
Computational Complexity and Induction for Partial ComputableFunctions in Type TheoryRobert L. ConstableCornell University Karl CraryCarnegie Mellon UniversityMarch 2, 1999AbstractAn adequate theory of partial computable functions should provide a basis for de�ningcomputational complexity measures and should justify the principle of computational inductionfor reasoning about programs on the basis of their recursive calls. There is no practical accountof these notions in type theory, and consequently such concepts are not available in applicationsof type theory where they are greatly needed. It is also not clear how to provide a practical andadequate account in programming logics based on set theory.This paper provides a practical theory supporting all these concepts in the setting of con-structive type theories. We �rst introduce an extensional theory of partial computable functionsin type theory. We then add support for intensional reasoning about programs by explicitly re-
ecting the essential properties of the underlying computation system. We use the resultingintensional reasoning tools to justify computational induction and to de�ne computational com-plexity classes. Complexity classes take the form of complexity-constrained function types. Thesefunction types are also used in conjunction with the propositions-as-types principle to de�ne aresource-bounded logic in which proofs of existence can guarantee feasibility of construction.1 IntroductionOver the past two decades, type theory has become the formalism of choice to support programming,veri�cation and the logical foundations of computer science. The language of types underliesmodern programming languages like Java and ML, and the theory of types drives signi�cant e�ortsin compilation [24, 43, 31, 34, 36, 7, 40] and semantics [8, 20, 16]. Theorem proving systems basedon type theory have been used for the veri�cation of both hardware and software, and have alsobeen very widely used for the formalization of mathematics.One of the major reasons type theory has enjoyed such wide successes is that it is a natural high-level language for computational mathematics and programming. However, this advantage cansometimes pose a problem because the needs of mathematics and programming can diverge. Inmathematics, equality is extensional, where only an object's value is signi�cant. That is, if the resultof f(a) is b then f(a) = b, and functions f and g are equal (in A! B) exactly when f(a) = g(a)for every a in A. In contrast, in the analysis of programs, it is often critical to consider programsintensionally, reasoning about their structure as well as their result value. For example, showing1

partial correctness of recursive procedures requires reasoning inductively about the computation ofrecursive calls. Also, computational complexity certainly depends on a program's algorithm, andnot only on its result.So a programming logic must reconcile two needs: one, the need to treat functions extensionallyin order to interface with mathematics and to express the most general laws of substitution; and,two, the need to treat functions intensionally (as algorithms) in order to state the most usefulrules of program reasoning and to express complexity. There have been several attempts at thisreconciliation, some of which are theoretically quite interesting [11, 42, 3, 29, 30]. Nevertheless,none of these are very practical, nor have any been implemented.We set as our goal producing a practical and adequate account of partial functions, computationalinduction and computational complexity in the class of constructive type theories such as thoseof Martin-L�of or Girard. This means that the type theory is built on an underlying computationsystem (or programming language), and reasoning about this computation system will be centralto our account. The particular type theory we have chosen in which to formalize our account issummarized in Section 2.1.1 Elements of a SolutionSolving this problem is largely a matter of design informed by mathematical analysis. We knowthat some form of intensional analysis is required. It can be found by building internal modelsof computation, or, in constructive theories, by exposing parts of the underlying term structure(as in re
ection [2]). The wrong choices lead to impractical and unusable theories. For example,building an internal model of a machine (say a random access machine) and a semantic map frommachines to functions would express an obvious way to think about procedures, structure andcomplexity, but that formalization would be so heavy as to overwhelm the logic. Likewise, de�ningan internal semantics for the programming language component of a constructive type theory (adeep embedding) would be extremely complex.Our judgement is that in the case of constructive type theories, the �rst key to a su�cient accountis to bring into the type theory parts of the mechanism of the underlying computation system.Then the semantic rules connecting terms to objects (algorithms to functions) are the same asthe typing rules of the type theory itself. The second key is to expose only those elements of thecomputation system that are needed for computational induction and complexity. The resultingextension to the type theory is lightweight but still quite expressive.1.2 Salient PointsThe �rst technical step is to extend the type theory with an extensional notion of partial functions.We take the approach introduced by Constable and Smith [11] of adding partial types. An objectt is said to be in the partial type T exactly when its termination implies it is in T . The partialfunctions from A to B are denoted by A! B. However, we must extend the theory of Constableand Smith to deal with equality, which they did not consider.The second key technical step is to add a lightweight re
ection mechanism: The metatype of terms2

is re
ected into the type theory as the internal type Term.1 This allows for intensional considerationof terms. A few other constructs are also introduced to re
ect the computational behavior of terms.These intensional mechanisms allow us to de�ne and axiomatize the type [T], the subtype of Termthat contains the internal representations of all terms in T .Then the principle of computational induction is naturally expressible. This principle is based on theidea that if evaluation of t terminates, a well-founded order is induced on the terms through whichit evaluates. This principle is essentially intensional; a term cannot be distinguished extensionallyfrom a term to which it evaluates. In Section 4 we formalize this principle and present someexamples of its uses.Finally, using these tools we may de�ne computational complexity classes. We de�ne the sizeof a term as the size of its syntax tree, and its time as the length of its evaluation sequence tocanonical form. These de�nitions may be used to re�ne the type [T] of all terms in T to the type[T]ts of all terms in T that compute within time t and space s. More interestingly, we may de�necomplexity classes in all types using complexity-constrained function types such the type A ptime�! Bof polynomial-time computable functions from A to B.One particular signi�cant application of this complexity machinery is to de�ne a resource-boundedlogic using complexity-constrained function types and the propositions-as-types principle [21]. Oneof the key advantages of constructive logic is that when the existence of an object is proven, thatobject may be constructed. However, there never been a guarantee that such a construction will befeasible to perform. By proving the existence of an object in resource-bounded logic, we guaranteethat the object may be constructed feasibly [35].2 Partial Object Type TheoryIn this section we lay out the underlying type theory for the results of this paper. Our workbuilds on the type theory of Nuprl [9], a type theory in the style of Martin-L�of [26, 27]. We brie
ysummarize Nuprl in Sections 2.1. This starting theory is essentially a theory of total functions only,but it may be extended to a theory of partial computable functions by adding partial types (typescontaining divergent terms) and a �xpoint rule for typing recursive functions [11, 12, 42, 41, 4, 17].We use Crary's account [17] of type theory augmented by partial functions because that accountis unique in providing an equality assertion within the logic, which we require in order to supportextensional reasoning.2.1 Type Theory PreliminariesAs data types, the theory contains integers (denoted by Z), disjoint unions (denoted by T1 + T2),lists (denoted by T list), dependent products (denoted by (x:T1) � T2) and dependent functionspaces (denoted by (x:T1)!T2). As usual, when x does not appear free in T2, we write T1�T2 for(x:T1)� T2 and T1 ! T2 for (x:T1)! T2. Types themselves are data in the theory and belong toa predicative hierarchy of universes, U1;U2;U3; etc. The universe U1 contains all types built from1A similar approach was used by Allen, et al. [2], but our mechanism is much more lightweight because we do notattempt to re
ect proofs as well. 3

Type Formation Introduction Eliminationuniverse i Ui type formation(for i � 1) operatorsdisjoint union T1 + T2 inj 1(e) case(e;x1:e1; x2:e2)inj 2(e)function space (x:T1)! T2 �x:e e1e2product space (x:T1)� T2 he1; e2i �1(e)�2(e)integers Z : : : ;�1; 0; 1; 2; : : : assorted operationsequality t1 = t2 in T ?inequality t1 � t2 ?set type fx : T1 j T2g operators for T1quotient type x; y:T1==T2 operators for T1Figure 1: Basic Type Theory Syntaxthe base types only (i.e., built without universes), and the universe Ui+1 contains all types buildfrom the base types and the universes U1; : : : ;Ui. In particular, no universe is a member of itself.Propositions are interpreted as types using the propositions-as-types principle [21]. This givesinterpretations to the basic logical connectives and justi�es using Ui as the type of propositions(of level i). Other assertions are interpreted using the following device: The type n1 � n2 is well-formed when n1 and n2 are integers, and either is inhabited by the term ? (when, in fact, n1 � n2)or is empty (if n1 > n2).Each type T comes with an intrinsic equality relation denoted by t1 = t2 2 T . Membership is alsoderived from this relation; we say that t 2 T if t = t 2 T . The equality relation is interpreted inthe logic by the type t1 = t2 in T using the device described above. (Note that t1 = t2 2 T isa metatheoretical assertion whereas t1 = t2 in T is a type in the theory.) The type Void is thende�ned as 0 = 1 in Zand the type Unit is de�ned as 0 = 0 in Z. Then the booleans (B) are de�nedas Unit +Unit and true , false and if-then-else constructs are de�ned in the obvious manner.Propositions may be used to construct new types using the set type and quotient type constructors.The set type fx : A j Pg contains all elements t of A such that P [t=x] is inhabited (where E[e=x]denotes the capture-avoiding substitution of e for x in E). We use the set type to de�ne thenatural numbers (N) as fn : Zj 0 � ng, the positive integers (Z+) as fn : Zj 1 � ng, and theinteger subranges ([m � � �k]) as fn :Zjm � n ^ n � kg. The quotient type x; y:A==P contains allelements of A, but t1 and t2 are equal in x; y:A==P if P [t1; t2=x; y] is inhabited. For such a type tobe well-formed, the equality resulting from P must be coarser than the equality on A.2.2 ComputationUnderlying our type theory is a computation system that is summarized in Appendix B. Thecomputation system is de�ned by a small-step evaluation relation (denoted by t1 7! t2), and a setof canonical terms. (Of the terms introduced so far, the canonical terms are those appearing inthe �rst and second columns of Figure 1.) Two properties of the computation system are that it isdeterministic (i.e., if t 7! t1 and t 7! t2 then t1 =� t2) and that canonical forms are terminal (i.e.,4

if canon(t) then t 67! t0).If t 7!� t0 and canon(t0) then we say that t converges (abbreviated t#) and t converges to t0(abbreviated t + t0). Note that if t + t1 and t + t2 then t1 =� t2 and that if t + t0 then t0 + t0. Wesay that a term t diverges (abbreviated t") if it does not converge.The equality on types is constructed to obey an important property with respect to computation,that equality is value respecting: if t 2 T and t 7! t0 then t = t0 2 T . As discussed in theintroduction, this property is critical to mathematical uses of the theory, but it is this same propertythat makes intensional reasoning challenging: within the type theory, a term and its result valueare equal, as are any two terms with the same result value.2.3 Partial TypesFunctions (and objects in general) may be de�ned recursively in the basic type theory using the �xoperator. However, all the types of the basic type theory are total (i.e., contain only convergentelements), so to show that a recursively de�ned object is well-typed, it is necessary to show that itconverges. Consequently, the basic theory is incapable of reasoning about possibly partial functions.To make the theory capable of reasoning about partial functions, we will add four new primitivetypes: a partial type constructor, and types asserting convergence, admissibility and totality.The partial type T is like a \lifted" version of T ; it contains all the members of T as well as alldivergent terms. Partial functions from A to B may then be given the type A!B. For reasons thatwill become clear shortly, it is important that T never equate any convergent and divergent terms.Thus we say that two terms are equal in T if they both diverge, or if they both converge and areequal in T . However, we desire that T be a subtype of T (i.e., if t1 = t2 2 T then t1 = t2 2 T), so inorder for T to be allowed as a valid type, we must require that T also never equate any convergentand divergent terms. Instead of this condition, we require the stronger condition that T containonly convergent elements, which seems to work more nicely in practice.We reason about convergence in the theory using the type t in! T , which is well-formed when t 2 Tand inhabited when t#. We wish to say that the types t in! T and t0 in! T are equal when t = t0 2 T ,and it is for this reason that we cannot permit T to equate convergent and divergent terms.The well-formedness conditions of the partial type and the convergence type contain an apparentcircularity: Well-formedness of the convergence type t in! T requires that t in T and the well-formedness of T requires that every member of T converge. To break this loop, we use a primitivetotality predicate (T total) as the condition for partial type well-formedness within the logic.Recursively de�ned objects may be typed directly (without showing they converge) using the �x-point principle: t in (T ! T)) �x(t) in THowever, the �xpoint principle is not valid for all types (see Smith [42] for an example of sucha type). Types for which the �xpoint principle is valid are called admissible. Admissibility isindicated within the logic by the type T admiss . Crary [15, 17] shows that a wide class of typesare admissible, including all types used in conventional programming languages.5

3 Intensional ReasoningTo lay the groundwork that makes intensional reasoning possible in our type theory, we begin bybeing more speci�c about the structure of terms in Section 3.1. This structure is quite general,allowing term constructors with arbitrarily many subterms and binding positions, and thereforemakes few restrictions on the expressiveness of the theory. Moreover, the results of this papershould easily apply to di�erent term structures, but we desire a concrete framework in whichto work. In Section 3.2 we present operators and notation for intensional consideration of terms.Section 3.3 then presents the primitive type-theoretic constructs necessary for intensional reasoning.3.1 Uniform Term SyntaxTerms are constructed using a set
 of operators , ranged over by the metavariable !, and a functionarity mapping each operator to a �nite (possibly empty) list of natural numbers. The arity functionwill be used to indicate the number of subterms of an operator and the number of bound variablesfor each subterm. We also take as given an in�nite set of variables.The set of terms is then de�ned inductively as follows:� Every variable is a term.� If ! is an operator then !� is a term, serving as the name of !.� If arity(!) = (k1; : : : ; kn) and t1; : : : ; tn are terms, then !(x11 � � �x1k1 :t1; : : : ; xn1 � � �xnkn :tn)is a (compound) term, where xij is a variable for 1 � i � n and 1 � j � ki.The variables xi1; : : : ; xiki preceding each subterm are binding occurrences. Thus, in the termlambda(x:add(x; y)), the variable x is bound and the variable y is free. As usual, terms that di�eronly by the alpha-variation of bound variables are considered identical.A subset of the operators in
 are designated as canonical operators. A term is considered canonicaleither if it is a compound term constructed with a canonical operator at the top, or if it is the name!� of an operator (canonical or not).Although it will often be useful to present terms in the uniform term syntax just described, wewill continue usually to use more conventional notation such as that used in Section 2. Theseconventional notations should be viewed as abbreviations for formal terms in the uniform syntaxabove. For example, �x:t is shorthand for lambda(x:t) where arity(lambda) = (1).3.2 Intensional RepresentationsIn order to analyze terms intensionally, we must have internal representations of terms. As discussedin the introduction, the representation of a term cannot be the term itself, as appealing as thatmight be. In particular, the representation of a term must be a canonical form, even when the termbeing represented is not. 6

dte def= dte�dxiexn;:::;x1 def= var i (for 1 � i � n)d!�exn;:::;x1 def= opname(!�)d!(yk1 � � � y1:t1; : : : ; ykn � � � y1:tn)exm ;:::;x1 def= hh!�;dt1exm ;:::;x1 ;yk1 ;:::;y1 ;...dtnexm ;:::;x1 ;ykn ;:::;y1 ii(for arity(!) = (k1; : : : ; kn))hht1; : : : ; tnii def= inj 1(ht1; ht2; h� � � htn; ?i � � �iii)vari def= inj 2(inj 1(i))opname(t) def= inj 2(inj 2(t))Figure 2: Term RepresentationsThe representation of any term t is denoted by dte. If If ! is an n-place operator with no bindingoccurrences then the term !(t1; : : : ; tn) is represented by hh!�; dt1e; : : : ; dtneii. To avoid the syntacticoverhead of formalizing variables, terms with binding structure are representing using de Bruijnindices [19]; for i > 0, var i refers to the ith enclosing binding occurrence, counting from one. Forexample, d�x:�y:xe = hhlambda�; hhlambda�; var2iiii. This is summarized formally in Figure 2.Finally, it will prove convenient to have some notation like the quasiquote mechanism of Schemefor the representations of terms with holes to be �lled by ordinary terms. We will denote thesewith concentric boxes: t stands for the representation of t except that inner boxes within t denoteholes and expressions within those holes are left unchanged. For example, if t is a term, �x:h t ; 0idenotes hhlambda�; hhpair�; t; number0iiii.3.3 Type Theory of TermsWe are now ready to introduce the principal devices for intensional reasoning in type theory. Theseinclude a type of intensional terms, an operator for converting intensional terms to their denotations,and types asserting intensional type membership, evaluation, canonicalism, and computationalinducement:� The type Termi contains the representations of all terms with up to i free variables (that is,de Bruijn indices extending up to i binding positions out of the term). (E.g., var i is in Termjwhen i � j.) Expressions are equal in Termi if they represent alpha-equal terms. Note thatthe representations of all terms are canonical (since pair is a canonical operator), even if theterms themselves are not, and therefore Termi is a total type. The type Term is de�ned tobe the type Term0 of closed term representations.� Terms are related to their representations by a set of operators ref n (for natural numbers n),which compute the meaning of intensional term representations. The operator ref n is usedwhen the representing term t may contain up to n free variables: ref n(t; e1; : : : ; en) computesthe denotation of t where ei is substituted for the ith enclosing free variable of t. For example,ref 2(var1; t1; t2) 7! t1. When n is small, we will write [[t]]e1 ;:::;en for ref n(t; e1; : : : ; en). Note7

that, unlike d�e, ref n is an operator and thus may be used within the theory (and indeed willbe, extensively).� Using ref , we may form the assertion that an intensional term t represents a member of T inthe natural manner as [[t]] in T . For technical reasons,2 the theory also requires a primitivetype asserting that a term represents a member of a type. This type is t [in] T , assertingthat [[t]] 2 T .Using this type, we may de�ne an essential re�nement of the type Term: the type [T], whichcontains representations of all terms of type T .[T] def= fx : Term j x [in] TgTypes [T], along with the [[�]] operator, will serve as the principal interface between theextensional and intensional aspects of our type theory. When we wish to consider an unknownterm x both intensionally and extensionally and x extensionally is to have type T , we willgive x the type [T] and then use x bare in intensional contexts but use it as [[x]] in extensionalcontexts.� To reason about computation, we need types representing the assertions that one term eval-uates to another and that a term is canonical. The type t1 evalto t2 is inhabited by the term? when [[t1]] 7! [[t2]] and is empty otherwise. Similarly, the type t canonical is inhabited (by?) exactly when [[t]] is canonical.� We also need to reason about the related concept of computational inducement. If e1 7! e2then the evaluation of e1 certainly induces the evaluation of e2. However, depending uponthe structure of e1, the evaluation of other terms may be induced as well. For example, theevaluation of fa induces the evaluation of f . When the evaluation of e1 to canonical formcontains the evaluation of e2 we say that e1 induces evaluation of e2. This is represented bythe type t1 induces t2, which is inhabited by the term ? when [[t1]] induces evaluation of [[t2]]and is empty otherwise. When a term t halts, inducement de�nes a well-founded relationon the terms induced by t; we will use that relation for computational induction in the nextsection.This type theory is formalized in Appendices A and B, which present the type theory's inferencerules and operational semantics. In addition to the primitive construct discussed above, we willalso need a few functions operating on intensional representations:� A substitution function subst 2 Term1 ! Term ! Term such that subst e1 e2 substitutese2 for var1 in e1 (and shifts other variables down appropriately). We will often abbreviatesubst e1 e2 by e1[e2=1].� E�ective versions of the evaluation and canonicalism assertions, that is, a function iscanon 2Term!B that determines whether a term is canonical and a function next 2 Term!(Term+Unit) that determines the next term that a term evaluates to, if it is not canonical or stuck.2In Martin-L�of style type theories, the membership type t in T is well-formed only when t is a member of T .Hence, the assertion [[t]] in T is well-formed only when it is true, and thus it is useless as the antecedent of animplication. We will need to form propositions that are conditional on an intensional term's denotation belonging toa type, so we need a type that is inhabited if and only if the above type is, but that has more liberal conditions onwell-formedness. From t [in] T we may deduce that [[t]] in T and vice versa, but t [in] T is well-formed whenever t isa member of Term (and T is a type). 8

Note that the last three functions (subst , iscanon, and next) can be written in the underlyingtype theory and need not be made primitive. Moreover, they will still be programmable in anyreasonable extension of our computation system: the programmability of subst is inherent in thesyntax of terms and their intensional represenations, and the programmability of iscanon and nextamount to the constructability of a universal machine, which is usually part of the de�nition of areasonable computation system.4 Computational InductionWith a type theory capable of intensional reasoning in hand, we are ready to look at some appli-cations of intensional reasoning. The �rst computational induction, a useful principle of inductionthat is not valid in extensional type theories. Computational induction is based on the inducementorder relation: if the evaluation of a term t converges, inducement is a well-founded order overthose terms induced by t. (Recall that t induces t0 when the evaluation of t includes the evaluationof t0.)Computational induction has general applicability for reasoning about programs since it corre-sponds to the intuitive mechanism of reasoning about recursive programs by preconditions andpostconditions, but it is particularly useful for proving partial correctness of programs. Other in-duction principles are inadequate for such proofs; if one could �nd a well-founded order on theinputs of a recursive function, one could show total correctness instead.The principle of computational induction is as follows:(8e:Term: (8e 0:Term: e induces e 0) P [e 0])) P [e]) ^ [[t]] in! T) P [t]In words, if we may show P [e] from the assumption of P [e0] for every e0 induced by e, and if t halts,then P [t].Note that, unlike the �xpoint principle, there is no admissibility restriction on computational induc-tion. This is because, like most induction principles but unlike �xpoint induction, computationalinduction is based on a well-founded order. The generality of computational induction makesit a useful tool for reasoning about partial function in circumstances where �xpoint induction isdisallowed.Note also that since inducement is an intrinsically intensional property, the computational inductionprinciple demands the intensional reasoning structure developed in Section 3 to state. Indeed, ifthe principle were expressed in extensional terms, it would be inconsistent: If e evaluates to e0,then e also induces e0, but because equality is value respecting e will be equal to e0 is any typesto which they belong. Thus, if computational induction were expressed extensionally (that is, if itrepected equality), then the �rst condition would always be satis�ed, allowing any property to beproven of any terminating term.We will now examine some examples of the use of compuational induction:9

Example 1 Consider the \3n+ 1" function:F = �x(�f:�n:if n = 1 then 0else if n mod 2 = 0 then 1 + f(n=2)else f(3n+ 1))This program is not known to halt for all positive integers, but it is easy to see that if F (n)# thenlog2 n � F (n). We may show this by computational induction using the proposition:P [e] = 8n:[Z+]: (e = F (n) in Term)) log2 [[n]] � [[e]]ProofLet e in Term be arbitrary. Suppose P [e0] for all e0 induced by e and suppose e = F (n) inTerm (for some n in [Z+]). By assumption, [[n]] in Z+. If [[n]] = 1 then [[e]] = 0. Suppose[[n]] mod 2 = 0. Then F (n) evalto 1 + F (n =2) , and thus e induces F (n =2) . By inductionlog2([[n]]=2) � F ([[n]]=2), so log2 [[n]] = 1 + log2([[n]]=2) � 1 + F ([[n]]=2) = F ([[n]]).The remaining case is similar. Suppose [[n]] mod 2 = 1. Then F (n) evalto F (3 n + 1) ,and thus e induces F (3 n + 1) . By induction log2(3[[n]] + 1) � F (3[[n]] + 1), so log2 [[n]] �log2(3[[n]]+1) � F (3[[n]]+1) = F [[n]]. By computational induction we conclude [[t]] in!Z) P [t].It follows that 8n:[Z+]: F [[n]] in!Z) log2 [[n]] � F [[n]], as desired.Example 2 Computational induction is also useful for showing conditional termination. Considerthe function time that computes the length of the reduction sequence of a term:time def= �x(�f:�t:case(next(t); t0: 1 + f(t0); x:0))We may use computational induction to show that time(t) in! N whenever [[t]] in! T (for any T).3This is done using the proposition P [e] = time(e) in! N and the observation that if next(e) =inj 1(e0) then e induces e0 (since e evalto e0).5 Computational Complexity and Resource-Bounded LogicA second application of intensional reasoning lies in computational complexity. The evaluationrelation on Term provides the basis for de�ning computational complexity measures such as timeand space. These measures allow us to express traditional results about complexity classes as wellas recent results concerning complexity in higher types [6, 37, 22, 13, 14, 38, 39, 23, 44]. The basicmeasure of time is the number of evaluation steps to canonical form. We have already de�ned(in the previous section) a function counting the evaluation steps of a term, so we already have anotion of running time.4 However, it will prove more convenient to state that notion in predicate3The �xpoint principle su�ces to show 8t:Term: time(t) 2 N.4Since the underlying computation system allows (�x:b)a to evaluate in one step to b[a=x] (an action impossiblein constant time on real machines), this measure of running time will not always correspond to measured derived formore realistic machine models. Fortunately, the theory we present does not depend greatly on the actual computation10

form where Term(e; t) states that e runs within time t:Time(e; t) i� 9n:[0 � � � t]: 9f :[0 � � �n]! Term: f(0) = e in Term ^iscanon(f(n)) = true in B ^8i:[0 � � �n � 1]: f(i) evalto f(i+ 1)We may de�ne a notion of space in a similar manner. First, we may easily de�ne a function sizewith type Term ! N which computes the number of operators in a term. Then we de�ne thepredicate Space(e; s), that states that e runs in space at most s:Space(e; s) i� 9n:N: 9f :[0 � � �n]! Term: f(0) = e in Term ^iscanon(f(n)) = true in B ^8i:[0 � � �n� 1]: f(i) evalto f(i+ 1) ^8i:[0 � � �n]: size(f(i)) � sUsing these, we may de�ne the resource-indexed type [T]ts of terms that evaluate (to a member ofT) within time t and space s:[T]ts def= fe : [T] j Time(e; t) ^ Space(e; s)gOne interesting application of the resource-indexed types is to de�ne types like Parikh's feasiblenumbers [35], numbers that may be computed in a \reasonable" time.5.1 Complexity ClassesWith time complexity measures de�ned above, we may de�ne complexity classes of functions.Complexity classes are expressed as function types whose members are required to �t within com-plexity constraints. We call such type complexity-constrained function types. For example, thequadratic time, polynomial time, and polynomial space computable functions may be de�ned in astraightforward manner:(x:A) quad�! B def= ff : [(x:A)!B] j 9c:N: 8a:[A]:Time(hhapp�; f; aii; c � size(a)2)g(x:A) ptime�! B def= ff : [(x:A)!B] j 9c; c0:N: 8a:[A]:Time(hhapp�; f; aii; c � size(a)c0)g(x:A) pspace�! B def= ff : [(x:A)!B] j 9c; c0:N: 8a:[A]:Space(hhapp�; f; aii; c � size(a)c0)gWhile this technique provides complexity classes in a theory rich enough to express all mathematics,notions of complexity over higher types rely on oracle time complexity [28, 13, 14], where evaluationof a distinguished argument is not counted toward evaluation time, but the processing of its resultis. Supporting such notions in this framework requires a mechanism for marking the distinguishedargument throughout evaluation so that it may always be identi�ed and discounted. Such a mech-anism allows the de�nition of higher-order polynomial time computable functions [10, 28, 13, 39].It is not di�cult to produce such a mechanism in this framework, but we will not discuss it heredue to space limitations.system used; many computation systems could validate our axioms, and we have chosen the one used in this paperonly for its simplicity. A computation system based on explicit substitutions [1, 18] can also easily be used, andleads to a more realistic measure of running time. Still more realistic computation systems have also been proposed,such as the �gc of Morrisett et al. [32, 33], but we have not explored how easily our theory could be adapted to suchsystems. 11

5.2 Resource-Bounded LogicOne of the advantages of constructive logic is that when the existence of an object is proven, thatobject may be constructed. Many theorem provers based on constructive logic [9, 5, 25] allow theautomatic extraction of programs from proofs. However, there is no guarantee that such programsmay feasibly be executed. This has been a serious problem in practice, as well as in principle.Using the complexity-constrained functions, we may de�ne a resource-bounded logic that solves thisproblem. Under the propositions-as-types principle, the universal statement 8x:A:B correspondsto the function space (x:A)! B. By using the complexity-constrained function space instead, weobtain a resource-bounded universal quanti�er. For example, let us denote the quanti�er corre-sponding to the polynomial-time computable functions by 8(ptime)x:A:B. By proving the statement8(ptime)x:A: 9y:B: P (x; y), we guarantee that the appropriate y may actually be feasibly computedfrom a given x.6 ConclusionWe have presented a type theory that reconciles extensional and intensional reasoning, providing the�rst account of computational complexity that does not incur heavy mechanisms such as re
ectionor deep embeddings. The constructs we have presented may be implemented in terms of the theoryof re
ection presented by Allen et al. [2], and indeed our theory meshes nicely with re
ection.However, our theory is much more lightweight than the theory of re
ection, which internalizessequents, proofs and programs that construct proofs, so it can be pro�table to justify the constructsof our theory as primitives instead. We argue, then, that our theory occupies an attractive middleposition, expressive enough for powerful reasoning (such as complexity analysis), and consistentwith richer theories such as re
ection, but simple enough to be used practically.A Inference RulesA complete set of inference rules for the type theory with extensional partial functions is given in Crary [17].In this appendix, we present those additional rules needed to reason intensionally:Terms H ` j = j0 in NH ` Termj = Termj 0 in Ui H ` Op = Op in Ui H ` !� = !� in OpH ` t = t0 in OpH ` ar(t) = ar(t0) in N list H ` ar(!�) = (k1 :: � � � :: kn :: nil) in N list (arity(!�) = (k1; : : : ; kn))H ` e = e0 in ((o:Op)� fold(ar(o); iX:Termi+j � X ;Unit)) + [1 � � � i] +OpH ` e = e0 in Termj12

H ` e = e0 in TermjH ` e = e0 in ((o:Op)� fold(ar(o); iX:Termi+j � X ;Unit)) + [1 � � � i] +OpIntensional MembershipH ` t = t0 in Term H ` T = T 0 in UiH ` (t [in] T) = (t0 [in] T 0) in Ui H ` [[t]] in TH ` t [in] T H ` t [in] TH ` [[t]] in TEvaluation, Canonicalism, and InducementH ` t1 = t01 in Term H ` t2 = t02 in TermH ` (t1 evalto t2) = (t01 evalto t02) in Ui H ` t = t0 in TermH ` (t canonical) = (t0 canonical) in UiH ` t1 = t01 in Term H ` t2 = t02 in TermH ` (t1 induces t2) = (t01 induces t02) in Ui H ` t1 induces t2H ` :(t1 canonical) H ` t1 evalto t2H ` t1 induces t2H ` t1 evalto t2 H ` [[t1]] in TH ` [[t1]] = [[t2]] in T H ` t canonical H ` [[t]] in T H ` T in UiH ` [[t]] in! TH ` [[t]] in! T H; e:Term; (8e 0:Term: e induces e 0) P [e 0=x]) ` P [e=x]H ` P [t=x]Sample Denotation RulesH; y : [A]; z : [A]; w : ([[y]] = [[z]] in A) ` [[b[y=1]]] = [[b[z=1]]] in B[[[y]]=x]H ` [[�x: b]] = �x:[[b]]x in (x : A)!BH ` e1 [in] (x : A)!B H ` e2 [in] AH ` [[e1 e2]] = [[e1]][[e2]] : B[[[e1]]=x]Sample Evaluation and Inducement RulesH ` e in Term1H ` �x: e canonical H ` f evalto f 0 H ` e in TermH ` f e evalto f 0 eH ` e in Term1 H ` t in TermH ` (�x: e) t evalto e[t=1] H ` f in Term H ` e in TermH ` f e induces f13

Lists H ` T = T 0 in UiH ` T list = T 0 list in Ui H ` T in UiH ` nil = nil in T list H ` h = h0 in T H ` t = t0 in T listH ` h :: t = h0 :: t0 in T listH ` e1 = e01 in T list H;x : T; y : S ` e2 = e02 in S H ` e3 = e03 in SH ` fold(e1; x y:e2; e3) = fold(e01; x y:e02; e03) in SH ` e0 in SH ` fold (nil ; x y:e; e0) = e0 in S H ` h in T H ` t in T list H;x : T; y : S ` e in S H ` e0 in SH ` fold(h :: t; x y:e; e0) = e[h; fold(t; x y:e; e0)=x; y] in SB Operational Semanticsf 7! f 0f e 7! f 0 e (�x:e)t 7! e[t=x] t 7! t0�i(t) 7! �i(t0) �i(ht1; t2i) 7! tit 7! t0case(t; x:e1; x:e2) 7! case(t0; x:e1; x:e2) case(inj i(t); x:e1; x:e2) 7! ei[t=x]e1 7! e01fold(e1; x y:e2; e3) 7! fold(e01; x y:e2; e3) fold(nil ; x y:e; e0) 7! e0fold(h :: t; x y:e; e0) 7! e[h; fold(t; x y:e; e0)=x; y] �x (f) 7! f �x (f)t 7! t0ref n(t; e1; : : : ; en) 7! ref n(t0; e1; : : : ; en)t 7! t0ref n(inj i(t); e1; : : : ; en) 7! ref n(inj i(t0); e1; : : : ; en)t1 7! t01ref n(inj 1(ht1; t2i); e1; : : : ; en) 7! ref n(inj 1(ht01; t2i); e1; : : : ; en)arity(!) = (k1; : : : ; km)ref n(inj 1(h!�; ti); e1; : : : ; en) 7! !(xk1 � � �x1:ref k1+n(�1(t); x1; : : : ; xk1; e1; : : : ; en);...xkm � � �x1:ref km+n(�1(�2(� � � (�2| {z }m�1 times (t)) � � �)); x1; : : : ; xk1; e1; : : : ; en))t 7! t0ref n(inj 2(inj i(t)); e1; : : : ; en) 7! ref n(inj 2(inj i(t0)); e1; : : : ; en)ref n(inj 2(inj 1(i)); e1; : : : ; en) 7! ei (1 � i � n) ref n(inj 2(inj 2(!�)); e1; : : : ; en) 7! !�14

References[1] Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques L�evy. Explicit substitutions.Journal of Functional Programming, 1(4):375{416, 1991.[2] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and WilliamAitken. The semantics of re
ectedproof. In Proceedings of the Fifth Symposium on Logic in Computer Science, pages 95{197. IEEE, June1990.[3] P. Audebaud. Partial objects in the calculus of constructions. In Proc. of Sixth Symp. on Logic inComp. Sci., pages 86{95, IEEE, Vrije University, Amsterdam, The Netherlands, 1991.[4] Philippe Audebaud. Partial objects in the calculus of constructions. In Sixth IEEE Symposium of Logicin Computer Science, pages 86{95, Amsterdam, July 1991.[5] Bruno Barras, Samuel Boutin, Cristina Cornes, Judica�el Courant, Jean-Christophe Filliâtre, EduardoGim�enez, Hugo Herbelin, G�erard Huet, C�esar Mu~noz, Chetan Murthy, Catherine Parent, ChristinePaulin-Mohring, Amokrane Sa��bi, and Benjamin Werner. The Coq Proof Assistant Reference Manual.INRIA-Rocquencourt, CNRS and ENS Lyon, 1996.[6] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functions.Computational Complexity, 2:97{110, 1992.[7] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit (version 1). TechnicalReport 93/14, Department of Computer Science, University of Copenhagen, 1993.[8] L. Cardelli and P. Longo. A semantic basis for Quest. In Journal of Functional Programming, pages1:417{458, 1991.[9] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J. Howe,T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, and S.F. Smith. Implementing Mathematicswith the Nuprl Proof Development System. Prentice-Hall, 1986.[10] Robert L. Constable. Type two computational complexity. In Proceedings of the 5th Annual ACMSymposium on the Theory of Computing, pages 108{121, 1973.[11] Robert L. Constable and Scott Fraser Smith. Partial objects in constructive type theory. In SecondIEEE Symposium of Logic in Computer Science, pages 183{193, Ithaca, New York, June 1987.[12] Robert L. Constable and Scott Fraser Smith. Computational foundations of basic recursive functiontheory. In Third IEEE Symposium of Logic in Computer Science, pages 360{371, Edinburgh, Scotland,July 1988.[13] S. A. Cook and B. M. Kapron. Characterizations of the basic feasible functionals of �nite type. InS. Buss and P.J. Scott, editors, Proceedings of MSI Workshop on Feasible Mathematics, pages 71{95,New York, 1990. Birkhauser-Boston.[14] S. A. Cook and B. M. Kapron. A new characterization of Mehlhorn's polynomial time functionals.FOCS, 1991.[15] Karl Crary. Admissibility of �xpoint induction over partial types. In Fifteenth International Conferenceon Automated Deduction, volume 1421 of Lecture Notes in Computer Science, pages 270{285, Lindau,Germany, July 1998. Springer-Verlag. Extended version published as CMU technical report CMU-CS-98-164.[16] Karl Crary. Programming language semantics in foundational type theory. In International Conferenceon Programming Concepts and Methods, Shelter Island, New York, 1998. Chapman & Hall. Extendedversion published as Cornell University technical report TR98-1666.[17] Karl Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis, Departmentof Computer Science, Cornell University, Ithaca, New York, August 1998.15

[18] Pierre-Louis Curien, Th�er�ese Hardin, and Jean-Jacques L�evy. Con
uence properties of weak and strongcalculi of explicit substitutions. Journal of the ACM, 43(2):362{397, March 1996.[19] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic formulamanipulation with application to the Church-Rosser theorem. Indag. Math., 34(5):381{392, 1972.[20] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. InMilner Festschri�t.The MIT Press, 1998. To appear.[21] W. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, ToH.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479{490. AcademicPress, 1980.[22] N. Immerman. Languages which capture complexity classes. SIAM Journal of Computing, 16:760{778,1987.[23] Daniel Leivant. Strati�ed functional programs and computational complexity. In Twentieth An-nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 325{333,Charleston, SC, January 1993. ACM, ACM Press.[24] Xavier Leroy. Unboxed objects and polymorphic typing. In Nineteenth ACM SIGACT-SIGPLANSymposium on Principles of Programming Languages, pages 177{188, 1992.[25] Lena Magnusson. The Implementation of ALF|A Proof Editor based on Martin-L�of's MonomorphicType Theory with Explicit Substitution. PhD thesis, G�oteborg University, G�oteborg Sweden, 1994.[26] Per Martin-L�of. An intuitionistic theory of types: Predicative part. In Proceedings of the Logic Col-loquium, 1973, volume 80 of Studies in Logic and the Foundations of Mathematics, pages 73{118.North-Holland, 1975.[27] Per Martin-L�of. Constructive mathematics and computer programming. In Proceedings of the SixthInternational Congress of Logic, Methodology and Philosophy of Science, volume 104 of Studies in Logicand the Foundations of Mathematics, pages 153{175. North-Holland, 1982.[28] K. Mehlhorn. Polynomial and abstract subrecursive classes. Journal of Computer and System Sciences,pages 148{176, 1976.[29] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93, 1991.[30] Eugenio Moggi. A general semantics for evaluation logic. In Proceedings of Ninth Annual IEEE Sym-posium on Logic in Computer Science, pages 353{362, July 1994.[31] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, School of ComputerScience, Pittsburgh, Pennsylvania, December 1995.[32] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory management. In1995 Conference on Functional Programming Languages and Computer Architecture, 1995.[33] Greg Morrisett and Robert Harper. Semantics of memory management for polymorphic languages.Technical Report CMU-CS-96-176, Carnegie Mellon University, School of Computer Science, September1996.[34] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly language.In Twenty-Fifth ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, SanDiego, January 1998. To appear.[35] R. Parikh. Existence and feasibility in arithmetic. Jour. Assoc. Symbolic Logic, 36:494{508, 1971.[36] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond,Will Partain, and Philip Wadler. The Glas-gow Haskell compiler: a technical overview. In Proc. UK Joint Framework for Information Technology(JFIT) Technical Conference, July 1993.[37] A. Seth. There is no recursive axiomatization for feasible functionals of type 2. In Proceedings of the7th Annual IEEE Symposium on Logic in Computer Science, 1992.16

[38] A. Seth. Some desirable conditions for feasible functionals of type 2. In Eighth IEEE Symposium ofLogic in Computer Science, pages 320{331, Montreal, June 1993.[39] A. Seth. Turing machine characterizations of feasible functionals of all �nite types. In Proceedings ofMSI Workshop on Feasible Mathematics, 1994.[40] Zhong Shao and Andrew Appel. A type-based compiler for Standard ML. In 1996 ACM SIGPLANConference on Programming Language Design and Implementation, pages 116{129, La Jolla, June 1995.[41] Scott F. Smith. Hybrid partial-total type theory. International Journal of Foundations of ComputerScience, 6:235{263, 1995.[42] Scott Fraser Smith. Partial Objects in Type Theory. PhD thesis, Department of Computer Science,Cornell University, Ithaca, New York, January 1989.[43] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizingcompiler for ML. In 1996 ACM SIGPLAN Conference on Programming Language Design and Imple-mentation, pages 181{192, May 1996.[44] K. Weihrauch and Ch. Kreitz. Type 2 computational complexity of functions on Cantor's space. The-oretical Computer Science, 82:1{18, 1991.

17

