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1 Introduction

Probabilistic networks are now fairly well established as practical representations of knowl-
edge for reasoning under uncertainty, as demonstrated by an increasing number of success-
ful applications in such domains as (medical) diagnosis and prognosis, planning, vision,
information retrieval, and natural language processing. A probabilistic network (also re-
ferred to as a belief network, Bayesian network, or, somewhat imprecisely, causal network)
consists of a graphical structure, encoding a domain’s variables and the qualitative rela-
tionships between them, and a quantitative part, encoding probabilities over the variables
[Pearl, 1988].

Building a probabilistic network for a domain of application involves three tasks. The
first of these is to identify the variables that are of importance, along with their possible
values. Once the important domain variables have been identified, the second task is
to identify the relationships between the variables discerned and to express these in a
graphical structure. The tasks of eliciting the variables and values of importance as well as



the relationships between them from domain experts is comparable, to at least some extent,
to knowledge engineering for other artificial-intelligence representations and, although it
may require significant effort, is generally considered doable. The last task in building a
probabilistic network is to obtain the probabilities that are required for its quantitative
part. This task often appears more daunting: “Where do the numbers come from?” is
a commonly asked question. The three tasks in building a probabilistic network are, in
principle, performed one after the other. Building a network, however, often requires a
careful trade-off between the desire for a large and rich model to obtain accurate results
on the one hand, and the costs of construction and maintenance and the complexity of
probabilistic inference on the other hand. In practice, therefore, building a probabilistic
network is a process that iterates over these tasks until a network results that is deemed
requisite.

This paper focuses on the task of obtaining the probabilities required, the most daunt-
ing task in building probabilistic networks; the paper basically is a guide to the relevant
literature. In Section 2, we describe the various sources of probabilistic information that
are typically available for the task. In Section 3, we address the question how accurate the
numbers obtained should be to arrive at satisfactory behaviour of a probabilistic network.
In Section 5, we review various methods and tools that aim at reducing the burden of
network quantification.

2 Sources of Probabilistic Information

In most application domains, probabilistic information is available from various sources.
The most common are (statistical) data, literature, and human experts. Despite the abun-
dance of information, these sources seldom provide all numbers required for the quantitative
part of a probabilistic network. As a consequence, the task of obtaining the numbers for a
real-life application is hard and time consuming.

In data-rich application domains, often large data collections are available, retrospec-
tively documenting every-day problem solving. Once the part of the domain to be modelled
is well defined and well demarcated, it also is not too hard to prospectively collect data
on the variables of interest. These data will usually contain highly valuable information
about the relationships between the variables in the domain. If a comprehensive data col-
lection is available, the construction of both the graphical part and the quantitative part
of a probabilistic network can be performed automatically. The basic idea of the former
is to distill information about the relationships between the variables from the data and
exploit it for constructing the network’s graph. There are essentially two approaches to
learning the graphical structure from data. The first is based on constraint-based search
[Pearl and Verma, 1991, Spirtes et al., 1993] and the second on Bayesian search for graphs
with highest posterior probability given the data [Cooper and Herskovits, 1992]. Once
the graphical structure has been established, assessing the required probabilities is quite
straightforward and amounts to studying subsets of the data that satisfy various conditions.

To allow for automated construction of a meaningful probabilistic network, the data



must have been collected very carefully. Biases that are introduced in the data as a
result of the data collection strategies used will usually have an effect on the resulting
network [Lucas et al., 1998]. This effect may not be desirable, however, for the purpose
for which the network is being developed. Unfortunately, selection biases are not eas-
ily detected in a network, once it has been constructed. Also, the variables and asso-
ciated values that are recorded in the data collection should match the variables and
values that are to be modeled in the network, or should at least admit transformation
into these variables and values without too much loss of information [Lucas et al., 2000].
The data collection should further comprise enough data to allow for reliable identifica-
tion of probabilistic relationships among the variables discerned and to provide for reliable
probability assessments. In an insufficiently large data collection, the various subsets from
which probabilities are estimated, for example, can be empty or too small to allow for
meaningful assessments. A common problem typically found in real-life data, especially
when it has been retrospectively collected, is the occurrence of missing values. Sometimes
a missing value is the result of an error of omission. Quite often, however, a value is
not recorded because the variable’s measurement did not make sense in practice given
the values of other variables. Missing values of the first type are often randomly dis-
tributed. Missing values of the second type, on the other hand, generally are not distributed
evenly; as a consequence, they are information bearing and need be handled accordingly
[Peot and Shachter, 1998]. To use a data collection with missing values for automated
construction of a probabilistic network, often values have to be filled in, for example based
upon (roughly) estimated prior or posterior probabilities for these values or with the help
of domain experts [Cowell, 1999, Heckerman et al., 1995, Ramoni and Sebastiani, 1998].
Automated construction of probabilistic networks from data is an active area of research
[Buntine, 1996, Cowell et al., 1999, Jordan, 1998].

Literature often provides abundant probabilistic information. For every medical diag-
nostic test, for example, its sensitivity and specificity characteristics as well as its typical
ranges are reported in medical handbooks or journals. Medical disorders and symptoms as
well as the (causal) relationships between them are also discussed in ample detail. Unfor-
tunately, the reported probabilistic information is seldom directly amenable to encoding
in a probabilistic network. Medical literature, for example, often reports conditional prob-
abilities of the presence of symptoms given a disorder, but not always the probabilities of
these symptoms occurring in the absence of the disorder. Also, conditional probabilities are
sometimes given in a direction reverse to the direction required for the network. For exam-
ple, the statement “70% of the patients with oesophageal cancer are smokers” specifies the
probability of a patient being a smoker given that he or she is suffering from oesophageal
cancer, while for the network the probability of oesophageal cancer developing in a smoker
would be required. Moreover, probabilities for unobservable intermediate disease states
are usually lacking altogether. As a consequence, if the reported probabilistic information
can be exploited at all, it often requires considerable processing and additional domain
knowledge [Korver and Lucas, 1993]. Another commonly found problem that prohibits di-
rect use of probabilistic information from literature pertains to the characteristics of the
population from which the information is derived. These characteristics often are not prop-



erly described or deviate seriously from the characteristics of the population for which the
probabilistic network is being developed [Druzdzel et al., 1999]. Almanacs, morbidity and
mortality tables, and statistical yearbooks generally suffer less from the problems outlined
above: these sources tend to contain fairly reliable probabilistic information that can be
used whenever the target population is not atypical.

Finally, when there are few or no reliable data available, the knowledge and expe-
rience of experts in the domain of application constitute the only remaining source of
probabilistic information. The role of domain experts in the construction of the quanti-
tative part of a probabilistic network should not be underestimated. An expert’s knowl-
edge and experience can help, not just in assessing the probabilities required, but also
in fine tuning probabilities obtained from other sources to the specifics of the domain at
hand, and in verifying the numbers within the context of the network. The problems en-
countered when directly eliciting probabilities from experts, however, are widely known
[Kahneman et al., 1982]. An expert’s assessments, for example, may reflect various biases
and may not be properly calibrated. Acknowledging these problems, in the field of decision
analysis various techniques have been developed for the elicitation of well-calibrated prob-
abilities from experts, ranging from the use of probability scales for marking assessments
to the use of lotteries [Morgan and Henrion, 1990, Von Winterfeldt and Edwards, 1986].
These techniques tend to be quite time-consuming and can take up to 30 minutes per
number, including the typical overhead in interviews with domain experts, for example, of
explaining context. They have found widespread use in the construction of decision-analytic
models, which traditionally comprise a reasonably small number of variables. Probabilis-
tic networks tend to differ from conventional decision-analytic models by the number of
probabilities they require: contemporary networks typically comprise tens or hundreds
of variables and hundreds or thousands of probabilities. Given that an expert’s time
is a scarce and expensive commodity, application of the decision-analytic techniques for
probability elicitation rapidly becomes impractical if not impossible for network quantifica-
tion. For probability elicitation for probabilistic networks, therefore, supplementary tech-
niques are being sought [Druzdzel and Van der Gaag, 1995, Renooij and Wittman, 1999,
Van der Gaag et al., 1999)].

To conclude our brief discussion of sources of probabilistic information, we would like
to note that, although tempting, combining information from different sources in a single
probabilistic network can be risky and can in fact lead to incorrect results [Druzdzel and
Diez, 2000].

3 The Importance of Accurate Numbers

Although generally various sources of information can be exploited for probability assess-
ment, the numbers obtained are inevitably inaccurate, due to incompleteness of data and
partial knowledge of the domain under study. As the numbers are an integral part of a
probabilistic network, their inaccuracies will influence the network’s output. It is a natural
question, therefore, to ask how accurate the numbers should be to arrive at satisfactory be-



haviour of the network. Experience with constructing probabilistic networks for various do-
mains of application has established a consensus that the graphical structure of a network is
its most important part, as it reflects the independence and relevance relationships between
the variables concerned, being the most robust, qualitative properties of the domain un-
der study [Dawid, 1976, Druzdzel and Suermondt, 1994, Van der Gaag and Meyer, 1998].
Within the context of the graphical structure, however, numerical inaccuracies will influ-
ence the network’s output.

The extent to which the inaccuracies in its numbers influence the output of a proba-
bilistic network can be studied by investigating the extent to which deviations from the
numbers affect the output. To this end, the network can be subjected to a sensitivity
analysis and an uncertainty analysis. In general, sensitivity analysis of a mathematical
model amounts to investigating the effects of inaccuracies in the model’s parameters on
its output, by systematically varying the parameters’ values [Morgan and Henrion, 1990].
For a probabilistic network, sensitivity analysis amounts to varying the assessments for one
or more probabilities in the network’s quantitative part simultaneously and investigating
the effects on a probability of interest. In an uncertainty analysis, the assessments for
all probabilities are varied simultaneously by drawing, for each of them, a value from a
pre-specified distribution. Uncertainty analysis serves to reveal the overall reliability of
a network’s output, yet yields less insight in the effect of separate probabilities than a
sensitivity analysis.

Uncertainty analysis of a large real-life probabilistic network for liver and biliary disease
has provided evidence that probabilistic networks can be highly insensitive to inaccura-
cies in the numbers in their quantitative part [Henrion et al., 1996, Pradhan et al., 1996].
There is additional, sometimes anecdotal, evidence that networks that contain crude as-
sessments for their probabilities exhibit reasonable behaviour. From this evidence, num-
bers may be looked upon as merely convenient order of magnitude approximations of the
strengths of influences between variables. However, evidence is building up that proba-
bilistic networks can be sensitive to the inaccuracies in their numbers. Sensitivity analysis
of a real-life network for congenital heart disease, for example, has revealed large effects
on a probability of interest [Coupé at al., 1999]. We feel that from the limited available
evidence no decisive conclusions can be drawn with respect to the effects of inaccura-
cies in a network’s probabilities. At present, it seems likely that these effects will vary
from application to application. Sensitivity analysis and uncertainty analysis of proba-
bilistic networks constitute an active field of research, that has yielded efficient computa-
tional methods for studying the robustness of a network’s output [Castillo et al., 1997,
Kjeerulff and Van der Gaag, 2000, Laskey, 1995, Van der Gaag and Coupé, 2000]. With
these methods, more experimental results of sensitivity and uncertainty analyses of real-life
probabilistic networks are likely to become available in the near future.



4 Reducing the Burden

Typical contemporary probabilistic networks comprise tens or hundreds of variables, eas-
ily requiring thousands of probabilities. It is the vast number of probabilities required
that generally hampers the construction of a network for a real-life application. Often
the majority of these probabilities have to be assessed by domain experts. As we have
argued before, the conventional decision-analytic techniques for probability elicitation are
too much time consuming to be suitable for the task. In fact, any contemporary or future
technique that aims at eliciting well-calibrated and unbiased probability assessments from
domain experts is likely to suffer from this problem. We feel, therefore, that research efforts
aimed at reducing the number of probabilities to be assessed and at procedures and tools
for supporting the quantification task currently are of more practical significance.

The number of probabilities required for a probabilistic network depends directly on
the network’s graphical structure. Roughly speaking, the more densely connected a net-
work’s graph, the more numbers it requires for its quantitative part. For each variable
exponentially many probabilities have to be provided, their number being exponential in
the size of the variable’s parental set. There are essentially two approaches to reducing
the number of probabilities that have to be assessed for a network. The first is based on
changes to the graphical structure and the other on the use of parametric probability dis-
tributions. The former approach builds, for example, on the principle of divorcing parents
by introducing intermediate variables [Olesen et al., 1989] and on removal of arcs repre-
senting weak dependences [Kjeerulff, 1994, Van Engelen, 1997]. The use of a parametric
probability distribution for a variable is aimed at reducing the number of probabilities that
have to be assessed directly, by providing simple rules for the computation of the other
probabilities required. Examples of parametric probability distributions currently in use
are modeled by the noisy-OR and noisy-AND gates and their generalisations [Diez, 1993,
Heckerman and Breese, 1996, Henrion, 1989, Pearl, 1988, Srinivas, 1993]. These models
are based on (inter-)causal independence assumptions for a variable and its parents. The
number of probabilities to be assessed directly for a variable with such a model is linear
rather than exponential in its number of parents; the remaining, exponentially many, prob-
abilities are readily derived from the independence assumptions underlying the model. A
noisy-OR gate, for example, for a binary variable with n binary parents requires n rather
than 2" numbers; for n = 10, this means a reduction of the number of probabilities to
be assessed directly by two orders of magnitude. Changes to the graphical structure of
a probabilistic network and the use of parametric distributions are likely to come at the
price of accuracy. There currently is little insight in whether or not a fully detailed net-
work with separately specified assessments has a better performance than a network that
is carefully reduced using the approaches outlined above. There is no doubt, however, that
the reduced network will have required considerably less time on the part of the experts
involved. The time thus saved can be exploited for verifying and refining the network.

Building a probabilistic network requires a careful trade-off between the desire for a
large and rich model on the one hand and the costs of construction, maintenance, and
inference on the other hand. As we have argued before, building a network is a creative and



iterative process. Although obtaining the numbers for a probabilistic network is generally
postponed until its graphical structure is considered robust, it is not realistic to assume that
the assessment of all numbers required is a one-shot process. Building upon this insight,
various research efforts aim at iterative procedures and associated tools to support the
daunting quantification task. The procedures build, for example, on the use of sensitivity
and value-of-information analyses [Coupé at al., 2000, Philips, 1982]. As these give insight
in the level of accuracy that is required for the various probabilities of a network, they help
in focusing elicitation efforts. A procedure building upon sensitivity analysis, for example,
sets out with the elicitation of crude, probably highly inaccurate, numbers, within a short
period of time [Van der Gaag et al., 1999]. Starting with these numbers, a sensitivity
analysis of the network is performed. The most influential probabilities are uncovered,
which are thereupon refined for example using conventional decision-analytic elicitation
techniques. As a side-effect, the analysis can point to uninfluential parts of a network
that may be deleted or simplified. Iteratively performing sensitivity analyses and refining
probabilities is pursued until satisfactory behaviour of the network is obtained, until the
costs of further elicitation outweigh the benefits of higher accuracy, or until higher accuracy
can no longer be attained due to lack of knowledge. Given the limited and costly time of
experts, attention can thus be focused on the probabilities to which the network’s behaviour
shows highest sensitivity.

Procedures for network quantification can be supported by graphical tools that provide
for interactive elicitation, inspection, and modification of probabilities [Wang and Druzdzel,
2000]. With such tools, probabilities can be elicited through a variety of modalities. Direct
elicitation of probabilities, while easiest to implement, is generally the least reliable. Elic-
itation using graphical means that allow an expert to directly manipulate a pie chart or a
bar graph offers more support to the expert and is likely to lead to numbers with higher
accuracy. Probabilities can also be related to verbal descriptions such as very likely and
improbable [Renooij and Wittman, 1999]. Although verbal descriptions of probabilities are
known to be context sensitive and can describe wide ranges of numerical quantities, the use
of both words and numbers in probability elicitation can result in reasonable assessments
[Van der Gaag et al., 1999]. Rather than pushing an expert to assess a large number of
probabilities, tools for interactive probability elicitation can support non-invasive elicita-
tion by accommodating whatever probabilistic information the expert is willing to provide
[Druzdzel and Van der Gaag, 1995]. This information may be quantitative in nature, such
as point estimates and probability intervals, but may also be qualitative, such as com-
parisons and statements of stochastic dominance. Procedures for network quantification
can furthermore be supported by tools for automated generation of explanations of rea-
soning behaviour. Detailed explanation provides for studying the reasoning behaviour of a
network which can point to problems with the probabilities in the network’s quantitative
part.

To conclude, in this brief introduction we have focused attention on the task of obtaining
the numbers required for a probabilistic network as this is the main scope of the current
issue. However, as we have argued before, the quantification task is not performed in
isolation from the rest of the process of building a network. With the increasing number
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of applications, a need for knowledge-engineering principles tailored to the construction of
probabilistic networks is emerging. With the advance of iterative procedures and associated
graphical tools for supporting the overall construction process, the quantification task will
be addressed within its proper context which will, hopefully, contribute to reducing its
burden.
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