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Abstract 

An important application of XML is the interchange of electronic data (EDI) between
multiple data sources on the Web. As XML data proliferates on the Web, applications will
need to integrate and aggregate data from multiple source and clean and transform data to
facilitate exchange. Data extraction, conversion, transformation, and integration are all
well-understood database problems, and their solutions rely on a query language. We
present a query language for XML, called XML-QL, which we argue is suitable for
performing the above tasks. XML-QL is a declarative, ‘‘relational complete’’ query
language and is simple enough that it can be optimized. XML-QL can extract data from
existing XML documents and construct new XML documents. 
Keywords: XML, query languages, electronic-data interchange (EDI) 

1. Introduction

The goal of XML is to provide many of SGML’s benefits not available in HTML and to provide them in
a language that is easier to learn and use than complete SGML. These benefits include user-defined tags,
nested elements, and an optional validation of document structure with respect to a Document Type
Descriptor (DTD). 

One important application of XML is the interchange of electronic data (EDI) between two or more data
sources on the Web. Electronic data is primarily intended for computer, not human, consumption. For
example, search robots could integrate automatically information from related sources that publish their
data in XML format, e.g., stock quotes from financial sites, sports scores from news sites; businesses
could publish data about their products and services, and potential customers could compare and process
this information automatically; and business partners could exchange internal operational data between
their information systems on secure channels. New opportunities will arise for third parties to add value
by integrating, transforming, cleaning, and aggregating XML data. In this paper, we focus on XML’s
application to EDI. Specifically, we take a database view, as opposed to document view, of XML. We
consider an XML document to be a database and a DTD to be a database schema. 

EDI applications require tools that support the following tasks: 



extraction of data from large XML documents, 
conversion of data between relational or object-oriented databases and XML data, 
transformation of data from one DTD to a different DTD, and/or 
integration of multiple XML data sources. 

Data extraction, conversion, transformation, and integration are all well-understood database problems.
Their solutions rely on a query language, either relational (SQL) or object-oriented (OQL). We present a
query language for XML, called XML-QL, which we argue is suitable for performing the above tasks.
XML-QL has the following features: 

It is declarative. 
It is ‘‘relational complete’’; in particular, it can express joins. 
It is simple enough that known database techniques for query optimization, cost estimation, and
query rewriting could be extended to XML-QL. 
It can extract data from existing XML documents and construct new XML documents. 
It can support both ordered and unordered views on an XML document. 

An initial draft of the query language is a W3C note, http://www.w3.org/TR/NOTE-xml-ql/. 

One salient question is why not adapt SQL or OQL to query XML. The answer is that XML data is
fundamentally different than relational and object-oriented data, and therefore, neither SQL nor OQL is
appropriate for XML. The key distinction between data in XML and data in traditional models is that is
XML is not rigidly structured. In the relational and object-oriented models, every data instance has a
schema, which is separate from and independent of the data. In XML, the schema exists with the data as
tag names. For example, in the relational model, a schema might define the relation person with
attribute names name and address, e.g., person(name, address). An instance of this schema would
contain tuples such as ("Smith", "Philadelphia"). The relation and attribute names are separate
from the data and are usually stored in a database catalog. 

In XML, the schema information is stored with the data. Structured values are called elements.
Attributes, or element names, are called tags, and elements may also have attributes whose values are
always atomic. For instance,
<person><name>Smith</name><address>Philadelphia</address></person>.  is well-formed
XML. Thus, XML data is self-describing and can naturally model irregularities that cannot be modeled
by relational or object-oriented data. For example, data items may have missing elements or multiple
occurrences of the same element; elements may have atomic values in some data items and structured
values in others; and collections of elements can have heterogeneous structure. Even XML data that has
an associated DTD is self-describing (the schema is always stored with the data) and, except for
restrictive forms of DTDs, may have all the irregularities described above. Most importantly, this
flexibility is crucial for EDI applications. 

Self-describing data has been considered recently in the database research community. Researchers have
found this data to be fundamentally different from relational or object-oriented data, and called it
semistructured data. Semistructured data is motivated by the problems of integrating heterogeneous data
sources and modeling sources such as biological databases, Web data, and structured text documents,
such as SGML and XML. Research on semistructured data has addressed data models, query-language
design, query processing and optimization, schema languages, and schema extraction. The key
observation in this paper is that XML data is an instance of semistructured data. 



In designing XML-QL, we drew from other query languages for semistructured data [1, 2, 5]:  tutorials
describing some of the work on semistructured data can be found in [3] and [4].  XML-QL includes
most features found in these languages, but it differs from all of them in several important respects.
Specifically, this paper makes the following contributions: 

We propose a data model for XML data that extends the semistructured-data model with order.
This extension is necessary for XML documents, which are ordered. 
We design a syntax for XML-QL that combines elements of the XML syntax with traditional
query-language syntax. 
We propose a novel semantics for XML-QL to support order in the input and output data. 
We combine two powerful data-construction mechanisms, nested queries and Skolem functions, in
a novel way. 
We illustrate that XML-QL can be used for the tasks it has been designed for, such as data
extraction, transformation, and integration. 

In Sec. 2, we introduce XML-QL through examples, and in Sec. 3 , we describe formally its underlying
data models. We show in Sec. 4 how XML-QL can be used for the tasks of data extraction, translation,
and integration. Sec. 5 describes future extensions and discusses open issues. 

2. Examples in XML-QL

The simplest XML-QL queries extract data from an XML document. Our example XML input is in the
document www.a.b.c/bib.xml, and we assume that it contains bibliography entries that conform to the
following DTD: 

<!ELEMENT book (author+, title, publisher)>
<!ATTLIST book year CDATA>
<!ELEMENT article (author+, title, year?, (shortversion|longversion))>
<!ATTLIST article type CDATA>
<!ELEMENT publisher (name, address)>
<!ELEMENT author (firstname?, lastname)>

This DTD specifies that a book element contains one or more author elements, one title, and one
publisher element and has a year attribute. An article is similar, but its year element is optional, it
omits the publisher, and it contains one shortversion or longversion element. An article also
contains a type attribute. A publisher contains name and address elements, and an author contains
an optional firstname and one required lastname. We assume that name, address, firstname, and
lastname are all CDATA, i.e., string values. 

Matching Data Using Patterns. XML-QL uses element patterns to match data in an XML document.
This example produces all authors of books whose publisher is Addison-Wesley in the XML document
www.a.b.c/bib.xml. Any URI (uniform resource identifier) that represents an XML-data source may
appear on the right-hand side of IN. 

WHERE <book>
        <publisher><name>Addison-Wesley</name></publisher>
        <title>  $t </title>
        <author> $a </author>
      </book> IN "www.a.b.c/bib.xml"
CONSTRUCT $a



Informally, this query matches every <book> element in the XML document www.a.b.c/bib.xml that
has at least one <title> element, one <author> element, and one <publisher> element whose <name>
element is equal to Addison-Wesley. For each such match, it binds the variables $t and $a to every title
and author pair. Note that variable names are preceded by $ to distinguish them from string literals in the
XML document (like Addison-Wesley). 

For convenience, we abbreviate </element> by </>. This abbreviation is a relaxation of the XML syntax
that will be handy later, when we introduce tag variables and regular expressions over tags. Thus the
query above can be rewritten as: 

WHERE <book>
        <publisher><name>Addison-Wesley</></>
        <title>  $t </>
        <author> $a </>
      </> IN "www.a.b.c/bib.xml"
CONSTRUCT $a

Constructing XML Data. The query above produces an XML document that contains a list of
(<firstname>,<lastname> ) pairs or (<lastname> ) elements from the input document. Often it is
useful to construct new XML data in the result (i.e., data that did not exist in the input document). The
following query returns both <author> and <title>, and groups them in a new <result> element: 

WHERE <book>
        <publisher> <name>Addison-Wesley </> </>
        <title>  $t </>
        <author> $a </>
      </> IN "www.a.b.c/bib.xml"
CONSTRUCT <result>
             <author> $a </>
             <title>  $t </>
          </>

For example, consider the XML data in Figure 1: 

<bib>
  <book year="1995">
     <!-- A good introductory text -->
     <title>An Introduction to Database Systems </title>
     <author><lastname>Date </lastname></author>
     <publisher><name>Addison-Wesley </name >  </publisher>
  </book>
  <book year="1998">
     <title>Foundation for Object/Relational Databases</title>
     <author><lastname>Date </lastname></author>
     <author><lastname>Darwen </lastname></author>
     <publisher><name>Addison-Wesley </name >  </publisher>
  </book>
</bib>

Figure 1. Example bibliographic data

When applied to the example data in Figure 1., our example query would produce the following result: 

<result>
   <author><lastname>Date </lastname></author>
   <title>An Introduction to Database Systems </title>
</result>



<result>
   <author><lastname>Date </lastname></author>
   <title>Foundation for Object/Relational Databases</title>
</result>
<result>
   <author><lastname>Darwen </lastname></author>
   <title>Foundation for Object/Relational Databases</title>
</result>

Grouping with Nested Queries. The query above ungroups the authors of a book, i.e., different authors
of the same book appear in different <result> elements. To group results by book title, we use a nested
query, which produces one result for each title and contains a list of all its authors: 

WHERE <book > $p </> IN "www.a.b.c/bib.xml",
      <title > $t </>
      <publisher> <name> Addison-Wesley </> </> IN $p
CONSTRUCT <result>
             <title> $t </>
             WHERE  <author> $a </> IN $p
             CONSTRUCT <author> $a </>
          </>

Notice that the pattern beginning with <book> has been unnested, so that we can bind $p to the
element’s content. Once a content variable has been bound, it may appear on the right-hand side of any
IN expression in the same WHERE expression or in any nested CONSTRUCT expressions. 

Since binding the content of an element and matching patterns in the bound element is a common idiom,
we introduce a syntactic shorthand that preserves the original nesting. The CONTENT_AS $p following a
pattern binds the content of the matching element to the variable $p: 

WHERE <book>
        <title> $t </>
        <publisher> <name> Addison-Wesley </> </> 
      </> CONTENT_AS $p IN "www.a.b.c/bib.xml"
CONSTRUCT <result> <title> $t </>
                   WHERE  <author> $a </> IN $p
                   CONSTRUCT <author> $a </>
          </>

On the example data, the query would produce: 

<result>
   <title> An Introduction to Database Systems </title>
   <author> <lastname> Date </lastname> </author>
</result>

<result>
   <title> Foundation for Object/Relational Databases</title>
   <author> <lastname> Date </lastname> </author>
   <author> <lastname> Darwen </lastname> </author>
</result> 

Joining Elements by Value. XML-QL can express ‘‘joins’’ by matching two or more elements that
contain the same value. For example, the following query retrieves all articles that have at least one
author who has also written a book since 1995. Here, we assume that an author uses the same first and
last names (denoted by the variables $f and $l) for both articles and books. 



WHERE <article>
        <author> 
          <firstname> $f </>  // firstname $f
          <lastname>  $l </>  // lastname $l
        </>
      </> CONTENT_AS $a IN "www.a.b.c/bib.xml",

      <book year=$y>
        <author>
          <firstname> $f </> // join on same firstname $f
          <lastname> $l </>  // join on same lastname $l
        </>
      </> IN "www.a.b.c/bib.xml", 
      y > 1995
CONSTRUCT <article> $a </>

The query above uses another common idiom: the  CONSTRUCT expression produces the same element
that occurs in the input element. To avoid recreating an element, we can use the ELEMENT_AS $e
expression, which binds $e to the complete preceding element: 

WHERE <article>
        <author> 
          <firstname> $f</> // firstname $f
          <lastname> $l</>  // lastname $l
        </>
      </> ELEMENT_AS $e IN "www.a.b.c/bib.xml"
...
CONSTRUCT $e

3. A Data Model for XML

To better understand XML-QL, it is necessary to describe its data models. We describe an unordered
data model in detail first and then an ordered data model. 

Unordered Model. To understand XML-QL’s data model, consider the example book elements in
Figure 1. The first record has three elements (one title, one author, and one publisher) and the second
record has two authors. The XML document, however, contains additional information that is not
directly relevant to the data itself, such as, 

the comment at the beginning of the first book element, 
the fact that that title precedes authors, and 
the fact that the 1995 book precedes the 1998 book. 

This information is not always relevant to an EDI application that ignores comments and treats its data
as unordered structured values. We assume that a distinction can be made between information that is
intrinsic to the data and information, such as document layout specification that is not. Our unordered
model ignores comments and relative order between elements, but preserves all other essential data.
These compromises simplify XML-QL’s semantics and can effect the efficiency of a query interpretor. 

Definition. An unordered XML Graph consists of: 

A graph, G, in which each node is represented by a unique string called an object identifier (OID), 



G’s edges are labeled with element tags, 
G’s nodes are labeled with sets of attribute-value pairs, 
G’s leaves are labeled with one string value, and 
G has a distinguished node called the root. 

For example, the example data would be represented by the XML graph in Figure 2. Attributes are
associated with nodes and elements are represented by edge labels. We use the terms node and object
interchangeably. We omit object identifiers to reduce clutter.

  
Figure 2: Unordered XML graph for example data

The model allows several edges between the same two nodes, but with the  following restriction.  A
node cannot have two outgoing edges with the same labels and the same values.  Here value means the
string value in the case of a leaf node, or the oid in the case of a non-leaf node.  Restated, this condition
says that (1) between any two nodes there can be at most one edge with a given label, and (2)  a node
cannot have two leaf children with the same label and the same string value. The second condition
means that in this data model, XML documents denote sets. For example, the XML graph for <author>
<lastname> Dates </lastname> <lastname> Dates </lastname> </author>  is isomorphic to
the graph for <author> <lastname> Dates </lastname> </author>. 

It is important to note that XML graphs are not only derived from XML documents, but are also
generated by queries. 

Ordered Model. An ordered XML graph is an XML graph in which there is a total order on all nodes in
the graph.  For graphs constructed from XML documents a natural order for nodes is their document
order. Given a total order on nodes, we can enforce a local order on the outgoing edges of each node. In
an ordered model, we may have arbitrarily many edges with the same source, same edge label, and same
destination value. For example, the example data would be represented by the ordered graph in Figure 3.
Nodes are labeled by their index (parenthesized integers) in the total node order and edge labels are
labeled with their local order (bracketed integers). In Section 4.4, we discuss XML-QL’s features that
support the ordered model.



  
Figure 3: Ordered XML graph for example data.

Although XML documents are always ordered (e.g., DTDs may impose a particular order on elements),
querying ordered data is harder than querying unordered data. The semantics of XML-QL is more
complex on ordered data (see Sec.5), and a query optimizer will have fewer choices for generating good
query-execution plans. For many EDI applications, element order is not significant, e.g., the tuples in a
relational table can be represented by an unordered model without loss of information. In these cases, we
can ignore order and use the subset of XML-QL that is order independent. For applications in which
order is significant, e.g., any document-processing application must have access to section, paragraph,
and sentence order, we can use the ordered model. 

3.1 Element Identity, IDs, and ID References

To support element sharing, XML reserves an attribute of type ID (often called ID) to specify a unique
key for an element. An attribute of type IDREF allows an element to refer to another element with the
designated key, and an attribute of type IDREFS may refer to multiple elements. In the data model, we
treat these attributes differently from all others. For example, assume attributes ID and author have
types ID and IDREFS respectively: 

<!ATTLIST person  ID ID #REQUIRED>
<!ATTLIST article author IDREFS #IMPLIED>

For example, in the XML fragment below, the first element associates the keys o123 and o234 with the
two <person> elements, and the second defines an <article> element whose authors refer to the these
persons.  

<person ID="o123">
    <firstname>John</firstname>
    <lastname>Smith<lastname>
</person>
<person ID="o234">
    . . .
</person>
<article author="o123 o234">
    <title> ... </title>
    <year> 1995 </year>
</article>

In an XML graph, every node has a unique object identifier (OID), which is the ID attribute associated
with the corresponding element or is a generated OID, if no ID attribute exists. Elements can refer to
other elements by IDREF or IDREFS attributes. 



Unlike all other attributes, which are name-value pairs associated with nodes, an IDREF attribute is
represented by an edge from the referring element to the referenced element; the edge is labeled by the
attribute name. ID attributes are also treated specially, because they become the node’s OID. For
example, the elements above are represented by the XML graph in Fig. 4:

Figure 4: Representation of IDREF attributes in XML graph.
In this representation, it is makes sense to blur the distinction between  attributes of type IDREF(S) and
elements, because both logically ‘‘point to’’ other objects. This choice also allows users to write simple
edge-traversal (a.k.a. ‘‘pointer chasing’’) queries, such as: 

WHERE  <article><author><lastname>$n</></></> IN "abc.xml"

It is also possible to write explicit join expressions on ID and IDREF values to access referenced
objects. For example, the following query produces all lastname, title pairs by joining the author
element’s IDREF attribute value with the person element’s ID attribute value. 

WHERE  <article author=$i> 
         <title></> ELEMENT_AS $t
       </>,
       <person ID=$i>
         <lastname></> ELEMENT_AS $l
       </> IN "abc.xml"
CONSTRUCT <result> $t $l</>

We note here that the idiom <title></> ELEMENT_AS $t binds $t to a <title> element with arbitrary
contents. The element expression <title/> matches a <title> element with empty contents. 

We note that although we choose to represent both elements and IDREF attributes by labeled edges it is
possible, given an XML graph generated from an XML document, to recover the original document. To
do this, we distinguish between the types lexically, by assuming that all attributes of type IDREF are
distinct from all tags in the document; this restriction could be enforced by the DTD. Therefore, given a
graph node with multiple incoming edges, we can distinguish between the node’s unique element name
and the (possibly) multiple IDREF attributes that refer to the node. 
  

3.2 Scalar Values

Only leaf nodes in the XML graph may contain values, and they may have only one value. As a
consequence, the XML fragment: 



<title>A Trip to <titlepart> the Moon </titlepart></title>

cannot be represented directly as an XML graph. In such cases, we introduce extra edges to enforce the
invariant of one value per leaf node. The data above would be transformed into:

<title><CDATA>A Trip to <CDATA><titlepart><CDATA> the Moon <CDATA></titlepart></title>

which is modeled by the XML graph: 

Figure 5. Representation of CDATA values.
By default, variables in patterns bind to internal nodes, not leaf values, i.e., the pattern
<title><titlepart>$n</></> binds $n to the node referenced by <title><titlepart>, not its
CDATA value. The value function produces the CDATA value of a node. This representation is usually
transparent to users. For example, the pattern <title><titlepart>the Moon</></> is syntactic
shorthand for <title><titlepart><CDATA>the Moon</></></>, which would match this graph. 

3.3 Mapping XML Graphs into XML Documents

XML graphs may result from parsing an XML document or from querying or transforming an existing
XML graph. In general, XML graphs do not have a unique representation as an XML document,
because 

element order is unspecified (in the unordered model), i.e., we have to choose an order for the
outgoing edges of each graph node, and 
shared nodes with multiple incoming edges do not have a unique representation in XML. 

Both issues can be handled when the graph is emitted as an XML document. Given a DTD for a query’s
result, an XML graph can be emitted as an XML document that conforms to that DTD and therefore all
elements will be ordered. We do not address the algorithmic issues of externalizing an XML graph here. 

4. Advanced Examples in XML-QL

The following examples introduce advanced features of XML-QL. These include tag variables, which
allow a variable to be bound to any edge (element) in an XML graph, and regular-path expressions,
which can specify arbitrary paths through an XML graph. We also illustrate how XML-QL can be used
to integrate and transform XML data. 

4.1 Tag Variables

XML-QL supports querying of element tags using tag variables, which support querying of the data’s
schema. For example, the following query finds all publications published in 1995 in which Smith is



either an author or an editor: 

WHERE <$p>
        <title> $t </title>
        <year> 1995 </>
        <$e> Smith </>
      </> IN "www.a.b.c/bib.xml",
      $e IN {author, editor}
CONSTRUCT <$p>
             <title> $t </title>
             <$e> Smith </>
          </>

$p is a tag variable that is bound to any top-level tag, e.g., <book>, <article>, etc. Note that the
CONSTRUCT clause constructs a result with the same tag name. $e is also a tag variable; the query
constrains it to be bound to one of <author> or <editor>. 

4.2 Regular-path Expressions

XML data can specify nested and cyclic structures, such as trees, directed-acyclic graphs, and arbitrary
graphs. Element sharing is specified using element IDs and IDREFs as described above. Querying such
structures often requires traversing arbitrary paths through XML elements. For example, consider the
following DTD that defines the self-recursive element part: 

<!ELEMENT part (name brand part*)>
<!ELEMENT name  CDATA>
<!ELEMENT brand CDATA>

Any part element can contain other nested part elements to an arbitrary depth. To query such a
structure, XML-QL provides regular-path expressions, which can specify element paths of arbitrary
depth. For example, the following query produces the name of every part element that contains a brand
element equal to Ford, regardless of the nesting level at which r occurs. 

WHERE <part*> <name> $r </> <brand> Ford </> </> IN "www.a.b.c/bib.xml"
CONSTRUCT <result> $r </>

Here part* is a regular-path expression, and matches any sequence of zero or more edges, each of
which is labeled part. The pattern: 

<part*> <name> $r </> <brand> Ford </> </>

is equivalent to the union of the following infinite sequence of patterns: 

<name> $r </> <brand> Ford </>
<part> <name> $r </> <brand> Ford </> </>
<part> <part> <name> $r </> <brand> Ford </> </> </>
<part> <part> <part> <name> $r </> <brand> Ford </> </> </> </>
  .  .  .

The wildcard $ matches any tag and can appear wherever a tag is permitted. For example, this query is
like the one above, but matches any sequence of elements, not just part: 

WHERE <$*> <name>$r</> <brand>Ford</> </> IN "www.a.b.c/bib.xml",
CONSTRUCT <result>$r</>



We abbreviate $* by *. Also, . denotes concatenation of regular expressions, hence the pattern
<*.brand> Ford </> would match the brand Ford at any depth in the XML graph. The notation
*.brand is reminiscent of Unix-like wild-cards in file names: it means ‘‘anything followed by brand’’. 

XML-QL’s regular-path expressions provide the alternation (|), concatenation (.), and Kleene-star (*)
operators, similar to those used in regular expressions. A regular-path expression is permitted wherever
XML permits an element. For example, this query considers any sequence of nested <part> elements
and produces any nested <subpart> element or any <piece> element contained in a nested
<component> element. The + operator means ‘‘one or more’’, e.g., part+ is equivalent to part.part*. 

WHERE <part+.(subpart|component.piece)>$r</> IN "www.a.b.c/parts.xml"
CONSTRUCT <result> $r</>

Tag variables and regular-path expressions make it possible to write a query that can be applied to two
or more XML data sources that have similar, but not identical, DTDs, because these expressions can
handle the variability of the data’s format from multiple sources. 

4.3 Transforming XML data with Skolem functions

An important use of XML-QL is transforming XML data, for example, from one DTD into another. To
illustrate, assume that in addition to our bibliography DTD, we have a DTD that defines a person: 

<!ELEMENT person (lastname, firstname, address?, phone?, publicationtitle*)>

We can write a query to transform data that conforms to the bibliography DTD into data that conforms
to the person DTD. This query extracts authors from the bibliography database and transforms them into
<person> elements conforming to the person DTD: 

WHERE <$> <author> <firstname> $fn </> 
                   <lastname> $ln </> 
          </>
          <title> $t </> 
      </> IN "www.a.b.c/bib.xml",
CONSTRUCT <person ID=PersonID($fn, $ln)> 
              <firstname> $fn </> 
              <lastname> $ln </> 
              <publicationtitle> $t </> 
          </>

This query uses object identifiers (OID’s) and Skolem functions to control how the result is grouped.
Whenever a <person> is produced, its associated OID is PersonID($fn,$ln). PersonID is a Skolem
function, and its purpose is to generate a new identifier for every distinct value of ($fn,$ln). If the
query binds $fn and $ln to the same values by finding another publication by the same author, the query
does not create a new <person>, but instead appends information to the existing <person> element.
Thus, all <publicationtitle>’s by one author will be grouped in the same <person> element. The
<firstname> and <lastname> attributes are not duplicated since they refer to the same values. The
<phone> and <address> values are not emitted, because they do not exist in the bibliography data. 

Note that in our discussion of Skolem functions we assume an unordered data model. The ordered data
model has a more complex and somewhat less intuitive semantics, which we describe in Sec. 4.5. 



4.4 Integrating data from multiple XML sources

In XML-QL, we can query several sources simultaneously and produce an integrated view of their data.
In this example, we produce all pairs of names and social-security numbers by querying the sources
www.a.b.c/data.xml and www.irs.gov/taxpayers.xml. The two sources are joined on the
social-security number, which is bound to ssn in both expressions. The result contains only those
elements that have both a name element in the first source and an income element in the second source. 

WHERE <person>
        <name></> ELEMENT_AS $n
        <ssn> $ssn </>
      </> IN "www.a.b.c/data.xml",
      <taxpayer>
        <ssn> $ssn </>
        <income></> ELEMENT_AS $i
      </> IN "www.irs.gov/taxpayers.xml"
CONSTRUCT <result> <ssn> $ssn </>  $n $i </>

Alternatively, we can use Skolem functions and write a related, but not equivalent, query in two
fragments: 

{ WHERE <person> 
          <name> </> ELEMENT_AS $n
          <ssn> $ssn </>
        </> IN "www.a.b.c/data.xml"
  CONSTRUCT <result ID=SSNID($ssn)> <ssn> $ssn </> $n </>}
{ WHERE <taxpayer> 
          <ssn> $ssn </>
          <income> </> ELEMENT_AS $i
        </> IN "www.irs.gov/taxpayers.xml"
  CONSTRUCT <result ID=SSNID($ssn)> ssn> $ssn </> $i </>}

This query contains, in addition to the previous query, all persons that are not taxpayers, and vice versa.
This is the outer join of "www.a.b.c/data.xml" and "www.irs.gov/taxpayers.xml". 

XML-QL queries are structured into blocks and subblocks: the latter are enclosed in braces ({ ... }),
and their semantics is related to that of outer joins in relational databases. In this example, the root block
is empty and there are two subblocks. In the first subblock, all persons’ names are produced. Each result
has a unique OID given by that person’s SSN. In the second subblock, persons and their incomes are
produced. Wherever there is a match with a previously generated OID, the <income> will be appended
to the object rather than included in a new <person>. 

Query blocks are powerful. The following query retrieves all titles published in 1995 from the
bibliography database, and it also retrieves the publication month for journal articles and the publisher
for books. 

WHERE <$e> <title> $t </><year> 1995 </> </> CONTENT_A $p IN "www.a.b.c/bib.xml"
CONSTRUCT <result ID=ResultID($p)> <title> $t </> </>
  { WHERE $e = "journal-paper", <month> $m </> IN $p
    CONSTRUCT <result ID=ResultID($p)> <month> $m </> </>
  }
  { WHERE $e = "book", <publisher>$q </> IN $p
    CONSTRUCT <result ID=ResultID($p)> <publisher>$q </> </>
  }



The outer block runs over all publications in 1995, and produces a result element with their title. The
first subblock checks if e is journal-paper and has a month tag: if so, it adds the month element to the
same publication (this is controlled by the Skolem function). The second subblock checks if e is a book
and has a publisher, and adds that publisher element to the output. 

4.5 Support for ordered model

Recall that in the ordered data model, there exists a total order on nodes, usually document order, which
induces a local order on outgoing edges of each node. In Figure 3, nodes are labeled by their index
(parenthesized integers) in the total node order and edge labels are labeled with their local order
(bracketed integers). The order of the outgoing edges is determined by the order of their destination
nodes. 

Under the ordered data model, the patterns in the WHERE clause are still interpreted as unordered. For
example, the pattern<a> <b> $x </b> <c> $y </c> </a> will match both the XML data :  <a> <b>
string1 </b> <c> string2 </c> </a> and the data :  <a> <c> string2 </c> <b> string1 </b>
</a>. Although patterns are still unordered, variable bindings in the WHERE clause are ordered. Applying
the example pattern to the XML data on the left-hand side below, the variables will be bound in the
order given on the right-hand side: 
<a> 
  <b> string1 </b>
  <c> string2 </c>
  <b> string3 </b>
  <c> string4 </c>
</a>

$x      $y  
string1 string2  
string1 string4  
string3 string2  
string3 string4 

Note that the order of the pattern is significant. If we change the pattern’s definition to: 

<a> <c> $y </c> <b> $x </b> </a> 

then the variables are bound in a different order, sorted first by $y, then by $x. 

XML-QL supports element-order variables, which extract the index of some element. For example, the
patterns: 

<a[$i]>  ... </>
<$x[$j]> ... </>

bind $i or $j to an integer 0, 1, 2, ... that represents the index in the local order of the edges. For
example, the following query retrieves all persons whose lastname precedes the firstname: 

WHERE <person> $p </> in "www.a.b.c/people.xml",
         <firstname[$i]> $x </> in $p,
         <lastname[$j]>  $y </> in $p,
         $j < $i
CONSTRUCT <person> $p </>

An optional ORDER-BY clause specifies element order in the output. For example, the following query
retrieves publication titles ordered by year and month and preserves the order in the original document
for publications within the same year/month: 



WHERE <pub>   $p </> in "www.a.b.c/bib.xml",
      <title> $t </> in $p,
      <year> $y </> in $p
      <month> $z </> in $p
ORDER-BY value($y), value($z)
CONSTRUCT <result> $t </>

The value function produces the CDATA value of a node. In the absence of value function, the results
would be ordered by the OIDs of the nodes bound to $y, $z. For a more complex example, the
following query reverses the order of all authors in a publication: 

WHERE <pub> $p </> in "www.a.b.c/bib.xml"
CONSTRUCT <pub> WHERE <author[$i]> $a </> in $p
                ORDER-BY $i DESCENDING
                CONSTRUCT <author> $a </>

                WHERE <$e> $v </> in $p,
                      $e != "author"
                CONSTRUCT <$e> $v </>
          </pub>

4.6 Function definitions and DTD’s

XML-QL supports functions, which take XML documents as arguments. Functions can increase query
reuse, because the same query can be applied to multiple documents. This code defines a function that
takes two XML documents as inputs: 

FUNCTION findDeclaredIncomes($Taxpayers, $Employees) {
   WHERE <taxpayer> <ssn> $s </>
                    <income> $x </> </> IN $Taxpayers,
         <employee> <ssn> $s </> 
                    <name> $n </> </> IN $Employees
   CONSTRUCT <result> <name> $n </>
                      <income> $x </> </>
}

The following expression applies the function above to two XML sources: 

findDelcaredIncomes("www.irs.gov/taxpayers.xml", "www.a.b.c/employees.xml")

The result of a function is always well-formed XML data. Function arguments and results can be
restricted by DTDs. For example, the function above could be re-written as: 

FUNCTION findDeclaredIncomes($Taxpayers:"www.irs.gov/tp.dtd",
                             $Employees:"www.employees.org/employees.dtd") :
                             "www.my.site.com/myresult.dtd" {
  WHERE ... 
  CONSTRUCT ...
}

which specifies that the two inputs must conform to tp.dtd and employees.dtd respectively and that
the function’s result must conform to myresult.dtd. Determining that the output of a query conforms
to the output DTD statically, i.e., at query compile time, is an open research problem and the subject of
future work. Currently, the XML-QL query processor checks at runtime that the input documents
conform to their respective DTDs. 



5. Future work

Future work on XML-QL falls into two categories: extending the expressiveness of the language and
providing better support for existing XML standards. 

5.1 Query language features

We expect to support aggregates like those provided in SQL. For example, the following query retrieves
the lowest and highest price for each publisher: 

WHERE <book> 
        <publisher> </> ELEMENT_AS $p
        <price> $x </>
      </>
GROUP-BY $p
CONSTRUCT <result ID=f($p)> $p
          <lowest-price> $min($x) </>
          <highest-price> $max($x) </>
       </>

In the absence of GROUP-BY, the CONSTRUCT clause consumes a relation from the WHERE clause. Each
tuple maps the variables in the WHERE clause to the values that satisfy the expression in the WHERE clause.
The GROUP-BY clause maps this relation into a nested relation and groups the nested relations by the
value(s) of the group-by variables(s). In the CONSTRUCT clause, all variables other than the group-by
variable denote sets and therefore may be the arguments to aggregation functions. 

Subblocks offer only a limited form of outerjoin. A more general outerjoin construct would connect
optional parts in the WHERE clause with optional components in the CONSTRUCT part. Currently, this
association can be expressed in a cumbersome way, either as nested WHERE-CONSTRUCT queries or with
subblocks and Skolem functions. 

As explained in Sec 4.5, compile-time type checking of a query is important if we expect XML-QL to be
used in real applications. In particular, guaranteeing that a function’s output conforms to a given DTD is
important for applications that must transform data between various DTDs. Static type checking remains
an open problem. 

5.2 Support for XML standards

It would be useful to have an XML representation of XML-QL queries, because then applications that
use XML-QL could embed XML-QL queries in any XML document. Existing XML-related standards,
such as RDF [6] and XSL [8], support XML representations. In choosing an XML syntax for XML-QL,
we intend to study related languages so that we can choose a similar notation for similar linguistic
constructs. 

A multitude of XML-related standards could influence the evolution of XML-QL. In particular, the
XPointer and XLink [7] proposals support inter-document linking and provide a way of referring to data
from multiple sources in one XML document. Given data with inter-document references and an
XML-QL query that can query such data, an interesting open problem is how to decompose the
XML-QL query into multiple queries that are distributed to the appropriate remote servers. 



DTDs only impose syntactic, not semantic, restrictions on XML data. Several proposals for XML
schemas have been proposed. These proposals are more precise than DTDs and can enforce strict types
on XML data. Query optimizers rely on schemas to generate good query-execution plans. We expect
that XML-QL’s implementation would benefit from more precise schemas. 

6. Summary

Given the expectation that XML data will become as prevalent as HTML documents, we anticipate an
increased demand for search engines that can search both XML data’s content and query its structure.
We also expect that XML data will become a primary means for electronic data interchange on the Web,
and therefore high-level support for tasks such as integrating data from multiple sources and
transforming data between DTDs will be necessary. 

XML-QL supports querying, constructing, transforming, and integrating XML data. XML data is very
similar to semistructured data, which has been proposed by the database research community to model
irregular data and support integration of multiple data sources. When designing XML-QL, we drew on
our experience with other query languages for semistructured data. We have implemented an interpretor
for XML-QL using the unordered data model; the prototype can be downloaded from
http://www.research.att.com/sw/tools/xmlql, and an on-line demonstration of XML-QL is at
http://www.research.att.com/~mff/xmlql-demo/html. 
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Appendix: Grammar for XML-QL

the grammar is changing as the language evolves and is incomplete in this document. Terminal symbols
are shown in angular brackets and their lexical structure is not further specified. 
  

XML-QL Grammar

XML-QL ::= (Function | Query) <EOF>

Function ::= ’FUNCTION’ <FUN-ID> ’(’ (<VAR>(’:’ <DTD>)?)* ’)’ (’:’ <DTD>)? ’{’

     Query

’}’

Query ::= Element | Literal |  <VAR> | QueryBlock 

Element ::= StartTag  Query EndTag

StartTag ::= ’<’(<ID>|<VAR>) SkolemID? Attribute* ’>’ 

SkolemID ::= <ID> ’(’ <VAR> (’,’ <VAR>)* ’)’

Attribute ::= <ID> ’=’  (’"’ <STRING> ’"’  |  <VAR> )

EndTag ::= ’<’ / <ID>? ’>’

Literal ::= <STRING>

QueryBlock ::= Where  Construct (’{’ QueryBlock ’}’)*

Where ::= ’WHERE’ Condition (’,’ Condition)*

Construct ::= OrderedBy? ’CONSTRUCT’  Query

Condition ::= Pattern BindingAs*  ’IN’ DataSource  |  Predicate

Pattern ::= StartTagPattern Pattern* EndTag

StartTagPattern ::= ’<’ RegExpr Attribute* ’>’

RegExpr ::= RegExpr ’*’  |  RegExpr ’+’  |  RegExpr ’.’ RegExpr  |  RegExpr ’|’ RegExpr  | 

<VAR> (’[’<INDEX-VAR>’]’)? | <ID>(’[’<INDEX-VAR>’]’)?

BindingAs ::= ’ELEMENT_AS’ <VAR>  | ’CONTENT_AS’ <VAR>

Predicate ::= Expression OpRel Expression

Expression ::= <VAR> | <CONSTANT>

OpRel ::= ’<’ | ’<=’ | ’>’ | ’>=’ | ’=’ | ’!=’

OrderBy ::= ’ORDER-BY’ <VAR>+ (’DESCENDING’)?

DataSource ::= <VAR> | <URI> | <FUN-ID>’(’DataSource (’,’ DataSource)*’)’
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