
Uppsala Master's Theses inComputing Science 100Examensarbete DV3October 2, 1996ISSN 1100{1836
Native Code Compilationfor Erlang
Erik Johansson & Christer Jonsson

Computing Science DepartmentUppsala UniversityBox 311S-751 05 UppsalaSweden
Examiner: H�akan MillrothPassed:

AbstractWe describe the design and implementation of a native compiler for Er-lang, built on top of an existing emulated implementation. Many Erlang-programs are time-critical, and as Erlang becomes more widely used, theneed for fast implementations increase. We show how simple native compila-tion can increase the speed of Erlang programs, even compared to Erlangprograms compiled via C. Several benchmark programs are examined andthe results analysed, showing that our simple method gives a considerablegain in execution speed over current implementations.

Contents
1 Introduction 12 JAM 32.1 Registers . 32.2 Data Representation . 42.3 Code . 42.4 Calls . 42.5 Concurrency . 53 The Compiler 63.1 Translation . 73.1.1 Large Instructions . 73.1.2 Failure . 83.2 Optimization . 93.2.1 Constant propagation 93.2.2 Constant folding . 103.2.3 Unreachable code elimination 103.2.4 Dead code removal . 103.2.5 An Example . 113.3 Machine speci�c transformations 113.3.1 Delay-slot �lling . 123.4 Register Allocation . 124 System Integration 134.1 Function Information . 134.2 Calls and Return . 134.3 Hot Code Loading . 154.4 Adaptive Compilation . 155 Performance Evaluation 175.1 E�ects of Optimizations . 195.2 Code Size . 205.3 Compilation Speed . 20i

6 Conclusion & Future Work 21A The JAM Instruction set 25B Translation scheme 29

List of Figures2.1 Representation of the term f42, [foo, bar]g. 42.2 The stack after a call. 53.1 An Erlang function that returns 1 when called with theempty list, and 0 otherwise. 83.2 The JAM code for the function in �gure 3.1. 93.3 The native code for the function in �gure 3.1. The RETURNinstruction actually expands to seven machine instructions. . 93.4 An Erlang function calculating the length of a list. 113.5 Optimizing the function length. 114.1 A call and return from a native function to a JAM-function . 155.1 A comparison of execution times 185.2 Optimization gains . 19

iii

List of Tables5.1 Relative execution times . 19B.1 Stack instructions . 29B.2 Test Instructions . 30B.3 Process instructions . 30B.4 Arithmetic instructions . 31B.5 Call instructions . 32

iv

Chapter 1IntroductionIn this paper we will present a straightforward implementation of a nativecode compiler for Erlang[4]. Erlang is a functional programming lan-guage intended for use in telecommunication switches with high demandson availability. This intention has led to the demand that Erlang objectcode should be small, and that it should be replaceable at runtime (hot codeloading). These requirements makes it natural to implement Erlang usinga byte code emulator. Since it is hard to implement a fast emulator, otherapproaches are desirable. One approach is to compile Erlang into C, andthen compiling the C code into native code. Good optimizing compilers arewidely available for C, making it possible to generate e�cient and portablecode. However, there are drawbacks to such an approach:� Many Erlang features, such as tail-call optimization and hot codeloading, are di�cult to implement in C.� Information is lost in the translation to C, making some optimisationimpossible, for the C compiler.� An extra (often expensive) compilation step is required.� The resulting object code is large.We think that these limitations can be avoided, at the cost of portability,by compiling directly to native code.ApproachWe wanted to test this hypothesis, without having to write a complete Er-lang system. By building our compiler on top of JAM (see chapter 2) wegot a complete system up and running, in less than six months. The com-piler is implemented as a runtime compiler that produces native code forthe SPARC architecture. 1

Chapter 1: Introduction 2Runtime compilation opens the way for numerous optimization tech-niques. We have not explored these yet, and therefore this paper concen-trates on native compilation as such, and not on runtime compilation. How-ever, we plan to extend our compiler with runtime optimizations.Our main interest lies in examining the possible gains of native compi-lation, and not in general ways of improving upon previous Erlang im-plementations. Therefore we have not made any changes to the rest of theruntime system. To clearly see the e�ect of native compilation, we haveconcentrated our work on sequential Erlang code.Related WorkCompilation of Erlang to C has been implemented by Hausman in hisBEAM compiler [12], and we have compared our results with this compiler.Inspiration to our work comes from many sources:� Ertl [10] has inspired us with his work on compiling stack machines.� Haygood [11] has described native compilation for SICStus Prolog.� Runtime compilation has been examined by several researchers, forexample Chambers [9], and Leone and Lee [16, 15].ResultsOn the average, our compiler is 55% faster thanErlang compiled via C, andmore than four times faster than emulated Erlang. Our generated code isabout 60% smaller than Erlang compiled via C. The compiler generatescode from byte code to native code an order of magnitude faster than GCCcompiles from C to object code.Bear in mind that these results are for sequential code, and that for typ-ical Erlang programs, utilizing processes and message passing, the overallperformance increase might not be as large.

Chapter 2JAMWe have built our compiler on top of JAM [3], which is a stack based bytecode emulator for Erlang. Erlang is a dynamically typed functionalprogramming language, with built in support for processes and communica-tion. No destructive updates of variables and data structures are allowed,and memory is managed automatically. The language has been inspired byML, Prolog, and other declarative languages, and it supports for examplepattern matching.Joes Abstract Machine, or JAM, is named after its �rst implementatorJoe Armstrong, who also is one of the chief architects behind Erlang. Inthis chapter we survey the inner workings of JAM.2.1 RegistersJAM uses the following registers:PC - Pointer to the next instruction to execute.STOP - Pointer to the stack top of the active process.HTOP - Pointer to the heap top of the active process.ARGS - Pointer to the �rst argument (on the stack) of the current function.VARS - Pointer to the �rst local variable on the stack.FAIL PC - Address where execution should continue after a failure.FAIL REASON - The reason for the failure.P - Pointer to the process control block (PCB).
3

Chapter 2: JAM 4
TUPLE

ATOM foo

LIST

barATOM

NIL

LIST

INT

2

42

ARITY

Figure 2.1: Representation of the term f42, [foo, bar]g.2.2 Data RepresentationAll basic values are represented in one machine word (in this case 32 bits).A tag is stored in the four most signi�cant bits, leaving 28 bits for the value.Small integers, atoms and nil (the empty list) can be stored directly in amachine word. For more complex values, such as lists and tuples, a pointerto a heap-allocated object is stored in the word.A list cell on the heap is just two consecutive words. Tuples start witha header containing the arity of the tuple, followed by its elements.2.3 CodeThe JAM instruction set (described in Appendix A) is implemented withbyte codes, making it compact. Code is patched at load time (for examplewith indexes into the atom table). A module in Erlang is a collection offunctions sharing the same name space. Code is loaded one module at thetime, when needed.2.4 CallsBefore entering a function, the function arguments are pushed on the stack.Then a stack frame is written, containing the return address, a pointer tothe code of the calling function (CC), and the old values of ARGS and VARS(see �gure 2.2). ARGS is set to point to the �rst argument, and VARS topoint to the �rst free stack position. When the function returns, the frameis popped from the stack and the return value is pushed (in the same stackposition as the �rst argument).The JAM compiler recognizes tail calls, that is, calls that are the lastinstruction in a function. Before a tail call the current stack frame can befreed, making it possible to execute loops in constant stack space. This iscalled tail call optimization or last call optimization.

Chapter 2: JAM 5
Ret. Addr

CC

ARGS’

VARS’

Argument 1

Argument N

VARS

ST

ARGS

Figure 2.2: The stack after a call.According to the speci�cation of Erlang, there are two types of calls,local calls (calls within a module,) and remote calls (calls to functions inother modules). Since all functions in a module are loaded at the same timethe address of a local call can be determined at compile time. The addressof a remote call on the other hand, can change at runtime and the emulatorperforms a table lookup for each remote call.2.5 ConcurrencyA prominent feature of Erlang is its ability to handle many lightweightprocesses and to supply constructs for message passing between these pro-cesses.In JAM, each process has its own process control block (PCB), stack,and heap. When a process is not executing the registers of the abstractmachine are stored in the PCB.A scheduler queue is maintained, containing processes awaiting execu-tion. These processes are scheduled on a round robin basis. A processexecutes until it either waits for a message, or has consumed its time slice.The time slice is set to a number of reductions (function calls). When aprocess has used up its time slice it is swapped out, and placed last in thescheduler queue.Message passing is implemented by the sending process copying the mes-sage into the heap of the receiving process. After the message is written, apointer to the message is inserted into the message queue of the receivingprocess and the receiving process is added to the scheduler queue (if it isnot there already).

Chapter 3The CompilerOur compiler compiles from JAM code instead of compiling from Erlangsource code. This might seem as a disadvantage at �rst, since higher leveloptimizations will be hard to implement. But this approach has severaladvantages:� Compilation on a function basis. The compiler does not have tocompile a complete module, but can compile each function separately,saving space and compilation time.� No source code necessary. Since the compilation starts from JAMcode, the Erlang source code need not be available. Functions in thestandard libraries can be compiled to native code1.� Easy compilation. The JAM code is easier to compile than ordinaryErlang code.The compilation consists of these stages:Translation. In this stage, the JAM code is translated into intermediate-code. We use techniques worked out by Ertl [10] to translate stackbased JAM code to register code.Optimization. After the translation the compiler make some global (in thesense of reaching over the whole function) transformations, performingsome standard optimizations, such as constant propagation and deadcode elimination.Machine speci�c transformations. At this stage the code is adapted forthe target architecture, in this case the SPARC.1You would not believe the gain in speed that can be achieved by compiling the listsmodule. 6

Chapter 3: The Compiler 7Register Allocation. The process of deciding which register to keep avalue in is called register allocation. It is desirable that as many valuesas possible are held in registers for their whole lifetime. Graph coloringregister allocation as described by Chaitin et al. [7, 8] is used to achievethis.Assembly. In the �nal stage of the compilation the size of the generatedcode is calculated, memory is allocated, and the actual machine in-structions are written to memory.3.1 TranslationSince SPARC is a register machine, it is desirable to use the JAM stack aslittle as possible. There are several possible solutions to this problem. Oneapproach would be to keep the stack as it is and by means of analysis, keepthe most used stack positions in registers.We have chosen another approach. Inspired by Ertl's [10] work on Forth,we wanted to transform all stack references to register references in thetranslation stage.A virtual stack is maintained during translation, corresponding to whatthe real stack would look like at runtime. By assigning registers to eachposition in this virtual stack, each temporary value on the JAM stack isassigned a register, resulting in fewer memory references. Stack operationslike pop and alloc only a�ect the virtual stack at compile time, and do notgenerate any code.3.1.1 Large InstructionsSome large instructions (such as send) are still executed in the emulator toavoid code explosion. These are mainly instructions that already have largeoverheads. Another approach would be to create a library of these functionsin native code. In fact, that is what we have done for some of the arithmeticinstructions.The types of the arguments to an arithmetic expression in Erlang canbe either one of integer2,
oat, or bignum3. Generating native code forall possible combinations induces severe code bloat. We have opted for asolution where integer addition and subtraction is done inline. Floatingpoint arithmetic is done with calls to machine code routines. Calls to theseroutines are cheaper than calls to the emulator since they share the sameexecution environment as our native code. The rest of the arithmetic usesthe original code in the emulator.2i. e., �xed precision integers.3i. e., Arbitrary precision numbers.

Chapter 3: The Compiler 8is nil([]) -> 1;is nil() -> 0Figure 3.1: An Erlang function that returns 1 when called with the emptylist, and 0 otherwise.All built in functions (bifs) are executed by the emulator, although somebifs probably could be inlined. As an optimization, our compiler determinesthe address at compile time (in contrast to JAM, which determines theaddress of the bif at execution time).3.1.2 FailureIn Erlang, choice and
ow of control is done by pattern matching. Eachavailable choice is tested until a match occurs. This is achieved by use of theinstructions try me else, try me else fail, commit, and test instructionsthat can succeed or fail. Consider the function is nil/1 in �gure 3.1. Thisfunction will be compiled to JAM code as follows. The �rst instruction ofthe �rst clause will be the instruction try me else(label1), indicating thatthere is another clause to try if a failure should occur while matching the�rst clause.Then the argument to the function has to be tested, to examine if it isnil. Therefore the instructions arg(0) and getNil are generated, to pushthe �rst argument on the stack and to test if the top of the stack containsnil. If getNil fails (because the stack top does not contain nil) thenthe execution will continue at label1. Otherwise execution will continuewith the next instruction. Since the function head has been matched, theexecution is now commited to the �rst clause.After the commit instruction, code for the body of the �rst functionclause will be generated. Giving the instructions push int(1) and ret,indicating that the function should return with the value 1.Then the second clause will be compiled. This clause will begin withthe label label1. After the label, a try me else fail instruction will begenerated, indicating that if the function head cannot be matched now, thenthe process should fail.Since the second clause accepts any argument, no code will be generatedto test the arguments. Instead a new commit instruction and the code for thebody of this clause is generated. The complete JAM code for the functioncan be found in �gure 3.2.In our compiler the location of each label is determined at compile timeand test instructions that will not generate a real fail, are compiled tobranches to the corresponding label. The native code for the function canbe found in �gure 3.3.

Chapter 3: The Compiler 9try me else(label1)arg(0)getNilcommitpushInt(1)retlabel1: try me else failcommitpushInt(0)retFigure 3.2: The JAM code for the function in �gure 3.1.r1 := VARS[-20]if r1 != nil then L2r1 := 0x10000001RETURN(r1)L2: r1 := 0x10000000RETURN(r1)Figure 3.3: The native code for the function in �gure 3.1. The RETURNinstruction actually expands to seven machine instructions.3.2 OptimizationAll our optimizations depend on global data-
ow analysis. Data-
ow infor-mation is collected by setting up and solving systems of equations [1, ch.10].3.2.1 Constant propagationIf an instruction assigns a constant value to a register, this value is propa-gated through the code, and used instead of the register in all instructionsbetween this instruction and the �rst instruction that writes to this register.t1 := 1t2 := t1t1 := HTOP[0]t3 := t1 =)constant prop. t1 := 1t2 := 1t1 := HTOP[0]t3 := t1

Chapter 3: The Compiler 103.2.2 Constant foldingIf an instruction performs arithmetic on two constants, the result is com-puted and the instruction is replaced by an instruction that assigns the resultto the destination register.t1 := 1 + 2 =)Constant folding t1 := 3If a branch instruction tests two constants, this instruction is replaced by ajump instruction or removed, depending on the result of the test.if 1 < 2 goto L1 =)Constant folding goto L13.2.3 Unreachable code eliminationBasic blocks that have no predecessors are removed.goto L1t1 := 1L1:t2 := t1 =)Unreachable code goto L1L1:t2 := t13.2.4 Dead code removalIf a value is assigned to a register, and that register is not used after theassignment, then the assignment is removed.t1 := 1t1 := 2 =)Dead code removal t1 := 2

Chapter 3: The Compiler 11len([]) -> 0;len([|L]) -> 1 + len(L).Figure 3.4: An Erlang function calculating the length of a list.3.2.5 An ExampleSince Erlang is dynamically typed, the JAM-code will contain a lot of typetests. These tests can sometimes be removed by our optimizations. Whenthe Erlang function in �gure 3.4 is translated, the code in �gure 3.5 willbe generated for the addition.After register r5 is assigned the tagged integer 1, a recursive call to lenis executed (not shown) and the return value will end up in register r9. Bothregisters are tested if they contains integers; if not, a more complex routineis called (not shown). The tags are then removed from r5 and r9, they aresign extended, added and the result is placed in r15.After constant propagation and constant folding, the test whether r5is an integer (5, 6) is constant, and can be removed. In the same waythe tagging and the sign-extending of r5 (8, 10) are constant and can beremoved. Now the constant 1 can be added directly to r9.This leaves us with only four arithmetic operations and one conditionalbranch, a marked improvement on the original seven arithmetic operations,two conditional branches, and one assignment.1: r5 := 0x100000012: ...3: r11 := r9 >> 0x1c ...4: if r11 != 0x1 goto L13 r11 := r9 >> 0x1c5: r12 := r5 >> 0x1c if r11 != 0x1 goto L136: if r12 != 0x1 goto L13 =) r9 := r9 << 0x47: r9 := r9 << 0x4 r9 := r9 >>? 0x48: r5 := r5 << 0x4 r15 := 0x1 + r99: r9 := r9 >>? 0x410: r5 := r5 >>? 0x411: r15 := r5 + r9Figure 3.5: Optimizing the function length.3.3 Machine speci�c transformationsAfter the optimization phase, the compiler adapts the code to the actualmachine, in this case the SPARC. Most SPARC instructions allow only 13-bit immediates, meaning that instructions with larger immediates must be

Chapter 3: The Compiler 12split into three instructions: two instructions that assigns the immediateto new temporary register, and the original instruction using this registerinstead of the immediate.3.3.1 Delay-slot �llingIn the SPARC architecture, there is a delay-slot after each branch instructionthat can be executed even if the branch is taken. There are considerable per-formance gains to make if these delay slots can be �lled with useful instruc-tions. We do not do a state-of-the-art branch instruction scheduling, butsearch the basic block preceding the branch for a suitable instruction [13].3.4 Register AllocationThe registers in our intermediate code must be assigned to machine regis-ters. We use pessimistic graph coloring register allocation [5, 7, 8]. This isan abstraction of the register allocation problem to a graph coloring prob-lem. Graph coloring is NP-complete so a heuristic method is required. Ourimplementation of the algorithm consists of 4 phases:1. Calculate liveness. We have to know which registers are alive at a spe-ci�c point in the program. This is done by global data
ow analysis [1].2. The liveness information is used to build an interference graph wherethe nodes are registers and an edge between two nodes indicates thatthey are simultaneously live.3. There are K available machine registers, this graph has to be coloredwith K colors. Locate a node with fewer than K neighbours and pushit on a stack. As this node has at most K-1 neighbours, a free colorcan always be found. Remove this node, and its edges, from the graphand repeat this phase until the graph is empty or until no nodes withdegree < K can be found.4. The registers are popped from the stack, inserted back into the graphand given a color that none of its neighbours got.We have not changed the runtime system to be able to handle spilledvalues on the stack. If the graph cannot be colored, the compilation of thefunction fails and the original emulated code is used. This rarely happens(it never happened in our benchmarks).

Chapter 4System IntegrationThe compiler is implemented as a runtime compiler, integrated with JAM.This forces the system to be able to �nd out at runtime if a function iscompiled to native code or not. We will describe how this is solved, alongwith some other aspects of the integration between our compiler and theJAM emulator.4.1 Function InformationWhen the JAM code is loaded the compiler adds a header with informationto each function. A �eld in the header indicates whether the function hasbeen compiled or not, and where the compiled code resides. All headers arelinked together in a list.4.2 Calls and ReturnTo speed up calls, we have replaced the CC �eld in the stack frame with a�eld for the NPC (Native Program Counter). The CC �eld can be removedsince the information stored in it can be found by searching through the listof loaded functions. This search is only needed after a failure, therefore thespeed is not as important as in a call.We have also added four named addresses to the emulator; these are theemulator entry point, the emulator return point, the native entrypoint, and the native return point. When control passes between emu-lated code and native code, it passes through one of these points. Otherwisethe implementation is simple: calls and returns from emulated code to em-ulated code are analogous to the original JAM, while calls and returns fromnative code are ordinary jumps.Let us therefore look at calls and returns between emulated and nativecode. 13

Chapter 4: System Integration 14� Call from emulated to native. If the information in the headerof the called function indicates that there is a native version of thefunction then a call to native code will be executed.A call from emulated to native starts out the same way as a call fromemulated to emulated, the stack frame is written in the same way.But after that the execution goes via the native entry point to thenative code. The address of the called function is found in the headerof the JAM function.� Call from native to emulated. A call from native code is executedin the same way regardless of the destination. The value null iswritten to the PC �eld of the stack frame to indicate that the calloriginated from native code. The address of the called function isalways available as an immediate argument to the call instruction.If the called function is not native compiled, then the call passesthrough a stub in the header of the JAM function. In this stub the PCregister is set to point to the address of the JAM function, whereafterexecution enters the emulator via the emulator entry point.� Return from emulated to native.When the emulator reaches a ret instruction it checks whether thePC �eld in the stack frame is null or not. If it contains an addressthen the function returns to an emulated function and execution inthe emulator goes on as usual.If the PC �eld is null then the call originated from native code. There-fore NPC is reset to the value of the NPC �eld in the stack frame, andexecution reenters native code via the emulator return point.� Return from native to emulated. In native code a return alwaysgoes to the address saved in the NPC �eld. If the call came from nativecode then this address will point to native code, and the return willbe a swift one.If, on the other hand, the call came from emulated code then the NPC�eld contains a pointer to the native return point, and executionwill continue in the emulator. In both cases PC has been restored tothe value in the PC �eld by the returning function.With this scheme native-to-native calls and returns are fast; we do nothave to do any runtime tests whatsoever. Calls between emulated and native(and back) are a little bit slower since there is an extra indirection involved.But if a su�cent number of the frequently executed functions are compiled,then there will be few transistions between native code and emulated code.

Chapter 4: System Integration 15

JAM code

Native code

The Emulator

A Jump A ReferenceFigure 4.1: A call and return from a native function to a JAM-function4.3 Hot Code LoadingAs mentioned earlier Erlang supports hot code loading : a code module canbe replaced while the program is running. This means that the address of afunction can change at runtime.In JAM this is solved by determining the destination of a remote call atruntime. In our native code compiler the problem is solved with backpatch-ing.The solution is straightforward. When a function is replaced by newcode all remote callers are patched to call the new emulated function. Sincethe old function should not be backpatched any more, all references to theold function are removed from all backpatch lists.With this approach we achieve higher execution speeds, at the cost ofmarginally slower code loading.4.4 Adaptive CompilationThe fact that the compiler is a runtime compiler opens up the possibility ofletting the compiler choose which functions to compile to native code andwich to leave as byte code. We call this process adaptive compilation [14].Adaptive compilation is achieved by counting the number of calls to eachfunction. When the counter reaches a limit (C), the function is compiled.Over time, those functions that are called most will be compiled. As tonot let every function be compiled, all call counters are reset after some �xedtime T. This way only the most frequently called functions are compiled.With compilation based on a per function basis, as opposed to a permodule bases, we can keep the code size down, and still gain in performance.

Chapter 4: System Integration 16By varying the C and T parameters the same compiler can work in di�er-ent environments (space critical or time critical). We have not investigatedthis further, but much work in this direction has been done on SELF byH�olzle [14].There are a number of analyses that a runtime compiler can do, that arehard for a static compiler, but we have not explored this �eld yet. We willdiscuss this further in chapter 6.

Chapter 5Performance EvaluationWe have compared our implementation with emulated JAM 4.3.1, BEAM/T4.3 and BEAM/C 4.3. BEAM [12] is a register machine originally designedto be compiled to C. The current implementation supports a direct threadedemulator (BEAM/T) and compilation via C (BEAM/C).We have used nine sequential benchmarks to evaluate our compiler. Thesize of the benchmarks varied between three lines (�bonacci and length)and over 1000 lines (raytracer). The measurements were made on a SunSPARCsystem 600-4 with 128 megabytes of memory running SunOS 5.5.Each benchmark runs for approximately 1-2 minutes and was run 3 timesgiving a total running time of well over 30 minutes. The benchmarks usedwere:Hu�man. A hu�man encoder. Compresses and uncompresses a text �le of32 kilobytes. 138 lines.Smith-Waterman. The Smith-Waterman DNA sequence matching algo-rithm [18]. Matches a sequence of length 32 to 600 other sequences oflength 32. 68 lines.Barnes-Hut. Simulates gravitational forces between 1000 bodies. 156 lines.Raytracer. A ray tracer. Traces a picture with spheres, planes and texturemapping. Approximately 1000 lines.Quicksort. Ordinary quicksort. Sorts a list of 15000 random integers 20times. 16 lines.Fibonacci. A recursive �bonacci. Calculates �b(30) 10 times. 3 lines.Length. A tail recursive list length function. Takes the length of a 200000element list 50 times. 3 lines.Naive reverse. Naive reverse of a 1000 element list 20 times. 8 lines.17

Chapter 5: Performance Evaluation 18Tak. Takeuchi function, recursive arithmetic. Calculates tak(18, 12, 6) 250times. 9 lines.

0

1

2

3

4

5

Native BEAM/C
4.3

BEAM/T
4.3

JAM
4.3.1Figure 5.1: A comparison of execution timesResultsOn the average our compiler is 55% faster than BEAM/C (60% when ex-cluding garbage collection time). To get a more detailed picture we take alook at the benchmarks partitioned into three classes:Integer. Hu�man, Smith-Waterman, Fibonacci, Length, and Tak performa lot of integer arithmetic. This is where our compiler does best, on theaverage over 2 times faster than BEAM/C. The main reason is thatour compiler does integer arithmetic inline while BEAM/C, mostlycompiles arithmetic operations into function calls.Floating point. Barnes-Hut and the raytracer use
oating point arith-metic extensively. Both BEAM/C and our compiler perform a sub-routine call for
oating point arithmetic. Our compiler is 20% fasteron these benchmarks.List processing. Naive reverse and quicksort We are 6% faster on quick-sort but 27% slower running naive reverse. The reason for this is thatBEAM compiles the function append into a very tight inner loop.Our compiler gets a speedup of more than four times compared to JAM,most of which (90%) stems from removal of emulation overhead and avoid-ing use of the stack. The remaining 10% comes from passing arguments

Chapter 5: Performance Evaluation 19in registers and optimizations made possible when JAM instructions aremerged into larger pieces of code. As compared to BEAM, and for the samereason, our compiler is not so much faster than JAM on the
oating-pointbenchmarks.Our garbage collection times are 56% less than for the JAM, even thoughwe use the same garbage collector. We believe that by keeping argumentsand temporary values in registers, and only saving live registers to the stack,we allow the garbage collector to reclaim more memory.Benchmark Native Jam 4.3.1 BEAM/T 4.3 BEAM/C 4.3Hu�man 1.00 9.03 4.45 2.31Smith-Waterman 1.00 4.94 3.77 1.86Fibonacci 1.00 4.40 6.24 1.84Length 1.00 8.51 5.58 2.13Tak 1.00 4.88 4.87 2.50Barnes-Hut 1.00 1.42 1.81 1.23Raytracer 1.00 1.77 1.72 1.17Naive reverse 1.00 5.99 1.82 0.79Quicksort 1.00 4.36 1.92 1.061.00 4.33 3.35 1.55Table 5.1: Relative execution times5.1 E�ects of Optimizations

0%

5%

10%

15%

20%

25%

30%

de
la

y-
sl

ot
fil

lin
g

de
ad

-c
od

e
el

im
in

at
io

n

co
ns

ta
nt

pr
op

ag
at

io
n

ar
gu

m
ne

ts
in

 r
eg

s.

fu
lly

op
tim

iz
ed

Figure 5.2: Optimization gains

Chapter 5: Performance Evaluation 20In �gure 5.2 we display the e�ects of our optimizations. We switched o�each optimization, one at a time, and compared the execution times withthe non-optimizing compiler and with the fully optimizating compiler.Constant propagation, unreachable code elimination, and constant fold-ing are all done in one pass and cannot be run individually. They are allaccounted for under the label constant propagation. In total, all the opti-mizations give a useful 28% speedup.5.2 Code SizeThe size of the benchmarks compiled with our compiler grows from 9 kilo-bytes of JAM code to 196 kilobytes of native code. The code for the samebenchmarks for BEAM/C is 315 kilobytes.It can be argued that the size of our code is much bigger than JAMand not signi�cantly smaller than the one generated by BEAM/C; but webelieve that by having the runtime system compile only the most frequentlyexecuted functions, the average code size will not increase much, and thegain in speed will be almost the same.5.3 Compilation SpeedOur compiler compiled the benchmarks in 34 seconds (45 seconds includingErlang to JAM compilation). BEAM/C compiled the benchmarks in 447seconds (464 seconds including Erlang to BEAM compilation).

Chapter 6Conclusion & Future WorkOur results show that our compiler generates native code which is morethan four times faster than JAM and 55% faster than BEAM compiledvia C. These results are achieved without any optimizations on Erlangcode, without any global optimizations over functions boundaries, withoutinlining, without instruction scheduling, without (major) changes to theruntime system, and without a type inference system. There is probably alot to be gained from a further re�ned system.It is not more complicated to compile into native code than into C. Oneachieves greater control over the �nal code and speci�c information aboutthe language and runtime system are not lost in the process. Apart fromportability, there are no real reasons to compile Erlang via C.Future work.One aspect that we have not fully examined, is which optimizations we coulddo by using information available only at runtime. Examples of possibleoptimizations are:Specializing functions by their actual arguments. By looking at theactual values that functions are called with, these functions could bespecialized with respect to the types or maybe even the values them-selves [14, 16, 15].Ordering function clauses after use. The function clause that is takenmost often should be tried �rst. Most Erlang programmers knowsthis and places, for example, the test for the empty list last. But it isnot always trivial to see beforehand which clause to place �rst. Thecompiler can pro�le running code to infer this, and rearrange the codeaccordingly.Tuning branch instructions. A similar optimization on a lower level isto pro�le each branch instruction. Then the code could be rearranged21

Chapter 6: Conclusion & Future Work 22in order to make branch prediction easier for the processor [6].Storing often executed basic blocks together. The pro�ling informa-tion generated (at runtime) by the above mentioned techniques couldalso be used to �nd the most frequently executed basic blocks. Thesecould then be stored together to improve instruction cache behav-ior [17].We plan to examine these possibilities, and at the same time try to �ndother possible techniques. We also plan to examine the behavior of adaptivecompilation, to see how much faster a system can get with limited increasein code size, by letting the compiler decide which functions to compile.

Bibliography[1] Aho, V. A., Sethi, R. and Ullman, J. D., Compilers: Principles,Techniques, and Tools. Addison-Wesley 1986.[2] A��t-Kaci, H., Warren's Abstract Machine, MIT Press, 1991.[3] Armstrong, J. L., D�acker, B. O., Virding, S. R. and Williams,M. C., Implementing a Functional Language for Highly Parallel RealTime Applications. SETSS 92, 30th March to 1st April 1992, Florence.[4] Armstrong, J. L., Virding, S. R., Wikstr�om, C., andWilliams, M. C., Concurrent Programming in Erlang. Prentice Hall,second edition, 1996.[5] Briggs, P., Cooper, K. D., and Torczon, L., Improvements tograph coloring register allocation. ACM transactions on programminglanguages and systems 16, 3 (May 1994), pp. 428-455.[6] Calder, B., Gr�unwald, D., Reducing Branch Costs via BranchAlignment. Proceedings of the Fourth International Conference on Ar-chitectural Support for Programming Languages and Operating Sys-tems (ASPLOS IV), April 1991. pp. 242-251.[7] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke,J., Hopkins, M.E., and Markstein, P. W., Register allocation viacoloring. Computer Languages 6, (January 1981), pp. 47-57.[8] Chaitin, G. J., Register allocation and spilling via graph coloring.SIGPLAN Notices 17, 6 (June 1982), pp. 98-105. Proceeding of theACM SIGPLAN'82 Symposium on Compiler Construction.[9] Chambers, C., The Design and Implementation of the SELF Com-piler, an Optimizing Compiler for Object-Oriented Programming Lan-guages. PhD thesis, Stanford University, Stanford, California, March1992. Tech Report STAN-CS-92-1420.[10] Ertl, M. A., A New Approach to Forth Native Code Generation.EuroForth '92, pp. 73-78. 23

[11] Haygood, R. C., Native Code Compilation in SICStus Prolog. In-ternational Conference on Logic Programming 1994, pp. 191-204. MITPress, 1994.[12] Hausman, B., Turbo Erlang: Approaching the Speed of C. Implemen-tations of Logic Programming Systems, pp. 119-135, Kluwer AcademicPublishers, 1994.[13] Hennessy, J., L., Patterson, D., A., Computer Architecture, aQuantitative Approach. Morgan Kaufmann Publishers, 1990.[14] H�olzle, U., Adaptive Optimization for Self: Reconciling High Perfor-mance with Exploratory Programming. Ph.D. thesis, Computer ScienceDepartment, Stanford University, August 1994.[15] Lee, P. and Leone, M., Optimizing ML with Run-Time Code Gen-eration. ACM SIGPLAN '96 Conference on Programming LangaugeDesign and Implementation, 1996.[16] Leone, M. and Lee, P., Lightweight Run-Time Code Generation.Proceedings of the ACM SIGPLAN Workshop on Partial Evaluationand Semantics-Based Program Manipulation, pp. 97-106, June 1994.[17] McFarling, S., Procedure Merging with Instruction Caches. ACMSIGPLAN '91 Conference on Programming Langauge Design and Im-plementation, 1991. pp. 71-79.[18] Smith, T. F., and Waterman, M. S., Identi�cation of commonmolecular subsequences. Journal of Molecular Biology 147, 1981, pp.195-197.[19] The SPARC Architecture Manual, Version 8, Prentice Hall, 1992.

24

Appendix AThe JAM Instruction setalloc fng.1 (0 � n � 15) Allocate space for n variables.allocN(N). Allocate space for N variables.apply call. Call the function indicated by the top of the stack.apply enter. Perform a tail-optimised call to the function indicated by thetop of the stack.arg fng.1 (0 � n � 15) Push argument n on the stack.argN(N). Push argument N on the stack.arith fplus,minus,times,divg. Arithmetic operations.arith fband,bor,bxor,bnot,bsl,bsr,rem,intdiv,negg. Bitwise arithmetic(on integers only).bif call(Bif). Call the bif Bif .bif enter(Bif). Call the bif Bif , and then return.call local(Arity,O�set). Call the function of arity Arity at PC + O�set.call remote(Arity; Function). Call the remote function of arity Arity bylooking in the export table for Function.commit. Set FAIL PC to NULL and FAIL REASON to "Bad match".comp fgt,lt,geq,leqg. Compare the two top stack positions.comp feqeq,neqg. Test for equality of the top two stack positions.die. Kill the process.116 di�erent instructions. 25

Appendix Adup. Duplicate the top of stack.enter local(Arity,O�set). Perform a tail-optimised call to the local func-tion of arity Arity at PC + O�set.enter remote(Arity; Function). Perform a tail-optimised call to the re-mote function of arityArity, by looking in the export table for Function.eqArg fng.1 (0 � n � 15) Fail if argument n is not equal to the top of thestack.eqArgN(N). Fail if argument N is not equal to the top of the stack.eqVar fng.1 (0 � n � 15) Fail if variable n is not equal to the top of thestack.eqVarN(N). Fail if variable N is not equal to the top of the stack.failCase. Fail with reason "case clause".failIf. Fail with reason "if clause".getAtom(A). Check that the top of the stack contains the atom A.getFloat(F). Checks that the top of the stack contains the
oat F .getInt fng.1 (0 � n � 15) Check that the top of the stack contains theinteger n.getInt1(N). Check that the top of the stack contains the integer N (N <256).getInt4(N). Check that the top of the stack contains the integer N .getIntN(N;D1;D2; :::;DN). Check that the top of the stack contains the(bignum) integer with the (16 bit) digits D1 to DN .getNil. Check that the top of the stack contains the empty list nil.getStr(N;E1; E2; :::; EN). Match the top of the stack with a list of lengthN , containing the elements E1 to EN .goto(O�set). Set PC to PC + O�set.hash(H). Hash the argument on the stack with the hash value H.head. Take the head of the list on the stack.heap need(N). Make sure that there is space for N word on the heap.list length. Calculate the length of the (well formed) list on the stack.26

Appendix AmkList. Make a list of the two top positions of the stack.mkTuple fng.1 (0 � n � 15) Make a tuple of size n, of the n top positionsof the stack.mkTupleN(N). Make a tuple of size N , of the N top positions of the stack.pop. Pop.popCatch. Remove the catch on the top of the stack.popCommit. Do a pop and a commit.popCommitJoin. Do a pop, a commit, and remove the �rst message fromthe message queue.pushAtom(A). Push the atom A.pushCatch(O�set). Push the address of PC+ O�set as a catch.pushFloat(F). Makes a
oat of F .pushInt fng.1 (0 � n � 15) Push the integer n.pushInt1(N). Push the integer N (N < 256).pushInt4(N). Push the integer N .pushIntN(N;D1;D2; :::;DN). Push the (bignum) integer with the (16bit) digits D1 to DN .pushNil. Push the empty list nil.pushStr(N;E1; E2; :::; EN). Create a list of length n on the heap, con-taining the elements E1 to EN .pushVar fng.1 (0 � n � 15) Push the variable n on the stack.pushVarN(N). Push variable n on the stack.ret. Return from a function. Pop the call frame from the stack and movethe return value to the new top of the stack.save. Look at the next message in the message queue.self. Pushes the process id on the stack.send. The top of the stack contains a message followed by the recipient ofthe message. Send this message.setTimeout. Set the timeout to be used with Wait1.27

Appendix Astack need(N). Make sure that there is space for N words on the stack.storeVar fng.1 (0 � n � 15) Put the top of the stack in variable n.storeVarN(N). Put the top of the stack in variable N .tail. Take the tail of the list on the stack.test finteger,
oat,number,atom,...g. Test the type of the top of thestack.try me else(O�set). Set FAIL PC to PC+O�set, and save STOP.try me else fail. Set FAIL PC to NULL and FAIL REASON to "Badmatch".type(Mask). Check that the top of the stack contains an argument of atype in the mask Mask.unpkList. Get the head and the tail of the list on the stack.unpkTuple fng.1 (0 � n � 15) Get elements of tuple of size n.unpkTupleN(N). Get elements of tuple of size N .wait. Push the next message in the queue onto the stack, or reschedule itif there are no messages.wait1(O�set). As wait, but if a timeout has occured set PC to PC+ O�set.

28

Appendix BTranslation schemeThis appendix contains examples of the three-address code that some JAMinstructions are translated to. Since the compiler uses a virtual stack, ref-erences to the stack are turned into register references by VSP(x), whichreturns the register at the xth stack position.Names inside < and > are addresses either inside the emulator or tolibraries of native code. The name emu arg refers to an array in the emulatorthat are used for passing arguments to routines in the emulator.Word in all capital letters are either registers (e. g. STOP) or constants(e. g. INTEGER).The function get arg(N) returns either a register or a memory reference,depending on whether argument N resides in a register or not.Words inside curly brackets (f,g) are to be treated as meta variables.JAM-instructions Three-address instructionsalloc(N) Generates no codeargN(N) VSP(0) := get_arg(N)Table B.1: Stack instructions

29

Appendix BJAM-instructions Three-address instructionscomp gt r1 := get_arg(1)r2 := get_arg(2)r3 := r2 & MASKif r3 != INTEGER then L5L3: r4 := r1 & MASKif r4 != INTEGER then L5L4: r1 := r1 << 0x4r2 := r2 << 0x4r1 := r1 - r2goto L6L5: save_statecall <test_gt>r1 := restore_stateWith else clauseL6: if r1 <= 0x0 then label1... Successlabel1:... try_meWithout else clauseL6: if r1 > 0x0 then L7... SuccessL7: EMU_ARG[0] := BAD_MATCHSTOP[0] := r1STOP := STOP + 0x4goto <emu_fail>commit Generates no codedup VSP(0) := VSP(-1)Table B.2: Test InstructionsJAM-instructions Three-address instructionsdie EMU_ARG[0] := KILLEDSTOP[0] := VSP(-1)STOP := STOP + 0x4goto <emu_fail>Table B.3: Process instructions30

Appendix B

JAM-instructions Three-address instructionsarith fopg t1 := VSP(-1) >> 0x1cif t1 != 0x1 then goto L5L1: t2 := VSP(-2) >> 0x1cif t2 != 0x1 then goto L5L2: t3 := VSP(-1) << 0x4t4 := VSP(-2) << 0x4t5 := t3 >>? 0x4t6 := t4 >>? 0x4t7 := t5 {op} t6t8 := t7 >> 0x1bif t8 != 0x0 then goto L4L3: t9 := t7 | INT_TAGgoto L6L4: t7 := t7 not MASKif t8 == 0x1f then goto L3L5: saveARG_REG_1 := VSP(-1)ARG_REG_2 := VSP(-2)call <arith_{op}>t9 := restoreL6: VSP(-1) := t9Table B.4: Arithmetic instructions

31

Appendix B
JAM-instructions Three-address instructionsapply call saveSTOP[0] := VSP(-1)STOP[4] := VSP(-2)STOP[8] := VSP(-3)STOP := STOP + 0xCgoto <emu_apply_call>restoreapply enter STOP[0] := VSP(-1)STOP[4] := VSP(-2)STOP[8] := VSP(-3)STOP := STOP + 0xCgoto <emu_apply_enter>call local if ST_MAX >= STOP then L2L1: savecall <inc stack>restoreL2: REDS := REDS + 0x1if 0x7d0 > REDS then L4L3: savecall <swap out>restoreL4: saveSTOP[0] := VSP(-1)t1 := &L5STOP[4] := t1STOP[8] := 0x0STOP[12] := ARGSSTOP[16] := VARSARGS := STOPSTOP := STOP + 0x14VARS := STOPcall &funL8: VSP(-1) := restoreTable B.5: Call instructions

32

