
Strategic Advice for Hierarchical PlannersKaren L. MyersArti�cial Intelligence CenterSRI International333 Ravenswood Ave.Menlo Park, CA 94025myers@ai.sri.comAbstractAI planning systems have traditionally oper-ated as stand-alone blackboxes, taking a de-scription of a domain and a set of goals, andautomatically synthesizing a plan for achiev-ing those goals. Such designs severely restrictthe in
uence that users can have on the re-sultant plans. This paper describes an Ad-visable Planner framework that marries anadvice-taking interface to AI planning tech-nology. The framework is designed to enableusers to interact with planning systems athigh levels of abstraction in order to in
uencethe plan generation process in terms that aremeaningful to them. Advice consists of task-speci�c constraints on both the desired solu-tion and the re�nement decisions that under-lie the planning process. The paper empha-sizes strategic advice, which expresses recom-mendations on how goals and actions are tobe accomplished. The main contributions area formal language and semantics for strate-gic advice, and a sound and complete HTN-style algorithm for generating plans that sat-isfy advice.1 IntroductionArti�cial Intelligence (AI) planning technology pro-vides powerful tools for solving problems that involvethe coordination of actions in the pursuit of speci-�ed goals. The AI community has produced severalplanning systems whose demonstrations on realisticproblems attest to the value of automated planningtechniques. Nevertheless, there has been limited suc-cess in transitioning this technology to user communi-ties. A major reason for the lack of technology transferlies with the di�culty of using planning systems. AIplanners have traditionally been designed to operateas `blackboxes': they take a description of a domainand a set of goals and automatically synthesize a plan

for achieving the goals. This design has several draw-backs. First, it explicitly limits the amount of in
u-ence that a user can have on the generated plans. Sec-ond, it requires complete and accurate formalizationsof the domain, since the system is expected to operatewithout user intervention. Providing such comprehen-sive domain information is time-consuming and expen-sive, and represents a signi�cant investment for eachnew application.Recent trends toward mixed-initiative styles of plan-ning have led to support for certain low-level interac-tions on the part of humans, such as ordering goals forexpansion, selecting operators to apply, and choosinginstantiations for planning variables [3, 16]. While astep in the right direction, these interactions are too�ne-grained for most users, who want to be involvedwith the planning process at a higher, more strategiclevel.This paper describes an e�ort to make AI planningtechnology more accessible and controllable via theparadigm of advice-taking. An advisable planner (AP)will accept a variety of instructions and advice froma user and employ those directives to guide plan con-struction. Advice can encompass a broad range of con-structs, including partial sketches of plans for achiev-ing a set of goals, speci�c subgoals to be used in pur-suit of the overall objectives, and proscriptions andprescriptions on the use of speci�c objects and actionsin certain contexts. Such advice will enable users to in-teract with a planning system at high levels of abstrac-tion in order to guide and in
uence the planning pro-cess, with the planning system performing the time-consuming work of �lling in necessary low-level details.As such, the AP model of planning embodies a shiftin perspective on how planning systems should be de-signed: an Advisable Planner is a tool for enhancingthe skills of domain users, not a replacement for them.Within our model, advice di�ers from the forms ofknowledge traditionally used to represent a plan-ning domain (operator schemas, world models, etc.).Rather than expressing general properties of the do-

main, advice encodes session-speci�c recommenda-tions on the application of traditional planning knowl-edge. As such, advice is an adjunct to the underlyingdomain knowledge rather than an extension to it. Aswill be seen, advice serves as a �lter on the set ofsolutions to a given planning problem, thus enablingcustomizations to suit the needs of individual users.To illustrate the utility of advice, we present exam-ples from a travel planning domain. A typical HTNplanner would allow a user to sketch a high-level out-line of a trip, specifying information such as whichlocations to visit at what times and for what overallcost. The planner would then �ll in the appropriatedetails. Most individuals, however, want to in
uencetheir itineraries to a much greater extent, specifyingdetails such as the modes of transportation for var-ious legs, individual carriers to use, accommodationrequirements, and restrictions on costs for various as-pects of the trip. Our theory of advice enables usercustomization of generated plans in this way.This paper lays the foundations for the AdvisablePlanner. Here we emphasize strategic advice, whichexpresses recommendations on how goals and actionsare to be accomplished. Section 2 presents an over-all framework for an advisable planner. Section 3describes strategic advice and its uses. Section 4presents the formal model of HTN planning that un-derlies our theory of advice. Section 5 de�nes a formallanguage for representing strategic advice, while Sec-tion 6 de�nes satisfaction for advice. Section 7 de�nesa sound and complete HTN-style algorithm for gen-erating plans that satisfy strategic advice. Section 8discusses related work.2 The Advisable PlannerThis section outlines our vision for an advisable plan-ner (AP), describing both the overall architecture andthe principal classes of advice that an AP should sup-port. As such, it establishes a conceptual framework inwhich to ground the more technical work that follows.2.1 AP FrameworkThe Advisable Planner model consists of an advice-taking interface layered on top of a core planning sys-tem. Advice-taking augments the capabilities of theunderlying planning system in the sense that the sys-tem does not require advice for its operation. Rather,advice simply in
uences the set of solutions that thesystem will provide for a given task. Overall, the APcontains two distinct phases: the advice translationphase, and the problem-solving phase.Advice translation involves mapping from user-supplied advice into appropriate internal representa-tions for the planner. The translation process involves

User AdvicekParsing+Normalized AdvicekCompilation+Advice ConstraintsFigure 1: Phases of Advice Representation and Trans-lationseveral stages (see Figure 1). User advice, speci�ed insome natural (or pseudo-natural) language, is parsedinto an intermediate normalized representation. Thenormal form provides a planner-independent represen-tation of the advice, thus enabling a clean semanticde�nition and portability amongst di�erent planners.Advice compilation is the planner-dependent transla-tion from normalized advice to internal constraints de-�ned in terms of planner-speci�c operators, goals, andindividuals. These constraints will be used to directthe plan construction process.The problem-solving phase takes the compiled advicerepresentations, and generates only solutions that sat-isfy the advice (referred to as advice enforcement).Planning proceeds in a mixed-initiative style wherebythe user can make planning-time requests to modifycurrent plans or previously stated advice. The APmay request additional domain information from theuser during planning to aid in resolving detected trade-o�s in the plan, to recover from planning failures, orto clarify user-supplied advice.This paper focuses on the presentation of a basic the-ory of strategic advice and accompanying algorithmsfor advice enforcement, ignoring the many complex is-sues related to advice parsing. In particular, we as-sume the provision of normalized advice in a languageshared with the underlying planning system. For ex-position reasons though, we generally use natural-language style presentations of advice.2.2 Advice CategoriesMany kinds of advice can be fruitfully employed forgenerative planning. Task advice designates speci�cgoals to be achieved and actions to be performed, thusamounting to partial speci�cation of a solution to aplanning task. A plan sketch constitutes a form oftask advice, as do directives such as Do Task-1 beforeTask-2 and Include Task-5 in the plan. Evaluationaladvice encompasses constraints on some metric de�nedfor the overall plan, such as resource usage, executiontime, or solution quality. The directive Spend less than$800 on all accommodations is an example.

This paper focuses on strategic advice, which expressesconstraints on how to solve tasks, in terms of bothspeci�c approaches to pursue and entities to employ.Strategic advice comes in two forms: role and method.Role advice constrains the use of domain entities insolving tasks, while method advice constrains the typeof approach used. As will be seen, strategic advicedesignates not only properties of the resultant partiallyordered set of actions that is generally viewed as `theplan', but also the underlying justi�cations for thatsolution. For this reason, advice enforcement requiresexplicit representation of those justi�cation structures.Our model of advice does not encompass control ofproblem-solving [2, 14], such as the order in which toexpand goals or instantiate variables. While controlis an important issue for automated planning systems,e�ective control of the planning process requires deepinsight into the mechanics of the planning system it-self. As such, it is not a responsibility that should beborne by the user (who generally will not be an expertin AI planning) and thus is not an appropriate topicfor user advice.3 Strategic AdviceStrategic advice is formulated in terms of prescriptionsand restrictions on roles, �llers, and activities. Activ-ities represent abstract operations relative to the un-derlying planning domain, and are de�ned in terms offeatures and roles. A feature designates a character-istic of interest for an activity. For travel planning,there may be transport activities, vacation activities,bike activities, and accommodation activities; each ofthese characteristics could be modeled as a feature. Agiven activity can have multiple features; for example,an activity corresponding to a bike tour could have thefeatures Vacation, Bike, and Inexpensive. Roles corre-spond to capacities in which domain individuals are tobe used in an activity. For instance, transport activi-ties could have roles such as Origin, Destination, andCarrier. Fillers are speci�cations of objects to be usedin certain roles; they may name explicit individuals,or consist simply of a set of required and prohibitedattributes.As described later, activities, roles, and �llers aregrounded in planning constructs such as goals, oper-ators, variables, and bindings. The bene�t of the ac-tivities/roles framework is that it provides users witha simpler, more abstract model for expressing advicethan do the low-level planning constructs.3.1 Role AdviceRole advice either prescribes or restricts the use ofdomain entities for �lling certain capacities in theplan. Role advice is characterized by the tem-plate: <Use/Don't Use> <object> in <role> for

<target-activity>.In general, role advice consists of one or more object-role speci�cations (called a role-�ll), a target activity,and a polarity indicating whether the advice is pre-scribing or prohibiting the role-�ll. The following di-rectives provide examples of role advice:Stay in 3-star ensuite hotels while vacationingin Scotland.Layovers longer than 90 minutes are unaccept-able for domestic
ights.The �rst directive imposes requirements on accommo-dations during vacations in a given area. The secondprohibits
ights with long layovers. Here, we use nat-ural language renderings of advice to aid understand-ability, but it is easy to map to our structured model.For the �rst example, the target activity is de�ned asoperations with feature Vacation, and with role Lo-cation �lled by Scotland. The advice dictates that the�ller for the role Accommodation be a 3-star hotel withensuite facilities.3.2 Method AdviceMethod advice imposes restrictions on the ap-proaches that can be used in solving a goal orclass of goals. It is characterized by the tem-plate: <Use/Don't use> <advised-activity> for<target-activity>. Thus, method advice consistsof target and advised activities, along with a polarityexpressing prescription or proscription. For example:Find a package bike tour starting in Athens forthe vacation in Greece.Don't
y between cities less than 200 milesapart.The �rst piece of method advice declares that the ap-proach used for a particular portion of the trip shouldhave certain features (i.e., Bike, Package) and role con-straints (i.e., start location is Athens). The secondspeci�es restrictions on the approach to be taken forsolving a class of transport goals.3.3 ObservationsAdvice can be either abstract or grounded. The formerconstitutes recommendations that apply to a class ofgoals and operations; the latter provides recommen-dations relative to a speci�c goal or activity. For in-stance, the advice Use TWA for transatlantic
ights isabstract, relating to travel for a class of destinations;in contrast, the advice Use TWA to
y to London relatesto a speci�c city (and hence, a speci�c travel goal).Ascertaining whether a piece of advice is satis�ed re-quires more than an examination of the �nal set ofpartially-ordered actions that are generally viewed as

`the plan'. As an illustration, consider the advice Stayin 3-star ensuite hotels while vacationing in Scotland, inthe context of a trip that includes both business andholiday travel. A �nal plan for this trip would con-sist of a set of actions at the level of movements todestinations, stays in accommodations, and tours ofvarious sights. Direct examination of a particular ac-commodation action in the �nal plan will not reveal itspurpose (business or pleasure); hence, it is not possibleto verify that the supplied advice has been followed.In general, veri�cation of advice satisfaction requiresexamination of the overall problem-solving context inwhich planning decisions were made.3.4 Parsing IssuesThe examples above illustrate that a range of di�er-ent surface forms can be mapped into the advice tem-plates. As noted earlier, the advice parser is respon-sible for this mapping. While a discussion of adviceparsing is beyond the scope of this paper, we brie
ymention some relevant issues.Advice parsing will generally involve domain-speci�cinterpretation of words to extract role-�lls and activ-ities, and to identify use prescription or prohibition.For example, interpretation of Stay in 3-star hotels inScotland as advice requires an understanding that Staycorresponds to a use prescription.Roles may not be named explicitly in advice. In theadvice Use JAL to
y to Japanese destinations, the roleDestination is explicit but the role Carrier is not. Inmany cases, inference can be used to extract implicitroles. For instance, since JAL is an air carrier, itsrole could be deduced by identifying variables of theappropriate type in air-travel operators.Surface-level advice such as Travel �rst-class on trainscan be interpreted in multiple ways. The most basicinterpretation is as a directive to employ a particularapproach for tasks that involve train travel (should theneed for such transportation arise). A more complexinterpretation would further attribute an implicit goalto use trains (say, rather than driving). The formercorresponds to strategic advice, the latter to a com-bination of strategic and task advice. The intendedinterpretation is impossible to ascertain without addi-tional information. Because our focus here is on strate-gic advice, we ignore any such implicit task designa-tions.4 Planning ModelOur de�nition of advice satisfaction requires a modelfor the underlying planning framework. We employa Hierarchical Task Network (HTN) model, basedloosely on that in [4].

4.1 HTN PlanningThe cornerstones of HTN planning are task networksand operator schemas. Informally, a task network isa partially-ordered set of tasks (goals and actions)1to be achieved, along with conditions on the worldstate before and after tasks are executed. Operatorschemas specify methods for reducing an individualgoal to some new set of subgoals and actions, under ap-propriate conditions. HTN planning consists of takinga description of an initial world state, an initial tasknetwork, and a set of operator schemas for goal re�ne-ment, and then repeatedly applying operator schemasuntil no further reductions are possible. Each such re-�nement may contribute additional task-ordering andworld constraints to the successive HTNs.Formally, we de�ne a task network � = hT ; L;W i,where T is a set of tasks, L is a set of ordering con-straints on tasks, and W is a set of world constraints.Tasks can be either primitive or nonprimitive, with theformer having no possible further re�nements. We saythat a task network is primitive when it contains onlyprimitive tasks. In this document, we use the termstask network and plan interchangeably; partial plan isused to designate a nonprimitive task network.An HTN planning problem P = hO; �0; S0i is mod-eled as a set of operator schemas O, an initial tasknetwork �0, and a set of propositions S0 denoting theinitial world state. An operator schema is character-ized by its purpose Purpose(O) (i.e., the goals to whichit can be applied), the preconditions for applying theschema Preconds(O), and the task network Tasks(O)to which a goal matching the purpose can be reducedby applying the schema. The world state, goals, pur-pose, and preconditions are modeled using a �rst-orderlanguage L = hVars;Preds;Constsi. A solution to anHTN problem is a re�nement of the original task net-work that contains only primitive tasks, provided thatall constraints in the task network can be resolved. Wecall the resultant resolved task network a completedtask network.To enable representations of strategic advice, anHTN domain is extended to include declarations offeature and role information for operator schemas.Such declarations constitute metalevel informationabout the domain and generally are not capturedin standard planning models. We use the notationFeatures(O) to designate the features of an opera-tor schema; role information is captured by a role-resolution function RoleVar(O;R) that maps an op-erator schema and a role to the variable that imple-ments the role in the schema (if one exists). Ad-vice is represented in a metalanguage de�ned overL0 = hVars;Preds;Consts;Features;Rolesi.1We adopt an action-oriented rather than state-basedinterpretation of goals, as is consistent with HTN planning.

An AP problem AP generalizes an HTN problem toinclude a set of advice A; that is, AP = hO; �0; S0;Ai.Informally, a plan is a solution to an AP problem i�it is a solution to the underlying HTN problem andfurther satis�es the advice in A (as formalized in Sec-tion 6). Thus, advice acts as a �lter on the set ofacceptable solutions to a given planning problem.4.2 Plan Re�nement StructuresAs noted above, advice imposes restrictions not onlyon the completed plan but also on the task re�nementprocess by which the plan is derived. For this reason, amodel of advice satisfaction must reference the overallcontext in which plan re�nement decisions were made.We de�ne the (partial) plan re�nement structure for a(partial) plan (similar to the hierarchical task networkfor a plan in [8]) to be � = hP ;N ;Di where P is theset of task networks produced, N is the set of nodesin any of the task networks, and D de�nes a directedacyclic graph of the re�nement relations from a nodeto each of its descendants.Each node in a plan re�nement structure has at-tributes de�ned by its associated task network. Onekey attribute for processing advice is the partial worldmodel State(n), which captures the relations that nec-essarily hold prior to the execution of the node's task[1]. Additional node attributes include the goal/taskfor the node Goal(n), the operator schema that hasbeen used to expand that node OprSchema(n), andthe operator bindings for the expansion �(n). Desc(n)designates a node and its descendants.5 Advice Representation LanguageIn this section, we de�ne a formal language in which torepresent strategic advice, and show how instances ofthe advice templates map into these representations.For simplicity, we assume a common language of fea-tures, roles, and relations for the representations ofnormalized advice and the planning domain, thus ob-viating the need for a translation step between them.Representations for advice are constructed from rolerestrictions and generalized activities.Role Restrictions A role restriction hR;F [x]i con-sists of a role identi�er R from the set of role symbolsRoles, and a �ller F [x] represented as a propositionalformula de�ned over variable x. This formula is com-posed from the language L of the underlying planningdomain.Generalized Activities A generalized activity is apair < F ;R > consisting of a set of required and pro-hibited operator features F = F+ [F�, and a set ofrole restrictions R. A generalized activity does not

necessarily map to an instance of any particular oper-ator. In particular, a generalized activity may includerole restrictions that span multiple levels of task re-�nement (i.e., operator application). As such, a gen-eralized activity represents an abstract speci�cation ofa plan wedge.Role andMethod AdviceAs described in Section 3,role advice consists of one or more role-�ll descrip-tions, a target activity, and a polarity (prescribingpositive or negative use). Similarly, method adviceis characterized as an advised activity, a target activ-ity, and a polarity. A piece of role advice with role-�ll� and target activity �G is translated into the rep-resentation (ROLE+ � �G) if the advice is positive,and (ROLE� � �G) if negative. Similarly, a piece ofmethod advice with advised activity �M and targetactivity �G is represented as (METHOD+ �M �G) ifthe advice is positive, and (METHOD� �M �G) if neg-ative.6 Advice SatisfactionWe now proceed with the de�nition of satisfaction foradvice, which is grounded in plan re�nement struc-tures for primitive task networks. Overall, we say thata plan re�nement structure satis�es a piece of adviceif each node in the structure satis�es the advice. Sat-isfaction of advice by a node is de�ned below, buildingon de�nitions for satisfaction for role restrictions andmatches for generalized activities.Here, we adopt certain notational conventions. Wewrite v : c 2 � to indicate that variable v is boundto the value c in the substitution �. Instantiationsof an operator schema O or formula � for bindings in� are written as O� and ��. The notation � is usedto represent the logical complement of a formula �.Finally, we de�ne Opr(n) = OprSchema(n)�(n).Satisfaction of a role restriction � by a node requiresthat the variable that models the role for the node'soperator be bound to a term that satis�es the �ll con-straints in �.De�nition 1 (Role Restriction: Node) Let n bea node in a plan re�nement structure with O =OprSchema(n), and let � be a role restrictionhR;F [x]i. Then:� n violates � i� RoleVar(O;R) = v is de�ned, v :c 2 �(n), and State(n) 6j= F [c],� n directly satis�es � i� RoleVar(O;R) = v is de-�ned, v : c 2 �(n) and State(n) j= F [c].Note that a node n may neither directly satisfy norviolate a role restriction. Such a situation arises when

there is no variable in O = OprSchema(n) that modelsthe designated role (i.e., RoleVar(O;R) is unde�ned).Building on the above de�nition, we de�ne satisfactionof a role restriction by a plan wedge. We distinguishtwo categories of satisfaction, strong or weak, corre-sponding to the cases where some descendant nodedoes or does not directly satisfy the role restriction.De�nition 2 (Role Restriction: Wedge) Letn be a node in a plan re�nement structure with planwedge Wn. Then Wn weakly satis�es the role restric-tion � i� no node in Desc(n) violates �. Also, Wnstrongly satis�es � i� there is some node in Desc(n)that directly satis�es �, and no node that violates �.A node is said to match a generalized activity if its op-erator schema satis�es the feature requirements andits plan wedge satis�es the role restrictions for theactivity. Intuitively, a generalized activity describesconditions for an actual operation; hence, the strongversion of satisfaction for role restrictions is imposed(thus ensuring that the speci�ed roles are de�ned andproperly �lled).De�nition 3 (Match: Feature Set)An operator schema O matches a set of feature spec-i�cations F = F+ [F� i� F+ � Features(O) andF� \ Features(O) = ;. A goal g matches F i� thereis some operator schema O 2 O that matches F forwhich Purpose(O) matches g.De�nition 4 (Match: Generalized Activity)A node n in a plan re�nement structure matches ageneralized activity hF+ [F�;Ri i� OprSchema(n)satis�es F+ [F� and Wn strongly satis�es every rolerestriction in R.Satisfaction of positive role advice by a plan struc-ture node requires that either the node not match thetarget activity, or the advised role restrictions are sat-is�ed by that node or one of its descendants. Here, werequire only weak satisfaction for the advised role con-straints, which better matches the intuitive characterof role advice. For negative role advice, no descendantof a node matching the target activity should directlysatisfy the role restriction.De�nition 5 (Role Advice) A node n in a planstructure weakly (strongly) satis�es (ROLE+ � �G) i�either n does not match �G, or Wn weakly (strongly)satis�es �. Also, n satis�es (ROLE� � �G) i� n doesnot match �G, or no n0 2 Desc(n) directly satis�es �.The weak and strong versions of satisfaction for posi-tive role advice are equivalent when the roles in the ad-vice are necessarily de�ned for the wedge underneaththe node matching the target activity. This conditionoften holds. For instance, consider the advice Use TWA

for transatlantic
ights. All plans for such
ights willinvolve one or more operators that contain the rolesDestination and Carrier. We refer to this condition ofguaranteed existence in the expansion as role compre-hensiveness.De�nition 6 (Role Comprehensiveness) A roleR is comprehensive with respect to a goal g i�every expansion of g contains a node n such thatRoleVar(OprSchema(n); R) is de�ned.Proposition 1 Let n be a node in a plan re�nementstructure with plan wedge Wn. If role R is comprehen-sive with respect to Goal(n) then Wn weakly satis�esa role restriction � i� it strongly satis�es �.Role comprehensiveness guarantees the duality ofROLE� and ROLE+, as captured by the followingproposition. This result is signi�cant in that it enablespositive and negative role advice to be processed in auniform manner when role comprehensiveness holds.Proposition 2 If role R is comprehensive with re-spect to goals that match the feature set of �G then(ROLE� hR;F [x]i �G) is satis�ed precisely when(ROLE+ hR;F [x]i �G) is satis�ed.Satisfaction for negative method advice is straightfor-ward: it requires that no descendant of a node match-ing the target activity matches the advised activity.De�nition 7 (Method Advice: Negative) Aplan structure node n satis�es (METHOD� �M �G)i� n does not match �G, or there is no planning noden0 2 Desc(n) that matches �M .Satisfaction for positive method advice presents a morecomplex case. Consider an approach that requiresonly that any node matching the target activity havesome descendant node that matches the advised ac-tivity. Such a semantics is unsuitable for advice suchas Fly between locations further than 200 miles apart;given this advice, a traveler would be unhappy with aplan in which he or she did not
y both legs of a tripfrom Boston through Chicago to Seattle. At the otherextreme, the advice should not necessarily apply `ev-erywhere': consider a trip that includes a destinationD that is both inaccessible by air and more than 200miles from any other location to be visited. In thiscase, it should be acceptable to generate a plan thatinvolves driving to D.We adopt the middle ground for satisfaction of pos-itive method advice: given a node that matches thetarget activity, it requires both the existence of somedescendant node that matches the advised activity anda restriction that operators matching the advised ac-tivity are applied to the `maximum extent possible'.We believe that this de�nition best matches user in-tent for method advice.

De�nition 8 (Method Advice: Positive) A planstructure node n satis�es (METHOD+ �M �G) i� ndoes not match �G, or the following conditions hold:� there is some node n0 2 Desc(n) that matches �M(Existence),� no descendant of n that does not match �M couldbe replaced by a node that does (Prescription).It is not the case that a nodesatis�es (METHOD� �M �G) i� it does not satisfy(METHOD+ �M �G). For example, a node can fail tosatisfy the positive version in situations where thereare multiple descendant nodes for which an operatormatching the advised activity could be applied, andsome but not all are used. In this case, the negativeversion of the advice is also unsatis�ed.Advice satisfaction for a plan re�nement structure isde�ned as follows.De�nition 9 (Advice Satisfaction) A plan struc-ture node satis�es the set of advice A i� it satis�eseach piece of advice in A. A plan structure � satis�esA i� each node in � satis�es A.We note that our de�nitions of satisfaction for bothrole and method advice are nondirectional in that theconditions of the target activity and the role or methodprescriptions mutually constrain each other. For ex-ample, consider the advice Don't drive in cities withmore than 300,000 people. In a partial itinerary thatincludes a visit to a city with more than 300,000 peo-ple, this advice prohibits the use of a personal automo-bile for local transport. In addition, it would restrictthe choice of cities to visit for time periods in which arental car has already been secured.7 Advice EnforcementStrategic advice acts as a �lter on the set of solutionsto a planning problem. As such, it is straightforwardto de�ne an algorithm that generates advice-satisfyingplans: use a Generate-and-Test scheme with a system-atic plan-generation engine and a �lter that validatesthe advice satisfaction conditions. Such an approach isimpractical for nontrivial domains because of the sizeof the underlying search space. Instead, an algorithmis required in which advice informs the search process.The challenge is to de�ne techniques in which advicein
uences local planning decisions (the choices for vari-able instantiations, operator selections, etc.), in orderto minimize backtracking that results from unsatis-�ed advice. Such backtracking will necessarily arise:since the de�nition of advice satisfaction refers to acompleted plan re�nement structure, planning choicesmust be made before their correctness with respect toadvice satisfaction can be determined.

Here, we de�ne an HTN-style planning algorithmcalled PSA (Plan-generation with Strategic Advice)that enforces advice. The PSA algorithm is provensound in that it produces only plans that satisfy strate-gic advice, and complete in that it will �nd such a planif one exists (given certain assumptions).In essence, PSA works by adding advice constraintsto nodes in a task network. Advice constraints aredetermined by considering the operator choices andworld state for an HTN node, along with the contextof the current partial plan re�nement structure. Ad-vice constraints are operationalized to a combinationof restrictions on the use of operators, and planningconstraints formulated exclusively in the language ofthe basic domain. With this reduction, advice canbe enforced using the operator applicability and con-straint testing procedures of the underlying planner.This approach makes it possible for advice process-ing to be layered on top of the core planning system,yielding a modular and portable implementation. Fur-thermore, the PSA algorithm can be readily adaptedto any operator-based goal-re�nement framework, in-cluding both generative planners and reactive plan ex-ecution systems (such as PRS [12]).The remainder of this section describes PSA. It beginswith the presentation of a high-level description of theHTN algorithm that underlies PSA. An overview ofPSA is provided next, followed by a detailed descrip-tion of the algorithm.7.1 HTN AlgorithmStandard HTN planning can be characterized as a re-cursive algorithmon task networks. When the networkcontains only primitive tasks, the algorithm returns acompletion of the task network if one is de�ned, elsethe algorithm fails. When the network contains non-primitive nodes, one is expanded by selecting an op-erator schema that matches the unsolved goal on thenode and whose preconditions are satis�able, applyingit to generate an expanded task network, then recur-sively invoking the algorithm on the new network.Figure 2 outlines a traditional HTN algorithm (basedloosely on [4]). It assumes the following standardplanning capabilities. The function Complete(�) pro-duces a completion of the task network � if one ex-ists (i.e., resolves all con
icts and instantiates vari-ables). The function SelectOpr(O; n; �) nondetermin-istically chooses an instantiation of an operator schemafrom the set O that can be applied to the goal fornode n in task network � . This function �rst iden-ti�es the schemas in O whose purpose matches thegoal for n, using the function Match(g1; g2). Anyone of those schemas whose preconditions are sat-is�ed for the relevant bindings, as computed bySatis�ed(Preconds(O)� ; n; �), can be returned. Thefunction Reduce(n;O�; �) re�nes a task network by ex-

Solve(P = hO; S0; �0i, � = hT ; L;W i)If � is primitiveReturn Complete(�) if de�ned,Else FAILElse for a nondeterministically selected nonprimitive node n 2 T/* Nondeterministically select an applicable operator */O� SelectOpr(O; n; �)/* Apply the selected operator */� 0 Solve(P;Reduce(n;O�; �))Return � 0SelectOpr(O; n; �)�1 fh Oi; �ii j Oi 2 O; �i = Match(Goal(n);Purpose(Oi)) and �i 6=?g�2 fh Oi; �0ii j h Oi; �ii 2 �1, �0i = Satis�ed(Preconds(Oi)�i ; n; �) and �0i 6=?gReturn Oi�0i for some nondeterministically chosen hOi; �0ii 2 �2Figure 2: Traditional HTN Algorithmpanding a node n by the (possibly partially) instanti-ated plot of the operator O, adding ordering and worldconstraints as appropriate.7.2 The PSA AlgorithmThe PSA algorithm, presented in Figures 3 and 4, ex-tends the standard HTN algorithm in a few key waysto support advice. These extensions consist of a mod-i�ed operator selection process, validation of positivemethod advice for plan wedges, and the propagation ofadvice-processing information across re�nement levels.7.2.1 OverviewBefore discussing the algorithm in detail, we considerthe stages that a given piece of advice passes through,namely activation and enforcement.The de�nition of advice satisfaction by a plan re�ne-ment structure requires that each piece of advice besatis�ed by every node in the structure. For a givennode, many pieces of advice are trivially satis�ed inthe sense that they do not match the context speci�edby the target activity of the advice. We say that apiece of advice is triggered by a planning node when itmatches the target activity feature set for the advice.Triggered advice is generally not directly enforceable;matches for the advised feature set (for method ad-vice) and all roles must be found before any actionscan be taken. Such matching may involve operatorapplications distributed over multiple re�nement (andabstraction) levels. We say that a piece of triggeredadvice has been fully-activated when all such matcheshave been made; otherwise, we say that the advice ispartially-activated.Enforcement of fully-activated advice draws on a com-bination of techniques. For role advice, enforcement

reduces to the addition of planning constraints to theapplicability conditions of operators. Method adviceadditionally restricts the set of candidate operatorsfor a goal based on information about operator fea-tures. Finally, positive method advice requires a post-planning veri�cation of the existence condition.Because both the matching required for activation andthe resultant enforcement constraints can span mul-tiple re�nement levels, PSA employs an approach inwhich each node in an HTN has an associated set ofpartially-activated advice and advice constraints. Thisinformation is propagated downward in the plan re�ne-ment structure as appropriate.7.2.2 NotationThe PSA algorithm uses the following notation. �Aadenotes a formula representing the advised role con-straints for the advice a; if there are no such con-straints, �Aa is simply TRUE. �Ta is de�ned similarlybut for the target role constraints. In cases wherethe advice is unambiguous, we simply write �A and�T . Role constraint formulas are de�ned in terms ofa particular role, which will map to some variable ina planning operator. The process of identifying thisplanning variable is referred to as role resolution. Weuse a placeholder variable labeled by the advice andthe type of role (target or advised) to represent theplanning variable within unresolved role constraint for-mulas, e.g., �Aa [xAa].The functions FeaturesA(a) and FeaturesT (a) returnthe advised and target feature set, respectively, ofthe advice a. The functions MethodAdvice+(I),MethodAdvice�(I), RoleAdvice(I) take a set of acti-vated (either fully or partially) advice I and returnthe subsets of positive method, negative method, androle advice, respectively.

SolveAP(AP = hO; S0; �0;Ai, � = hT ; L;W i)If � is primitiveReturn Complete(�) if de�ned,Else FAILElse for a nondeterministically selected nonprimitive node N = hn; I; Ci 2 T/* Nondeterministically select an applicable operator with its Advice constraints */hO�; I0; C 0i SelectOprA(O; N; � ;A)/* Apply the selected operator and pass along advice info */� 0 SolveAP(AP ;ReduceA(hn; I0; C 0i; O�; �)If O� and � 0 are not well-de�ned then FAIL/* Test Method constraints for this wedge */If for each � 2MethodAdvice+(I0 � I)there is some n0 2 Desc(n) for which Wn0 matches �Return � 0Else FAILFigure 3: Algorithm for Plan-generation with Strategic Advice (PSA)7.2.3 PSA DetailsPSA diverges from standard HTN planning most sig-ni�cantly in the operator selection process. As de�nedin Figure 4, the function SelectOprA(O; hn; I; Ci; �;A)extends SelectOpr(O; n; �) both to relativize operatorselection and application to triggered advice and topropagate relevant activated advice and advice con-straints. SelectOprA begins likes its nonadvice coun-terpart, �ltering those operators whose purpose doesnot match the goal of the node under consideration.It also ends similarly, selecting an un�ltered operatorwhose applicability conditions are satis�ed; however,those conditions have been extended to incorporateadditional constraints generated by advice processing.The bulk of the function involves this advice process-ing for the operators that match the goal of the cur-rent node: advice triggering, extraction of advice con-straints, and role resolution.Advice processing begins by identifying for eachrelevant operator Oi any advice that it trig-gers. Triggering amounts to matching the tar-get activity feature set, as computed by the testHasFeatures(Oi;FeaturesT (a)).The extraction of advice constraints di�ers for thecases of role advice, positive method advice, and neg-ative method advice. For role advice, the extractedadvice constraint is simply the disjunction �T _ �A.Method advice presents a more complex case becauseit posits higher-order constraints de�ned over opera-tors and domain objects. As a result, it is not possibleto map them to planning constraints in L that canbe directly processed by the underlying planner (as isthe case with role advice). Instead, constraints de�nedover a mixture of operators and domain objects mustbe managed explicitly at a higher level. We adopt acase analysis approach in which satisfaction is consid-ered in turn for the di�erent kinds of constraints (on

operators and on domain objects).Consider �rst negative method advice. Any operatorthat does not match the feature set of the advisedactivity requires no additional constraints. For an op-erator that does match, either the target role-�ll con-straints �T or the advised role-�ll constraints �A mustfail. Thus, �T _ �A is added to the applicability con-ditions of the operator.Positive method advice requires a di�erent approach:either the target activity must not match, or the exis-tence and prescription clauses must both be satis�ed.For an operator that matches the feature set of theadvised activity, we require that the advised role con-straints �A be satis�ed. For an operator that does notmatch the advised feature set, if there is some un�l-tered operator that does match, then the target ac-tivity must not match. The constraint �T guaranteesthis condition.2Advice constraints are de�ned over roles; before theycan be enforced, the roles must be resolved. The func-tion ResolveRoles(O;�) performs role resolution; it re-places any role variable in the set of constraints �with the variable that models that role in the opera-tor schema (if one exists). Resolved constraints (com-puted by Resolved(C)) are added to the applicabil-ity constraints of the associated operator. Unresolvedconstraints (computed by Unresolved(C)) are passedto all descendant nodes.The actual propagation of advice information isstraightforward; Reduce(n;O; �) is generalized to the2This approach to enforcing positive method advice isoverly conservative in that the added constraints may beunnecessary (because some other node in the plan satis-�es the existence clause) yet they block application of theoperator. We return to this point in the discussion of com-pleteness below.

SelectOprA(O; hn; I; Ci; �;A)�1 fhOi; �ii j Oi 2 O; �i = Match(Goal(n);Purpose(Oi)) and �i 6=?g/* Accumulate triggered advice for each candidate operator */For hOi; �ii 2 �1Ii fa j a 2 A and HasFeatures(Oi;FeaturesT (a))gI0 �Ii/* Extract advice constraints */For hOi; �ii 2 �1 /* Initialize advice constraints */Ri fg, M+i fg, M�i fgFor a 2 RoleAdvice(Ii) /* Extract constraints from role advice */Ri Ri [f�Ta [xTa] _ �Aa [xAa]gFor m 2MethodAdvice�(I [I0) /* Extract constraints from negative method advice */Sat fhOi; �ii j h Oi; �ii 2 �1 and HasFeatures(Oi;FeaturesA(m))gFor hOi; �ii 2 Sat, M�i M�i [f�Am[xAm] _ �Tm[xTm]gFor m 2MethodAdvice+(I [I0) /* Extract constraints from positive method advice */Sat fhOi; �ii 2 �1 j h Oi; �ii 2 �1 and HasFeatures(O;FeaturesA(m)gIf Sat 6= fg :For hOi; �ii 2 Sat, M+i M+i [f�Am[xAm]gFor hOi; �ii 2 �1 � Sat, M+i M+i [f�Tm[xTm]g/* Collect resolved advice constraints for each Operator */For hOi; �ii 2 �1ResolveRoles(Oi; C [Ri [M+i [M�i)Ci Unresolved(C [Ri [M+i [M�i)Addi Resolved(C [Ri [M+i [M�i)/* Return an operator that satisfies advice constraints along with updated advice info */�2 fh Oi; �0ii j h Oi; �ii 2 �1, �0i = Satis�ed(Preconds(Oi)�i [Addi�i ; n; �) and �0i 6=?gReturn hOi�0i ; I[Ii; Cii for some nondeterministically chosen hOi; �0ii 2 �2Figure 4: Operator Selection for PSAfunction ReduceA(hn; I; Ci; O; �) to pass along adviceconstraints and activated advice.As noted above, the existence clause for satisfactionof positive method advice cannot be veri�ed until thewedge beneath the node has been completed. An ex-plicit check of this condition is included as the laststep in the PSA algorithm. Since the validation of thecondition is straightforward, the details are omitted.7.3 DiscussionOur presentation of PSA has been biased toward high-lighting the reuse of standard HTN operations. Forreasons of e�ciency, the PSA algorithm should notbe implemented directly as presented here. For in-stance, extraction of role constraints and resolutionof role variables should be done only for the selectedoperator, rather than for all operators matching the
current goal prior to the �nal selection decision. Incontrast, extraction of method constraints should bedone prior to the selection process because the methodconstraints can eliminate certain operators up front.There is a similarity between the kind of constraint-augmented planning embodied in the PSA algorithmand Constraint Logic Programming (CLP) [7]: bothconsist of a problem-reduction search augmented withconstraints on the overall structure being de�ned. ForCLP, the constraints restrict instantiations for vari-ables; for advisable planning, the constraints furtherrestrict the choice of problem-reduction rules (i.e., theoperator schemas).7.4 Properties of PSAIt is straightforward to show that the PSA algorithmreduces to standard HTN planning when there is no

advice. The following correctness result also holds.Proposition 3 (Correctness of PSA) Applicationof the PSA algorithm to an advised planning problemAP = hO; S0; �0;Ai will produce a plan re�nementstructure that both satis�es A and is a solution to theplanning problem hO; S0; �0i.We note that given role comprehensiveness, the strongversion of satisfaction for role advice follows; other-wise, only weak satisfaction holds. The di�erence re-sults because PSA folds in constraints extracted fromrole advice only when the roles for the constraints havebeen resolved; thus, if the roles are not found, the as-sociated role advice is e�ectively ignored.The PSA algorithm may fail to �nd solutions in cer-tain cases where solutions exist. This incompletenessstems from our conservative approach to enforcing theprescription clause for positive method advice. In par-ticular, the constraints added to enforce this clause aretoo strong in situations when a node matching the tar-get activity has multiple descendant nodes for whichconstraints may be added to guarantee matching tothe advised activity. As an illustration, consider a sit-uation where there are two descendant nodes to whichoperators could be applied that match the advised fea-ture set. PSA would force for both nodes the selec-tion of operators that satisfy the advised feature set,even in cases where the use of the operators is mutu-ally inconsistent (for instance, they each may requirea consumable resource of which there is only one re-maining). However, the de�nition of satisfaction forpositive method advice requires that both be selectedonly if it is consistent to do so.We can show that the PSA algorithm is complete whenthere is at most one node for which constraints areadded to enforce the prescription clause; we refer tothis condition as the Uniqueness of the Advised Activ-ity (UAA) for a given piece of positive method advicerelative to a set of operators. The UAA conditionholds frequently in practice. For instance, in planninga holiday there is generally a single high-level vaca-tion type to select (e.g., bike tour vs camping tour vsdriving tour). Thus, advice such as Use a bike tour forthe vacation in California would satisfy UAA, since thechoice of tour type would only be made once. Further-more, the UAA condition is easily veri�ed by straight-forward syntactic analysis of operator schemas. How-ever, one can formulate natural problems for whichUAA is violated. For instance, one could formulate amulti-phase holiday operator that encompasses severalsub-vacations, each of which would require a choice ofvacation type.Proposition 4 (Completeness of PSA)Application of the PSA algorithm to an advised plan-ning problem AP = hO; S0; �0;Ai for which UAAholds will produce a plan re�nement structure that both

satis�es A and is a solution to the planning problemhO; S0; �0i, provided such a plan exists.8 Related WorkUntil recently, there had been few attempts to developdomain-independent advice-taking systems. Concernsfor the usability of AI systems and problems withknowledge acquisition have prompted a marked in-crease in activity in this area during the past few years.The TRAINS [5] project seeks to provide users withthe means to interactively guide the construction andexecution of a plan through a cooperative, mixed-initiative e�ort. While its overall objectives are sim-ilar to ours, the research directions of the two e�ortsare highly complementary. HCI issues are a majorfocus for the TRAINS project (e.g., language process-ing, dialog management, multi-media), while our workemphasizes the identi�cation of advice idioms and cor-responding enforcement algorithms.The reactive scheduling model of the DITOPS system[13] also has much in commonwith our work. At a highlevel, its spread-sheet metaphor provides a good char-acterization of advisability: the user should be able tospecify characteristics of the desired solution and havethe system sort out the details. One key di�erence isthat DITOPS focuses on scheduling rather than plan-ning. In addition, it emphasizes changes to domainconstraints, while the our work focuses on advice thatdescribes high-level properties of solutions.The TRAINS and DITOPS projects are similar toour work in that they emphasize product-related ad-vice that describes characteristics of the desired end-product. In contrast, performance-related advice en-codes base-level problem-solving expertise. As such,product-related advice serves as an adjunct to theunderlying problem-solving knowledge, while perfor-mance advice amounts to an extension of it.The original work on performance advice is Mostow's[11], which models advice as a high-level description ofa task for which there is no explicit method to achieveit. The work focuses on operationalization { the trans-formation of advice (using sound and heuristic meth-ods) into directives that can be executed directly bythe problem-solving system being advised. Its notionof advice-taking amounts to `�lling in' gaps in planningoperators, in contrast to our approach of restrictinghow operators should be instantiated and applied.There has been a recent surge of interest in improv-ing the performance of reinforcement learners throughuser guidance (see [9] for a good overview). Broadlyspeaking, that work focuses on the provision of addi-tional domain knowledge to improve the overall perfor-mance of a system. Many of these e�orts are actually aform of `programming by example'. However, certain

of them have more of a
avour of performance-relatedadvice-taking, using general-purpose languages to en-code the additional domain knowledge [9, 6]. One in-teresting feature of these e�orts is that advice is re�nedduring problem-solving, in response to the success withwhich it has been applied previously.9 ConclusionsThe notion of problem-solving systems that can takeadvice from humans has been around since the start ofAI [10]. Despite the conceptual appeal, there has beenlittle success to date in building automated advice-taking systems because of the intractability of the taskin its most general form. We believe that the paradigmcan be made tractable for speci�c classes of applica-tions and tasks by grounding advice in a focused setof problem-solving activities. The research describedhere presents a step toward this goal for the paradigmof generative planning. Its primary contributions arethe presentation of an advice-taking framework for AIplanning systems, the formalization of strategic ad-vice, and the de�nition of a sound and complete HTNplanning algorithm for enforcing strategic advice.We have built an initial Advisable Planner prototypethat implements our theory of strategic advice. Thesystem consists of an advice manager layered on topof Sipe{2, a mature HTN planner [15, 16]. Intru-sions into the underlying code were minor: for themost part, the advice processing is completely separatefrom the core planning capabilities. Our prototype hasbeen used to enforce both travel planning advice simi-lar to the examples presented in this paper and advicefor a crisis-action planning domain [17]. Currently,we are applying the system to air-campaign planning,with the goal of encouraging nonexperts to embraceAI planning technology.Immediate next steps for this work are to developricher idioms for strategic advice, and to de�ne com-parable formal models and enforcement algorithms forother categories of advice (including evaluational andtask advice). Further down the road, we intend to ex-plore utility models for partial satisfaction of advicethat will allow intelligent trade-o�s to be made amongsets of con
icting advice.AcknowledgementsThis research has been supported by DARPAContractF30602-95-C-0259. The author would like to thankDavid Wilkins for providing insight into the workingsof Sipe{2.References[1] D. Chapman. Planning for conjunctive goals. Ar-ti�cial Intelligence, 32:333{378, 1987.

[2] K. Currie and A. Tate. O-Plan: the open planningarchitecture. Arti�cial Intelligence, 32(1), 1991.[3] B. Drabble and A. Tate. O-Plan mixed initiativeplanning capabilities and protocols. Technical Re-port 24, University of Edinburgh, 1995.[4] K. Erol, J. Hendler, and D. S. Nau. Semanticsfor hierarchical task-network planning. TechnicalReport CS-TR-3239, Computer Science Depart-ment, University of Maryland, 1994.[5] G. Ferguson, J. Allen, and B. Miller. TRAINS-95:Towards a mixed-initiative planning assistant. InProceedings of the Third International Conferenceon AI Planning Systems. AAAI Press, 1996.[6] D. Gordon and D. Subramanian. A multistrategylearning scheme for agent knowledge acquisition.Informatica, 17:331{346, 1994.[7] J. Ja�ar and J.-L. Lassez. Constraint logic pro-gramming. In ACM Symposium on Principles ofProgramming Languages, 1987.[8] S. Kambhampati and J. Hendler. A validation-structure-based theory of plan modi�cation andreuse. Arti�cial Intelligence, 55(2):192{258, 1992.[9] R. Maclin and J. W. Shavlik. Creating advice-taking reinforcement learners. Machine Learning,22:251{282, 1996.[10] J. McCarthy. Programs with common sense. InSymposium on the Mechanization of Thought Pro-cesses, pages 77{84, 1958.[11] D. J. Mostow. Mechanical Transformation ofTask Heuristics into Operational Procedures. PhDthesis, Computer Science Dept., Carnegie-MellonUniversity, 1981.[12] K. L. Myers. User's Guide for the Procedural Rea-soning System. Arti�cial Intelligence Center, SRIInternational, Menlo Park, CA, 1993.[13] S. F. Smith and O. Lassila. Toward the develop-ment of
exible mixed-initiative scheduling tools.In M. H. Burstein, editor, ARPA/Rome Labora-tory Planning and Scheduling Initiative WorkshopProceedings. Morgan Kaufmann, February 1994.[14] M. Ste�k. Planning and meta-planning. Arti�cialIntelligence, 16(2), 1981.[15] D. E. Wilkins. Practical Planning: Extending theClassical AI Planning Paradigm. Morgan Kauf-mann, 1988.[16] D. E. Wilkins. Using the SIPE-2 Planning Sys-tem: A Manual for Version 4.3. Arti�cial Intelli-gence Center, Menlo Park, CA, August 1993.[17] D. E. Wilkins and R. V. Desimone. Applyingan AI planner to military operations planning.In M. Fox and M. Zweben, editors, IntelligentScheduling. Morgan Kaufmann, 1994.

