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Abstract

Given a univariate polynomial f(2) of degree n with complex coefficients,
whose norms are less than 2™ in magnitude, the root problem s to find all the
roots of f(z) up to specified precision 27", Assuming the arithmetic model for
computation, we provide an algorithm which has complexity O(nlog5 nlogb),
where b = m + p. This improves on the previous best known algorithm of
Pan for the problem which has complexity O(n?log” nlogb). A remarkable
property of our algorithm is that it does not require any assumptions about
the root separation of f, which were either explicitly, or implicitly, required by
previous algorithms. Moreover it also has a work efficient parallel implemen-
tation. We also show that both the sequential and parallel implementations of
the algorithm work without modification in the Boolean model of arithmetic.
In this case, it follows from root perturbation estimates that we need only
specify 0 = [n(b + logn + 3)] bits of the binary representations of the real
and imaginary parts of each of the coefficients of f.
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We also show that by appropriate rounding of intermediate values, we can
bound the number of bits required to represent all complex numbers occurring
as intermediate quantities in the computation. The result is that we can re-
strict the numbers we use in every basic arithmetic operation to those having
real and imaginary parts with at most ¢ bits, where

¢ =m+2n°m +3(n+logn+ 1) +n*(1+2logn) + loglogn

and
™= pu—+2n+nm+ loglogn + 5

Thus, in the Boolean model, the overall work complexity of the algorithm is
only increased by a multiplicative factor of M (¢p) (where M () = O(¢(log ) loglog )
is the bit complexity for multiplication of integers of length 1))

The key result, on which the algorithm is based, is a new theorem of Copper-
smith and Neff relating the geometric distribution of the zeros of a polynomial
to the distribution of the zeros of its high order derivatives, and introduce sev-
eral new techniques (splitting sets and ‘centered’ points) which hinge on it.

We also observe that our root finding algorithm can be efficiently parallelized
to run in parallel time O(log® nlogb) using n processors.

1 Introduction

In this paper we shall consider the computational version of the ubiquitous
Fundamental Theorem of Algebra, which of course says that for any polyno-
mial f € C|[z] of degree n, there are exactly n complex numbers z;,. .., z,
such that



where «a is the leading coefficient of f. The problem which we solve in this
paper known as The Complex Roots Problem 1is to find arbitrarily accu-
rate approximations, w;, to the actual roots, z;, of f, using only elementary
arithmetic operations and comparisons. Moreover, the goal is to do this as
efficiently as possible, that is, to perform as few of the elementary operations
(steps) as possible.

The number of steps will obviously depend on the nature of the input poly-
nomial and on the precision required, so we need some measure of the “size”
of a problem instance, and will then seek to put an upper bound on the
number of steps required which is a function of the size. To that end, we fix
our input form as follows.

Let f(z) € C[z] be a monic univariate polynomial of degree n with coeffi-
cients over the complex numbers C, written as

n—1
f(z)=z2+> ¢z .
i=0
Let m be the smallest integer such that

‘Cl“ < 2™

forall 0 <i <n —1, and let 2,..., 2, be the (unknown) complex roots of
f. Let u be the required precision, that is we require that our output have
the form [wy, ..., w,] such that for each 1 <i < n

‘Zi - wz\ S 271,
(For convenience of notation, and for historical reasons, we also introduce
the quantity b = m + pu.)
In this paper, we will give an algorithm which solves the complex roots
problem above, that is given the sequence of input coefficients cg, ..., c,_1

it outputs the complex numbers wy,...,w,, and show that, assuming each
elementary arithmetic operation +, —, %, / and comparison can be performed
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exactly, and in one step (the arithmetic computation model), then the num-
ber of steps taken by the algorithm is bounded above by a fixed absolute
constant multiple (implicit in the paper, but for the sake of brevity, not
explicitly evaluated) of the quantity nlog®nlogb. That is, the arithmetic
complezity of the algorithm is O(n log” nlogb).

In the boolean model of computation, the number of steps required to com-
pute each elementary arithmetic operation grows with the size of the operands,
but we will show that the problem can be solved in its entire generality, by
performing approzimate arithmetic operations (i.e. compute, then round) on
numbers whose bit lengths are bounded by ¢, where

¢ =7+ 2n’m + 3(n+logn + 1) + n*(1 + 2logn) + loglogn

and
™= pu—+2n+nm+loglogn + 5

and hence the boolean complexity of the algorithm is only larger than its arith-
metic complexity by a factor of M(¢), where M(¢)) = O(¢)(log ) loglog 1))
is the complexity of multiplying two ¢ bit integers.

To put this result in proper context, we mention some of the history of
solutions to this problem. The early algorithm of [GH 72| had arithmetic
complexity O(n?b). Although the algorithm of Schonhage [S 82] was not
analyzed in the arithmetic model, it can be seen to require O(n? log®™® (bn))
arithmetic operations. Renegar [R 87] gave a O((n+logb)n? logn) arithmetic
time algorithm, which is O(n?logn) in the case of precision b < n®W | but is
an improvement in the case of extremely large (super-polynomial) precision.
Pan [P 87] gave an O(n*logblogn) arithmetic time algorithm, which has
been the best known bound for the arithmetic complexity of the Complex
Roots Problem.

We do not suggest that the algorithm in this paper, at least in its current
form, presents an immediate replacement for any of the best numerical rou-
tines currently used in practical implementations (see, for example [JT 70]),
however, it does take a big step towards unifying theory and practice in the
area of complex root finding. There seems some hope that future simplifi-
cations of this presentation, or perhaps, some of the techniques herein, may
lead to improvements in actual implementations.



1.1 Organization of the Paper

The Introduction is given in Section 1. Section 2 defines splitting sets and
centered points used in our polynomial factorizations. Section 3 describes
algorithms for approximate splitting of a polynomial. Section 4 describes
how to find an isolated balanced factorization, and Section 5 gives an analysis
of the full root algorithm. Section 6 briefly discusses the parallelization of
our root finding algorithm. Section 7 concludes the paper with a discussion
of related work and open problems.

2 Notation

In order to keep careful track of the errors introduced by rounding and ap-
proximation, we need to introduce some notation.

Definition 2.1 Let z be a complex number. We denote by n(z) > 0 the
minimum integer with the property that 2"®z is a complex integer  that
18, has real and imaginary parts which are both integers. If no such integer
exists, we write n(z) = 0o,

Definition 2.2 Fort and | positive integers, let Q, be the subset of complex
numbers z such that n(z) < t. Let Qi be the subset of Q, consisting of those
z satisfying |z| < 2.

Definition 2.3 Let P be the set of monic polynomials with complex coeffi-
cients. With t and | as above, let Py subset of P having all coefficients in
Q,, and let P! be the subset of polynomials having all coefficients in Qi

Definition 2.4 Let z; be the roots of f. We let
pulf) = max =]}

and

pi(f) = min{]=}



and call each, respectively, the upper and lower root radius of f.

Definition 2.5 Let R, : Q — Q, be the rounding operator, and extend the
domain to P coefficientwise.

We will use the [*° coefficient norm on our spaces of polynomials, that is

7] = max{leil}

where the ¢; are the coefficients of f.

One easily computable measure of distance between two polynomials f and
g, is then |f — g|. For us, the more salient measure of distance is the root
perturbation, and hence we are led to

Definition 2.6 The root distance, A(f,g) between two polynomials f and g
s given by

00 if deg(f) # deg(g)

A”ﬂ*:{mmddmum%mmn if deg(f) = deg(g) = n

where z; are the roots of f, w; are the roots of g, and ¥, is the set of
permutations on {1,...,n}.

Our algorithm will work by computing a polynomial, g, which is explicitly
presented as a product of linear factors. In order to know that the (immedi-
ately available) roots of ¢ provide approximations of the desired precision to
the roots of f, we rely on the following corollary to the theorem of Ostrowski

IN 94].



Theorem 2.1 Let f and g be monic polynomials of the same degree n, and
let pu(f) <2 If |f —g| < 27", then

A(f,g) < 2l+logn+3fﬁ/n )

Proof: This follows immediately from [N 94], Theorem 4.5, by estimating the
size of the coefficients of f as symmetric functions of its roots, and then using
the condition on |f — g| and the triangle inequality to estimate the size of
the coefficients of g as well. |

We will keep the [*° errors introduced in each factorization of a polynomial
into polynomials of lower degree small enough so that, by using the triangle
inequality to estimate the total error, and the previous theorem, we will
guarantee the precision we require.

An essential part of the algorithm is to translate coordinates to an origin
which is “good” for factoring f. Thus we introduce

Definition 2.7 For ¢ € C, define the translated polynomial 7.(f) by

So, in particular, 7.(g)(0) = g(c).
We also occasionally will scale coordinates

Definition 2.8 If c € C — {0}, define

at(g)(z) = "g(2/c)



and multiply polynomials

Definition 2.9

mult(g1, 92) = 9192 -

There are methods for computing each of these polynomial transformations
in O(nlogn) steps (or fewer in the case of scaling). In the arithmetic model,
we assume that these operations are performed exactly, but we still need to
be concerned with errors since we deal with approximate factors throughout
the algorithm. That is we need to bound |o(g) —o(h)|, or |o(g1, g2) —0(h1, hs)|
for each operation, o, that we use. Also, in the boolean model we need to
round after computing the operation and this introduces another error, but
it is actually small in comparison.

We collect these error bounds into the following easy lemma.

Lemma 2.1 Assume that g1, go, h1, ha are all polynomials with [*° norms
bounded by 2!, and degrees bounded by n, and that |c| < 2. Then for each of
the basic polynomial operations above, the error introduced by the computa-
tion followed by rounding to Py is bounded by

o(g) — o(h)] < max{220°Em g — pf 211}
for each of the unary operations, and bounded by
0091, 92) — olhn, ha)| < max {25 max(gr — M lg2 — hal) 2}

for the biniary operation mult.



2.1 Organization of the Algorithm

At a high level, the algorithm is exceedingly simple. It starts by translating
f to a “good” coordinate system, one where there is a disk that divides the
roots in a balanced way, and whose boundary is “not too close” to any of the
roots. Then it factors f approximately into three polynomials fi, fo, and f3
in the transformed coordinate system. If we were able to arrange that each of
the degrees of the f; is less than or equal to half the degree of f, (we call this
a balanced factorization or balanced splitting) then we translate each of them
back to the original coordinate system (in practice we wouldn’t actually do
this, we’'d just keep a record of the accumulated translations for each factor,
but it greatly simplifies our description), and then proceed recursively. It
might not have been possible to arrange a balanced splitting though, so
taking f; to be the unique factor of degree greater than half the degree of
f, we translate it to another “good” coordinate system, and approximately
factor it into at most four factors which we will be able to guarantee have
degrees each less than or equal to half the degree of f. As before, we now
translate back to original coordinates, leaving us with at most six factors fiq,
fi2, fi3, f14 (the four factors of f1), and f,, and f3. We now have a balanced
factorization of f, and can recursively apply the algorithm to each of the
factors.

Remark 2.1 Fach translation will always be of bounded size, |c¢| < 2™, and
hence, by standard root bound theorems, it will be straightforward to check
that all coefficients of translated polynomials and factors will have upper root
radii at most 2™t and will have 1®° norm less than 2n+nm+1) = 92ntnm

([N 94]).

J From here on, we will always round to 7 = pu + 2n 4+ nm + loglogn + 5
bits (to the right of decimal point), Appealing to the previous lemma, and
using the triangle inequality, we see that the [ error introduced by each

translation (including rounding in the Boolean case) is in total bounded by
¢1 — 22n+nm77r71 — 27u710g10gn76.

The [*° error introduced by the factorization step, that is the step that factors
the polynomials using the given coordinate system, must be broken into two



parts. First, there is the computational error £, which would be introduced
even if its input polynomial was ezactly the polynomial we wished to factor.
Second, there is the inherent stability error, €5, which is independent of the
computational procedure, and is introduced because the input polynomial is
already in error by as much as twice (since we may require two successive
translations) the amount ¢;. Hence,

£y < 27u710g logn—5

In the next section, we will bound £; by
g < 277r+2n+nm — 27u710g10gn75 (1)

and hence, finally, the total error introduced by a factorization step, including
the necessary translation is bounded by

g3 < 27u710g log n74-

A complete balanced factorization, as described at the beginning of this sec-
tion, may require five, “translate and factor” steps (actually, only two trans-
lations, but for ease of notation, we can think of a factorization without
translation as a “translate by 0 and factor”), as well as a final translation
to bring the computed factors back to the original coordinate system, so the
total error introduced by a balanced factorization step is bounded by

£ < Heg 4 2¥Anmon—l o gmmid

Since there are at most 2logn factorizations in the computation path to
get to any approximate linear factor, we appeal to the triangle inequality to
obtain

10



Lemma 2.2 If f is the input polynomual, and g is the computed polynomial
(which is expressed explicitly as a product of monic linear polynomials), then

A(f,g) < 2logn2™ ™ < 27K,

And hence, the (immediately available) roots of g provide the solution to the
complex roots problem for f.

3 Approximate Factorization of a Polynomial

It has long been understood that the computation of an accurate approximate
factorization of a polynomial f is closely tied to the geometry of its root set.
This is because the most obvious approach depends on computing contour
integrals via an FFT, and in order to get good convergence one needs to
exploit the existence of a “large” root free annulus.

To make this more precise we introduce

Definition 3.1 Fiz § > 0. A disk D = D(zy; R) is called 8-isolated

(or is said to have isolation ratio & ) for a polynomial f if there are no
roots of f in the annulus

Tp = D(z2; (1 +6)R) — D(z; (1 +6) 'R).

(This definition is essentially the same as the one that can be found in [P 87|
and [P 89] except that we use the disk whose boundary is ‘centered’ in the
root free annulus instead of on the inside boundary of the root free annulus.
The choice is only a matter of notational convenience.)

Previously, in the case § = 1/2, the techniques of contour integration and

Newton iteration were effectively used by Schonhage [S 82] and later by
Pan [P 87] to approximately factor the polynomial f.
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Lemma 3.1 Suppose we are given a disk D which has isolation ratio 6 = 1/2
for polynomial f. Then there is a O(nlog® nlogb) (arithmetic) algorithm for
computing a factorization of f into approximate factors, fi and fs, corre-
sponding to roots inside and outside D, respectively.

Fori=1,2if f; are the two exact factors of f, then

|fZ . fz| < 22n+nm)77r . (2)

Moreover, the bit precision required by the algorithm is exactly ™+ (2n+nm)
when implemented in the Boolean model.

Definition 3.2 In the rest of the paper, we shall say that an approrimate
factorization of a polynomial f is a full precision factorization if the
factors satisfy equation 2. We also call the approximate factors, f;, full
precision factors of f.

(Actually the construction works for any fixed constant § > 0, but the num-
ber of steps required increases as d goes to zero, and hence the method needs
modification when the degree n is allowed to get large, since then there may
not exist non-trivial d-isolated disks.)

We need to generalize lemma 3.1 to the case where ¢ is not fixed independent
of the degree n. The main result of this section then is

Theorem 3.1 Suppose that |f| < 22"t and that we are given any disk
D = D(0; R) centered at 0, which has known isolation ratio 6 > 0 for f.
Then we can compute, to the same precision as in lemma 3.1, the approzimate
factors fi and fy in O(nlog® nlogblogd ") arithmetic operations.

Moreover, making no assumptions on minimum root separation, the bit pre-

ciston required by the algorithm, when implemented in the Boolean model, is
exactly

12



7+ —logd + 2n*m + 3n +logn + 3 + n*(—logé + 1) + loglogn .

Let P = PEVF\E be the set of monic polynomials defined in the previous
section. Of course, during the recursive factorization, the degrees of the
polynomials we encounter can only decrease, so we will implicitly assume
that all degrees are bounded by n.

3.1 Approximate Splitting of Polynomials with Isolation Ratio ¢

In the case that we need to factor a polynomial according to a disk D with
isolation ratio, 0, smaller than 1/2, we will use a combination of established
techniques (polynomial powering, contour integration, and Newton iteration)
described in the Appendix to efficiently and accurately split f into approxi-
mate factors corresponding to roots inside and outside D, respectively.

Our basic approach will be to first scale coordinates so that the isolation
disk D can be taken to be the unit disk. Then we apply the Graeff’s Method
for k = [logd '] — 1 stages. Each iteration of this computation produces
a new polynomial whose roots are the squares of the roots of the previous
polynomial. We need to keep all polynomials within our coefficient class,
so we also check at each stage to see if our new polynomial has any roots
with magnitude larger than 2" or less than 27". If such roots exist, we factor
the polynomial using lemma 3.1, and proceed to apply Graeff’s Method only
to the factor with moderate sized roots. This will, in k& stages, produce a
polynomial f; with the property that the unit disk has isolation ratio 1/2.

We then apply Lemma 3.1 to obtain a split of f; into factors with roots
corresponding to the roots of fj inside and outside D, respectively. Then we
will apply a series of k stages of a partial GCD computation, to reconstruct
the factors of f from these factors of fr. These factors of f will then have
roots corresponding to roots of f inside and outside D.

The following observation allows us to assume that throughout the powering
process, all roots of our polynomial are less than 2" and greater than 27"
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in magnitude. If any roots are greater than 2" in magnitude, or less than
27" in magnitude, there must be a disk with isolation ratio 1/2 within this
range that we can use to factor f by the basic factorization technique of
Lemma 3.1. Finding such a disk is easily done using well established root
radii estimation techniques [P 87, R 93b].

Remark 3.1 [t is important to keep the roots of the successive polynomials
from getting too large even in the arithmetic model of the algorithm. The
reason for this is that theorem 2.1 depends on the upper root radius. If we
allow this to get larger than O(2"), the precision required would be too large
to effectively apply lemma 3.1 at stage k. Moreover, the error of each Partial
GCD computation would also be too large.

We now make the preceding discussion more precise with

Algorithm FACTORPOL

Let k= [logd '] — 1.

[0] Scale coordinates so that D is the unit disk. By lemma 2.1, this introduces
an error of at most 22"~ 7~1 in the [*°-norm.

[1] For i =1,2,...,k do

[1.1] Apply Graeffe’s Method to fy = f, computing (symbolically)

fz'(Z) = fze1(\/z)fi71(—\/g)

[1.2] Apply lemma 3.1 to get a splitting of f into polynomials h;, f;, H; (where
h; and H; may have degree 0) and where (recall definition 2.4)

) pulhs) < 277
(i) pu(H;) > 2"
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(iii) 27" < pu(fi) < pulfi) < 27

Comment: After k stages, this results in a degree n’ polynomial (where
n' < n) fi(z) which has roots which are the 2*th powers of the roots of
fo(2). Note that the unit radius disk D is 1/2-isolated for fi(z).

[2] Apply Lemma 3.1 to get an approximate factorization of fj into poly-
nomials Fy,; and Gy satisfying p,(Gri1) < 1 and p)(Fpyq) > 1. Let
Gy = hyGgy1 and Fy = HpFy.1. The lemma allows us to assume that the
precision of the approximate factors is high.

Comment: At this point, we have constructed a factorization of a “blown-
up” version of f. Now we proceed back down the chain of Graeffe polynomi-
als, constructing a corresponding factorization of each polynomial from the
factorization of the one “above” it.

[3] For i =k,k—1,...,1 do

Let
Fi1(2) = Hi 1 PGC Dy (fi-1(2), Fi(2°)) (3)

and
Gi-1(2) = hi-i PGCDaeg(c,) (fi1(2), Gi(27)). (4)

The PGC D, operator finds the monic polynomial of degree [ in the standard
quotient remainder sequence for the two polynomials which are its arguments.
In general, this could be the zero polynomial, but we will know otherwise in
our particular application.

The motivation for this step is best understood if we imagine that all com-
putations, including the factorization in step [2], could have been carried
out exactly. (In actuality, this is not true even in the arithmetic model of
computation, due to the error introduced in step [2].) Then, the roots of
F;(z) are exactly the squares of those roots of f;_1(z) which are greater than
1 in modulus. Also, the roots of Fj(2?) are all the square roots of the roots
of F;(z). So, if p;_1(z) is the factor of f; ; corresponding to all of its roots
which are greater than 1 in modulus, then F(2?) = p;_1(2)pi_1(—2), and
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PGC Daeg(r)(fi-1(2), Fi(2%)) = GC Daeg(ny (fi1(2), Fi(2?)) = pia(2) . (5)

That is, we have computed the factor of f; ; which we seek. The same, of
course, holds for the second PGCD computation, but with respect to roots
smaller than 1 in modulus.

The difficulty we face is that we must show that the PGC' D computation in
the presence of errors in the input polynomials still gives a good approxima-
tion to the result we are after.

[4] Apply O(logn + loglogd~') Newton iterations to F; | and G; ; in order

to guarantee that

Foy—F| <27 (6)
G~ G2y <27

where F | and GY | are the corresponding true factors of f;. The value of
o will be discussed shortly.

[5] Now i = 0, and we’ve factored the scaled polynomial, so scale the factors
to the original coordinate system.

OUTPUT Fy, Gy which is an approximate factorization of fy = f .

The key to keeping the errors from growing is the Newton iteration phase.
The problem with using it is that we must be sure that we have a good enough
initial approximation polynomial. The initial approximation we have comes

from the PGC D computation, so we will need to analyze the errors there.

We begin with [P 89, P 94]
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Lemma 3.2 Let f be monic and let

n=mn(f) = min|f(z)],

j2]=1

and let

¢, = min {n/g, ()" } .

n2 (777 + gn)224n+2

If g and h are the two (exact) monic factors of f corresponding to the roots
of f inside and outside the unit disk, and if go and hy are two approximations
to g and h satisfying

190 — 9| < €5
and

|]’Lg*h,‘ < €f,

and if g; and h; are the sequence of Newton iteration polynomials beginning
with go and hg, then

(1.5)
9 — gl < ¢
(1.5)¢

We now fix
o= —loge; —2n*logd " +2(2n + nm)

and suppose inductively that F; and G; satisfy equation 6. We need to show
that we can compute F; ;| and (G;_; accurately enough to have an initial
Newton approximation, that is with an [* error no larger than e;. Other
than the PGC'D computation, we only have two multiplications to compute
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these polynomials, so it suffices to show that the [*° error at the end of the

PGC D computation is no more than 2'08€r—2(2n+nm),

To do this, we begin by expressing the coefficients of P;_1(z) = PGC Dgeg(r)(fi—1(2), Fi(2?))
explicitly as a quotient of two determinants. In order to greatly simplify the
notation necessary, we will assume that

deg(fi-1) = 2deg(F;) =2d = ¢

so that we are computing the PGC D of two polynomials of equal degree. If
this is not the case, we can multiply the smaller degree polynomial by the
appropriate power of z. In practice, this would not be the optimal way to
proceed, but it wouldn’t increase the overall work by more than a factor of
2. We leave it to the reader to make the notational modifications to the
estimates that follow, which would allow computation with smaller matrices.

Lemma 3.3 Let A(z) = 2°+a, 12 '+ +ag and B(z) = 2+ b, 12" +
-+ by. Let S(A, B) be the 2¢ x 2¢ matriz

( 1 0 0 1 0 0 7
Ae—1 bcfl
1 1
O Ae_1 O b071
S(A,B) =
ay O O b1 0 O
Gy bo
a1 by
L 0 Qg 0 bU _

and let S4(A, B) be the 2(c — d) x 2(c — d) submatriz of S(A, B) obtained by
remouving the bottom 2d rows, columns ¢ —d+1,..., ¢ and columns 2¢ — d +
1,...,2c. For 0 <j <d—1, also let Sj(A, B) be the 2(c — d) x 2(c — d)

P
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submatriz of S(A, B) which is identical to Sq(A, B) in the first 2(c — d) — 1
rows, and whose last row consists of the entries of S(A, B) taken from the

(2c —d — j)th row and the same columns.

Then, if det(S4(A, B)) # 0, the degree d polynomial in the standard quotient
remainder sequence (see [AHU 74]), PGC’D;(A, B), is non-zero and is given
by

PGCD, (A, B)(z) = fjdet(sj(A, B))2. (7)

If we had to compute the determinants in equation 7 explicitly, we would be
in trouble in the Boolean model of computation. We only know that each
coefficient is bounded in magnitude by 20(n?) (by remark 3.1) and hence the
size of the determinants could get as large as 20(n*) " which would be too large
for the bit precision we are using. Fortunately, we only need to compute the

monic form of PGC’D:(A, B), which we shall denote by PGC D,4(A, B), and
hence only need to be concerned with the quotients

~ det(S;(A, B))

~ det(S4(A, B)) (8)

Qj
for0<j<d—1.

We need to show that these are not too large, and that we can compute them
in such a way that the errors are not too large either.

In our application, A(z) = fi_1(z) and B(z) = F;(2?). Let 7 = |by|'/2. Then
7 is the square root of the product of the moduli of all roots of Fj(z). Let us
write

Si(A,B) = 7 'S;(A, B) (9)
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for 0 < j < d.

Remark 3.2 The quotients, (); are not changed if we replace the entries of
S; with the entries of S.

We begin with the following perturbation lemma.

Lemma 3.4 Suppose that Pi(z) = Q1(2)R(z) and Py(z) = Q2(2)R(z), where
deg(Q1) = deg(Q2) = d, deg(R) < d, and where P;, Q; and R are all monic.
Suppose that p,(Q1) > 1, and p,(P2) < 1. (The asymmetry of the assumption
with respect to the P; is intentional.) Also suppose that p,(P) < 2F. Let

B = sup |Qi(2)] (10)
{lz[<2}
and
b = inf 11
P 1Q1(Q)] (11)
and o
d2°B
A =344+ ; (12)
and
ko = [log A] + 2.
If
K> Ko+ 1
and |F; — P;| < 27" then
|PGCDy(Fy, Fy) — PGCDy(Py,P,)| = |PGCDy(F,,Fy,) — R| (13)
< 2I{0*K+dk+d . (14)

Proof : For simplicity, we shall assume deg(R) = d. (To achieve this, we
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can multiply both P, and P, by the monomial z¢-4s(R)).

For each 7« > 0, let V; denote the vector space of polynomials of degree less
than or equal to 2. The dimension of this space is, of course, 7 + 1, and

V; C V; for j <i. Consider the linear map L : Vg1 @ V41 — Vsg1 [ Vi
defined by

L ((a,b)) = aP, +bP;.

The fact that this map is both well defined and an isomorphism, follows
immediately from the GCD assumption on P; and P,. In this setup, let
m; be the image of the monomial 2J under the vector space quotient map

Vsg-1 — ng,l/Vd,l. Then if L(A, B) = my,

AP, +BP, = R. (15)

So
(A,B) = L '(R) .

Our result will then follow from standard theorems in Numerical Analysis if
we can put an appropriate bound on the condition number of the linear map
L with respect to the standard monomial basis for the V;.

Because all roots of P; and P, are assumed to be less than 2¥ in magnitude,
their coefficients are bounded in magnitude by 2¢72¢ and hence

|L|| < 282 (16)

So we focus our attention on ||L~'||. To this end, define A; and B; (d < j <
3d — 1) as the polynomials satisfying
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L(A;, Bj) = m; .

The coefficients of A;, B; then, by definition, form the entries of the coore-
sponding row of the matrix of L™', and we will succeed in bounding ||L™'||
if we can bound all these coefficients for each d < 7 < 3d — 1.

Now
Aj(2)Pi(2) + Bi(2)Pa(2) = 2 +15(2)

where r;(z) is a polynomial (not necessarily monic) of degree strictly less
than d (definition of vector space quotient). Of course, by assumption we
have

2 +1i(2) = ¢i(2)R(2)

for some monic polynomial ¢;. Let wy,...,wq be the d roots of R. Let Tj,
0 <1 <d—1 be the successive divided difference operators (see [H 74|, vol.

1)

(Tof)(z) = f(2) (17)
([wi, ... w] f)(2) . (18)

—~

=

~

SN—

—~
N

S~—
I

Computing the divided differences, we have

(Ti(q;R))(wis1) = 0 (19)
and
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(1) ()| < 2

and hence

(T3 (rj)) (win)| < 2"

Since deg(r;) < d, we have the identity

TEES ((ﬂ(m))(wm)ﬁ(zws)> (20)

=0 s=0

(where, as usual, the empty product in the first term of the summation is
taken to be 1).

It is now easy to verify that if z1, ..., z; are any complex numbers satisfying
|zj| < 2%, and T, are the operators above, now taken with respect to the
sequence z; instead of the sequence w;, then

(T + 1)) ()| < (2F+1)22 (21)

So now let us apply the same divided difference scheme, but with respect to
the sequence of roots of ()1 and ()5 instead of with respect to the roots of R.
Let Tj' be the sequence of divided difference operators taken with respect to
&1, ..., &, the roots of @, and let T? be the sequence of divided difference
operators taken with respect to (i,..., (4, the roots of Q.

Remark 3.3 Notice that no particular order is assumed for the & or the (;,
and hence the bounds that follow for T} and T} are independent of the subset
of roots considered.
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As with equation 19 we have

(T (B ) (Gie1) = 0

so that by equation 21

(TPAP) (Gn)| < (284 1)2% (22)

Now, it follows from the Cauchy Integral Formula, the Mean Value Theorem,
and the assumptions of the lemma

(T2(P)) ()| < B (23)

Furthermore, we can express the divided difference operator of a product of
two functions in the following way

l

(TPAP))Ge1) = D (U2 () (o) (THA)) (Gn) (24)

r=0

where U,_, is the divided difference operator

Ui+ )(2) = ([Grar -, G )(2) -

Combining equations 24 and 23, lemma assumption 11, and the remark
above, we now have, for each [,

(T2 (A)) (G| < b Y BTAAN G
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and hence, by simple induction it follows that

‘(TlQ(Aj))(ng)‘ < (%)HQ-

Since, deg(A,) < d, for all z

and thus, since |(,| < 1 for all r,

B
sup |A;(2)| < d2%—
{lz1=2} b

By the Maximum Modulus Theorem, we even have

B
sup |A;(2)] < d2%—
{l21<2) b

(25)

So finally, by the Cauchy Estimates, each coefficient of A; is bounded by
d2¢B/b < A. Moreover, from equation 25 and the definition of B in the

lemma, we must have

BZ
sup |A;(2)Pi(2)] < d2%—
{I2152) b

Also, since all roots of R and @)y are less than 1 in modulus, we have
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sup |R(z)| < 3% (26)
{lz[<2}

and

inf |Py(2) > 1. 27
it 1Pa(2) (27)

These last two equations, along with equation 15, give us

BQ
sup |B;(z)] < d27—

+37. (28)
{lz1=2} b

So, again using the Cauchy Estimates, each coefficient of B; is bounded by
A as well.

Hence, all entries in the matrix of the transformation L~' are bounded by
A. The results of the lemma now follow directly from standard matrix per-
turbation theorems in Numerical Analysis. 1

The asymmetry in the statement of lemma 3.4 may seem puzzling, however,
it becomes less so upon observing

Lemma 3.5 If we modify the assumptions of lemma 3.4 so that instead

pu(Ql) < 1
p(Q2) > 1

Pu(QQ) > 2
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and

B= sup Qi)
{lz|>1/2}

then the same perturbation bounds hold.

Proof :

Replace each polynomial p in the statement of lemma 3.4 with its “reverse”
polynomial p. The roots of p are the multiplicative inverses of the roots of p.

Corollary 3.1 Suppose that under the assumptions of lemma 3.4, or lemma 3.5,
we also know that |£] > 1+ § for all roots, & of Qv, and that || < 1— ¢ for
all roots, ¢ of @z, and 0 < d < 1/2. Then, taking B as above

\IPGCDy(Fy, Fy) — PGCDy(Py, P,)| = |PGCDy(F\,Fy)—R| (29)
3
1 = d22dk+3d+10gd+17.‘<
< +26) (30)

Proof : If |z| <2, Q2(¢) =0, and Q,(§) = 0, then

-0 | (-0 3
o T <t
Hence
o (¢ 3¢
‘Ql(o A EGI (1+5) 3




Thus from lemma 3.4, and with notation as above,

d24 B>

[PGCDy(Fy, Fy) — PGCDy(Py, )| < (3" + ; )2kt x (32)
< 2d(2d + dTBQ)Qdk—Fdn
< 2d(2d +dB(%)d)2dk+dn
< 2d(2d +d2dk+d(23_6)d)2dk+dn
< Qd(dek+d+l(%)d)2dk+dn
_ (i)dQQdk+3d+logd+1—n

20

Our intent is to bound errors in step [3] of algorithm FACTORPOL. To do
this we apply lemma 3.4 to equation 4 and lemma 3.5 to equation 3. Since,
in such application, we can bound d above by n, k above by nm, and § above
by 1/2 (recall that § > 1/2 is the “trivial” case of constant isolation ratio)
we have

Corollary 3.2 The number of bits of precision lost due to inherent error

(i.e. assuming exact computation) in each PGCD computation in step [3] of
algorithm FACTORPOL is bounded above by

H = —logd + 2n*m + 3n + logn + 3

We also need to analyze the computational error. Since the computation of
the PGCD is done by determinant and then division by the leading coefficient
(recall equation 8), it is not obvious how to do the computation in the boolean
case without introducing much greater error than that introduced above.
However, we are rescued by the following
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Lemma 3.6 With the same notation as in corollary 3.1

5" < det (S4(Py, Py)) < 2%

Proof :

We know that Sy(P;, Py) is exactly R(Q1, (Q2), the resultant of 1 and Qs.
If &,...,&, are the roots of ()1 and (y, ..., (s are the roots of ()9, then

i=17=1
Since c
LA
&i
it follows
0 < —% < 2
Hence
d d s d d , ,
o < Isyrr) = TS = I - g <2
i=1j5=1 ? i=1j=1 i

So

Corollary 3.3 Since, in equation 3.2, computing T and hence the 5’; 18 triv-
ial, if, in algorithm FACTORPOL, step [3], we use at most n*(—logd + 1)
additional bits in our intermediate computation, the computational error in-
troduced will be no larger than the inherent error estimated above.
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Finally, since we need perform at most logn PGCD computations in any
computation path of algorithm FACTORPOL, the total number of bits of
precision lost in step [3] — assuming we do each computation (in particular
step [2], the constant isolation ratio factorization) with precision

o> ¢=—1logd+2n*m+3n+logn+ 3+ n*(—logé + 1)

bits in the boolean case — is bounded above by

¢+ loglogn .

Thus, taking 0 = 7 + loglogn + ¢, and combining all the results of this
section we have proved theorem 3.1.

4 Splitting Sets and Centered Points

The previous section provides us with a method for efficiently factoring a
polynomial into factors of smaller degree, once we have a disk with a “good”
isolation ratio — that is one with  reasonably large. However, in order to
optimize the overall complexity of the root finding algorithm, it is necessary
that the disk also divide the root set geometrically in a “balanced” manner.

In the case where the input polynomial, f, is totally real (i.e. has only real
roots), the notion of a “splitting point” is used in order to find the required
geometrically balanced division of the root set [BFKT 86, P 89, R 93b, N 94].
It is the purpose of this section to introduce the idea of a splitting set of points
for general complex polynomials. In some sense it is a generalization of the
splitting point idea, although not entirely. Its usefulness hinges on the fact
that there is a fast method for approximating the moduli of the roots of f
with small relative error. As a result of this, it will turn out that we will be
able to find a balanced factorization of f as long as we can choose an origin
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which is “close” to any “big” cluster of roots of f. A splitting set allows us
to find such an origin. Let D(z; R) denote a complex disk with center z and
radius R.

Definition 4.1 Fiz 0 < a < 1 and k > 0. A finite set S = {s1,...,sn}
of complex numbers is an (a,k)-splitting set for f, if for every disk
D(zy ; R) in the complex plane containing more than an roots of f, there is
a point s; € S that lies in D(z ; kR).

For the remainder of the paper we shall use the following shorthand whenever
it is not ambiguous.

Definition 4.2 We call a disk D a-full (for f) if it contains more than
an roots of f.

Definition 4.3 If D = D(z; R) is a complex disk, and k is a non-negative
real number, we use kD to represent the dilated disk D(z;kR).

Remark 4.1 The preceding definition differs from the often intended mean-
ing for kD, which is the point set obtained by multiplying every point of D
by the scalar k.

We can now restate the definition of a splitting set as follows: S is an (a, k)-
splitting set for f if, and only if, for every disk D which is a-full for f,
kDNS # 0.

The usefulness of a splitting set is that it allows us to quickly find (assuming
that k& and N are reasonably small) a “good” origin for factoring f in a
balanced way. This will be made more precise after the following series of
lemmas.

Lemma 4.1 If S is a (a, k)-splitting set for f, and o > 1/2, then at least
one point sg € S has the property that, if D is any «-full disk, sy € (k+2)D.
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Proof : Let Dy be an a-full disk of minimal radius, and let s € S be a

point of S which is contained in kDy. Any other a-full disk D must have
radius at least as large as the radius of Dy, and, since o > 1/2, at least one
root of f is in both Dy and D. So D N Dy # (). But then (k + 2)D must
contain kD, and in particular, s € (k+2)D. 1

Definition 4.4 A point z with the properties of so above will be called an
(o, k)-centered point for f.

Centered points will be, for us, the complex analogy of the splitting points
used in the case of totally real root finding. We choose not to call them
splitting points though, since their geometric properties are not absolutely
identical.

Next we state the important root modulus approximation theorem which
has been used many times in previous literature. This method due to Turin
in 1968 [T 68, T 75, T 84] can be used to determine approximations to the
magnitudes of all the roots of a polynomial. Schénhage [S 82] gave an
efficient implementation of Turin’s method. (See [P 87, R 93b] for other uses
of Turin’s method.)

Lemma 4.2 There is an algorithm, which, given a polynomial, f, of degree
n, and fized positive constants ¢; and cy, computes, with sequential complexity
O(nlog®n) or parallel time O(log”n) with n processors, for each root r; of
f(2), an interval I; = [L;, U;] containing r;, such that

and v = —.

c1nc2

We now need to introduce the somewhat technical definition of relative
length.
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Definition 4.5 Suppose I = [L,U], is an interval. If 0 < L < U, then the
relative length of I is the quantity
U
|] |rel = Z -1

If L < 0 and U > 0 we define the relative length of I to be oo, and if
0 < U < L, we take the relative length of I to be 0. In any other case, we
must have U < 0, and we define the relative length of I to be the relative
length of [-U, —L].

Similarly, if D = D(c; R) is a disk in the complex plane, we define the relative
diameter, d(D),e, of D to be the relative length of the interval [ |c|— R , |c|+
R].

Finally, for an annulus, A, centered at the origin, we let its relative width,
|Al,er, be the relative length of its intersection with the positive real axis.

By combining the results of the previous section with lemma 4.2, we are led
to the following

Theorem 4.1 Let f be a polynomial of degree d < n, and with | f| < 22"T7m,
Then there is an algorithm requiring O(dlog” dlogblog d?) < O(dlog® dlogb)
arithmetic operations, and at most ¢ bits of precision, which computes a se-
quence of ¢ < 5 full precision factors fo,..., f,, and a sequence of corre-
sponding geometric regions Vy, ..., V, with these properties:

1. The region Vy s the only unbounded region.
2. The regions Vi, ..., V, are all contained in a disk, D, of radius R.

3. If 0 <i # j < gq, then the distance between the two regions V; and V,
§(Vi, V;), satisfies

(Vi V) > o R (33)

1
168d?
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4. If C is a root of f, then ¢ € V; for some 1.

5. If V; contains more than d/2 roots of f, then V; is contained in a disk,
D', with relative diameter smaller than dR/21.

Remark 4.2 In the statement of theorem 4.1, we have made what appears
to be an odd choice of constants (168, 21...). The reason for the choices will
become clear later. We could have chosen any other pair of constants with
the same ratio, and the statement would still be correct, but the complexity of
the algorithm is dependent on the choice, so we choose to fix them explicitly,
otherwise this fact would be obscured in the theorem’s statement.

Proof of theorem 4.1: Apply lemma 4.2 with ¢; = 168 and ¢ = 2. For
|d/4] < i < [3d/4], we consider the intervals J; = [U;, Ly, |. If any one of
these intervals, .Ji, has relative length greater than or equal to ﬁ, then by
applying the factorization algorithm of the previous section, with § = m,
we can take R = Uy, ¢ = 1, and let V; = D(0; R), and let V; be the
complement of D(0; Ly1), and take f; and fy to be the factors with roots in
the corresponding regions.

Thus we shall suppose that

1
il < To5
for all |d/4] < i< [3d/4]. Let
o = max {i: | Tl > o }
oy = lirit?/)ij [ i |rel 168d2
and .
io= min 4 il > 7655 1
Finally let
I = [Uilel]



One easily checks then that

et < 25 (34)

Set

Vo = (D(0; Uy))"
and, using the factorization algorithm of the previous section, again with
0 = m, compute fy, the full precision factor of f corresponding to the

roots of f in Vj. Let gy be the other full precision factor of f, so all roots of
go lie in D(0; L;,), and set

Vi = D(0; L;,)
and, as with Vg, compute f;, the full precision factor of ¢; corresponding to

the roots of g; in V;. Let g, be the other full precision factor of g;. Then all
roots of g must lie in the annulus

A = D(0;L) — D(0;U),
(where L = L;, and U = Uj,,) which, by equation 34, satisfies

[ Alrer < = (35)

Now let ¢ = 2L;, and translate coordinates to the point X; = ¢+ 0i. Repeat
the construction once again using the polynomial ¢go in place of f. If this
successfully factors gy into factors of degree at most d/2 we are done. If not,
we will have constructed another annulus

Al = D(Xl,Ll) — D(Xl,Ul),

(and corresponding polynomial factor g4) containing more than d/2 roots of
g2- (Recall that d is the degree of f, even though the degree of g, may be
smaller.) And, incidentally, we will also have computed V; and fo, and V3
and f3, which correspond to the factors f, and ¢y that we computed when
we began with f instead of with g9, but, by design, these are guaranteed to
be of degree less than d/2.

Since all the roots of g, were in A, we can conclude two facts.
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1. All the roots of g4 liein AN A;.

2.
1 1
1-—)L <L 1+—)L.
(1- gD <L <301+ o) (3

We now distinguish two cases:

1. Case 1: (4/3)L < L, < (8/3)L .

2. Case 2: L; < (4/3)L or (8/3)L < L;.

In case 1, it is easy to see that A N A; consists of two convex regions of
bounded aspect ratio, V; and V3, each one contained in a disk of radius at
most R/d, and satisfying 6(Vi, Vs) > (1/4)R. So, here we are almost done.
We can apply one more factorization step (in fact, this time — and only this
time we can use the simpler factorization algorithm of lemma 3.1 rather
than the more complicated factorization method developed in the previous
section) in order to produce the corresponding factors f; and f5 of g4. The
properties of the regions V; can now be easily verified using equation 36.

In case 2, we abandon our attempt to use X; as an origin, and translate
coordinates instead to the new origin Xy = 0 + ¢i (relative to the very first
coordinate system). Since case 1 did not occur with respect to the first
change of coordinates, it now must occur in this coordinate system — one
simply looks at the elementary geometry of the three intersecting annuli.
Hence, by the reasoning of the previous paragraph, we have completed the
proof. 1

We can now state the following crucial corollary, whose proof follows immedi-
ately from the definition of a centered point, and from the stated properties
of the regions V;.

Corollary 4.1 If the origin is a (1/2,21d)-centered point for f
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of degree d, then none of the regions V;, 0 <1 < g < 5, contain more than

d/2 roots of f.

5 The Root Finding Algorithm and its Complexity

We now have the tools to give a recursive formulation of the entire root
finding algorithm. However, the proof of its correctness depends on the

following crucial theorem, which is a simple consequence of the main result
in [CN 94].

Theorem 5.1 If0 < 3 < 1, then the set of roots of the ([Bn] — 1) deriva-
tive of f, fUPM=1(2), is a (B, 21n)-splitting set for f.

In fact, the results of [CN 94] show that the roots of f(#"1=1(z) are even
better than a (3, 21n'/3)-splitting set for f (recall we are assuming 3 > 1/2),
but in this paper we will not take advantage of this stronger statement.

We begin with a subroutine for computing a balanced factorization of f.
The idea of this subroutine is to use the same construction as we used in the
main algorithm of the previous section. In fact, the output of the balanced
factorization subroutine will have exactly the same form as the output of
that algorithm, except that we will do some extra work, and rely on theorem
5.1 to guarantee that none of the regions V; contain more than n/2 roots —
and hence that none of the full precision factors f; have degree greater than
n/2.

Balanced Factorization Algorithm

Let
1

© T RD(B36)7

37



. Compute g(z) = fI"2D(z).

. Recursively compute the balanced factorization g = 7, ¢; (0 < ¢ < 5)
of g, along with the corresponding regions V;. Let R be the bounding
radius, as before, and let D = D(0; R).

. Apply one iteration of the algorithm of theorem 4.1 to f. If none of
the resulting factors has degree greater than n/2,

then RETURN.

Otherwise, let D' = D(¢;r) be the “small disk” containing more than
n/2 roots of f computed in the algorithm.

. Translate coordinates so that ¢ is the origin.

. If the diameter of D', d(D'), satisfies d(D’) < R, go on to step 6. Oth-
erwise, LOOP to step 3. (In the following discussion of the algorithm,
we will prove that we cannot loop more than 3 times.)

. At this point, ¢ must lie either in, or within a distance of ﬁ of at
least one of the regions V;, computed in step 2 (we shall prove this
claim shortly). However, it follows from the properties of these regions
(theorem 4.1, property 3) that this region must be unique.

. Set g = g;,, the polynomial factor corresponding to V;, (the degree is
now reduced by a factor of at least 2) and LOOP to step 2.

We now need to show that this algorithm actually does terminate, and to
analyze its complexity. We will do this with the following lemmas.

Definition 5.1 There are two nested loops in the algorithm above. We call
the loop from step 5 to step 3, the internal loop, and the loop from step 7 to
step 2, the external loop.

Lemma 5.1 FEach iteration of the inner loop decreases the diameter of the
disk D by a factor smaller than ﬁ
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Proof : Let r be the radius of D’ at the start of step 3. (Recall that at this

L

point D' is centered at the origin.) We know that |D'|,o; < 57

Since we have not terminated the computation by returning, the number of
roots in D' is greater than n/2, so we also know

D'ND # 0.

The conclusion of the lemma thus follows immediately from the definition of
relative diameter. |

The following corollary now follows immediately from the definition of €.
Corollary 5.1 The inner loop executes no more than 3 times.

Lemma 5.2 In step 6, the point c lies either within, or within a distance of
g6z Of; at least one of the regions V.

Proof :  First, assume inductively that at least one of the roots of g(z) is a

(1/2,21n)-centered point for f. At the start of the computation, step 1, this

is true by theorem 5.1. Now, in step 6, the disk D’ has radius at most R,

and it contains more than n/2 roots of f, so by definition, any (1/2,21n)-

centered point for f must lie within a distance of 21cR of ¢. Hence, by the
R

inductive assumption, c lies within a distance of = of at least one root of
g.

But all roots of ¢ lie in one of the V;, so the distance from ¢ to at least
one V;, say V;,, must be less than %. By the choice of £, and by the-
orem 4.1, property 3, V;, is the only region which can lie this close to c.
Moreover, by the previous paragraph, the other regions can not contain any
(1/2,21n)-centered points, so V;, must contain all of the roots of g which
are (1/2,21n)-centered points. Since there is at least one of these, by the
inductive assumption again, the chosen factor g;, must have at least one root
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which is a (1/2,21n)-centered point. This then, in turn, proves the inductive
hypothesis. |

As a consequence of the proof, we see that the polynomial g always has a root
which is (1/2,21n)-centered for f. Since the degree of g is reduced by a factor
of at least 1/2 each time we pass through the outer loop, by corollary 4.1:

Theorem 5.2 After at most logn iterations of the outer loop, the Balanced
Factorization Algorithm returns from step 3, with a factorization of f having
no factors of degree greater than n/2.

Corollary 5.2 The arithmetic complexity of the Balanced Factorization Al-
gorithm is O(nlog® nlogh).

Proof : Let T(n) be the number of arithmetic operations performed by the

Balanced Factorization Algorithm on an input polynomial of degree n. We
need to determine a constant C' > 0, such that

T(n) < Cnlog*nlogb. (37)

By theorem 4.1, if we neglect the number of operations in the recursive call
to the Balanced Factorization Algorithm in step 2, the number of arithmetic
operations performed in each pass through the outer loop is bounded above by
Knlog®nlogh for a constant K. Since the number of operations performed
in the recursive call is at most T'(n/2), we have

logn—1 n n n
T(n) < Jz_jo {T(2j+1) + K-logh(2-) logh (38)

Since the roots of quadratic polynomials have explicit formulas which can be
easily approximated, we can assume that n > 2, in which case, for i > 1,
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n 4

5 < log*n —ilog®n . (39)

log! (%) = (logn — )

We claim then that it suffices to take C' = 2K. To see this, suppose this
value for C' has been picked, and assume, inductively, that equation 37 is
satisfied for all n’ < n. Substituting into equation 38, and using the estimate
of equation 39 we have

logn—1 logn—1 logn—1
n A n . 3 no.o
T(n) < E) C’2j+1 log" nlogb— JZ_% 02j+1(j+1)log nlogb+ JZ_% Kglog nloghb.
(40)
Since
logn—1 n
Z 57+ log* nlogh < nlog*nlogh
j=0
and
logn—1
> ﬁ(]+1)log nlogb > nlog” nlogb
§=0
and
logn—1 n
> 2—;log3nlogb < 2nlog®nlogb
j=0
we have

T(n) < (Cnlog*n — Cnlog®n + 2Knlog® n)logh = Cnlog'nlogh. (41)
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The full root finding algorithm is now immediate; we simply call the Balanced
Factorization Algorithm recursively until all factors are linear. Let Q(n) be
the number of arithmetic operations for the full root finding algorithm. Then

logn—1
Q(n) < T(n )+2T 2 = > 2’T 2]
7=0
S0
logn—1 . n logn—1
Qn) < > 2]02—;10g (2 Jlogh= >" Cnlog’ (2;.)logb < Cnlog’nlogh.
Jj=0 j=0

6 Parallization of our Root Finding Algorithm

We now briefly discuss the parallel execution of our root finding algorithm,
which can be immediately parallelized. We assume an arithmetic CREW
PRAM model, where each processor can execute an arithmetic scalar oper-
ation in a single step, and with concurrent reads and exclusive writes on the
stored memory. Our root algorithm relies on a number of basic operations
on polynomials of degree n, which can be executed using n processors in the
indicated times (see [BM 75, J 92, R 93a])

e polynomial translation, sum, and product in O(logn) time,

e polynomial evaluation and interpolation at n points in O(log2 n) time.

Also, we can compute polynomial resultants in in parallel time O(log2 n) us-
ing nlog” n processors, where w = 2.376, by use of the fast parallel Teoplitz
and bounded displacement rank matrix algorithms given in [R 95]. Our root
algorithm requires O(log" n)logb stages of these polynomial operations as
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well as resultant computations, and the sum of the degrees of all the polyno-
mials operated on at each stage is at most O(n). Thus the total parallel time
is a factor O(log” n) more, namely O(log®n)logb using O(nlog® n) proces-
sors. Using a constant factor slow down, we have:

Theorem 6.1 All roots of a degree n complex polynomial can be computed
in parallel time O(log® n)logb using nlog” n processors.

7 Conclusion and Open Problems

A previous draft of this paper [NR 94] gave a O(n'*¢logb) sequential bound
for the complex root problem, which was improved to our current bounds of
O(nlog’ n)logh by a balancing routine developed by the first author. Pan
has announced in [P95] a similar bound of O(n log®") n) log b for the complex
root problem using the techniques developed in [NR 94] and also using this
balancing routine communicated to Pan by the first author.

These bounds are really quite remarkable, when you consider that the num-
ber of steps required simply to multiply two polynomials of degree n by the
elementary method taught in grade school is O(n?), and O(nlogn) by con-
volution.

It remains an open problem to reduce the complexity of the complex root
finding problem to cost of other basic polynomial operations. For example,
polynomial evaluation and interpolation at n points costs O(n log® n) sequen-
tial time and O(log® n) parallel time using n processors. Can we reduce the
sequential complexity of the root finding problem to the following bounds:
O(nlogn(b+logn)) sequential time or O(logn(b+logn)) parallel time using
n processors?
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