Uppsala Master’s Theses in
Computing Science 100
Examensarbete DV3
October 2, 1996

ISSN 1100-1836

Native Code Compilation
for Erlang

Erik Johansson € Christer Jonsson

/ (<
=X\
gm-

& AN,

Computing Science Department
Uppsala University

Box 311

S-751 05 Uppsala

Sweden

; u:'X"» ()
5o
S
Y ER)

()

Examiner: Hakan Millroth

Passed:

Abstract

We describe the design and implementation of a native compiler for ER-
LANG, built on top of an existing emulated implementation. Many ERLANG-
programs are time-critical, and as ERLANG becomes more widely used, the
need for fast implementations increase. We show how simple native compila-
tion can increase the speed of ERLANG programs, even compared to ERLANG
programs compiled via C. Several benchmark programs are examined and
the results analysed, showing that our simple method gives a considerable
gain in execution speed over current implementations.

Contents

1 Introduction 1
2 JAM 3
2.1 Registers.o 3
2.2 Data Representation, 4
23 Code 4
24 Qalls 4
2.5 CONCUrrency« v v v v v v i e e 5

3 The Compiler 6
3.1 Translation 7
3.1.1 Large Instructions 7

3.1.2 Failureo 8

3.2 Optimization 0 9
3.2.1 Constant propagation 9

3.2.2 Constant folding 10

3.2.3 Unreachable code elimination 10

3.24 Dead coderemoval 10

3.25 AnExample 0000 11

3.3 Machine specific transformations 11
3.3.1 Delay-slot filling 12

3.4 Register Allocation L. 12

4 System Integration 13
4.1 Function Information 13
42 Callsand Returno 13
4.3 Hot Code Loading 15
4.4 Adaptive Compilation L. 15

5 Performance Evaluation 17
5.1 Effects of Optimizations 19
52 Code Size 20
5.3 Compilation Speedo 20

6 Conclusion & Future Work

A The JAM Instruction set

B Translation scheme

21

25

29

List of Figures

2.1
2.2

3.1

3.2
3.3

3.4
3.5

4.1

5.1
5.2

Representation of the term {42, [foo, barl}.
The stack afteracall.

An ERLANG function that returns 1 when called with the
empty list, and 0 otherwise.
The JAM code for the function in figure 3.1.
The native code for the function in figure 3.1. The RETURN
instruction actually expands to seven machine instructions.
An ERLANG function calculating the length of a list.
Optimizing the function length.

A call and return from a native function to a JAM-function .

A comparison of execution times
Optimization gains L.

iii

List of Tables

5.1 Relative execution times 19
B.1 Stack instructions. 29
B.2 Test Instructions o o 30
B.3 Process instructions 30
B.4 Arithmetic instructions 31
B.5 Call instructions 32

iv

Chapter 1

Introduction

In this paper we will present a straightforward implementation of a native
code compiler for ERLANG[4]. ERLANG is a functional programming lan-
guage intended for use in telecommunication switches with high demands
on availability. This intention has led to the demand that ERLANG object
code should be small, and that it should be replaceable at runtime (hot code
loading). These requirements makes it natural to implement ERLANG using
a byte code emulator. Since it is hard to implement a fast emulator, other
approaches are desirable. One approach is to compile ERLANG into C, and
then compiling the C code into native code. Good optimizing compilers are
widely available for C, making it possible to generate efficient and portable
code. However, there are drawbacks to such an approach:

e Many ERLANG features, such as tail-call optimization and hot code
loading, are difficult to implement in C.

e Information is lost in the translation to C, making some optimisation
impossible, for the C compiler.

e An extra (often expensive) compilation step is required.

e The resulting object code is large.

We think that these limitations can be avoided, at the cost of portability,
by compiling directly to native code.

Approach

We wanted to test this hypothesis, without having to write a complete ER-
LANG system. By building our compiler on top of JAM (see chapter 2) we
got a complete system up and running, in less than six months. The com-
piler is implemented as a runtime compiler that produces native code for
the SPARC architecture.

Chapter 1: Introduction 2

Runtime compilation opens the way for numerous optimization tech-
niques. We have not explored these yet, and therefore this paper concen-
trates on native compilation as such, and not on runtime compilation. How-
ever, we plan to extend our compiler with runtime optimizations.

Our main interest lies in examining the possible gains of native compi-
lation, and not in general ways of improving upon previous ERLANG im-
plementations. Therefore we have not made any changes to the rest of the
runtime system. To clearly see the effect of native compilation, we have
concentrated our work on sequential ERLANG code.

Related Work

Compilation of ERLANG to C has been implemented by Hausman in his
BEAM compiler [12], and we have compared our results with this compiler.
Inspiration to our work comes from many sources:

e Ertl [10] has inspired us with his work on compiling stack machines.
e Haygood [11] has described native compilation for SICStus Prolog.

e Runtime compilation has been examined by several researchers, for
example Chambers [9], and Leone and Lee [16, 15].

Results

On the average, our compiler is 55% faster than ERLANG compiled via C, and
more than four times faster than emulated ERLANG. Our generated code is
about 60% smaller than ERLANG compiled via C. The compiler generates
code from byte code to native code an order of magnitude faster than GCC
compiles from C to object code.

Bear in mind that these results are for sequential code, and that for typ-
ical ERLANG programs, utilizing processes and message passing, the overall
performance increase might not be as large.

Chapter 2

JAM

We have built our compiler on top of JAM [3], which is a stack based byte
code emulator for ERLANG. ERLANG is a dynamically typed functional
programming language, with built in support for processes and communica-
tion. No destructive updates of variables and data structures are allowed,
and memory is managed automatically. The language has been inspired by
ML, Prolog, and other declarative languages, and it supports for example
pattern matching.

Joes Abstract Machine, or JAM, is named after its first implementator
Joe Armstrong, who also is one of the chief architects behind ERLANG. In
this chapter we survey the inner workings of JAM.

2.1 Registers

JAM uses the following registers:

PC - Pointer to the next instruction to execute.

STOP - Pointer to the stack top of the active process.

HTOP - Pointer to the heap top of the active process.

ARGS - Pointer to the first argument (on the stack) of the current function.
VARS - Pointer to the first local variable on the stack.

FAIL_PC - Address where execution should continue after a failure.
FAIL_REASON - The reason for the failure.

P - Pointer to the process control block (PCB).

Chapter 2: JAM 4

ARITY 2
INT 42
LIST

ATOM foo
LIST

ATOM bar
NIL

Figure 2.1: Representation of the term {42, [foo, bar]}.

2.2 Data Representation

All basic values are represented in one machine word (in this case 32 bits).
A tag is stored in the four most significant bits, leaving 28 bits for the value.
Small integers, atoms and nil (the empty list) can be stored directly in a
machine word. For more complex values, such as lists and tuples, a pointer
to a heap-allocated object is stored in the word.

A list cell on the heap is just two consecutive words. Tuples start with
a header containing the arity of the tuple, followed by its elements.

2.3 Code

The JAM instruction set (described in Appendix A) is implemented with
byte codes, making it compact. Code is patched at load time (for example
with indexes into the atom table). A module in ERLANG is a collection of
functions sharing the same name space. Code is loaded one module at the
time, when needed.

2.4 Calls

Before entering a function, the function arguments are pushed on the stack.
Then a stack frame is written, containing the return address, a pointer to
the code of the calling function (CC), and the old values of ARGS and VARS
(see figure 2.2). ARGS is set to point to the first argument, and VARS to
point to the first free stack position. When the function returns, the frame
is popped from the stack and the return value is pushed (in the same stack
position as the first argument).

The JAM compiler recognizes tail calls, that is, calls that are the last
instruction in a function. Before a tail call the current stack frame can be
freed, making it possible to execute loops in constant stack space. This is
called tail call optimization or last call optimization.

Chapter 2: JAM 5

Argument 1 <« ARGS
Argument N
Ret. Addr
cC
ARGS’
VARS’ ,—— VARS
~_ ST

Figure 2.2: The stack after a call.

According to the specification of ERLANG, there are two types of calls,
local calls (calls within a module,) and remote calls (calls to functions in
other modules). Since all functions in a module are loaded at the same time
the address of a local call can be determined at compile time. The address
of a remote call on the other hand, can change at runtime and the emulator
performs a table lookup for each remote call.

2.5 Concurrency

A prominent feature of ERLANG is its ability to handle many lightweight
processes and to supply constructs for message passing between these pro-
cesses.

In JAM, each process has its own process control block (PCB), stack,
and heap. When a process is not executing the registers of the abstract
machine are stored in the PCB.

A scheduler queue is maintained, containing processes awaiting execu-
tion. These processes are scheduled on a round robin basis. A process
executes until it either waits for a message, or has consumed its time slice.
The time slice is set to a number of reductions (function calls). When a
process has used up its time slice it is swapped out, and placed last in the
scheduler queue.

Message passing is implemented by the sending process copying the mes-
sage into the heap of the receiving process. After the message is written, a
pointer to the message is inserted into the message queue of the receiving
process and the receiving process is added to the scheduler queue (if it is
not there already).

Chapter 3

The Compiler

Our compiler compiles from JAM code instead of compiling from ERLANG
source code. This might seem as a disadvantage at first, since higher level
optimizations will be hard to implement. But this approach has several
advantages:

e Compilation on a function basis. The compiler does not have to
compile a complete module, but can compile each function separately,
saving space and compilation time.

e No source code necessary. Since the compilation starts from JAM
code, the ERLANG source code need not be available. Functions in the
standard libraries can be compiled to native code'.

e Easy compilation. The JAM code is easier to compile than ordinary
ERLANG code.

The compilation consists of these stages:

Translation. In this stage, the JAM code is translated into intermediate-
code. We use techniques worked out by Ertl [10] to translate stack
based JAM code to register code.

Optimization. After the translation the compiler make some global (in the
sense of reaching over the whole function) transformations, performing
some standard optimizations, such as constant propagation and dead
code elimination.

Machine specific transformations. At this stage the code is adapted for
the target architecture, in this case the SPARC.

You would not helieve the gain in speed that can be achieved by compiling the lists
module.

Chapter 3: The Compiler 7

Register Allocation. The process of deciding which register to keep a
value in is called register allocation. It is desirable that as many values
as possible are held in registers for their whole lifetime. Graph coloring
register allocation as described by Chaitin et al. [7, 8] is used to achieve
this.

Assembly. In the final stage of the compilation the size of the generated
code is calculated, memory is allocated, and the actual machine in-
structions are written to memory.

3.1 Translation

Since SPARC is a register machine, it is desirable to use the JAM stack as
little as possible. There are several possible solutions to this problem. One
approach would be to keep the stack as it is and by means of analysis, keep
the most used stack positions in registers.

We have chosen another approach. Inspired by Ertl’s [10] work on Forth,
we wanted to transform all stack references to register references in the
translation stage.

A virtual stack is maintained during translation, corresponding to what
the real stack would look like at runtime. By assigning registers to each
position in this virtual stack, each temporary value on the JAM stack is
assigned a register, resulting in fewer memory references. Stack operations
like pop and alloc only affect the virtual stack at compile time, and do not
generate any code.

3.1.1 Large Instructions

Some large instructions (such as send) are still executed in the emulator to
avoid code explosion. These are mainly instructions that already have large
overheads. Another approach would be to create a library of these functions
in native code. In fact, that is what we have done for some of the arithmetic
instructions.

The types of the arguments to an arithmetic expression in ERLANG can
be either one of integer?, float, or bignum®. Generating native code for
all possible combinations induces severe code bloat. We have opted for a
solution where integer addition and subtraction is done inline. Floating
point arithmetic is done with calls to machine code routines. Calls to these
routines are cheaper than calls to the emulator since they share the same
execution environment as our native code. The rest of the arithmetic uses
the original code in the emulator.

24. e., fixed precision integers.
34. e., Arbitrary precision numbers.

Chapter 3: The Compiler 8

ismnil([]1) -> 1;
isnil() -> 0

Figure 3.1: An ERLANG function that returns 1 when called with the empty
list, and 0 otherwise.

All built in functions (bifs) are executed by the emulator, although some
bifs probably could be inlined. As an optimization, our compiler determines
the address at compile time (in contrast to JAM, which determines the
address of the bif at execution time).

3.1.2 Failure

In ERLANG, choice and flow of control is done by pattern matching. Each
available choice is tested until a match occurs. This is achieved by use of the
instructions try_me_else, try me_else fail, commit, and test instructions
that can succeed or fail. Consider the function is nil/1 in figure 3.1. This
function will be compiled to JAM code as follows. The first instruction of
the first clause will be the instruction try me_else(labell), indicating that
there is another clause to try if a failure should occur while matching the
first clause.

Then the argument to the function has to be tested, to examine if it is
nil. Therefore the instructions arg(0) and getNil are generated, to push
the first argument on the stack and to test if the top of the stack contains
nil. If getNil fails (because the stack top does not contain nil) then
the execution will continue at labell. Otherwise execution will continue
with the next instruction. Since the function head has been matched, the
execution is now commited to the first clause.

After the commit instruction, code for the body of the first function
clause will be generated. Giving the instructions push_int(1) and ret,
indicating that the function should return with the value 1.

Then the second clause will be compiled. This clause will begin with
the label 1abell. After the label, a try me else fail instruction will be
generated, indicating that if the function head cannot be matched now, then
the process should fail.

Since the second clause accepts any argument, no code will be generated
to test the arguments. Instead a new commit instruction and the code for the
body of this clause is generated. The complete JAM code for the function
can be found in figure 3.2.

In our compiler the location of each label is determined at compile time
and test instructions that will not generate a real fail, are compiled to
branches to the corresponding label. The native code for the function can
be found in figure 3.3.

Chapter 3: The Compiler 9

try_me_else(labell)
arg(0)
getNil
commit
pushInt (1)
ret
labell: try.me_else fail
commit
pushInt (0)
ret

Figure 3.2: The JAM code for the function in figure 3.1.

rl := VARS[-20]
if rl != nil then L2
rl := 0x10000001
RETURN(r1)

L2: r1 := 0x10000000
RETURN(r1)

Figure 3.3: The native code for the function in figure 3.1. The RETURN
instruction actually expands to seven machine instructions.

3.2 Optimization

All our optimizations depend on global data-flow analysis. Data-flow infor-
mation is collected by setting up and solving systems of equations [1, ch.
10].

3.2.1 Constant propagation

If an instruction assigns a constant value to a register, this value is propa-
gated through the code, and used instead of the register in all instructions
between this instruction and the first instruction that writes to this register.

t1 := 1 tl =1

£ = III =4 t2 := II

t1 := HTOP[O] constant prop. t1 := HTOP[O]
t3 := t1 t3 :=tl

Chapter 3: The Compiler 10

3.2.2 Constant folding

If an instruction performs arithmetic on two constants, the result is com-
puted and the instruction is replaced by an instruction that assigns the result
to the destination register.

=

Constant folding

If a branch instruction tests two constants, this instruction is replaced by a
jump instruction or removed, depending on the result of the test.

—

i oto L1
if1<2 gOtO L1 Constant folding &

3.2.3 Unreachable code elimination

Basic blocks that have no predecessors are removed.

goto L1

goto L1
—

L1:
L1: Unreachable code

t2 := t1
t2 = t1

3.2.4 Dead code removal

If a value is assigned to a register, and that register is not used after the
assignment, then the assignment is removed.

t1 := 1 =

tl := 2 Dead code removal

tl := 2

Chapter 3: The Compiler 11

len([1) -> 0;
len([_IL]) -> 1 + len(L).

Figure 3.4: An ERLANG function calculating the length of a list.

3.2.5 An Example

Since ERLANG is dynamically typed, the JAM-code will contain a lot of type
tests. These tests can sometimes be removed by our optimizations. When
the ERLANG function in figure 3.4 is translated, the code in figure 3.5 will
be generated for the addition.

After register r5 is assigned the tagged integer 1, a recursive call to len
is executed (not shown) and the return value will end up in register r9. Both
registers are tested if they contains integers; if not, a more complex routine
is called (not shown). The tags are then removed from r5 and r9, they are
sign extended, added and the result is placed in r15.

After constant propagation and constant folding, the test whether r5
is an integer (5, 6) is constant, and can be removed. In the same way
the tagging and the sign-extending of r5 (8, 10) are constant and can be
removed. Now the constant 1 can be added directly to r9.

This leaves us with only four arithmetic operations and one conditional
branch, a marked improvement on the original seven arithmetic operations,
two conditional branches, and one assignment.

1: 5 := 0x10000001

2 ...

3: ri11 :=1r9 >> 0Oxlc

4: if ri11 !'= Oxl goto L13 ril := r9 >> Oxlc
5: 112 :=rb >> Oxlc if r11 != 0x1 goto L13
6: if r12 != 0x1 goto L13 — r9 := r9 << 0x4
7: 19 := r9 << 0x4 r9 := r9 >>7 0x4
8: rb := rb << 0x4 rib := + r9
9: r9 := 19 >>7 0x4

10: x5 :=rb >>7 0x4

11: r15 := + 19

Figure 3.5: Optimizing the function length.

3.3 Machine specific transformations

After the optimization phase, the compiler adapts the code to the actual
machine, in this case the SPARC. Most SPARC instructions allow only 13-
bit immediates, meaning that instructions with larger immediates must be

Chapter 3: The Compiler 12

split into three instructions: two instructions that assigns the immediate
to new temporary register, and the original instruction using this register
instead of the immediate.

3.3.1 Delay-slot filling

In the SPARC architecture, there is a delay-slot after each branch instruction
that can be executed even if the branch is taken. There are considerable per-
formance gains to make if these delay slots can be filled with useful instruc-
tions. We do not do a state-of-the-art branch instruction scheduling, but
search the basic block preceding the branch for a suitable instruction [13].

3.4 Register Allocation

The registers in our intermediate code must be assigned to machine regis-
ters. We use pessimistic graph coloring register allocation [5, 7, 8]. This is
an abstraction of the register allocation problem to a graph coloring prob-
lem. Graph coloring is NP-complete so a heuristic method is required. Our
implementation of the algorithm consists of 4 phases:

1. Calculate liveness. We have to know which registers are alive at a spe-
cific point in the program. This is done by global dataflow analysis [1].

2. The liveness information is used to build an interference graph where
the nodes are registers and an edge between two nodes indicates that
they are simultaneously live.

3. There are K available machine registers, this graph has to be colored
with K colors. Locate a node with fewer than K neighbours and push
it on a stack. As this node has at most K-1 neighbours, a free color
can always be found. Remove this node, and its edges, from the graph
and repeat this phase until the graph is empty or until no nodes with
degree < K can be found.

4. The registers are popped from the stack, inserted back into the graph
and given a color that none of its neighbours got.

We have not changed the runtime system to be able to handle spilled
values on the stack. If the graph cannot be colored, the compilation of the
function fails and the original emulated code is used. This rarely happens
(it never happened in our benchmarks).

Chapter 4

System Integration

The compiler is implemented as a runtime compiler, integrated with JAM.
This forces the system to be able to find out at runtime if a function is
compiled to native code or not. We will describe how this is solved, along
with some other aspects of the integration between our compiler and the
JAM emulator.

4.1 Function Information

When the JAM code is loaded the compiler adds a header with information
to each function. A field in the header indicates whether the function has
been compiled or not, and where the compiled code resides. All headers are
linked together in a list.

4.2 Calls and Return

To speed up calls, we have replaced the CC field in the stack frame with a
field for the NPC (Native Program Counter). The CC field can be removed
since the information stored in it can be found by searching through the list
of loaded functions. This search is only needed after a failure, therefore the
speed is not as important as in a call.

We have also added four named addresses to the emulator; these are the
emulator_entry point, the emulator return point, the native entry_
point, and the native return_point. When control passes between emu-
lated code and native code, it passes through one of these points. Otherwise
the implementation is simple: calls and returns from emulated code to em-
ulated code are analogous to the original JAM, while calls and returns from
native code are ordinary jumps.

Let us therefore look at calls and returns between emulated and native
code.

13

Chapter 4: System Integration 14

e Call from emulated to native. If the information in the header
of the called function indicates that there is a native version of the
function then a call to native code will be executed.

A call from emulated to native starts out the same way as a call from
emulated to emulated, the stack frame is written in the same way.
But after that the execution goes via the native_entry_point to the
native code. The address of the called function is found in the header
of the JAM function.

e Call from native to emulated. A call from native code is executed
in the same way regardless of the destination. The value null is
written to the PC field of the stack frame to indicate that the call
originated from native code. The address of the called function is
always available as an immediate argument to the call instruction.

If the called function is not native compiled, then the call passes
through a stub in the header of the JAM function. In this stub the PC
register is set to point to the address of the JAM function, whereafter
execution enters the emulator via the emulator_entry_point.

e Return from emulated to native.

When the emulator reaches a ret instruction it checks whether the
PC field in the stack frame is null or not. If it contains an address
then the function returns to an emulated function and execution in
the emulator goes on as usual.

If the PC field is null then the call originated from native code. There-
fore NPC is reset to the value of the NPC field in the stack frame, and
execution reenters native code via the emulator_return _point.

e Return from native to emulated. In native code a return always
goes to the address saved in the NPC field. If the call came from native
code then this address will point to native code, and the return will
be a swift one.

If, on the other hand, the call came from emulated code then the NPC
field contains a pointer to the native return point, and execution
will continue in the emulator. In both cases PC has been restored to
the value in the PC field by the returning function.

With this scheme native-to-native calls and returns are fast; we do not
have to do any runtime tests whatsoever. Calls between emulated and native
(and back) are a little bit slower since there is an extra indirection involved.
But if a sufficent number of the frequently executed functions are compiled,
then there will be few transistions between native code and emulated code.

Chapter 4: System Integration 15

N |

~

D Native code
D JAM code
D The Emulator

—» AJump --» A Reference

Figure 4.1: A call and return from a native function to a JAM-function

4.3 Hot Code Loading

As mentioned earlier ERLANG supports hot code loading: a code module can
be replaced while the program is running. This means that the address of a
function can change at runtime.

In JAM this is solved by determining the destination of a remote call at
runtime. In our native code compiler the problem is solved with backpatch-
ing.

The solution is straightforward. When a function is replaced by new
code all remote callers are patched to call the new emulated function. Since
the old function should not be backpatched any more, all references to the
old function are removed from all backpatch lists.

With this approach we achieve higher execution speeds, at the cost of
marginally slower code loading.

4.4 Adaptive Compilation

The fact that the compiler is a runtime compiler opens up the possibility of
letting the compiler choose which functions to compile to native code and
wich to leave as byte code. We call this process adaptive compilation [14].
Adaptive compilation is achieved by counting the number of calls to each
function. When the counter reaches a limit (C'), the function is compiled.
Over time, those functions that are called most will be compiled. As to
not let every function be compiled, all call counters are reset after some fixed
time 7. This way only the most frequently called functions are compiled.
With compilation based on a per function basis, as opposed to a per
module bases, we can keep the code size down, and still gain in performance.

Chapter 4: System Integration 16

By varying the C'and T parameters the same compiler can work in differ-
ent environments (space critical or time critical). We have not investigated
this further, but much work in this direction has been done on SELF by
Holzle [14].

There are a number of analyses that a runtime compiler can do, that are
hard for a static compiler, but we have not explored this field yet. We will
discuss this further in chapter 6.

Chapter 5

Performance Evaluation

We have compared our implementation with emulated JAM 4.3.1, BEAM/T
4.3 and BEAM/C 4.3. BEAM [12] is a register machine originally designed
to be compiled to C. The current implementation supports a direct threaded
emulator (BEAM/T) and compilation via C (BEAM/C).

We have used nine sequential benchmarks to evaluate our compiler. The
size of the benchmarks varied between three lines (fibonacci and length)
and over 1000 lines (raytracer). The measurements were made on a Sun
SPARCsystem 600-4 with 128 megabytes of memory running SunOS 5.5.
Each benchmark runs for approximately 1-2 minutes and was run 3 times
giving a total running time of well over 30 minutes. The benchmarks used
were:

Huffman. A huffman encoder. Compresses and uncompresses a text file of
32 kilobytes. 138 lines.

Smith-Waterman. The Smith-Waterman DNA sequence matching algo-
rithm [18]. Matches a sequence of length 32 to 600 other sequences of
length 32. 68 lines.

Barnes-Hut. Simulates gravitational forces between 1000 bodies. 156 lines.

Raytracer. A ray tracer. Traces a picture with spheres, planes and texture
mapping. Approximately 1000 lines.

Quicksort. Ordinary quicksort. Sorts a list of 15000 random integers 20
times. 16 lines.

Fibonacci. A recursive fibonacci. Calculates fib(30) 10 times. 3 lines.

Length. A tail recursive list length function. Takes the length of a 200000
element list 50 times. 3 lines.

Naive reverse. Naive reverse of a 1000 element list 20 times. 8 lines.

17

Chapter 5: Performance Evaluation 18

Tak. Takeuchi function, recursive arithmetic. Calculates tak(18, 12, 6) 250
times. 9 lines.

5
4
3
2
1 :-
0 :
Native BEAM/C BEAM/T JAM
4.3 4.3 4.3.1

Figure 5.1: A comparison of execution times

Results

On the average our compiler is 55% faster than BEAM/C (60% when ex-
cluding garbage collection time). To get a more detailed picture we take a
look at the benchmarks partitioned into three classes:

Integer. Huffman, Smith-Waterman, Fibonacci, Length, and Tak perform
a lot of integer arithmetic. This is where our compiler does best, on the
average over 2 times faster than BEAM/C. The main reason is that
our compiler does integer arithmetic inline while BEAM/C, mostly
compiles arithmetic operations into function calls.

Floating point. Barnes-Hut and the raytracer use floating point arith-
metic extensively. Both BEAM/C and our compiler perform a sub-
routine call for floating point arithmetic. Our compiler is 20% faster
on these benchmarks.

List processing. Naive reverse and quicksort We are 6% faster on quick-
sort but 27% slower running naive reverse. The reason for this is that
BEAM compiles the function append into a very tight inner loop.

Our compiler gets a speedup of more than four times compared to JAM,
most of which (90%) stems from removal of emulation overhead and avoid-
ing use of the stack. The remaining 10% comes from passing arguments

Chapter 5: Performance Evaluation

19

in registers and optimizations made possible when JAM instructions are
merged into larger pieces of code. As compared to BEAM, and for the same
reason, our compiler is not so much faster than JAM on the floating-point

benchmarks.

Our garbage collection times are 56% less than for the JAM, even though
we use the same garbage collector. We believe that by keeping arguments
and temporary values in registers, and only saving live registers to the stack,

we allow the garbage collector to reclaim more memory.

Benchmark Native | Jam 4.3.1 | BEAM/T 4.3 | BEAM/C 4.3
Huffman 1.00 9.03 4.45 2.31
Smith-Waterman 1.00 4.94 3.77 1.86
Fibonacci 1.00 4.40 6.24 1.84
Length 1.00 8.51 5.58 2.13
Tak 1.00 4.88 4.87 2.50
Barnes-Hut 1.00 1.42 1.81 1.23
Raytracer 1.00 1.77 1.72 1.17
Naive reverse 1.00 5.99 1.82 0.79
Quicksort 1.00 4.36 1.92 1.06
1.00 4.33 3.35 1.55
Table 5.1: Relative execution times
5.1 Effects of Optimizations
30%
25%
20%
15%
10%

5% +

0% -

delay-slot
filling

dead-code

elimination

constant
propagation

argumnets
in regs

Figure 5.2: Optimization gains

fully
optimized

Chapter 5: Performance Evaluation 20

In figure 5.2 we display the effects of our optimizations. We switched off
each optimization, one at a time, and compared the execution times with
the non-optimizing compiler and with the fully optimizating compiler.

Constant propagation, unreachable code elimination, and constant fold-
ing are all done in one pass and cannot be run individually. They are all
accounted for under the label constant propagation. In total, all the opti-
mizations give a useful 28% speedup.

5.2 Code Size

The size of the benchmarks compiled with our compiler grows from 9 kilo-
bytes of JAM code to 196 kilobytes of native code. The code for the same
benchmarks for BEAM/C is 315 kilobytes.

It can be argued that the size of our code is much bigger than JAM
and not significantly smaller than the one generated by BEAM/C; but we
believe that by having the runtime system compile only the most frequently
executed functions, the average code size will not increase much, and the
gain in speed will be almost the same.

5.3 Compilation Speed

Our compiler compiled the benchmarks in 34 seconds (45 seconds including
ERLANG to JAM compilation). BEAM/C compiled the benchmarks in 447
seconds (464 seconds including ERLANG to BEAM compilation).

Chapter 6

Conclusion & Future Work

Our results show that our compiler generates native code which is more
than four times faster than JAM and 55% faster than BEAM compiled
via C. These results are achieved without any optimizations on ERLANG
code, without any global optimizations over functions boundaries, without
inlining, without instruction scheduling, without (major) changes to the
runtime system, and without a type inference system. There is probably a
lot to be gained from a further refined system.

It is not more complicated to compile into native code than into C. One
achieves greater control over the final code and specific information about
the language and runtime system are not lost in the process. Apart from
portability, there are no real reasons to compile ERLANG via C.

Future work.

One aspect that we have not fully examined, is which optimizations we could
do by using information available only at runtime. Examples of possible
optimizations are:

Specializing functions by their actual arguments. By looking at the
actual values that functions are called with, these functions could be
specialized with respect to the types or maybe even the values them-
selves [14, 16, 15].

Ordering function clauses after use. The function clause that is taken
most often should be tried first. Most ERLANG programmers knows
this and places, for example, the test for the empty list last. But it is
not always trivial to see beforehand which clause to place first. The
compiler can profile running code to infer this, and rearrange the code
accordingly.

Tuning branch instructions. A similar optimization on a lower level is
to profile each branch instruction. Then the code could be rearranged

21

Chapter 6: Conclusion & Future Work 22

in order to make branch prediction easier for the processor [6].

Storing often executed basic blocks together. The profiling informa-
tion generated (at runtime) by the above mentioned techniques could
also be used to find the most frequently executed basic blocks. These
could then be stored together to improve instruction cache behav-
ior [17].

We plan to examine these possibilities, and at the same time try to find
other possible techniques. We also plan to examine the behavior of adaptive
compilation, to see how much faster a system can get with limited increase
in code size, by letting the compiler decide which functions to compile.

Bibliography

1]

[10]

Ano, V. A., SETHI, R. AND ULLMAN, J. D., Compilers: Principles,
Techniques, and Tools. Addison-Wesley 1986.

Air-KAci, H., Warren’s Abstract Machine, MIT Press, 1991.

ARMSTRONG, J. L., DACKER, B. O., VIRDING, S. R. AND WILLIAMS,
M. C., Implementing a Functional Language for Highly Parallel Real
Time Applications. SETSS 92, 30th March to 1st April 1992, Florence.

ArRMSTRONG, J. L., VIRDING, S. R., WiksTROM, C., AND
WiLLiamMs, M. C., Concurrent Programming in Erlang. Prentice Hall,
second edition, 1996.

Briaas, P., Coorer, K. D., AND TORCZON, L., Improvements to
graph coloring register allocation. ACM transactions on programming
languages and systems 16, 3 (May 1994), pp. 428-455.

CALDER, B., GRUNWALD, D., Reducing Branch Costs via Branch
Alignment. Proceedings of the Fourth International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS IV), April 1991. pp. 242-251.

CHAITIN, G. J., AUSLANDER, M. A., CHANDRA, A. K., COCKE,
J., Hopkins, M.E., AND MARKSTEIN, P. W., Register allocation via
coloring. Computer Languages 6, (January 1981), pp. 47-57.

CHAITIN, G. J., Register allocation and spilling via graph coloring.
SIGPLAN Notices 17, 6 (June 1982), pp. 98-105. Proceeding of the
ACM SIGPLAN’82 Symposium on Compiler Construction.

CHAMBERS, C., The Design and Implementation of the SELF Com-
piler, an Optimizing Compiler for Object-Oriented Programming Lan-
guages. PhD thesis, Stanford University, Stanford, California, March
1992. Tech Report STAN-CS-92-1420.

ErTL, M. A., A New Approach to Forth Native Code Generation.
EuroForth ’92, pp. 73-78.

23

[11]

[17]

18]

[19]

HAycoobp, R. C., Native Code Compilation in SICStus Prolog. In-
ternational Conference on Logic Programming 1994, pp. 191-204. MIT
Press, 1994.

HausmAN, B., Turbo Erlang: Approaching the Speed of C. Implemen-
tations of Logic Programming Systems, pp. 119-135, Kluwer Academic
Publishers, 1994.

HENNESSY, J., L., PATTERSON, D., A., Computer Architecture, a
Quantitative Approach. Morgan Kaufmann Publishers, 1990.

HoLzLE, U., Adaptive Optimization for Self: Reconciling High Perfor-
mance with Exploratory Programming. Ph.D. thesis, Computer Science
Department, Stanford University, August 1994.

LEg, P. AND LEONE, M., Optimizing ML with Run-Time Code Gen-
eration. ACM SIGPLAN ’96 Conference on Programming Langauge
Design and Implementation, 1996.

LEONE, M. AND LEE, P., Lightweight Run-Time Code Generation.
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, pp. 97-106, June 1994.

McFARLING, S., Procedure Merging with Instruction Caches. ACM
SIGPLAN ’91 Conference on Programming Langauge Design and Im-
plementation, 1991. pp. 71-79.

SmiTH, T. F., AND WATERMAN, M. S., Identification of common

molecular subsequences. Journal of Molecular Biology 147, 1981, pp.
195-197.

The SPARC Architecture Manual, Version 8, Prentice Hall, 1992.

24

Appendix A

The JAM Instruction set

alloc_{n}.! (0 <n < 15) Allocate space for n variables.
allocN(NN). Allocate space for N variables.
apply_call. Call the function indicated by the top of the stack.

apply_enter. Perform a tail-optimised call to the function indicated by the
top of the stack.

arg {n}.! (0 <n < 15) Push argument n on the stack.
argIN (V). Push argument N on the stack.
arith_{plus,minus,times,div}. Arithmetic operations.

arith_{band,bor,bxor,bnot,bsl,bsr,rem,intdiv,neg}. Bitwise arithmetic
(on integers only).

bif_call(Bif). Call the bif Bif.
bif_enter(Bif). Call the bif Bif, and then return.
call_local(Arity, Offset). Call the function of arity Arity at PC + Offset.

call remote(Arity, Function). Call the remote function of arity Arity by
looking in the export table for Function.

commit. Set FAIL_PC to NULL and FAIL_REASON to ”Bad match”.
comp_{gt,lt,geq,leq}. Compare the two top stack positions.
comp_{eqeq,neq}. Test for equality of the top two stack positions.

die. Kill the process.

116 different instructions.

25

Appendix A

dup. Duplicate the top of stack.

enter_local(Arity, Offset). Perform a tail-optimised call to the local func-
tion of arity Arity at PC + Offset.

enter_remote(Arity, Function). Perform a tail-optimised call to the re-
mote function of arity Arity, by looking in the export table for Function.

eqArg {n}.! (0 <n < 15) Fail if argument n is not equal to the top of the
stack.

eqArgN(N). Fail if argument N is not equal to the top of the stack.

eqVar_{n}.! (0 < n < 15) Fail if variable n is not equal to the top of the
stack.

eqVarN(N). Fail if variable N is not equal to the top of the stack.
failCase. Fail with reason ”case clause”.

faillf. Fail with reason "if clause”.

getAtom(A). Check that the top of the stack contains the atom A.
getFloat(F). Checks that the top of the stack contains the float F'.

getInt_{n}.! (0 < n < 15) Check that the top of the stack contains the
integer n.

getInt1(N). Check that the top of the stack contains the integer N (N <
256).

getInt4(N). Check that the top of the stack contains the integer N.

getIntN(N, D1, D2, ..., DN). Check that the top of the stack contains the
(bignum) integer with the (16 bit) digits D1 to DN.

getNil. Check that the top of the stack contains the empty list nil.

getStr(N, E1, E2,..., EN). Match the top of the stack with a list of length
N, containing the elements E£1 to EN.

goto(Offset). Set PC to PC + Offset.

hash(H). Hash the argument on the stack with the hash value H.
head. Take the head of the list on the stack.

heap_need(N). Make sure that there is space for N word on the heap.

list_length. Calculate the length of the (well formed) list on the stack.

26

Appendix A

mkList. Make a list of the two top positions of the stack.

mkTuple_{n}.! (0 < n < 15) Make a tuple of size n, of the n top positions
of the stack.

mkTupleN(N). Make a tuple of size N, of the N top positions of the stack.
pop. Pop.

popCatch. Remove the catch on the top of the stack.

popCommit. Do a pop and a commit.

popCommitJoin. Do a pop, a commit, and remove the first message from
the message queue.

pushAtom(A). Push the atom A.

pushCatch(Offset). Push the address of PC+ Offset as a catch.
pushFloat(F'). Makes a float of F.

pushInt {n}.! (0 <n < 15) Push the integer n.

pushInt1(N). Push the integer N (N < 256).

pushInt4(N). Push the integer N.

pushIntN(N, D1, D2,..., DN). Push the (bignum) integer with the (16
bit) digits D1 to DN.

pushNil. Push the empty list nil.

pushStr(N, E1,E2,...., EN). Create a list of length n on the heap, con-
taining the elements E1 to EN.

pushVar_{n}.! (0 < n < 15) Push the variable n on the stack.
pushVarN(N). Push variable n on the stack.

ret. Return from a function. Pop the call frame from the stack and move
the return value to the new top of the stack.

save. Look at the next message in the message queue.
self. Pushes the process id on the stack.

send. The top of the stack contains a message followed by the recipient of
the message. Send this message.

setTimeout. Set the timeout to be used with Wait1.

27

Appendix A

stack_need(N). Make sure that there is space for N words on the stack.
storeVar_{n}.! (0 <n < 15) Put the top of the stack in variable n.
storeVarN(N). Put the top of the stack in variable N.

tail. Take the tail of the list on the stack.

test_{integer,float,number,atom,...}. Test the type of the top of the
stack.

try_me_else(Offset). Set FAIL_PC to PC+ Offset, and save STOP.

try_me_else_fail. Set FAIL_PC to NULL and FAIL_REASON to ”Bad
match”.

type(Mask). Check that the top of the stack contains an argument of a
type in the mask Mask.

unpkList. Get the head and the tail of the list on the stack.
unpkTuple_{n}.! (0 <n < 15) Get elements of tuple of size n.
unpkTupleN(N). Get elements of tuple of size N.

wait. Push the next message in the queue onto the stack, or reschedule it
if there are no messages.

wait1l(Offset). As wait, but if a timeout has occured set PC to PC+ Offset.

28

Appendix B

Translation scheme

This appendix contains examples of the three-address code that some JAM
instructions are translated to. Since the compiler uses a virtual stack, ref-
erences to the stack are turned into register references by VSP(z), which
returns the register at the zth stack position.

Names inside < and > are addresses either inside the emulator or to
libraries of native code. The name emu_arg refers to an array in the emulator
that are used for passing arguments to routines in the emulator.

Word in all capital letters are either registers (e. g. STOP) or constants
(e. g. INTEGER).

The function get_arg(N) returns either a register or a memory reference,
depending on whether argument N resides in a register or not.

Words inside curly brackets ({,}) are to be treated as meta variables.

‘ JAM-instructions H Three-address instructions ‘

alloc(N) Generates no code
argN(N) VSP(0) := get_arg(N)

Table B.1: Stack instructions

29

Appendix B

JAM-instructions

Three-address instructions

comp_gt

rl := get_arg(l)

r2 := get_arg(2)

r3 := r2 & MASK

if r3 != INTEGER then L5
L3: r4 := r1 & MASK

if r4 != INTEGER then L5
L4: rl1 :=r1 << 0x4

r2 := r2 << 0x4

rl :=rl1 - r2

goto L6
L5: save_state

call <test_gt>

rl := restore_state

With else clause
L6: if r1 <= 0x0 then labell
. Success

labell:
. try_me

Without else clause
L6: if r1 > 0x0 then L7
. Success

L7: EMU_ARG[O] := BAD_MATCH
STOP[0] := ri
STOP := STOP + 0x4
goto <emu_fail>

commit

Generates no code

dup

VSP(0) := VSP(-1)

Table B.2: Test Instructions

‘ JAM-instructions H Three-address instructions ‘

die

EMU_ARG[O] := KILLED
STOP[0] := VSP(-1)
STOP := STOP + 0x4
goto <emu_fail>

Table B.3: Process instructions

30

Appendix B

‘ JAM-instructions H

Three-address instructions

arith_{op}

Li:

L2:

L3:

L4:

L5:

L6:

t1 := VSP(-1) >> 0Oxlc
if t1 != Ox1 then goto
t2 := VSP(-2) >> 0Oxlc
if €2 != O0x1 then goto
t3 := VSP(-1) << 0x4
t4 := VSP(-2) << 0x4
tb = t3 >>7 0x4

t6 := t4 >>7 0x4

t7 := t5 {op} t6

t8 := t7 >> 0x1b

if €8 != 0x0 then goto
t9 := t7 | INT_TAG
goto L6

t7 := t7 not MASK

if t8 == Ox1f then goto
save

ARG_REG_1 := VSP(-1)
ARG_REG_2 := VSP(-2)
call <arith_{op}>

t9 := restore

VSP(-1) := t9

L5

L5

L4

L3

Table B.4: Arithmetic instructions

31

Appendix B

‘ JAM-instructions H Three-address instructions

apply_call

save

STOP[0] := VSP(-1)
STOP[4] := VSP(-2)
STOP[8] := VSP(-3)

STOP := STOP + 0xC
goto <emu_apply_call>

restore

apply_enter STOP[0] := VSP(-1)
STOP[4] := VSP(-2)
STOP[8] := VSP(-3)

STOP := STOP + 0xC
goto <emu_apply_enter>

call_local

Li:

L2:

L3:

L4:

L8:

if ST_MAX >= STOP then L2
save

call <inc stack>

restore

REDS := REDS + Ox1

if 0x7d0 > REDS then L4
save

call <swap out>

restore

save

STOP[0] := VSP(-1)
tl := &L5

STOP[4] := t1
STOP[8] := 0x0
STOP[12] := ARGS
STOP[16] := VARS
ARGS := STOP

STOP := STOP + 0x14
VARS := STOP

call &fun

VSP(-1) := restore

Table B.5: Call instructions

32

