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We also show that by appropriate rounding of intermediate values, we canbound the number of bits required to represent all complex numbers occurringas intermediate quantities in the computation. The result is that we can re-strict the numbers we use in every basic arithmetic operation to those havingreal and imaginary parts with at most � bits, where� = � + 2n2m+ 3(n+ logn+ 1) + n2(1 + 2 logn) + log lognand � = �+ 2n+ nm + log logn+ 5Thus, in the Boolean model, the overall work complexity of the algorithm isonly increased by a multiplicative factor ofM(�) (whereM( ) = O( (log ) log log )is the bit complexity for multiplication of integers of length  )The key result, on which the algorithm is based, is a new theorem of Copper-smith and Ne� relating the geometric distribution of the zeros of a polynomialto the distribution of the zeros of its high order derivatives, and introduce sev-eral new techniques (splitting sets and `centered' points) which hinge on it.We also observe that our root �nding algorithm can be e�ciently parallelizedto run in parallel time O(log6 n log b) using n processors.1 IntroductionIn this paper we shall consider the computational version of the ubiquitousFundamental Theorem of Algebra, which of course says that for any polyno-mial f 2 C[z] of degree n, there are exactly n complex numbers z1; : : : ; znsuch that f(z) = a nYi=1(z � zi)2



where a is the leading coe�cient of f . The problem which we solve in thispaper { known as The Complex Roots Problem { is to �nd arbitrarily accu-rate approximations, wi, to the actual roots, zi, of f , using only elementaryarithmetic operations and comparisons. Moreover, the goal is to do this ase�ciently as possible, that is, to perform as few of the elementary operations(steps) as possible.The number of steps will obviously depend on the nature of the input poly-nomial and on the precision required, so we need some measure of the \size"of a problem instance, and will then seek to put an upper bound on thenumber of steps required which is a function of the size. To that end, we �xour input form as follows.Let f(z) 2 C[z] be a monic univariate polynomial of degree n with coe�-cients over the complex numbers C, written asf(z) = z + n�1Xi=0 cizi :Let m be the smallest integer such thatjcij < 2mfor all 0 � i � n � 1, and let z1; : : : ; zn be the (unknown) complex roots off . Let � be the required precision, that is we require that our output havethe form [w1; : : : ; wn] such that for each 1 � i � njzi � wij � 2�� :(For convenience of notation, and for historical reasons, we also introducethe quantity b = m+ �.)In this paper, we will give an algorithm which solves the complex rootsproblem above, that is given the sequence of input coe�cients c0; : : : ; cn�1it outputs the complex numbers w1; : : : ; wn, and show that, assuming eachelementary arithmetic operation +;�; �; = and comparison can be performed3



exactly, and in one step (the arithmetic computation model), then the num-ber of steps taken by the algorithm is bounded above by a �xed absoluteconstant multiple (implicit in the paper, but for the sake of brevity, notexplicitly evaluated) of the quantity n log5 n log b. That is, the arithmeticcomplexity of the algorithm is O(n log5 n log b).In the boolean model of computation, the number of steps required to com-pute each elementary arithmetic operation grows with the size of the operands,but we will show that the problem can be solved in its entire generality, byperforming approximate arithmetic operations (i.e. compute, then round) onnumbers whose bit lengths are bounded by �, where� = � + 2n2m+ 3(n+ logn+ 1) + n2(1 + 2 logn) + log lognand � = �+ 2n+ nm + log logn+ 5and hence the boolean complexity of the algorithm is only larger than its arith-metic complexity by a factor of M(�), where M( ) = O( (log ) log log )is the complexity of multiplying two  bit integers.To put this result in proper context, we mention some of the history ofsolutions to this problem. The early algorithm of [GH 72] had arithmeticcomplexity O(n3b). Although the algorithm of Sch�onhage [S 82] was notanalyzed in the arithmetic model, it can be seen to require O(n3 logO(1)(bn))arithmetic operations. Renegar [R 87] gave a O((n+log b)n2 logn) arithmetictime algorithm, which is O(n3 logn) in the case of precision b � nO(1), but isan improvement in the case of extremely large (super-polynomial) precision.Pan [P 87] gave an O(n2 log b logn) arithmetic time algorithm, which hasbeen the best known bound for the arithmetic complexity of the ComplexRoots Problem.We do not suggest that the algorithm in this paper, at least in its currentform, presents an immediate replacement for any of the best numerical rou-tines currently used in practical implementations (see, for example [JT 70]),however, it does take a big step towards unifying theory and practice in thearea of complex root �nding. There seems some hope that future simpli�-cations of this presentation, or perhaps, some of the techniques herein, maylead to improvements in actual implementations.4



1.1 Organization of the PaperThe Introduction is given in Section 1. Section 2 de�nes splitting sets andcentered points used in our polynomial factorizations. Section 3 describesalgorithms for approximate splitting of a polynomial. Section 4 describeshow to �nd an isolated balanced factorization, and Section 5 gives an analysisof the full root algorithm. Section 6 briey discusses the parallelization ofour root �nding algorithm. Section 7 concludes the paper with a discussionof related work and open problems.2 NotationIn order to keep careful track of the errors introduced by rounding and ap-proximation, we need to introduce some notation.De�nition 2.1 Let z be a complex number. We denote by �(z) � 0 theminimum integer with the property that 2�(z)z is a complex integer { thatis, has real and imaginary parts which are both integers. If no such integerexists, we write �(z) =1.De�nition 2.2 For t and l positive integers, let Qt be the subset of complexnumbers z such that �(z) < t. Let Qlt be the subset of Qt consisting of thosez satisfying jzj < 2l.De�nition 2.3 Let P be the set of monic polynomials with complex coe�-cients. With t and l as above, let Pt subset of P having all coe�cients inQt, and let P lt be the subset of polynomials having all coe�cients in Qlt.De�nition 2.4 Let zi be the roots of f . We let�u(f) = maxi fjzijgand �l(f) = mini fjzijg5



and call each, respectively, the upper and lower root radius of f .De�nition 2.5 Let Rt : Q ! Qt be the rounding operator, and extend thedomain to P coe�cientwise.We will use the l1 coe�cient norm on our spaces of polynomials, that isjf j = maxi fjcijgwhere the ci are the coe�cients of f:One easily computable measure of distance between two polynomials f andg, is then jf � gj. For us, the more salient measure of distance is the rootperturbation, and hence we are led toDe�nition 2.6 The root distance, �(f; g) between two polynomials f and gis given by�(f; g) = ( 1 if deg(f) 6= deg(g)min�2�n nmaxifjzi � w�(i)jgo if deg(f) = deg(g) = nwhere zi are the roots of f , wj are the roots of g, and �n is the set ofpermutations on f1; : : : ; ng.Our algorithm will work by computing a polynomial, g, which is explicitlypresented as a product of linear factors. In order to know that the (immedi-ately available) roots of g provide approximations of the desired precision tothe roots of f , we rely on the following corollary to the theorem of Ostrowski[N 94]. 6



Theorem 2.1 Let f and g be monic polynomials of the same degree n, andlet �u(f) < 2l. If jf � gj < 2��, then�(f; g) < 2l+logn+3��=n :Proof: This follows immediately from [N 94], Theorem 4.5, by estimating thesize of the coe�cients of f as symmetric functions of its roots, and then usingthe condition on jf � gj and the triangle inequality to estimate the size ofthe coe�cients of g as well.We will keep the l1 errors introduced in each factorization of a polynomialinto polynomials of lower degree small enough so that, by using the triangleinequality to estimate the total error, and the previous theorem, we willguarantee the precision we require.An essential part of the algorithm is to translate coordinates to an originwhich is \good" for factoring f . Thus we introduceDe�nition 2.7 For c 2 C, de�ne the translated polynomial �c(f) by�c(g)(z) = g(z + c) :So, in particular, �c(g)(0) = g(c).We also occasionally will scale coordinatesDe�nition 2.8 If c 2 C � f0g, de�ne�c(g)(z) = c�ng(cz)�c(g)(z) = cng(z=c)7



and multiply polynomialsDe�nition 2.9 mult(g1; g2) = g1g2 :There are methods for computing each of these polynomial transformationsin O(n logn) steps (or fewer in the case of scaling). In the arithmetic model,we assume that these operations are performed exactly, but we still need tobe concerned with errors since we deal with approximate factors throughoutthe algorithm. That is we need to bound jo(g)�o(h)j, or jo(g1; g2)�o(h1; h2)jfor each operation, o, that we use. Also, in the boolean model we need toround after computing the operation and this introduces another error, butit is actually small in comparison.We collect these error bounds into the following easy lemma.Lemma 2.1 Assume that g1; g2; h1; h2 are all polynomials with l1 normsbounded by 2l, and degrees bounded by n, and that jcj < 2l. Then for each ofthe basic polynomial operations above, the error introduced by the computa-tion followed by rounding to Pt is bounded byjo(g)� o(h)j < maxn22(l+log n)jg � hj; 2l�1ofor each of the unary operations, and bounded byjo(g1; g2)� o(h1; h2)j < maxn22(l+log n)max(jg1 � h1j; jg2 � h2j) ; 2l�1o :for the biniary operation mult.
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2.1 Organization of the AlgorithmAt a high level, the algorithm is exceedingly simple. It starts by translatingf to a \good" coordinate system, one where there is a disk that divides theroots in a balanced way, and whose boundary is \not too close" to any of theroots. Then it factors f approximately into three polynomials f1, f2, and f3in the transformed coordinate system. If we were able to arrange that each ofthe degrees of the fi is less than or equal to half the degree of f , (we call thisa balanced factorization or balanced splitting) then we translate each of themback to the original coordinate system (in practice we wouldn't actually dothis, we'd just keep a record of the accumulated translations for each factor,but it greatly simpli�es our description), and then proceed recursively. Itmight not have been possible to arrange a balanced splitting though, sotaking f1 to be the unique factor of degree greater than half the degree off , we translate it to another \good" coordinate system, and approximatelyfactor it into at most four factors which we will be able to guarantee havedegrees each less than or equal to half the degree of f . As before, we nowtranslate back to original coordinates, leaving us with at most six factors f11,f12, f13, f14 (the four factors of f1), and f2, and f3. We now have a balancedfactorization of f , and can recursively apply the algorithm to each of thefactors.Remark 2.1 Each translation will always be of bounded size, jcj < 2m, andhence, by standard root bound theorems, it will be straightforward to checkthat all coe�cients of translated polynomials and factors will have upper rootradii at most 2m+1, and will have l1 norm less than 2n+n(m+1) = 22n+nm([N 94]).>From here on, we will always round to � = � + 2n + nm + log logn + 5bits (to the right of decimal point), Appealing to the previous lemma, andusing the triangle inequality, we see that the l1 error introduced by eachtranslation (including rounding in the Boolean case) is in total bounded by�1 = 22n+nm���1 = 2���log logn�6.The l1 error introduced by the factorization step, that is the step that factorsthe polynomials using the given coordinate system, must be broken into two9



parts. First, there is the computational error "1, which would be introducedeven if its input polynomial was exactly the polynomial we wished to factor.Second, there is the inherent stability error, "2, which is independent of thecomputational procedure, and is introduced because the input polynomial isalready in error by as much as twice (since we may require two successivetranslations) the amount �1. Hence,"2 < 2���log logn�5In the next section, we will bound "1 by"1 < 2��+2n+nm = 2���log log n�5 ; (1)and hence, �nally, the total error introduced by a factorization step, includingthe necessary translation is bounded by"3 < 2���log log n�4:A complete balanced factorization, as described at the beginning of this sec-tion, may require �ve, \translate and factor" steps (actually, only two trans-lations, but for ease of notation, we can think of a factorization withouttranslation as a \translate by 0 and factor"), as well as a �nal translationto bring the computed factors back to the original coordinate system, so thetotal error introduced by a balanced factorization step is bounded by" < 5"3 + 22n+nm���1 < 2��+4 :Since there are at most 2 logn factorizations in the computation path toget to any approximate linear factor, we appeal to the triangle inequality toobtain 10



Lemma 2.2 If f is the input polynomial, and g is the computed polynomial(which is expressed explicitly as a product of monic linear polynomials), then�(f; g) < 2 logn2��+4 < 2�� :And hence, the (immediately available) roots of g provide the solution to thecomplex roots problem for f .3 Approximate Factorization of a PolynomialIt has long been understood that the computation of an accurate approximatefactorization of a polynomial f is closely tied to the geometry of its root set.This is because the most obvious approach depends on computing contourintegrals via an FFT, and in order to get good convergence one needs toexploit the existence of a \large" root free annulus.To make this more precise we introduceDe�nition 3.1 Fix � > 0. A disk D = D(z0;R) is called �-isolated(or is said to have isolation ratio � ) for a polynomial f if there are noroots of f in the annulusTD = D(z0; (1 + �)R)�D(z0; (1 + �)�1R) :(This de�nition is essentially the same as the one that can be found in [P 87]and [P 89] except that we use the disk whose boundary is `centered' in theroot free annulus instead of on the inside boundary of the root free annulus.The choice is only a matter of notational convenience.)Previously, in the case � = 1=2, the techniques of contour integration andNewton iteration were e�ectively used by Sch�onhage [S 82] and later byPan [P 87] to approximately factor the polynomial f .11



Lemma 3.1 Suppose we are given a disk D which has isolation ratio � = 1=2for polynomial f . Then there is a O(n log2 n log b) (arithmetic) algorithm forcomputing a factorization of f into approximate factors, f1 and f2, corre-sponding to roots inside and outside D, respectively.For i = 1; 2 if ~fi are the two exact factors of f , thenjfi � ~fij < 22n+nm)�� : (2)Moreover, the bit precision required by the algorithm is exactly �+(2n+nm)when implemented in the Boolean model.De�nition 3.2 In the rest of the paper, we shall say that an approximatefactorization of a polynomial f is a full precision factorization if thefactors satisfy equation 2. We also call the approximate factors, fi, fullprecision factors of f .(Actually the construction works for any �xed constant � > 0, but the num-ber of steps required increases as � goes to zero, and hence the method needsmodi�cation when the degree n is allowed to get large, since then there maynot exist non-trivial �-isolated disks.)We need to generalize lemma 3.1 to the case where � is not �xed independentof the degree n. The main result of this section then isTheorem 3.1 Suppose that jf j < 22n+nm and that we are given any diskD = D(0;R) centered at 0, which has known isolation ratio � > 0 for f .Then we can compute, to the same precision as in lemma 3.1, the approximatefactors f1 and f2 in O(n log2 n log b log ��1) arithmetic operations.Moreover, making no assumptions on minimum root separation, the bit pre-cision required by the algorithm, when implemented in the Boolean model, isexactly 12



� +� log � + 2n2m+ 3n+ logn+ 3 + n2(� log � + 1) + log logn :Let P = P2n+nm� be the set of monic polynomials de�ned in the previoussection. Of course, during the recursive factorization, the degrees of thepolynomials we encounter can only decrease, so we will implicitly assumethat all degrees are bounded by n.3.1 Approximate Splitting of Polynomials with Isolation Ratio �In the case that we need to factor a polynomial according to a disk D withisolation ratio, �, smaller than 1=2, we will use a combination of establishedtechniques (polynomial powering, contour integration, and Newton iteration)described in the Appendix to e�ciently and accurately split f into approxi-mate factors corresponding to roots inside and outside D, respectively.Our basic approach will be to �rst scale coordinates so that the isolationdisk D can be taken to be the unit disk. Then we apply the Grae�'s Methodfor k = dlog ��1e � 1 stages. Each iteration of this computation producesa new polynomial whose roots are the squares of the roots of the previouspolynomial. We need to keep all polynomials within our coe�cient class,so we also check at each stage to see if our new polynomial has any rootswith magnitude larger than 2n or less than 2�n: If such roots exist, we factorthe polynomial using lemma 3.1, and proceed to apply Grae�'s Method onlyto the factor with moderate sized roots. This will, in k stages, produce apolynomial fk with the property that the unit disk has isolation ratio 1=2.We then apply Lemma 3.1 to obtain a split of fk into factors with rootscorresponding to the roots of fk inside and outside D, respectively. Then wewill apply a series of k stages of a partial GCD computation, to reconstructthe factors of f from these factors of fk. These factors of f will then haveroots corresponding to roots of f inside and outside D.The following observation allows us to assume that throughout the poweringprocess, all roots of our polynomial are less than 2n and greater than 2�n13



in magnitude. If any roots are greater than 2n in magnitude, or less than2�n in magnitude, there must be a disk with isolation ratio 1=2 within thisrange that we can use to factor f by the basic factorization technique ofLemma 3.1. Finding such a disk is easily done using well established rootradii estimation techniques [P 87, R 93b].Remark 3.1 It is important to keep the roots of the successive polynomialsfrom getting too large even in the arithmetic model of the algorithm. Thereason for this is that theorem 2.1 depends on the upper root radius. If weallow this to get larger than O(2n), the precision required would be too largeto e�ectively apply lemma 3.1 at stage k. Moreover, the error of each PartialGCD computation would also be too large.We now make the preceding discussion more precise withAlgorithm FACTORPOLLet k = dlog ��1e � 1.[0] Scale coordinates so thatD is the unit disk. By lemma 2.1, this introducesan error of at most 22n+nm���1 in the l1-norm.[1] For i = 1; 2; : : : ; k do[1.1] Apply Grae�e's Method to f0 = f , computing (symbolically)fi(z) = fi�1(pz)fi�1(�pz)[1.2] Apply lemma 3.1 to get a splitting of f into polynomials hi; fi; Hi (wherehi and Hi may have degree 0) and where (recall de�nition 2.4)(i) �u(hi) � 2�n(ii) �l(Hi) � 2n 14



(iii) 2�n < �l(fi) � �u(fi) < 2n.Comment: After k stages, this results in a degree n0 polynomial (wheren0 � n) fk(z) which has roots which are the 2kth powers of the roots off0(z). Note that the unit radius disk D is 1=2-isolated for fk(z).[2] Apply Lemma 3.1 to get an approximate factorization of fk into poly-nomials Fk+1 and Gk+1 satisfying �u(Gk+1) < 1 and �l(Fk+1) > 1. LetGk = hkGk+1 and Fk = HkFk+1. The lemma allows us to assume that theprecision of the approximate factors is high.Comment: At this point, we have constructed a factorization of a \blown-up" version of f . Now we proceed back down the chain of Grae�e polynomi-als, constructing a corresponding factorization of each polynomial from thefactorization of the one \above" it.[3] For i = k; k � 1; : : : ; 1 doLet Fi�1(z) = Hi�1PGCDdeg(Fi)(fi�1(z); Fi(z2)) (3)and Gi�1(z) = hi�1PGCDdeg(Gi)(fi�1(z); Gi(z2)): (4)The PGCDl operator �nds the monic polynomial of degree l in the standardquotient remainder sequence for the two polynomials which are its arguments.In general, this could be the zero polynomial, but we will know otherwise inour particular application.The motivation for this step is best understood if we imagine that all com-putations, including the factorization in step [2], could have been carriedout exactly. (In actuality, this is not true even in the arithmetic model ofcomputation, due to the error introduced in step [2].) Then, the roots ofFi(z) are exactly the squares of those roots of fi�1(z) which are greater than1 in modulus. Also, the roots of Fi(z2) are all the square roots of the rootsof Fi(z). So, if pi�1(z) is the factor of fi�1 corresponding to all of its rootswhich are greater than 1 in modulus, then Fi(z2) = pi�1(z)pi�1(�z), and15



PGCDdeg(Fi)(fi�1(z); Fi(z2)) = GCDdeg(Fi)(fi�1(z); Fi(z2)) = pi�1(z) : (5)That is, we have computed the factor of fi�1 which we seek. The same, ofcourse, holds for the second PGCD computation, but with respect to rootssmaller than 1 in modulus.The di�culty we face is that we must show that the PGCD computation inthe presence of errors in the input polynomials still gives a good approxima-tion to the result we are after.[4] Apply O(logn+ log log ��1) Newton iterations to Fi�1 and Gi�1 in orderto guarantee that jFi�1 � F 0i�1j < 2�� (6)jGi�1 �G0i�1j < 2��where F 0i�1 and G0i�1 are the corresponding true factors of fi. The value of� will be discussed shortly.[5] Now i = 0, and we've factored the scaled polynomial, so scale the factorsto the original coordinate system.OUTPUT F0; G0 which is an approximate factorization of f0 = f .The key to keeping the errors from growing is the Newton iteration phase.The problem with using it is that we must be sure that we have a good enoughinitial approximation polynomial. The initial approximation we have comesfrom the PGCD computation, so we will need to analyze the errors there.We begin with [P 89, P 94] 16



Lemma 3.2 Let f be monic and let� = �(f) = minjzj=1 jf(z)j ;and let �f = min(�=8 ; (7�)4n2(7� + 9n)224n+2) :If g and h are the two (exact) monic factors of f corresponding to the rootsof f inside and outside the unit disk, and if g0 and h0 are two approximationsto g and h satisfying jg0 � gj < �fand jh0 � hj < �f ;and if gi and hi are the sequence of Newton iteration polynomials beginningwith g0 and h0, then jgi � gj < �(1:5)ifjhi � hj < �(1:5)if :We now �x � = � log �f � 2n2 log ��1 + 2(2n+ nm)and suppose inductively that Fi and Gi satisfy equation 6. We need to showthat we can compute Fi�1 and Gi�1 accurately enough to have an initialNewton approximation, that is with an l1 error no larger than �f . Otherthan the PGCD computation, we only have two multiplications to compute17



these polynomials, so it su�ces to show that the l1 error at the end of thePGCD computation is no more than 2log �f�2(2n+nm).To do this, we begin by expressing the coe�cients of Pi�1(z) = PGCDdeg(Fi)(fi�1(z); Fi(z2))explicitly as a quotient of two determinants. In order to greatly simplify thenotation necessary, we will assume thatdeg(fi�1) = 2 deg(Fi) = 2d = cso that we are computing the PGCD of two polynomials of equal degree. Ifthis is not the case, we can multiply the smaller degree polynomial by theappropriate power of z. In practice, this would not be the optimal way toproceed, but it wouldn't increase the overall work by more than a factor of2. We leave it to the reader to make the notational modi�cations to theestimates that follow, which would allow computation with smaller matrices.Lemma 3.3 Let A(z) = zc+ ac�1zc�1+ � � �+ a0 and B(z) = zc+ bc�1zc�1+� � �+ b0. Let S(A;B) be the 2c� 2c matrix
S(A;B) =

26666666666666666666666664

1 0 � � � 0 1 0 � � � 0ac�1 . . . bc�1 . . .... . . . ... . . .1 10 � � � ac�1 0 � � � bc�1... ...a1 0 � � � 0 b1 0 � � � 0a0 . . . b0 . . .. . . . . .a1 b10 � � � a0 0 � � � b0

37777777777777777777777775and let Sd(A;B) be the 2(c� d)� 2(c� d) submatrix of S(A;B) obtained byremoving the bottom 2d rows, columns c� d+ 1; : : : ; c and columns 2c� d+1; : : : ; 2c. For 0 � j � d � 1, also let Sj(A;B) be the 2(c � d) � 2(c � d)18



submatrix of S(A;B) which is identical to Sd(A;B) in the �rst 2(c� d)� 1rows, and whose last row consists of the entries of S(A;B) taken from the(2c� d� j)th row and the same columns.Then, if det(Sd(A;B)) 6= 0, the degree d polynomial in the standard quotientremainder sequence (see [AHU 74]), PGCD*d (A;B), is non-zero and is givenby PGCD*d (A;B)(z) = dXj=0det(Sj(A;B))zj: (7)If we had to compute the determinants in equation 7 explicitly, we would bein trouble in the Boolean model of computation. We only know that eachcoe�cient is bounded in magnitude by 2O(n2) (by remark 3.1) and hence thesize of the determinants could get as large as 2O(n3), which would be too largefor the bit precision we are using. Fortunately, we only need to compute themonic form of PGCD*d (A;B), which we shall denote by PGCDd(A;B), andhence only need to be concerned with the quotientsQj = det(Sj(A;B))det(Sd(A;B)) (8)for 0 � j � d� 1 .We need to show that these are not too large, and that we can compute themin such a way that the errors are not too large either.In our application, A(z) = fi�1(z) and B(z) = Fi(z2). Let � = jb0j1=2. Then� is the square root of the product of the moduli of all roots of Fi(z). Let uswrite S 0j(A;B) = ��1Sj(A;B) (9)19



for 0 � j � d.Remark 3.2 The quotients, Qj are not changed if we replace the entries ofSj with the entries of S 0j.We begin with the following perturbation lemma.Lemma 3.4 Suppose that P1(z) = Q1(z)R(z) and P2(z) = Q2(z)R(z), wheredeg(Q1) = deg(Q2) = d, deg(R) � d, and where Pi, Qi and R are all monic.Suppose that �l(Q1) > 1, and �u(P2) < 1. (The asymmetry of the assumptionwith respect to the Pi is intentional.) Also suppose that �u(P1) < 2k. LetB = supfjzj�2g jQ1(z)j (10)and b = inff�:Q2(�)=0g jQ1(�)j (11)and � = 3d + d2dB2b (12)and �0 = dlog �e+ 2:If � > �0 + 1and jFi � Pij < 2�� thenjPGCDd(F1; F2)� PGCDd(P1; P2)j = jPGCDd(F1; F2)� Rj (13)< 2�0��+dk+d : (14)Proof : For simplicity, we shall assume deg(R) = d. (To achieve this, we20



can multiply both P1 and P2 by the monomial zd�deg(R)).For each i � 0, let Vi denote the vector space of polynomials of degree lessthan or equal to i. The dimension of this space is, of course, i + 1, andVj � Vi for j � i. Consider the linear map L : Vd�1 � Vd�1 ! V3d�1 =Vd�1de�ned by L ((a; b)) = aP1 + bP2 :The fact that this map is both well de�ned and an isomorphism, followsimmediately from the GCD assumption on P1 and P2. In this setup, letmj be the image of the monomial zj under the vector space quotient mapV3d�1 ! V3d�1=Vd�1. Then if L(A;B) = md,AP1 +BP2 = R : (15)So (A;B) = L�1(R) :Our result will then follow from standard theorems in Numerical Analysis ifwe can put an appropriate bound on the condition number of the linear mapL with respect to the standard monomial basis for the Vj.Because all roots of P1 and P2 are assumed to be less than 2k in magnitude,their coe�cients are bounded in magnitude by 2k+2d, and hencekLk < 2k+2d : (16)So we focus our attention on kL�1k. To this end, de�ne Aj and Bj (d � j �3d� 1) as the polynomials satisfying21



L(Aj; Bj) = mj :The coe�cients of Aj, Bj then, by de�nition, form the entries of the coore-sponding row of the matrix of L�1, and we will succeed in bounding kL�1kif we can bound all these coe�cients for each d � j � 3d� 1.Now Aj(z)P1(z) + Bj(z)P2(z) = zj + rj(z) ;where rj(z) is a polynomial (not necessarily monic) of degree strictly lessthan d (de�nition of vector space quotient). Of course, by assumption wehave zj + rj(z) = qj(z)R(z)for some monic polynomial qj. Let w1; : : : ; wd be the d roots of R. Let Tl,0 � l � d� 1 be the successive divided di�erence operators (see [H 74], vol.1) (T0f)(z) = f(z) (17)(Tlf)(z) = ([w1; : : : ; wl] f)(z) : (18)Computing the divided di�erences, we have(Tl(qjR))(wl+1) = 0 (19)and 22



���(Tl(zj))(wl+1)��� � 2land hence j(Tl(rj))(wl+1)j � 2l :Since deg(rj) < d, we have the identityrj(z) = d�1Xl=0  (Tl(rj))(wl+1) l�1Ys=0(z � ws)! (20)(where, as usual, the empty product in the �rst term of the summation istaken to be 1).It is now easy to verify that if z1; : : : ; zd are any complex numbers satisfyingjzjj < 2k, and Tl are the operators above, now taken with respect to thesequence zj instead of the sequence wj, then���(Tl(zj + rj))(zl+1)��� < (2k + 1)22d : (21)So now let us apply the same divided di�erence scheme, but with respect tothe sequence of roots of Q1 and Q2 instead of with respect to the roots of R.Let T 1l be the sequence of divided di�erence operators taken with respect to�1; : : : ; �d, the roots of Q1, and let T 2l be the sequence of divided di�erenceoperators taken with respect to �1; : : : ; �d, the roots of Q2.Remark 3.3 Notice that no particular order is assumed for the �i or the �i,and hence the bounds that follow for T 1l and T 2l are independent of the subsetof roots considered. 23



As with equation 19 we have(T 2l (BjP2))(�l+1) = 0so that by equation 21���(T 2l (AjP1)(�l+1)��� < (2k + 1)22d : (22)Now, it follows from the Cauchy Integral Formula, the Mean Value Theorem,and the assumptions of the lemma���(T 2l (P1))(�l+1)��� < B : (23)Furthermore, we can express the divided di�erence operator of a product oftwo functions in the following way(T 2l (AjP1))(�l+1) = lXr=0 �U2l�r(P1)� (�l+1) �T 2r (Aj)� (�r+1) (24)where Ul�r is the divided di�erence operator(Ul�rf)(z) = ([�r+1; : : : ; �l] f)(z) :Combining equations 24 and 23, lemma assumption 11, and the remarkabove, we now have, for each l,���(T 2l (Aj))(�l+1)��� < b�1 l�1Xr=0B ���(T 2r (Aj))(�r+1)���24



and hence, by simple induction it follows that���(T 2l (Aj))(�l+1)��� < �Bb �l+2 :Since, deg(Aj) < d, for all zAj(z) = d�1Xl=0(Tl(Aj))(�l+1) lYr=1(z � �r)and thus, since j�rj < 1 for all r,supfjzj=2g jAj(z)j < d2dBb :By the Maximum Modulus Theorem, we even havesupfjzj�2g jAj(z)j < d2dBb : (25)So �nally, by the Cauchy Estimates, each coe�cient of Aj is bounded byd2dB=b < �. Moreover, from equation 25 and the de�nition of B in thelemma, we must have supfjzj�2g jAj(z)P1(z)j < d2dB2b :Also, since all roots of R and Q2 are less than 1 in modulus, we have25



supfjzj�2g jR(z)j < 3d (26)and inffjzj=2g jP2(z)j > 1 : (27)These last two equations, along with equation 15, give ussupfjzj=2g jBj(z)j < d2dB2b + 3d : (28)So, again using the Cauchy Estimates, each coe�cient of Bj is bounded by� as well.Hence, all entries in the matrix of the transformation L�1 are bounded by�. The results of the lemma now follow directly from standard matrix per-turbation theorems in Numerical Analysis.The asymmetry in the statement of lemma 3.4 may seem puzzling, however,it becomes less so upon observingLemma 3.5 If we modify the assumptions of lemma 3.4 so that instead�u(Q1) < 1�l(Q2) > 1�u(Q2) > 2k26



and B = supfjzj�1=2g jQ1(z)jthen the same perturbation bounds hold.Proof :Replace each polynomial p in the statement of lemma 3.4 with its \reverse"polynomial ~p. The roots of ~p are the multiplicative inverses of the roots of p.
Corollary 3.1 Suppose that under the assumptions of lemma 3.4, or lemma 3.5,we also know that j�j > 1 + � for all roots, � of Q1, and that j�j < 1� � forall roots, � of Q2, and 0 < � < 1=2. Then, taking B as abovejPGCDd(F1; F2)� PGCDd(P1; P2)j = jPGCDd(F1; F2)� Rj (29)< (1 + 32� )d22dk+3d+log d+1�� (30)Proof : If jzj � 2, Q2(�) = 0, and Q1(�) = 0, then�����(z � �)(� � �) ����� = �����1 + (z � �)(� � �) ����� < 1 + 32� :Hence �����Q1(z)Q1(�) ����� = ������ YQ1(�)=0 (z � �)(� � �) ������ < �1 + 32��d : (31)27



Thus from lemma 3.4, and with notation as above,jPGCDd(F1; F2)� PGCDd(P1; P2)j < (3d + d2dB2b )2dk+d�� (32)< 2d(2d + dB2b )2dk+d��< 2d(2d + dB( 32� )d)2dk+d��< 2d(2d + d2dk+d( 32� )d)2dk+d��< 2d(d2dk+d+1( 32� )d)2dk+d��= ( 32� )d22dk+3d+log d+1��
Our intent is to bound errors in step [3] of algorithm FACTORPOL. To dothis we apply lemma 3.4 to equation 4 and lemma 3.5 to equation 3. Since,in such application, we can bound d above by n, k above by nm, and � aboveby 1=2 (recall that � > 1=2 is the \trivial" case of constant isolation ratio)we haveCorollary 3.2 The number of bits of precision lost due to inherent error(i.e. assuming exact computation) in each PGCD computation in step [3] ofalgorithm FACTORPOL is bounded above byH = � log � + 2n2m+ 3n+ logn+ 3We also need to analyze the computational error. Since the computation ofthe PGCD is done by determinant and then division by the leading coe�cient(recall equation 8), it is not obvious how to do the computation in the booleancase without introducing much greater error than that introduced above.However, we are rescued by the following28



Lemma 3.6 With the same notation as in corollary 3.1�d2 < det (S 0d(P1; P2)) < 2d2Proof :We know that Sd(P1; P2) is exactly R(Q1; Q2), the resultant of Q1 and Q2.If �1; : : : ; �d are the roots of Q1 and �1; : : : ; �d are the roots of Q2, thenR(Q1; Q2) = dYi=1 dYj=1(zi � wj):Since ������j�i ����� < 1� �it follows � < �����1� �j�i ����� < 2 :Hence �d2 < jS 0d(P1; P2)j = dYi=1 dYj=1 �����(�i � �j)�i ����� = dYi=1 dYj=1 �����1� �j�i ����� < 2d2 :
SoCorollary 3.3 Since, in equation 3.2, computing � and hence the S 0j is triv-ial, if, in algorithm FACTORPOL, step [3], we use at most n2(� log �+1)additional bits in our intermediate computation, the computational error in-troduced will be no larger than the inherent error estimated above.29



Finally, since we need perform at most logn PGCD computations in anycomputation path of algorithm FACTORPOL, the total number of bits ofprecision lost in step [3] { assuming we do each computation (in particularstep [2], the constant isolation ratio factorization) with precision� > �� = � log � + 2n2m + 3n+ logn + 3 + n2(� log � + 1)bits in the boolean case { is bounded above by��+ log logn :Thus, taking � = � + log logn + ��, and combining all the results of thissection we have proved theorem 3.1.4 Splitting Sets and Centered PointsThe previous section provides us with a method for e�ciently factoring apolynomial into factors of smaller degree, once we have a disk with a \good"isolation ratio { that is one with � reasonably large. However, in order tooptimize the overall complexity of the root �nding algorithm, it is necessarythat the disk also divide the root set geometrically in a \balanced" manner.In the case where the input polynomial, f , is totally real (i.e. has only realroots), the notion of a \splitting point" is used in order to �nd the requiredgeometrically balanced division of the root set [BFKT 86, P 89, R 93b, N 94].It is the purpose of this section to introduce the idea of a splitting set of pointsfor general complex polynomials. In some sense it is a generalization of thesplitting point idea, although not entirely. Its usefulness hinges on the factthat there is a fast method for approximating the moduli of the roots of fwith small relative error. As a result of this, it will turn out that we will beable to �nd a balanced factorization of f as long as we can choose an origin30



which is \close" to any \big" cluster of roots of f . A splitting set allows usto �nd such an origin. Let D(z;R) denote a complex disk with center z andradius R.De�nition 4.1 Fix 0 < � < 1 and k > 0. A �nite set S = fs1; : : : ; sNgof complex numbers is an (�; k)-splitting set for f , if for every diskD(z0 ; R) in the complex plane containing more than �n roots of f , there isa point sj 2 S that lies in D(z0 ; kR).For the remainder of the paper we shall use the following shorthand wheneverit is not ambiguous.De�nition 4.2 We call a disk D �-full (for f) if it contains more than�n roots of f .De�nition 4.3 If D = D(z;R) is a complex disk, and k is a non-negativereal number, we use kD to represent the dilated disk D(z; kR).Remark 4.1 The preceding de�nition di�ers from the often intended mean-ing for kD, which is the point set obtained by multiplying every point of Dby the scalar k.We can now restate the de�nition of a splitting set as follows: S is an (�; k)-splitting set for f if, and only if, for every disk D which is �-full for f ,kD \ S 6= ;.The usefulness of a splitting set is that it allows us to quickly �nd (assumingthat k and N are reasonably small) a \good" origin for factoring f in abalanced way. This will be made more precise after the following series oflemmas.Lemma 4.1 If S is a (�; k)-splitting set for f , and � � 1=2, then at leastone point s0 2 S has the property that, if D is any �-full disk, s0 2 (k+2)D.31



Proof : Let D0 be an �-full disk of minimal radius, and let s0 2 S be apoint of S which is contained in kD0. Any other �-full disk D must haveradius at least as large as the radius of D0, and, since � � 1=2, at least oneroot of f is in both D0 and D. So D \ D0 6= ;. But then (k + 2)D mustcontain kD, and in particular, s0 2 (k + 2)D.De�nition 4.4 A point z with the properties of s0 above will be called an(�; k)-centered point for f .Centered points will be, for us, the complex analogy of the splitting pointsused in the case of totally real root �nding. We choose not to call themsplitting points though, since their geometric properties are not absolutelyidentical.Next we state the important root modulus approximation theorem whichhas been used many times in previous literature. This method due to Turinin 1968 [T 68, T 75, T 84] can be used to determine approximations to themagnitudes of all the roots of a polynomial. Sch�onhage [S 82] gave ane�cient implementation of Turin's method. (See [P 87, R 93b] for other usesof Turin's method.)Lemma 4.2 There is an algorithm, which, given a polynomial, f , of degreen, and �xed positive constants c1 and c2, computes, with sequential complexityO(n log2 n) or parallel time O(log2 n) with n processors, for each root ri off(z), an interval Ii = [Li; Ui] containing ri, such thatUi � Li(1 + ) ;and  = 1c1nc2 .We now need to introduce the somewhat technical de�nition of relativelength. 32



De�nition 4.5 Suppose I = [L; U ], is an interval. If 0 < L � U , then therelative length of I is the quantityj I jrel = UL � 1If L � 0 and U > 0 we de�ne the relative length of I to be 1, and if0 < U < L, we take the relative length of I to be 0. In any other case, wemust have U � 0, and we de�ne the relative length of I to be the relativelength of [�U;�L].Similarly, if D = D(c;R) is a disk in the complex plane, we de�ne the relativediameter , d(D)rel, of D to be the relative length of the interval [ jcj�R ; jcj+R ].Finally, for an annulus, A, centered at the origin, we let its relative width,jAjrel, be the relative length of its intersection with the positive real axis.By combining the results of the previous section with lemma 4.2, we are ledto the followingTheorem 4.1 Let f be a polynomial of degree d � n, and with jf j < 22n+nm.Then there is an algorithm requiring O(d log2 d log b log d2) � O(d log3 d log b)arithmetic operations, and at most � bits of precision, which computes a se-quence of q � 5 full precision factors f0; : : : ; fq, and a sequence of corre-sponding geometric regions V0; : : : ; Vq with these properties:1. The region V0 is the only unbounded region.2. The regions V1; : : : ; Vq are all contained in a disk, D, of radius R.3. If 0 � i 6= j � q, then the distance between the two regions Vi and Vj,�(Vi; Vj), satis�es �(Vi; Vj) > 1168d2R2: (33)33



4. If � is a root of f , then � 2 Vi for some i.5. If Vi contains more than d=2 roots of f , then Vi is contained in a disk,D0, with relative diameter smaller than dR=21.Remark 4.2 In the statement of theorem 4.1, we have made what appearsto be an odd choice of constants (168, 21 : : :). The reason for the choices willbecome clear later. We could have chosen any other pair of constants withthe same ratio, and the statement would still be correct, but the complexity ofthe algorithm is dependent on the choice, so we choose to �x them explicitly,otherwise this fact would be obscured in the theorem's statement.Proof of theorem 4.1: Apply lemma 4.2 with c1 = 168 and c2 = 2. Forbd=4c � i � d3d=4e, we consider the intervals Ji = [Ui; Li+1 ]. If any one ofthese intervals, Jk, has relative length greater than or equal to 1168d2 , then byapplying the factorization algorithm of the previous section, with � = 1400d2 ,we can take R = Uk, q = 1, and let V1 = D(0;R), and let V0 be thecomplement of D(0;Lk+1), and take f1 and f0 to be the factors with roots inthe corresponding regions.Thus we shall suppose that j Ji jrel < 1168d2for all bd=4c � i � d3d=4e. Leti0 = maxi<bd=4cfi : j Ii jrel > 1168d2 gand i1 = mini>d3d=4efi : j Ii jrel > 1168d2 g :Finally let I = [Ui0 ; Li1 ] :34



One easily checks then that j I jrel < 184d : (34)Set V0 = (D(0;Ui1))cand, using the factorization algorithm of the previous section, again with� = 1400d2 , compute f0, the full precision factor of f corresponding to theroots of f in V0. Let g0 be the other full precision factor of f , so all roots ofg0 lie in D(0;Li1), and set V1 = D(0;Li0)and, as with V0, compute f1, the full precision factor of g1 corresponding tothe roots of g1 in V1. Let g2 be the other full precision factor of g1. Then allroots of g2 must lie in the annulusA = D(0;L) � D(0;U) ;(where L = Li1 and U = Ui0) which, by equation 34, satis�esjA jrel < 184d : (35)Now let c = 2Li1 and translate coordinates to the point X1 = c+0i. Repeatthe construction once again using the polynomial g2 in place of f . If thissuccessfully factors g2 into factors of degree at most d=2 we are done. If not,we will have constructed another annulusA1 = D(X1;L1) � D(X1;U1) ;(and corresponding polynomial factor g4) containing more than d=2 roots ofg2. (Recall that d is the degree of f , even though the degree of g2 may besmaller.) And, incidentally, we will also have computed V2 and f2, and V3and f3, which correspond to the factors f0 and g0 that we computed whenwe began with f instead of with g2, but, by design, these are guaranteed tobe of degree less than d=2.Since all the roots of g2 were in A, we can conclude two facts.35



1. All the roots of g4 lie in A \ A1.2. (1� 184d)L < L1 < 3(1 + 184d)L : (36)We now distinguish two cases:1. Case 1: (4=3)L � L1 � (8=3)L .2. Case 2: L1 < (4=3)L or (8=3)L < L1.In case 1, it is easy to see that A \ A1 consists of two convex regions ofbounded aspect ratio, V4 and V5, each one contained in a disk of radius atmost R=d, and satisfying �(V4; V5) > (1=4)R. So, here we are almost done.We can apply one more factorization step (in fact, this time { and only thistime { we can use the simpler factorization algorithm of lemma 3.1 ratherthan the more complicated factorization method developed in the previoussection) in order to produce the corresponding factors f4 and f5 of g4. Theproperties of the regions Vi can now be easily veri�ed using equation 36.In case 2, we abandon our attempt to use X1 as an origin, and translatecoordinates instead to the new origin X2 = 0 + ci (relative to the very �rstcoordinate system). Since case 1 did not occur with respect to the �rstchange of coordinates, it now must occur in this coordinate system { onesimply looks at the elementary geometry of the three intersecting annuli.Hence, by the reasoning of the previous paragraph, we have completed theproof.We can now state the following crucial corollary, whose proof follows immedi-ately from the de�nition of a centered point, and from the stated propertiesof the regions Vi.Corollary 4.1 If the origin is a (1=2; 21d)-centered point for f36



of degree d; then none of the regions Vi, 0 � i � q � 5, contain more thand=2 roots of f .
5 The Root Finding Algorithm and its ComplexityWe now have the tools to give a recursive formulation of the entire root�nding algorithm. However, the proof of its correctness depends on thefollowing crucial theorem, which is a simple consequence of the main resultin [CN 94].Theorem 5.1 If 0 < � < 1, then the set of roots of the (d�ne� 1)th deriva-tive of f , f (d�ne�1)(z), is a (�; 21n)-splitting set for f .In fact, the results of [CN 94] show that the roots of f (d�ne�1)(z) are evenbetter than a (�; 21n1=3)-splitting set for f (recall we are assuming � � 1=2),but in this paper we will not take advantage of this stronger statement.We begin with a subroutine for computing a balanced factorization of f .The idea of this subroutine is to use the same construction as we used in themain algorithm of the previous section. In fact, the output of the balancedfactorization subroutine will have exactly the same form as the output ofthat algorithm, except that we will do some extra work, and rely on theorem5.1 to guarantee that none of the regions Vi contain more than n=2 roots {and hence that none of the full precision factors fi have degree greater thann=2.Balanced Factorization AlgorithmLet " = 1(21)(336)n3 :37



1. Compute g(z) = f (dn=2e)(z).2. Recursively compute the balanced factorization g = Qqi=0 gi (0 � q � 5)of g, along with the corresponding regions Vi. Let R be the boundingradius, as before, and let D = D(0;R).3. Apply one iteration of the algorithm of theorem 4.1 to f . If none ofthe resulting factors has degree greater than n=2,then RETURN.Otherwise, let D0 = D(c; r) be the \small disk" containing more thann=2 roots of f computed in the algorithm.4. Translate coordinates so that c is the origin.5. If the diameter of D0, d(D0), satis�es d(D0) < "R, go on to step 6. Oth-erwise, LOOP to step 3. (In the following discussion of the algorithm,we will prove that we cannot loop more than 3 times.)6. At this point, c must lie either in, or within a distance of 1336n2 of atleast one of the regions Vi0 computed in step 2 (we shall prove thisclaim shortly). However, it follows from the properties of these regions(theorem 4.1, property 3) that this region must be unique.7. Set g = gi0, the polynomial factor corresponding to Vi0 (the degree isnow reduced by a factor of at least 2) and LOOP to step 2.We now need to show that this algorithm actually does terminate, and toanalyze its complexity. We will do this with the following lemmas.De�nition 5.1 There are two nested loops in the algorithm above. We callthe loop from step 5 to step 3, the internal loop, and the loop from step 7 tostep 2, the external loop.Lemma 5.1 Each iteration of the inner loop decreases the diameter of thedisk D by a factor smaller than 121n . 38



Proof : Let r be the radius of D0 at the start of step 3. (Recall that at thispoint D0 is centered at the origin.) We know that jD0jrel < 121n .Since we have not terminated the computation by returning, the number ofroots in D0 is greater than n=2, so we also knowD0 \ D 6= ; :The conclusion of the lemma thus follows immediately from the de�nition ofrelative diameter.The following corollary now follows immediately from the de�nition of ".Corollary 5.1 The inner loop executes no more than 3 times.Lemma 5.2 In step 6, the point c lies either within, or within a distance ofR336n2 of, at least one of the regions Vi.Proof : First, assume inductively that at least one of the roots of g(z) is a(1=2; 21n)-centered point for f . At the start of the computation, step 1, thisis true by theorem 5.1. Now, in step 6, the disk D0 has radius at most "R,and it contains more than n=2 roots of f , so by de�nition, any (1=2; 21n)-centered point for f must lie within a distance of 21"R of c. Hence, by theinductive assumption, c lies within a distance of R336n2 of at least one root ofg.But all roots of g lie in one of the Vi, so the distance from c to at leastone Vi, say Vi0 , must be less than R336n2 . By the choice of ", and by the-orem 4.1, property 3, Vi0 is the only region which can lie this close to c.Moreover, by the previous paragraph, the other regions can not contain any(1=2; 21n)-centered points, so Vi0 must contain all of the roots of g whichare (1=2; 21n)-centered points. Since there is at least one of these, by theinductive assumption again, the chosen factor gi0 must have at least one root39



which is a (1=2; 21n)-centered point. This then, in turn, proves the inductivehypothesis.As a consequence of the proof, we see that the polynomial g always has a rootwhich is (1=2; 21n)-centered for f . Since the degree of g is reduced by a factorof at least 1=2 each time we pass through the outer loop, by corollary 4.1:Theorem 5.2 After at most logn iterations of the outer loop, the BalancedFactorization Algorithm returns from step 3, with a factorization of f havingno factors of degree greater than n=2.Corollary 5.2 The arithmetic complexity of the Balanced Factorization Al-gorithm is O(n log4 n log b).Proof : Let T (n) be the number of arithmetic operations performed by theBalanced Factorization Algorithm on an input polynomial of degree n. Weneed to determine a constant C > 0, such thatT (n) < Cn log4 n log b: (37)By theorem 4.1, if we neglect the number of operations in the recursive callto the Balanced Factorization Algorithm in step 2, the number of arithmeticoperations performed in each pass through the outer loop is bounded above byKn log3 n log b for a constant K. Since the number of operations performedin the recursive call is at most T (n=2), we haveT (n) < log n�1Xj=0 �T ( n2j+1 ) + K n2j log3( n2j ) log b� : (38)Since the roots of quadratic polynomials have explicit formulas which can beeasily approximated, we can assume that n > 2, in which case, for i � 1,40



log4( n2i ) = (logn� i)4 < log4 n� i log3 n : (39)We claim then that it su�ces to take C = 2K. To see this, suppose thisvalue for C has been picked, and assume, inductively, that equation 37 issatis�ed for all n0 < n. Substituting into equation 38, and using the estimateof equation 39 we have
T (n) < log n�1Xj=0 C n2j+1 log4 n log b� log n�1Xj=0 C n2j+1 (j+1) log3 n log b+ logn�1Xj=0 K n2j log3 n log b:(40)Since log n�1Xj=0 n2j+1 log4 n log b < n log4 n log band log n�1Xj=0 n2j+1 (j + 1) log3 n log b > n log3 n log band log n�1Xj=0 n2j log3 n log b < 2n log3 n log bwe haveT (n) < (Cn log4 n� Cn log3 n+ 2Kn log3 n) log b = Cn log4 n log b: (41)41



The full root �nding algorithm is now immediate; we simply call the BalancedFactorization Algorithm recursively until all factors are linear. Let Q(n) bethe number of arithmetic operations for the full root �nding algorithm. ThenQ(n) < T (n) + 2T (n2 ) + � � � = log n�1Xj=0 2jT ( n2j );soQ(n) < log n�1Xj=0 2jC n2j log4( n2j ) log b = log n�1Xj=0 Cn log4( n2j ) log b < Cn log5 n log b:6 Parallization of our Root Finding AlgorithmWe now briey discuss the parallel execution of our root �nding algorithm,which can be immediately parallelized. We assume an arithmetic CREWPRAM model, where each processor can execute an arithmetic scalar oper-ation in a single step, and with concurrent reads and exclusive writes on thestored memory. Our root algorithm relies on a number of basic operationson polynomials of degree n, which can be executed using n processors in theindicated times (see [BM 75, J 92, R 93a])� polynomial translation, sum, and product in O(logn) time,� polynomial evaluation and interpolation at n points in O(log2 n) time.Also, we can compute polynomial resultants in in parallel time O(log2 n) us-ing n log! n processors, where ! = 2:376, by use of the fast parallel Teoplitzand bounded displacement rank matrix algorithms given in [R 95]. Our rootalgorithm requires O(log4 n) log b stages of these polynomial operations as42
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