an approach is
impractical for nontrivial domains because of the size
of the underlying search space. Instead, an algorithm
is required in which advice informs the search process.
The challenge is to define techniques in which advice
influences local planning decisions (the choices for vari-
able instantiations, operator selections, etc.), in order
to minimize backtracking that results from unsatis-
fied advice. Such backtracking will necessarily arise:
since the definition of advice satisfaction refers to a
completed plan refinement structure, planning choices
must be made before their correctness with respect to
advice satisfaction can be determined.

Here, we define an HTN-style planning algorithm
called PSA (Plan-generation with Strategic Advice)
that enforces advice. The PSA algorithm is proven
sound in that it produces only plans that satisfy strate-
gic advice, and complete in that it will find such a plan
if one exists (given certain assumptions).

In essence, PSA works by adding advice constraints
to nodes in a task network. Advice constraints are
determined by considering the operator choices and
world state for an HTN node, along with the context
of the current partial plan refinement structure. Ad-
vice constraints are operationalized to a combination
of restrictions on the use of operators, and planning
constraints formulated exclusively in the language of
the basic domain. With this reduction, advice can
be enforced using the operator applicability and con-
straint testing procedures of the underlying planner.
This approach makes it possible for advice process-
ing to be layered on top of the core planning system,
yielding a modular and portable implementation. Fur-
thermore, the PSA algorithm can be readily adapted
to any operator-based goal-refinement framework, in-
cluding both generative planners and reactive plan ex-
ecution systems (such as PRS [12]).

The remainder of this section describes PSA. It begins
with the presentation of a high-level description of the
HTN algorithm that underlies PSA. An overview of
PSA is provided next, followed by a detailed descrip-
tion of the algorithm.

7.1 HTN Algorithm

Standard HTN planning can be characterized as a re-
cursive algorithm on task networks. When the network
contains only primitive tasks, the algorithm returns a
completion of the task network if one is defined, else
the algorithm fails. When the network contains non-
primitive nodes, one is expanded by selecting an op-
erator schema that matches the unsolved goal on the
node and whose preconditions are satisfiable, applying
it to generate an expanded task network, then recur-
sively invoking the algorithm on the new network.

Figure 2 outlines a traditional HTN algorithm (based
loosely on [4]). Tt assumes the following standard
planning capabilities. The function Complete(r) pro-
duces a completion of the task network 7 if one ex-
ists (i.e., resolves all conflicts and instantiates vari-
ables). The function SelectOpr(O,n,) nondetermin-
istically chooses an instantiation of an operator schema
from the set O that can be applied to the goal for
node n in task network 7. This function first iden-
tifies the schemas in O whose purpose matches the
goal for n, using the function Match(g1,g92). Any
one of those schemas whose preconditions are sat-
isfied for the relevant bindings, as computed by
Satisfied(Preconds(0O)? ,n,), can be returned. The
function Reduce(n, 0%, 1) refines a task network by ex-

Solve(P = {0, Sy, o), 7= (T, L, W})
If 7 is primitive
Return Complete(r) if defined,
Else FAIL

Else for a nondeterministically selected nonprimitive node n € T'
/* Nondeterministically select an applicable operator */

0% — SelectOpr(O,n, 1)
/* Apply the selected operator */
7' — Solve(P, Reduce(n, 0%, 1))

Return 7/

SelectOpr(O,n, T)

S — {{O;,00) | O; €0,0; = Match(Goal(n), Purpose(O;)

and o; £1}

)
Sy — {{ O;,00) | {O;,0;) € By, 0} = Satisfied(Preconds(0;)% ,n,7) and o £L}
S

Return O;% for some nondeterministically chosen (0;, o}

@,

Figure 2: Traditional HTN Algorithm

panding a node n by the (possibly partially) instanti-
ated plot of the operator O, adding ordering and world
constraints as appropriate.

7.2 The PSA Algorithm

The PSA algorithm, presented in Figures 3 and 4, ex-
tends the standard HTN algorithm in a few key ways
to support advice. These extensions consist of a mod-
ified operator selection process, validation of positive
method advice for plan wedges, and the propagation of
advice-processing information across refinement levels.

7.2.1 Overview

Before discussing the algorithm in detail, we consider
the stages that a given piece of advice passes through,
namely activation and enforcement.

The definition of advice satisfaction by a plan refine-
ment structure requires that each piece of advice be
satisfied by every node in the structure. For a given
node, many pieces of advice are trivially satisfied in
the sense that they do not match the context specified
by the target activity of the advice. We say that a
piece of advice is triggered by a planning node when it
matches the target activity feature set for the advice.

Triggered advice is generally not directly enforceable;
matches for the advised feature set (for method ad-
vice) and all roles must be found before any actions
can be taken. Such matching may involve operator
applications distributed over multiple refinement (and
abstraction) levels. We say that a piece of triggered
advice has been fully-activated when all such matches
have been made; otherwise, we say that the advice 1s
partially-activated.

Enforcement of fully-activated advice draws on a com-
bination of techniques. For role advice, enforcement

reduces to the addition of planning constraints to the
applicability conditions of operators. Method advice
additionally restricts the set of candidate operators
for a goal based on information about operator fea-
tures. Finally, positive method advice requires a post-
planning verification of the ezistence condition.

Because both the matching required for activation and
the resultant enforcement constraints can span mul-
tiple refinement levels, PSA employs an approach in
which each node in an HTN has an associated set of
partially-activated advice and advice constraints. This
information is propagated downward in the plan refine-
ment structure as appropriate.

7.2.2 Notation

The PSA algorithm uses the following notation. qbf
denotes a formula representing the advised role con-
straints for the advice a; if there are no such con-
straints, qbf is simply TRUE. qbf is defined similarly
but for the target role constraints. In cases where
the advice is unambiguous, we simply write QSA and
(;ST. Role constraint formulas are defined in terms of
a particular role, which will map to some variable in
a planning operator. The process of identifying this
planning variable is referred to as role resolution. We
use a placeholder variable labeled by the advice and
the type of role (target or advised) to represent the
planning variable within unresolved role constraint for-
mulas, e.g., 2 [zA].

The functions Featuress(a) and Featuresp(a) return
the advised and target feature set, respectively, of
the advice a. The functions MethodAdvice™ (1),
MethodAdvice™ (I), RoleAdvice(l) take a set of acti-
vated (either fully or partially) advice I and return
the subsets of positive method, negative method, and
role advice, respectively.

Solve AP(AP = {0, Sy, 10, A), 7= (T, L, W))
If 7 is primitive
Return Complete(r) if defined,

Else FAIL

Else for a nondeterministically selected nonprimitive node N = (n,[CY € T
/* Nondeterministically select an applicable operator with its Advice constraints */

(0°,1,C") «— SelectOpr (O, N, 7, A)

/* Apply the selected operator and pass along advice info */

7' SolveAP(AP, Reducea({n,I,C"),0%, 1)
If O° and 7' are not well-defined then FAIL

/* Test Method constraints for this wedge */

If for each o € MethodAdvice"'(]’ i)

there is some n’ € Desc(n) for which Wy’ matches o

Return 7/

Else FAIL

Figure 3: Algorithm for Plan-generation with Strategic Advice (PSA)

7.2.3 PSA Details

PSA diverges from standard HTN planning most sig-
nificantly in the operator selection process. As defined
in Figure 4, the function SelectOpr, (O, (n,I,C}, 1, A)
extends SelectOpr{(O,n,) both to relativize operator
selection and application to triggered advice and to
propagate relevant activated advice and advice con-
straints. SelectOpr, begins likes its nonadvice coun-
terpart, filtering those operators whose purpose does
not match the goal of the node under consideration.
It also ends similarly, selecting an unfiltered operator
whose applicability conditions are satisfied; however,
those conditions have been extended to incorporate
additional constraints generated by advice processing.
The bulk of the function involves this advice process-
ing for the operators that match the goal of the cur-
rent node: advice triggering, extraction of advice con-
straints, and role resolution.

Advice processing begins by identifying for each
relevant operator O; any advice that it trig-
gers. Triggering amounts to matching the tar-
get activity feature set, as computed by the test
HasFeatures(O;, Featuresp(a)).

The extraction of advice constraints differs for the
cases of role advice, positive method advice, and neg-
ative method advice. For role advice, the extracted
advice constraint is simply the disjunction ¢? v ¢*.
Method advice presents a more complex case because
it posits higher-order constraints defined over opera-
tors and domain objects. As a result, 1t is not possible
to map them to planning constraints in £ that can
be directly processed by the underlying planner (as is
the case with role advice). Instead, constraints defined
over a mixture of operators and domain objects must
be managed explicitly at a higher level. We adopt a
case analysis approach in which satisfaction is consid-
ered in turn for the different kinds of constraints (on

operators and on domain objects).

Consider first negative method advice. Any operator
that does not match the feature set of the advised
activity requires no additional constraints. For an op-
erator that does match, either the target role-fill con-
straints quT or the advised role-fill constraints QSA must

fail. Thus, ¢* V ¢ is added to the applicability con-
ditions of the operator.

Positive method advice requires a different approach:
either the target activity must not match, or the exis-
tence and prescription clauses must both be satisfied.
For an operator that matches the feature set of the
advised activity, we require that the advised role con-
straints QSA be satisfied. For an operator that does not
match the advised feature set, if there is some unfil-
tered operator that does match, then the target ac-

tivity must not match. The constraint ¢’ guarantees
this condition.?

Advice constraints are defined over roles; before they
can be enforced, the roles must be resolved. The func-
tion ResolveRoles(O, A) performs role resolution; it re-
places any role variable in the set of constraints A
with the variable that models that role in the opera-
tor schema (if one exists). Resolved constraints (com-
puted by Resolved(C)) are added to the applicabil-
ity constraints of the associated operator. Unresolved
constraints (computed by Unresolved(C')) are passed
to all descendant nodes.

The actual propagation of advice information is
straightforward; Reduce(n,O,) is generalized to the

2This approach to enforcing positive method advice is
overly conservative in that the added constraints may be
unnecessary (because some other node in the plan satis-
fies the existence clause) yet they block application of the
operator. We return to this point in the discussion of com-
pleteness below.

SelectOpr (O, {n,I,C), 1, A)
<I>1 — {(Ol, Ui)

| O; € O,0; = Match(Goal(n), Purpose(O;)) and o; L}

/* Accumulate triggered advice for each candidate operator */

For <OZ',0'Z'> € P

I; —{a | a€ Aand HasFeatures(O;, Featuresy(a))}

' — 3

/* Extract advice constraints */
For <OZ', Ui) € P
Ry —{}, Mjt —{}, M7 — {}

For a € RoleAdvice(I;)
R — Ry U{g, [75] v o3 [22])

For m € MethodAdvice™ (IUT')

/* Initialize advice constraints */

/* Extract constraints from role advice */

/* Extract constraints from negative method advice */

Sat — {{0;,03) | { O;,04) € &1 and HasFeatures(O;, Featuress(m))}

For (O;,04) € Sat, M — M7 U{¢f[sA]V ¢ [#1]}

For m € MethodAdvice"'(IU I)

/* Extract constraints from positive method advice */

Sat — {0y, 03y € @1 | { O;,0;) € @y and HasFeatures(O, Featuresa(m)}

If Sat #{}:
For <OZ', Ui) € Sat, MZ'+ — MZ'+ U {qj)?z [Zﬁz]}

For (0;,0;) € ®; L Sat, Mj" — M U {¢] [+L]}

/* Collect resolved advice constraints for each Operator */

For <OZ', Ui) € P
ResolveRoles(O;, C'U R; U MZ»‘I' UM™)
C; — Unresolved(C U R; U M U M[)
Add; — Resolved(C'U R; UM U M)

/* Return an operator that satisfies advice constraints along with updated advice info */
Sy — {{ O;,00) | (Os,0;) € By, o} = Satisfied(Preconds(0;)7 U Add;”*,n, 7) and o} #1}
Return (0;%+, IU I;, C;) for some nondeterministically chosen (O;, o) € @4

Figure 4: Operator Selection for PSA

function Reduces({n,I,C),O, 1) to pass along advice
constraints and activated advice.

As noted above, the existence clause for satisfaction
of positive method advice cannot be verified until the
wedge beneath the node has been completed. An ex-
plicit check of this condition is included as the last
step in the PSA algorithm. Since the validation of the
condition is straightforward, the details are omitted.

7.3 Discussion

Our presentation of PSA has been biased toward high-
lighting the reuse of standard HTN operations. For
reasons of efficiency, the PSA algorithm should not
be implemented directly as presented here. For in-
stance, extraction of role constraints and resolution
of role variables should be done only for the selected
operator, rather than for all operators matching the

current goal prior to the final selection decision. In
contrast, extraction of method constraints should be
done prior to the selection process because the method
constraints can eliminate certain operators up front.

There is a similarity between the kind of constraint-
augmented planning embodied in the PSA algorithm
and Constraint Logic Programming (CLP) [7]: both
consist of a problem-reduction search augmented with
constraints on the overall structure being defined. For
CLP, the constraints restrict instantiations for vari-
ables; for advisable planning, the constraints further
restrict the choice of problem-reduction rules (i.e., the
operator schemas).

7.4 Properties of PSA

It is straightforward to show that the PSA algorithm
reduces to standard HTN planning when there is no

advice. The following correctness result also holds.

Proposition 3 (Correctness of PSA) Application
of the PSA algorithm to an advised planning problem
AP = (0, Sy, 1o, A) will produce a plan refinement
structure that both satisfies A and is a solution to the
planning problem (O, Sy, o).

We note that given role comprehensiveness, the strong
version of satisfaction for role advice follows; other-
wise, only weak satisfaction holds. The difference re-
sults because PSA folds in constraints extracted from
role advice only when the roles for the constraints have
been resolved; thus, if the roles are not found, the as-
sociated role advice is effectively ignored.

The PSA algorithm may fail to find solutions in cer-
tain cases where solutions exist. This incompleteness
stems from our conservative approach to enforcing the
prescription clause for positive method advice. In par-
ticular, the constraints added to enforce this clause are
too strong in situations when a node matching the tar-
get activity has multiple descendant nodes for which
constraints may be added to guarantee matching to
the advised activity. As an illustration, consider a sit-
uation where there are two descendant nodes to which
operators could be applied that match the advised fea-
ture set. PSA would force for both nodes the selec-
tion of operators that satisfy the advised feature set,
even 1n cases where the use of the operators is mutu-
ally inconsistent (for instance, they each may require
a consumable resource of which there is only one re-
maining). However, the definition of satisfaction for
positive method advice requires that both be selected
only if it 1s consistent to do so.

We can show that the PSA algorithm is complete when
there is at most one node for which constraints are
added to enforce the prescription clause; we refer to
this condition as the Uniqueness of the Advised Activ-
ity (UAA) for a given piece of positive method advice
relative to a set of operators. The UAA condition
holds frequently in practice. For instance, in planning
a holiday there is generally a single high-level vaca-
tion type to select (e.g., bike tour ws camping tour wvs
driving tour). Thus, advice such as Use a bike tour for
the vacation in California would satisfy UAA, since the
choice of tour type would only be made once. Further-
more, the UAA condition is easily verified by straight-
forward syntactic analysis of operator schemas. How-
ever, one can formulate natural problems for which
UAA is violated. For instance, one could formulate a
multi-phase holiday operator that encompasses several
sub-vacations, each of which would require a choice of
vacation type.

Proposition 4 (Completeness of PSA)
Application of the PSA algorithm to an advised plan-
ning problem AP = (O, So, 1o, A) for which UAA

holds will produce a plan refinement structure that both

satisfies A and is a solution to the planning problem
(O, So, T0), provided such a plan exists.

8 Related Work

Until recently, there had been few attempts to develop
domain-independent advice-taking systems. Concerns
for the usability of Al systems and problems with
knowledge acquisition have prompted a marked in-
crease in activity in this area during the past few years.

The TRAINS [5] project seeks to provide users with
the means to interactively guide the construction and
execution of a plan through a cooperative, mixed-
initiative effort. While its overall objectives are sim-
ilar to ours, the research directions of the two efforts
are highly complementary. HCI issues are a major
focus for the TRAINS project (e.g., language process-
ing, dialog management, multi-media), while our work
emphasizes the identification of advice idioms and cor-
responding enforcement algorithms.

The reactive scheduling model of the DITOPS system
[13] also has much in common with our work. At a high
level, its spread-sheet metaphor provides a good char-
acterization of advisability: the user should be able to
specify characteristics of the desired solution and have
the system sort out the details. One key difference is
that DITOPS focuses on scheduling rather than plan-
ning. In addition, it emphasizes changes to domain
constraints, while the our work focuses on advice that
describes high-level properties of solutions.

The TRAINS and DITOPS projects are similar to
our work in that they emphasize product-related ad-
vice that describes characteristics of the desired end-
product. In contrast, performance-related advice en-
codes base-level problem-solving expertise. As such,
product-related advice serves as an adjunct to the
underlying problem-solving knowledge, while perfor-
mance advice amounts to an extension of it.

The original work on performance advice is Mostow’s
[11], which models advice as a high-level description of
a task for which there is no explicit method to achieve
it. The work focuses on operationalization — the trans-
formation of advice (using sound and heuristic meth-
ods) into directives that can be executed directly by
the problem-solving system being advised. Its notion
of advice-taking amounts to ‘fillingin’ gaps in planning
operators, in contrast to our approach of restricting
how operators should be instantiated and applied.

There has been a recent surge of interest in improv-
ing the performance of reinforcement learners through
user guidance (see [9] for a good overview). Broadly
speaking, that work focuses on the provision of addi-
tional domain knowledge to improve the overall perfor-
mance of a system. Many of these efforts are actually a
form of ‘programming by example’. However, certain

of them have more of a flavour of performance-related
advice-taking, using general-purpose languages to en-
code the additional domain knowledge [9, 6]. One in-
teresting feature of these efforts is that advice 1s refined
during problem-solving, in response to the success with
which 1t has been applied previously.

9 Conclusions

The notion of problem-solving systems that can take
advice from humans has been around since the start of
AT [10]. Despite the conceptual appeal, there has been
little success to date in building automated advice-
taking systems because of the intractability of the task
in its most general form. We believe that the paradigm
can be made tractable for specific classes of applica-
tions and tasks by grounding advice in a focused set
of problem-solving activities. The research described
here presents a step toward this goal for the paradigm
of generative planning. Its primary contributions are
the presentation of an advice-taking framework for Al
planning systems, the formalization of strategic ad-
vice, and the definition of a sound and complete HTN
planning algorithm for enforcing strategic advice.

We have built an initial Advisable Planner prototype
that implements our theory of strategic advice. The
system consists of an advice manager layered on top
of SIPE-2, a mature HTN planner [15, 16]. Intru-
sions into the underlying code were minor: for the
most part, the advice processing is completely separate
from the core planning capabilities. Our prototype has
been used to enforce both travel planning advice simi-
lar to the examples presented in this paper and advice
for a crisis-action planning domain [17]. Currently,
we are applying the system to air-campaign planning,
with the goal of encouraging nonexperts to embrace
AT planning technology.

Immediate next steps for this work are to develop
richer idioms for strategic advice, and to define com-
parable formal models and enforcement algorithms for
other categories of advice (including evaluational and
task advice). Further down the road, we intend to ex-
plore utility models for partial satisfaction of advice
that will allow intelligent trade-offs to be made among
sets of conflicting advice.

Acknowledgements

This research has been supported by DARPA Contract
F30602-95-C-0259. The author would like to thank
David Wilkins for providing insight into the workings
of SIPE-2.

References

[1] D. Chapman. Planning for conjunctive goals. Ar-

tificial Intelligence, 32:333-378, 1987.

[2] K. Currie and A. Tate. O-Plan: the open planning
architecture. Artificial Intelligence, 32(1), 1991.

[3] B. Drabble and A. Tate. O-Plan mixed initiative
planning capabilities and protocols. Technical Re-
port 24, University of Edinburgh, 1995.

[4] K. Erol, J. Hendler, and D. S. Nau. Semantics
for hierarchical task-network planning. Technical
Report CS-TR-3239, Computer Science Depart-
ment, University of Maryland, 1994.

[5] G. Ferguson, J. Allen, and B. Miller. TRAINS-95:
Towards a mixed-initiative planning assistant. In
Proceedings of the Third International Conference
on Al Planning Systems. AAAT Press, 1996.

[6] D. Gordon and D. Subramanian. A multistrategy
learning scheme for agent knowledge acquisition.

Informatica, 17:331-346, 1994.

7] J. Jaffar and J.-L. Lassez. Constraint logic pro-

[gic p
gramming. In ACM Symposium on Principles of
Programming Languages, 1987.

[8] S. Kambhampati and J. Hendler. A validation-
structure-based theory of plan modification and

reuse. Artificial Intelligence, 55(2):192-258, 1992.
[9] R. Maclin and J. W. Shavlik. Creating advice-

taking reinforcement learners. Machine Learning,

22:251-282, 1996.

[10] J. McCarthy. Programs with common sense. In
Symposium on the Mechanization of Thought Pro-
cesses, pages 77—84, 1958.

[11] D. J. Mostow. Mechanical Transformation of
Task Heuristics into Operational Procedures. PhD
thesis, Computer Science Dept., Carnegie-Mellon
University, 1981.

[12] K. L. Myers. User’s Guide for the Procedural Rea-
soning System. Artificial Intelligence Center, SRI
International, Menlo Park, CA, 1993.

[13] S. F. Smith and O. Lassila. Toward the develop-
ment of flexible mixed-initiative scheduling tools.
In M. H. Burstein, editor, ARPA/Rome Labora-
tory Planning and Scheduling Initiative Workshop
Proceedings. Morgan Kaufmann, February 1994.

[14] M. Stefik. Planning and meta-planning. Artificial
Intelligence, 16(2), 1981.

[15] D. E. Wilkins. Practical Planning: Frtending the
Classical AI Planning Paradigm. Morgan Kauf-
mann, 1988.

[16] D. E. Wilkins. Using the SIPE-2 Planning Sys-
tem: A Manual for Version 4.3. Artificial Intelli-
gence Center, Menlo Park, CA, August 1993.

[17] D. E. Wilkins and R. V. Desimone. Applying
an Al planner to military operations planning.

In M. Fox and M. Zweben, editors, Intelligent
Scheduling. Morgan Kaufmann, 1994.

