Computational Complexity and Induction for Partial Computable
Functions in Type Theory

Robert L. Constable Karl Crary

Cornell University Carnegie Mellon University

March 2, 1999

Abstract

An adequate theory of partial computable functions should provide a basis for defining
computational complexity measures and should justify the principle of computational induction
for reasoning about programs on the basis of their recursive calls. There is no practical account
of these notions in type theory, and consequently such concepts are not available in applications
of type theory where they are greatly needed. It is also not clear how to provide a practical and
adequate account in programming logics based on set theory.

This paper provides a practical theory supporting all these concepts in the setting of con-
structive type theories. We first introduce an extensional theory of partial computable functions
in type theory. We then add support for intensional reasoning about programs by explicitly re-
flecting the essential properties of the underlying computation system. We use the resulting
intensional reasoning tools to justify computational induction and to define computational com-
plexity classes. Complexity classes take the form of complexity-constrained function types. These
function types are also used in conjunction with the propositions-as-types principle to define a
resource-bounded logic in which proofs of existence can guarantee feasibility of construction.

1 Introduction

Over the past two decades, type theory has become the formalism of choice to support programming,
verification and the logical foundations of computer science. The language of types underlies
modern programming languages like Java and ML, and the theory of types drives significant efforts
in compilation [24, 43, 31, 34, 36, 7, 40] and semantics [8, 20, 16]. Theorem proving systems based
on type theory have been used for the verification of both hardware and software, and have also
been very widely used for the formalization of mathematics.

One of the major reasons type theory has enjoyed such wide successes is that it is a natural high-
level language for computational mathematics and programming. However, this advantage can
sometimes pose a problem because the needs of mathematics and programming can diverge. In
mathematics, equality is extensional, where only an object’s value is significant. That is, if the result
of f(a) is b then f(a) = b, and functions f and g are equal (in A — B) exactly when f(a) = ¢(a)
for every a in A. In contrast, in the analysis of programs, it is often critical to consider programs
intensionally, reasoning about their structure as well as their result value. For example, showing



partial correctness of recursive procedures requires reasoning inductively about the computation of
recursive calls. Also, computational complexity certainly depends on a program’s algorithm, and
not only on its result.

So a programming logic must reconcile two needs: one, the need to treat functions extensionally
in order to interface with mathematics and to express the most general laws of substitution; and,
two, the need to treat functions intensionally (as algorithms) in order to state the most useful
rules of program reasoning and to express complexity. There have been several attempts at this
reconciliation, some of which are theoretically quite interesting [11, 42, 3, 29, 30]. Nevertheless,
none of these are very practical, nor have any been implemented.

We set as our goal producing a practical and adequate account of partial functions, computational
induction and computational complexity in the class of constructive type theories such as those
of Martin-Lof or Girard. This means that the type theory is built on an underlying computation
system (or programming language), and reasoning about this computation system will be central
to our account. The particular type theory we have chosen in which to formalize our account is
summarized in Section 2.

1.1 Elements of a Solution

Solving this problem is largely a matter of design informed by mathematical analysis. We know
that some form of intensional analysis is required. It can be found by building internal models
of computation, or, in constructive theories, by exposing parts of the underlying term structure
(as in reflection [2]). The wrong choices lead to impractical and unusable theories. For example,
building an internal model of a machine (say a random access machine) and a semantic map from
machines to functions would express an obvious way to think about procedures, structure and
complexity, but that formalization would be so heavy as to overwhelm the logic. Likewise, defining
an internal semantics for the programming language component of a constructive type theory (a
deep embedding) would be extremely complex.

Our judgement is that in the case of constructive type theories, the first key to a sufficient account
is to bring into the type theory parts of the mechanism of the underlying computation system.
Then the semantic rules connecting terms to objects (algorithms to functions) are the same as
the typing rules of the type theory itself. The second key is to expose only those elements of the
computation system that are needed for computational induction and complexity. The resulting
extension to the type theory is lightweight but still quite expressive.

1.2 Salient Points

The first technical step is to extend the type theory with an extensional notion of partial functions.
We take the approach introduced by Constable and Smith [11] of adding partial types. An object
t is said to be in the partial type T exactly when its termination implies it is in 7. The partial
functions from A to B are denoted by A — B. However, we must extend the theory of Constable
and Smith to deal with equality, which they did not consider.

The second key technical step is to add a lightweight reflection mechanism: The metatype of terms



is reflected into the type theory as the internal type Term.! This allows for intensional consideration
of terms. A few other constructs are also introduced to reflect the computational behavior of terms.
These intensional mechanisms allow us to define and axiomatize the type [T], the subtype of Term
that contains the internal representations of all terms in T.

Then the principle of computational induction is naturally expressible. This principle is based on the
idea that if evaluation of ¢ terminates, a well-founded order is induced on the terms through which
it evaluates. This principle is essentially intensional; a term cannot be distinguished extensionally
from a term to which it evaluates. In Section 4 we formalize this principle and present some
examples of its uses.

Finally, using these tools we may define computational complexity classes. We define the size
of a term as the size of its syntax tree, and its time as the length of its evaluation sequence to
canonical form. These definitions may be used to refine the type [T] of all terms in T' to the type

[T of all terms in T that compute within time ¢ and space s. More interestingly, we may define
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complexity classes in all types using complezxity-constrained function types such the type A — B
of polynomial-time computable functions from A to B.

One particular significant application of this complexity machinery is to define a resource-bounded
logic using complexity-constrained function types and the propositions-as-types principle [21]. One
of the key advantages of constructive logic is that when the existence of an object is proven, that
object may be constructed. However, there never been a guarantee that such a construction will be
feasible to perform. By proving the existence of an object in resource-bounded logic, we guarantee
that the object may be constructed feasibly [35].

2 Partial Object Type Theory

In this section we lay out the underlying type theory for the results of this paper. Our work
builds on the type theory of Nuprl [9], a type theory in the style of Martin-Lof [26, 27]. We briefly
summarize Nuprl in Sections 2.1. This starting theory is essentially a theory of total functions only,
but it may be extended to a theory of partial computable functions by adding partial types (types
containing divergent terms) and a fixpoint rule for typing recursive functions [11, 12, 42, 41, 4, 17].
We use Crary’s account [17] of type theory augmented by partial functions because that account
is unique in providing an equality assertion within the logic, which we require in order to support
extensional reasoning.

2.1 Type Theory Preliminaries

As data types, the theory contains integers (denoted by Z), disjoint unions (denoted by 77 + T3),
lists (denoted by T list), dependent products (denoted by (z:77) x 13) and dependent function
spaces (denoted by (x:71) — T3). As usual, when z does not appear free in T3, we write T} x 1 for
(x:17) x Ty and Ty — T for (z:Ty) — T5. Types themselves are data in the theory and belong to
a predicative hierarchy of universes, Uy, Uy, Us, etc. The universe U; contains all types built from

YA similar approach was used by Allen, et al. [2], but our mechanism is much more lightweight because we do not
attempt to reflect proofs as well.



Type Formation Introduction Elimination
universe ¢ U, type formation

(for ¢ > 1) operators
disjoint union | 71 + 71> inj,(e) case(e, x1.€1, T2.€2)

inj,(e)
function space | (z:1T1) = T3 Az .e eres
product space | (z:11) x 1> (e1,€2) m1(e)
w2 (€)

integers 7 ...,—1,0,1,2,... | assorted operations
equality t1 =t inT *
inequality t <t *
set type {z T |12} operators for T;
quotient type | x,y:T1//T> operators for T;

Figure 1: Basic Type Theory Syntax

the base types only (i.e., built without universes), and the universe U;;; contains all types build
from the base types and the universes Uy, ..., U;. In particular, no universe is a member of itself.

Propositions are interpreted as types using the propositions-as-types principle [21]. This gives
interpretations to the basic logical connectives and justifies using U; as the type of propositions
(of level 7). Other assertions are interpreted using the following device: The type ny < ng is well-
formed when n; and ny are integers, and either is inhabited by the term x (when, in fact, ny < ng)
or is empty (if ny > ng).

Each type T comes with an intrinsic equality relation denoted by t; = t5 € T'. Membership is also
derived from this relation; we say that ¢t € T if t =t € T. The equality relation is interpreted in
the logic by the type 1 = t3 in T using the device described above. (Note that t; = t; € T is
a metatheoretical assertion whereas t; = t3 in T is a type in the theory.) The type Void is then
defined as 0 = 1 in Z and the type Unit is defined as 0 = 0 in Z. Then the booleans (B) are defined
as Unit + Unit and true, false and if-then-else constructs are defined in the obvious manner.

Propositions may be used to construct new types using the set type and quotient type constructors.
The set type {x : A| P} contains all elements ¢ of A such that P[t/z] is inhabited (where E[e/z]
denotes the capture-avoiding substitution of e for z in F). We use the set type to define the
natural numbers (N) as {n : Z |0 < n}, the positive integers (ZT) as {n : Z |1 < n}, and the
integer subranges ([m---k]) as {n:Z|m < n An <k}. The quotient type x,y:A//P contains all
elements of A, but ¢; and t; are equal in @, y:A//P if P[t,t3/x,y] is inhabited. For such a type to
be well-formed, the equality resulting from P must be coarser than the equality on A.

2.2 Computation

Underlying our type theory is a computation system that is summarized in Appendix B. The
computation system is defined by a small-step evaluation relation (denoted by t; — t3), and a set
of canonical terms. (Of the terms introduced so far, the canonical terms are those appearing in
the first and second columns of Figure 1.) Two properties of the computation system are that it is
deterministic (i.e., if t — ¢; and ¢ — t3 then ¢ =, ¢3) and that canonical forms are terminal (i.e.,



if canon(t) then t & t').

If t =* t' and canon(t’) then we say that ¢ converges (abbreviated t]) and ¢ converges to t'
(abbreviated t || t'). Note that if ¢ || t; and ¢ || t3 then t; =, t2 and that if ¢ {| ¢ then ¢ | t/. We
say that a term ¢ diverges (abbreviated ¢1) if it does not converge.

The equality on types is constructed to obey an important property with respect to computation,
that equality is value respecting: if ¢ € T and ¢ ~ ¢ then ¢t = t' € T. As discussed in the
introduction, this property is critical to mathematical uses of the theory, but it is this same property
that makes intensional reasoning challenging: within the type theory, a term and its result value
are equal, ag are any two terms with the same result value.

2.3 Partial Types

Functions (and objects in general) may be defined recursively in the basic type theory using the fiz
operator. However, all the types of the basic type theory are total (i.e., contain only convergent
elements), so to show that a recursively defined object is well-typed, it is necessary to show that it
converges. Consequently, the basic theory is incapable of reasoning about possibly partial functions.
To make the theory capable of reasoning about partial functions, we will add four new primitive
types: a partial type constructor, and types asserting convergence, admissibility and totality.

The partial type T is like a “lifted” version of T’; it contains all the members of T as well as all
divergent terms. Partial functions from A to B may then be given the type A— B. For reasons that
will become clear shortly, it is important that T never equate any convergent and divergent terms.
Thus we say that two terms are equal in T if they both diverge, or if they both converge and are
equal in T. However, we desire that T be a subtype of T (i.e., ift; =t, € T thent; =t; € T),soin
order for T to be allowed as a valid type, we must require that 7 also never equate any convergent
and divergent terms. Instead of this condition, we require the stronger condition that T contain
only convergent elements, which seems to work more nicely in practice.

We reason about convergence in the theory using the type ¢ in! T, which is well-formed when t € T
and inhabited when t]. We wish to say that the types ¢ in! T and ¢ in! T are equal whent =t' € T,
and it is for this reason that we cannot permit 7 to equate convergent and divergent terms.

The well-formedness conditions of the partial type and the convergence type contain an apparent
circularity: Well-formedness of the convergence type ¢ in! T requires that ¢ in T and the well-
formedness of T requires that every member of T converge. To break this loop, we use a primitive
totality predicate (1" total) as the condition for partial type well-formedness within the logic.

Recursively defined objects may be typed directly (without showing they converge) using the fix-
point principle:
tin(T—T)= fix(t)inT

However, the fixpoint principle is not valid for all types (see Smith [42] for an example of such
a type). Types for which the fixpoint principle is valid are called admissible. Admissibility is
indicated within the logic by the type T admiss. Crary [15, 17] shows that a wide class of types
are admissible, including all types used in conventional programming languages.



3 Intensional Reasoning

To lay the groundwork that makes intensional reasoning possible in our type theory, we begin by
being more specific about the structure of terms in Section 3.1. This structure is quite general,
allowing term constructors with arbitrarily many subterms and binding positions, and therefore
makes few restrictions on the expressiveness of the theory. Moreover, the results of this paper
should easily apply to different term structures, but we desire a concrete framework in which
to work. In Section 3.2 we present operators and notation for intensional consideration of terms.
Section 3.3 then presents the primitive type-theoretic constructs necessary for intensional reasoning.

3.1 Uniform Term Syntax

Terms are constructed using a set €2 of operators, ranged over by the metavariable w, and a function
arity mapping each operator to a finite (possibly empty) list of natural numbers. The arity function
will be used to indicate the number of subterms of an operator and the number of bound variables
for each subterm. We also take as given an infinite set of variables.

The set of terms is then defined inductively as follows:

e Every variable is a term.
e If w is an operator then w* is a term, serving as the name of w.

o If arity(w) = (k1,...,k,) and tq,...,t, are terms, then w(xyy -+ @1k, b1, ..o, Tp1 - Tk, -tn)
is a (compound) term, where z;; is a variable for 1 <¢ <mnand 1 <j <k,.

The variables z;1,...,z;;; preceding each subterm are binding occurrences. Thus, in the term
lambda(z.add(z,y)), the variable z is bound and the variable y is free. As usual, terms that differ
only by the alpha-variation of bound variables are considered identical.

A subset of the operators in 2 are designated as canonical operators. A term is considered canonical
either if it is a compound term constructed with a canonical operator at the top, or if it is the name
w* of an operator (canonical or not).

Although it will often be useful to present terms in the uniform term syntax just described, we
will continue usually to use more conventional notation such as that used in Section 2. These
conventional notations should be viewed as abbreviations for formal terms in the uniform syntax
above. For example, Az.t is shorthand for lambda(z.t) where arity(lambda) = (1).

3.2 Intensional Representations

In order to analyze terms intensionally, we must have internal representations of terms. As discussed
in the introduction, the representation of a term cannot be the term itself, as appealing as that
might be. In particular, the representation of a term must be a canonical form, even when the term
being represented is not.



[t = [t

[€]en e, = var (for 1 <i<n)
* def *
[Wap,...;n = opname(w™)
def

[W(yry -yt Yk Yt o, ar = (W8 o onum w1

(tritn)) = g ((tn, (2, (- (tnsx) o))
var; = Zn]Q(anl(l))

opname(t) = inj,(inj,(t))

Figure 2: Term Representations

The representation of any term ¢ is denoted by [¢]. If If w is an n-place operator with no binding
occurrences then the term w(ty, ..., ¢,) is represented by (w*, [t1], ..., [t.])). To avoid the syntactic
overhead of formalizing variables, terms with binding structure are representing using de Bruijn
indices [19]; for i > 0, var; refers to the i*® enclosing binding occurrence, counting from one. For
example, [Az.Ay.z| = (lambda™, (lambda™, vary))). This is summarized formally in Figure 2.

Finally, it will prove convenient to have some notation like the quasiquote mechanism of Scheme
for the representations of terms with holes to be filled by ordinary terms. We will denote these
with concentric boxes: |t |stands for the representation of ¢ except that inner boxes within ¢ denote

holes and expressions within those holes are left unchanged. For example, if ¢ is a term, /\ac.<7 0)
denotes (lambda™, (pair*,t, numberg))).

3.3 Type Theory of Terms

We are now ready to introduce the principal devices for intensional reasoning in type theory. These
include a type of intensional terms, an operator for converting intensional terms to their denotations,
and types asserting intensional type membership, evaluation, canonicalism, and computational
inducement:

e The type Term; contains the representations of all terms with up to 7 free variables (that is,
de Bruijn indices extending up to ¢ binding positions out of the term). (E.g., var; is in Term;
when 7 < j.) Expressions are equal in Term; if they represent alpha-equal terms. Note that
the representations of all terms are canonical (since pair is a canonical operator), even if the
terms themselves are not, and therefore Term; is a total type. The type Term is defined to
be the type Termy of closed term representations.

e Terms are related to their representations by a set of operators ref,, (for natural numbers n),
which compute the meaning of intensional term representations. The operator ref, is used
when the representing term ¢ may contain up to n free variables: ref (¢, ey, ..., €,) computes
the denotation of t where ¢; is substituted for the i*h enclosing free variable of ¢t. For example,

refy(vary, ty,t2) — t1. When n is small, we will write [¢]_ . for ref, (t,e1,...,¢,). Note



that, unlike [-], ref,, is an operator and thus may be used within the theory (and indeed will
be, extensively).

e Using ref, we may form the assertion that an intensional term ¢ represents a member of T’ in
the natural manner as [t] in T. For technical reasons,? the theory also requires a primitive

type asserting that a term represents a member of a type. This type is ¢ [in] T, asserting
that [t] € T

Using this type, we may define an essential refinement of the type Term: the type [T], which
contains representations of all terms of type T.

[T] def {z: Term |z [in] T}

Types [T], along with the [ -] operator, will serve as the principal interface between the
extensional and intensional aspects of our type theory. When we wish to consider an unknown
term z both intensionally and extensionally and z extensionally is to have type T, we will
give @ the type [T] and then use z bare in intensional contexts but use it as [z] in extensional
contexts.

e To reason about computation, we need types representing the assertions that one term eval-
uates to another and that a term is canonical. The type t; evalto t is inhabited by the term
* when [t1] — [t2] and is empty otherwise. Similarly, the type ¢ canonical is inhabited (by
*) exactly when [¢] is canonical.

e We also need to reason about the related concept of computational inducement. If e; — eg
then the evaluation of ey certainly induces the evaluation of e;. However, depending upon
the structure of ey, the evaluation of other terms may be induced as well. For example, the
evaluation of fa induces the evaluation of f. When the evaluation of e; to canonical form
contains the evaluation of es we say that ey induces evaluation of e5. This is represented by
the type t1 induces ty, which is inhabited by the term x when [t;] induces evaluation of [¢5]
and is empty otherwise. When a term ¢ halts, inducement defines a well-founded relation
on the terms induced by ¢; we will use that relation for computational induction in the next
section.

This type theory is formalized in Appendices A and B, which present the type theory’s inference
rules and operational semantics. In addition to the primitive construct discussed above, we will
also need a few functions operating on intensional representations:

o A substitution function subst € Term; — Term — Term such that subst e; eg substitutes
e for vary in e; (and shifts other variables down appropriately). We will often abbreviate
subst €1 e3 by eq]ea/1].

o Effective versions of the evaluation and canonicalism assertions, that is, a function iscanon €
Term—B that determines whether a term is canonical and a function next € Term—(Term-+
Unit) that determines the next term that a term evaluates to, if it is not canonical or stuck.

2In Martin-Lof style type theories, the membership type ¢ in T is well-formed only when ¢ is a member of T.
Hence, the assertion [¢] in T is well-formed only when it is true, and thus it is useless as the antecedent of an
implication. We will need to form propositions that are conditional on an intensional term’s denotation belonging to
a type, so we need a type that is inhabited if and only if the above type is, but that has more liberal conditions on
well-formedness. From ¢ [in] T we may deduce that [¢] in T and vice versa, but ¢ [in] T is well-formed whenever ¢ is
a member of Term (and T is a type).



Note that the last three functions (subst, iscanon, and next) can be written in the underlying
type theory and need not be made primitive. Moreover, they will still be programmable in any
reasonable extension of our computation system: the programmability of subst is inherent in the
syntax of terms and their intensional represenations, and the programmability of iscanon and next
amount to the constructability of a universal machine, which is usually part of the definition of a
reasonable computation system.

4 Computational Induction

With a type theory capable of intensional reasoning in hand, we are ready to look at some appli-
cations of intensional reasoning. The first computational induction, a useful principle of induction
that is not valid in extensional type theories. Computational induction is based on the inducement
order relation: if the evaluation of a term ¢ converges, inducement is a well-founded order over
those terms induced by ¢. (Recall that ¢ induces ¢’ when the evaluation of ¢ includes the evaluation

of t'.)

Computational induction has general applicability for reasoning about programs since it corre-
sponds to the intuitive mechanism of reasoning about recursive programs by preconditions and
postconditions, but it is particularly useful for proving partial correctness of programs. Other in-
duction principles are inadequate for such proofs; if one could find a well-founded order on the
inputs of a recursive function, one could show total correctness instead.

The principle of computational induction is as follows:
(Ve:Term. (Ve': Term. e induces €' = P[e']) = P[e]) A [t] in! T = P[]

In words, if we may show P[e] from the assumption of P[e’] for every €’ induced by e, and if ¢ halts,

then P[t].

Note that, unlike the fixpoint principle, there is no admissibility restriction on computational induc-
tion. This is because, like most induction principles but unlike fixpoint induction, computational
induction is based on a well-founded order. The generality of computational induction makes
it a useful tool for reasoning about partial function in circumstances where fixpoint induction is
disallowed.

Note also that since inducement is an intrinsically intensional property, the computational induction
principle demands the intensional reasoning structure developed in Section 3 to state. Indeed, if
the principle were expressed in extensional terms, it would be inconsistent: If e evaluates to €,
then e also induces €', but because equality is value respecting e will be equal to ¢’ is any types
to which they belong. Thus, if computational induction were expressed extensionally (that is, if it
repected equality), then the first condition would always be satisfied, allowing any property to be
proven of any terminating term.

We will now examine some examples of the use of compuational induction:



Example 1 Consider the “3n + 1”7 function:

F=fix(AfAn.ifn=1then 0
else if n mod 2 =0 then 1+ f(n/2)
else f(3n+ 1))

This program is not known to halt for all positive integers, but it is easy to see that if F'(n)] then
log, n < F(n). We may show this by computational induction using the proposition:

Ple] = Vn:Z1]. (e = | F([n]) | in Term) = log, [n] < [e]

Proof

Let e in Term be arbitrary. Suppose P[€] for all ¢’ induced by e and suppose e = | F'([n]) | in

Term (for some n in [Z*]). By assumption, [n] in ZT. If [n] = 1 then [e] = 0. Suppose
[»] mod 2 = 0. Then | F([n]) |evalto |1+ F([n]/2)| and thus e induces | F'({n]/2) | By induction
log([n]/2) < F([n]/) 50 Tog, [n] = T+ Toga([1/2) < 1+ F([n]/2) = F(IAD).

The remaining case is similar. Suppose [n] mod 2 = 1. Then | F([n]) | evalto | F(3[n]+ 1) |,

and thus e induces | F'(3[n]+ 1) | By induction log,(3[n] + 1) < F(3[n] + 1), so log, [n] <
log,(3[n]+1) < F(3[n]+1) = F[n]. By computational induction we conclude [t] in! Z = P[t].
It follows that Vn:[Z™T]. F[n] in! Z = log, [n] < F[n], as desired.

Example 2 Computational induction is also useful for showing conditional termination. Consider
the function time that computes the length of the reduction sequence of a term:

time & fix(Af.Mt.case(next(t),t'. 1+ f(t'), 2.0))

We may use computational induction to show that time(t) in! N whenever [t] in! T (for any T).
This is done using the proposition Ple] = time(e) in! N and the observation that if next(e) =
inj,(€’) then e induces €’ (since e evalto €').

5 Computational Complexity and Resource-Bounded Logic

A second application of intensional reasoning lies in computational complexity. The evaluation
relation on Term provides the basis for defining computational complexity measures such as time
and space. These measures allow us to express traditional results about complexity classes as well
as recent results concerning complexity in higher types [6, 37, 22, 13, 14, 38, 39, 23, 44]. The basic
measure of time is the number of evaluation steps to canonical form. We have already defined
(in the previous section) a function counting the evaluation steps of a term, so we already have a
notion of running time.* However, it will prove more convenient to state that notion in predicate

#The fixpoint principle suffices to show Vt: Term. time(t) € N.

*Since the underlying computation system allows (Az.b)a to evaluate in one step to b[a/x] (an action impossible
in constant time on real machines), this measure of running time will not always correspond to measured derived for
more realistic machine models. Fortunately, the theory we present does not depend greatly on the actual computation

10



form where Term(e, t) states that e runs within time ¢:

Time(e, t) iff In:[0---¢].3f:[0---n] — Term. f(0) = e in Term A
iscanon(f(n)) = true in B A

Vi[0---n —1]. f(i) evalto f(i+ 1)

We may define a notion of space in a similar manner. First, we may easily define a function size
with type Term — N which computes the number of operators in a term. Then we define the
predicate Space(e, s), that states that e runs in space at most s:

Space(e, s) iff In:N.3f:[0---n] = Term. f(0) = e in Term A
iscanon(f(n)) = true in B A
Vir[0- - n — 1]. f(¢) evalto f(i+ 1) A
V[0 - - -n]. size(f(2)) < s

Using these, we may define the resource-indexed type [T]! of terms that evaluate (to a member of
T) within time ¢ and space s:

AR e {e : [T]] Time(e,t) N Space(e, s)}
One interesting application of the resource-indexed types is to define types like Parikh’s feasible

numbers [35], numbers that may be computed in a “reasonable” time.

5.1 Complexity Classes

With time complexity measures defined above, we may define complexity classes of functions.
Complexity classes are expressed as function types whose members are required to fit within com-
plexity constraints. We call such type complezity-constrained function types. For example, the
quadratic time, polynomial time, and polynomial space computable functions may be defined in a
straightforward manner:

(z:4) 2% B L {f : [(z:A) = B] | J:N.Va:[A]. Time({app*, f,a)),c- size(a)?)}

(z:4) ™% B L {f :[(z:A) = B] | Jc, :N.Va:[A]. Time({app™, f,a)), c- size(

(z:4) 5" B {f :[(z:A) = B] | 3¢, "N.Va:[A]. Space({app*, f,a)), c - size(

’

a)*)}
a))}

While this technique provides complexity classes in a theory rich enough to express all mathematics,
notions of complexity over higher types rely on oracle time complexity [28, 13, 14], where evaluation
of a distinguished argument is not counted toward evaluation time, but the processing of its result
is. Supporting such notions in this framework requires a mechanism for marking the distinguished
argument throughout evaluation so that it may always be identified and discounted. Such a mech-
anism allows the definition of higher-order polynomial time computable functions [10, 28, 13, 39].
It is not difficult to produce such a mechanism in this framework, but we will not discuss it here
due to space limitations.

def

system used; many computation systems could validate our axioms, and we have chosen the one used in this paper
only for its simplicity. A computation system based on explicit substitutions [1, 18] can also easily be used, and
leads to a more realistic measure of running time. Still more realistic computation systems have also been proposed,
such as the Agc of Morrisett et al. [32, 33], but we have not explored how easily our theory could be adapted to such
systems.
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5.2 Resource-Bounded Logic

One of the advantages of constructive logic is that when the existence of an object is proven, that
object may be constructed. Many theorem provers based on constructive logic [9, 5, 25] allow the
automatic extraction of programs from proofs. However, there is no guarantee that such programs
may feasibly be executed. This has been a serious problem in practice, as well as in principle.

Using the complexity-constrained functions, we may define a resource-bounded logic that solves this
problem. Under the propositions-as-types principle, the universal statement Vz:A.B corresponds
to the function space (2:4) — B. By using the complexity-constrained function space instead, we
obtain a resource-bounded universal quantifier. For example, let us denote the quantifier corre-
sponding to the polynomial-time computable functions by V(. 2:A.B. By proving the statement
Viptimey2:A. Jy:B. P(x,y), we guarantee that the appropriate y may actually be feasibly computed
from a given z.

6 Conclusion

We have presented a type theory that reconciles extensional and intensional reasoning, providing the
first account of computational complexity that does not incur heavy mechanisms such as reflection
or deep embeddings. The constructs we have presented may be implemented in terms of the theory
of reflection presented by Allen et al. [2], and indeed our theory meshes nicely with reflection.
However, our theory is much more lightweight than the theory of reflection, which internalizes
sequents, proofs and programs that construct proofs, so it can be profitable to justify the constructs
of our theory as primitives instead. We argue, then, that our theory occupies an attractive middle
position, expressive enough for powerful reasoning (such as complexity analysis), and consistent
with richer theories such as reflection, but simple enough to be used practically.

A Inference Rules

A complete set of inference rules for the type theory with extensional partial functions is given in Crary [17].
In this appendix, we present those additional rules needed to reason intensionally:

Terms
HFj=j N
HF Term; = Term; in U, HEOp=0pinU; HFEw =w"wm Op

HEt=1% 1 Op
HbEar(t)=ar(t') in N list HbEar(w*)= (k- iky i) in N list

(arity(w™) = (k1, ..., kn))

HbEe=¢in((0:0p) x fold(ar(o),i X.Term;1; x X , Unit)) + [L ---i] + Op

Hbte=¢in Term;

12



HFe=¢in Term;

HbEe=¢in((0:0p) x fold(ar(o),i X.Term;1; x X, Unit)) + [1 -

il + Op

Intensional Membership
HF[]inT  HbFtlin]T

HbEt=tinTerm HEFT=T"inT;
Htt[n]T HF[]inT

H& (t[in] T) = (¢ [in] T') in U;

Evaluation, Canonicalism, and Inducement
HEt =1t inTerm

HEt =t in Term HFEty =1thin Term
H F (¢t ecanonical) = (' canonical) in U,

H F (t1 evalto ta) = (t] evalto ) in U;

H Fty induces 15 H Ft evalto t5
H F =(ty canonical) H F ¢ty induces t,

HEl =t in Term H 'ty =1 in Term
H F (t1 induces ty) = (t] induces t}) in U;

HFt canonical HE[t]inT HFEFT inl;

HEty evaltots HEJ]inT
HF[]in! T

HEt] int T H,e:Term,(Ve':Term. e induces ¢’ = Ple'/x]) - Ple/x]
HtF Plt/x]

Sample Denotation Rules
Hyy:[A]z:[Al w: ([y] = [2] in A) F [b[y/1]] = [b[=/1]] :n B([y]/=]

HF [ Aelb]|] = A2.[B], in (z: A) = B

HbEe[in](z: A)=B HbEeylin] A

HF[ ] = [e:les] : Blled]/2]

Sample Evaluation and Inducement Rules
Ht ein Termy H & fevalto f' HF ein Term

HE /\l‘. canonical HFE evalto

Hrein Term; HFEtin Term HE fw Term HEFeiin Term

HF (/\x) evalto e[t /1] HF induces f

13



Lists
HFT =T inT, HET inU; HFEh=h inT HbFt=t inT list
HET list =1T" list in U; HbF nid = nil inT list HER:t=h t'inT list

HbFep=ejinT list Huae:T,y:SkFes=ebinS Hbez=¢4inS
H & fold(ey, x y.ea,e3) = fold(e}, x y.eh, ek) in S

HEe in S Ht-hinT HbtinT list Ha:T,y:SkeinS HbEe inS
HE fold(nil,zy.e e')=¢in S HE fold(h::t,zy.e e) =elh, fold(t,x y.e &) /x,y] in S

B Operational Semantics

f=f Lt
fe—fle (Az.e)t — elt/x] mi(t) = m(t) mi((t1,t2)) — t;

t—
case(t, x.e1, x.€3) — case(t’, x.eq, x.e2) case(ing; (1), x.e1, x.€2) — e;t/x]

€1 — e

/

fold(ey, xy.ea,e3) — fold(e], x y.e2, e3) fold(nil,zy.e e') —e

fold(h ::t,zy.e e') v elh, fold(t, x y.e ) /x,y] fix(f) — f fix(f)

t—
ref,(tier, ... en) = ref (' e1,. .. epn)

t—
ref, (inj; (1), e1,...,en) — ref,, (ing; (t'),e1,...,en)

2] '—)tll
ref,, (ingy ((t1,42)), €1, ..., en) v ref,, (ing ({t],%2)), €1, .., €n)

arity(w) = (k1, ..., k)

ref, (ing ((W*, 1)), e1, ... en) = wW(xp, --xrref, L, (mi(t), 21, ... 2py,e1,. .. €n),
Chp o xrrefy pa (T (ma(t) ) 2, Thy e, en))
N ——

m—1 times

=t
ref, (ingo(ing; (1)), e1, ... en) = ref, (ingy(ing; (¥'), €1, ..., en)

(1<i<n)

ref, (injo(ing1(¢)), e1, ..., en) — € ref,(ingo(ingo(w*)),e1,. .., en) > w
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