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Abstract We formalize the problem of Structured Prediction as a Re-
inforcement Learning task. We first define a Structured Prediction Markov

Decision Process (SP-MDP), an instantiation of Markov Decision Processes
for Structured Prediction and show that learning an optimal policy for this
SP-MDP is equivalent to minimizing the empirical loss. This link between
the supervised learning formulation of structured prediction and reinforce-
ment learning (RL) allows us to use approximate RL methods for learning
the policy. The proposed model makes weak assumptions both on the na-
ture of the Structured Prediction problem and on the supervision process.
It does not make any assumption on the decomposition of loss functions,
on data encoding, or on the availability of optimal policies for training. It
then allows us to cope with a large range of structured prediction problems.
Besides, it scales well and can be used for solving both complex and large-
scale real-world problems. We describe two series of experiments. The first
one provides an analysis of RL on classical sequence prediction benchmarks
and compare our approach with state-of-the-art SP algorithms. The second
one introduces a tree transformation problem where most previous models
fail. This is a complex instance of the general labeled tree mapping problem.
We show that RL exploration is effective and leads to successful results on
this challenging task. This is a clear confirmation that RL could be used for
large size and complex structured prediction problems.

1 Introduction

We consider the prediction of structured objects, where each object may
be described by a set of interdependent variables. In many different fields
such as biology, natural language processing, image processing or chemistry,
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Fig. 1 Two examples of Structured Prediction. Left: sequence labeling, the input
x is a sequence of handwritten characters and the output y is a sequence of labels
identifying the recognized characters. Right: tree transformation, x is a an HTML
tree from the Web and y is an XML tree with additional semantic information.

data may be naturally described as structured objects like sequences, trees,
lattices or graphs. Figure 1 illustrates the structured prediction problem.
The left part of the figure is an example of sequence labeling where inputs are
sequences of handwritten characters (e.g. gray-scale bitmaps) and outputs
are sequences of labels identifying recognized characters. The right part of
the figure illustrates a more complex problem where the goal is to map
an input tree describing a document (an HTML page) onto an enriched
structured representation of the same data (an XML tree with a specific
Document Type Definition (DTD) for example).

Recently, structured prediction (SP) has witnessed a surge of interest in
the ML community and several new ideas and models have thus emerged
over the last few years. A key difficulty when dealing with SP is the combi-
natorial nature of the output space. In order to break this complexity, SP
models usually make simplifying assumptions on the nature of the depen-
dencies or on the loss functions used for training. Even then, many models
are often restricted to problems with limited complexity and they do not
scale, neither for inference nor for learning, with large datasets. A new vi-
sion of the SP process has been recently proposed where SP inference is
considered as a sequential decision problem [5,7,6]. For this approach, the
structured output is built incrementally: components are added one at a
time to a current partial solution until a final solution is reached. Inference
then consists in exploring a search space defined by states (partial solutions)
and actions (choosing a component to be added to the current state) until a
complete solution is built. After training, inference is usually performed in
a greedy way, e.g. at each step, the best action according to a decision func-
tion is chosen. Going back to Figure 1, decisions for the sequence labeling
example would simply consist in choosing the correct label for each in-
put character. For the tree transformation example, dependencies are more
complex and decisions may correspond to node creations, displacements or
deletions.

As a follow up of this work [5,7,6], we investigate here the use of rein-
forcement learning algorithms for SP tasks. We introduce a new framework
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called SP-MDP, which is a formulation of SP based on Markov Decision
Processes. We show the equivalence between learning a policy in SP-MDP
and minimizing the empirical risk of the corresponding SP problem. This
equivalence between the SP supervised formulation and RL offers a princi-
pled way for handling SP problems using available RL methods. A second
benefit of this approach is that RL only needs a weak supervision for learn-
ing. In this sense, it is more general than other incremental techniques.
Besides, it inherits the nice properties of incremental methods and makes
no assumption such as the decomposability of data representations or of
the cost function, which are needed for some families of SP algorithms. The
proposed framework allows us to express natural and efficient solutions to
complex SP problems. It also scales well with both large datasets and large
input or output dimensional spaces.

To summarize, the main contributions of this paper are threefold:

– Connecting SP and RL: We propose to formalize the Structured Predic-
tion task in the Reinforcement Learning formalism, which allows us to
use RL methods for solving SP problems.

– Few assumptions: RL methods only require a weak supervision and al-
most no assumptions concerning the problem itself. Our method can
easily be applied to a large variety of complex SP tasks on which other
state-of-the-art SP methods fail.

– Experimental results: We propose an experimental comparison of state-
of-the-art SP methods and of the RL approach. RL is shown to behave
as well as state-of-the-art SP models on sequence labeling tasks. We also
introduce a complex instance of the labeled tree transformation problem.
It is shown that the proposed method is able to deal with complex SP
problems and to scale with large-scale collections.

The paper is structured as follows. First, we introduce the field of SP
and give an overview of existing methods in Section 2. We then describe the
SP-MDP formulation and show the equivalence between learning a policy in
SP-MDP and solving the SP problem in Section 3. We discuss the benefits
of using reinforcement learning algorithms for SP in Section 4. We present
our formalism on the classical SP task of sequence labeling in order to
illustrate the different concepts introduced, to analyze the behavior of the
RL algorithms on simple SP tasks and to perform a comparison with state-
of-the-art methods in Section 5. Finally, we demonstrate the power of RL
on the challenging tree transformation SP task in Section 6.

2 Related Work

In this section, we give an overview of existing SP methods. We focus on
general purpose SP models, which are not restricted to a specific application
or structured data type.
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2.1 Notations

We adopt a general definition of SP as a supervised learning problem, where
the goal is to learn a mapping from inputs x ∈ X to outputs y ∈ Yx.
The outputs are discrete structured objects, such as sequences, trees or
graphs. X is the set of all possible inputs and Yx is the set of candidate
outputs for a given input x. We denote by Y = ∪x∈XYx the full output
space. The training set is denoted D = {(x(i),y(i))}i∈[1,n]. Examples in D

are i.i.d. samples from the unknown distribution DX×Y . A loss function
∆(ŷ,y) quantifies the cost of predicting ŷ instead of y. The models are
parameterized by a vector θ ∈ Rd and fθ : X → Y denotes the prediction
function corresponding to parameters θ.

2.2 Global Models

One of the first ideas for SP has been to generalize existing classification
methods to structured outputs. Let F (x,y; θ) be a function that measures
how good the predicted output y is, given input x. Classification is considered
here as a global optimization problem defined as:

fθ(x) = argmax
y∈Yx

F (x,y; θ)

A common choice is to choose for F a linear function:

F (x,y; θ) = 〈θ, φ(x,y)〉

where 〈., .〉 denotes the scalar product and φ is an input-output joint-

description function. Such a function jointly describes an input x and a
corresponding candidate output y as a feature vector in Rd. Global mod-
els usually require that the output feature set and the loss function both
decompose. We briefly review some of the best-known models below.

The Structured Perceptron [4] is a generalization of the classical Percep-
tron, which was first used for part of speech tagging and chunking. Learning
is performed by simulating inference and correcting the weight vector each
time a wrong output is predicted.

Conditional Random Fields (CRFs) [16] use a log-linear probability func-
tion to model the conditional probability of an output y given an input x.
CRFs are undirected graphical models where Markov assumptions are used
in order to make inference tractable. The probability of an output can then
be expressed as a product over output sub-structures.

Several methods extending the ideas of Support Vector Machines to SP
have been proposed. SVM for Interdependent and Structured Output spaces
(SVM-ISO, also known as SVMstruct) [24] is a generalization of maximum
margin classification to structured outputs. Maximum Margin Markov Net-
work (M3N) [22] is another well-known SP model that relies on maximum
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margin and graphical models. The two methods differ in the way they gen-
eralize the max-margin principle and in how they handle the potentially
exponential number of constraints of the Quadratic Programing problem
they solve.

Besides these key references, many other extensions of large margin or
graphical models have also been proposed like [13] and [23]. As discussed in
Section 4.1, global models for SP often suffer from scalability issues. This
has led to the development of incremental models, which are able to deal
with larger applications.

2.3 Incremental Models

Instead of modeling what a good prediction looks like, incremental approaches
directly model how to build the good prediction. This simple idea thus sug-
gests integrating learning and searching into a sequential prediction process.
Figure 2 gives an example of such a decision-making problem. Inference
starts with an initial default output. Each decision corresponds to an ele-
mentary modification of the output being predicted. States contain partial

outputs and final states contain complete outputs.

Incremental Parsing [5] is one of the first models using the idea of in-
cremental prediction. This model was introduced in the context of natural
language parsing, where inputs are sequences of words and outputs are
parse trees. Incremental Parsing is built around a Perceptron that assigns
ranking scores to partial outputs. The inference is performed greedily by
taking decisions that maximize the ranking score. Each such decision adds
a set of nodes to the currently built parsing tree. Learning is performed by
repeating the following process: run the inference procedure until a wrong
decision happens, stop inference and make an elementary correction using
the Perceptron rule. In order to detect wrong decisions, Incremental Parsing
assumes that the Optimal Learning Trajectories (OLTs) are known for all
learning examples. An OLT is a sequence of actions that, given an input,
leads from the initial state to the correct output.

Incremental prediction was popularized by LaSO [7], which is probably
the first general Incremental SP model. LaSO relies on a beam-search pro-
cedure. The selection of partial outputs in the beam-search is computed by
using a Perceptron. LaSO makes the same OLT assumptions as Incremental
Parsing. An error is said to occur when the current beam does not cover
the OLT anymore. Learning repeats the following steps until convergence:
pick an example, run the inference procedure until an error occurs, correct
the Perceptron w.r.t. the current error, correct the error – reinsert the OLT
into the beam – and continue inference.

Searn [6] is another general Incremental SP model developed later. In
Searn, the decision maker is modeled by a classifier (e.g. Support Vector
Machines or Decision Trees). Searn assumes that for each learning example,
we know an Optimal Learning Policy (OLP). The OLP is a procedure that
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knows the best decision to perform for any state of the prediction space.
Note that this is a stronger assumption than the one in LaSO. Searn uses an
iterative batch-learning approach. At each Searn iteration, a mixture of the
optimal decision maker and the learned decision maker is used to perform
inference on all learning examples. For each visited state, one classification
example is created. At the end of the iteration, a new classifier is trained
using these new classification examples. This is repeated until convergence.
Searn has shown to be efficient on numerous tasks and is considered as a
general-purpose state-of-the-art SP model.

Incremental models can cope with non-additive loss functions. They do
not rely on dynamic programming and are thus probably better adapted to
complex and large-scale SP problems than global models are.

3 Structured Prediction with Markov Decision Processes

In this section, we introduce a new formulation of SP based on Markov
Decision Processes. SP-MDPs are MDPs that model the inference process
of a structured prediction. As usual in SP, two problems have to be solved:

– Inference: Given the parameters θ and input x, inference consists in
selecting an output ŷ among all candidates Yx. The predicted output
ŷ = fθ(x) should have a low loss value ∆(ŷ,y).

– Training: Given the set of examples D and the loss function ∆, training
corresponds to minimizing the expected risk defined as follows:

θ∗ = argmin
θ∈Rd

Ex,y∼DX×Y
{∆(fθ(x),y)}

Since the distribution DX×Y is unknown, the expected risk cannot be
computed and one usually minimizes the empirical risk1:

θ∗ = argmin
θ∈Rd

1

n

∑

(x(i),y(i))∈D

∆(ŷ = fθ(x
(i)),y(i))

The main contribution of this section is to show that learning the optimal
policy in an SP-MDP is equivalent to solving the corresponding SP problem,
i.e. minimizing the empirical risk.

3.1 SP Markov Decision Process

We adopt the formalism of deterministic MDPs (S,A, T, r) where S is the
state-space, A is the set of possible actions, T : S ×A → S is the transition
function between states and r : S ×A → R is the reward function.

An SP-MDP is a deterministic MDP that models inference for a given
SP task. SP-MDPs are illustrated in Figure 2 and defined formally below:

1 or some regularized empirical risk.
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Fig. 2 Sequence labeling SP-MDP. Circles are states and links are transitions.
Each state contains the input and a partial output. Here, the input is a sequence
of three black-and-white bitmaps representing handwritten digits. Partial outputs
are partially recognized sequences of digits. The bottom double circled states are
final states containing complete outputs.

• States. Each state of an SP-MDP contains both an input x and a partial
output ȳ. Let Ȳ be the set of all possible partial outputs2. The set of states
of an SP-MDP is then S = X × Ȳ. There is one initial state per possible
input x: sinitial(x) = (x, ȳǫ) where ȳǫ ∈ Ȳ is the initial empty solution.
A set of examples D = {(x(i),y(i))}i∈[1,n] can thus be mapped to a set

of corresponding SP-MDP initial states {sinitial(x(i))}i∈[1,n]. Final states
contain the complete outputs that can be returned to the user.

• Actions. Actions of SP-MDPs concern elementary modifications of the
partial output ȳ. Those elementary modifications are specific to the SP
task. For example, for sequence labeling tasks, partial outputs are partially
labeled sequences and an elementary modification might be the addition of
a single label prediction to the current partial output. We denote As ⊂ A
the set of actions available in state s. Action sets will be described in details
for all the experiments in Sections 5 and 6.

• Transitions. SP-MDP transitions are deterministic and replace the current
partial output by the transformed partial output. Transitions do not change
the current input:

T ((x, ȳ),a) = (x,a(ȳ))

where a(ȳ) denotes the partial output modified by action a.

• Rewards. In SP, the aim is to predict outputs that are as similar as possible
to the correct outputs w.r.t. the loss function ∆. When dealing with MDPs,
the goal is expressed through rewards that should be maximized. In order to

2 Note that complete outputs are included into the set of partial outputs, i.e.
Y ⊂ Ȳ
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relate learning in MDPs with SP, the loss function ∆ will be incorporated
into the rewards. This can be done in several different ways. We explore
here two types of rewards:

– Per-episode rewards The per-episode reward function of an SP-MDP
is defined as follows:

repisode(s = (x, ȳ),a) =

{

−∆(ŷ = a(ȳ),y), if T (s,a) is a final state

0, for all other states

The reward is null for all actions, but those terminating the inference
process. The negative loss of the predicted output is then given as re-
ward. When using per-episode rewards, the credit assignment problem is
maximally difficult, i.e. learning algorithms have to dispatch the reward
over whole sequences of actions.

– Per-decision rewards It is usual in RL to use richer reward signals
in order to help the learning and exploration processes. We have used
here an alternative to per-episode rewards, which consists in providing
rewards after each decision. It is therefore assume that the loss function
can be generalized to partial predicted outputs: ∆ : Ȳ × Y → R. The
per-decision reward function is then defined as follows:

rdecision(s = (x, ȳ),a) = −
(

∆(a(ȳ),y) − ∆(ȳ,y)
)

i.e. rewards given after each step correspond to the difference of loss
induced by the action. Note the RL formulation of SP naturally leads
to the definition and use of such partial losses. When it is possible to
measure a loss on the final outputs, the same loss can usually be used
on partial outputs too. This is the case for all the experiments described
in this paper and this can be generalized to most SP problems.

In the following, we assume that the number of steps T required to con-
struct a complete output ŷ is bounded and only depends on the current
input x. This means that for a given x, all the MDP trajectories will have
the same length T . For example, in sequence labeling, a sequence of length
n requires T = n steps to be constructed. Similarly, for labeled tree trans-
formation, the number of steps will only depend on the input tree. We will
denote in the following T (i) the number of steps required to process the
input x(i).

3.2 Reinforcement Learning and Structured Predition

When dealing with MDPs, the aim is to learn a decision maker, called a
policy. We focus on deterministic policies π : S → A which are functions
that map states to actions.

Given an initial state s and a policy π, we consider the total reward
optimality criterion. This is the most natural reward in our context. Since
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the horizon is bounded, for any input s, the total reward can always be
expressed as a finite sum3:

η(π, s) =

T
∑

t=1

r(st, π(st)) | π, s1 = s

The aim of RL algorithms is to find an optimal policy, i.e. a policy that
maximizes the expectation of the total reward according to an initial state
distribution DS

4 :

π∗ = argmax
π

Es∼DS
{η(π, s)}

In practice, most RL algorithms make use of policies πθ defined by a set
of parameters θ ∈ Rd. The aim is then to find parameters θ∗ maximizing
the expectation of total reward:

θ∗ = argmax
θ∈Rd

Es∼DS
{η(πθ, s)}

3.3 Equivalence with SP

We now discuss the reward function of SP-MDPs and show that maximizing
the expectation of total reward is equivalent to minimizing the empirical SP
risk. This will provide a link between the supervised learning formulation
of SP and RL. In the following, st is the state at time-step t and ȳt is the
corresponding partial output. The predicted output corresponds to the final
state sT+1 and is denoted ŷ = ȳT+1.

• Per-episode reward. The total reward of one trajectory in SP-MDP is the
negative loss of the predicted output:

η(π, s) = r(s1 = s,a1) + · · · + r(sT−1,aT−1) + r(sT ,aT )

= 0 + · · · + 0 − ∆(ȳT+1,y) = −∆(ŷ = fθ(x),y)

Let us consider the distribution DD
S that uniformly picks examples from

D to build initial states sinitial(x). When training an RL algorithm with
the DD

S initial state distribution, we are looking for the optimal policy:

π∗
θ = argmax

θ∈Rd

E
s∼DD

S
{η(πθ, s)}

= argmin
θ∈Rd

E(x,y)∼D{∆(ŷ = fθ(x),y)}

= argmin
θ∈Rd

1

n

∑

(x(i),y(i))∈D

∆(ŷ = fθ(x
(i)),y(i))

3 Assuming reward-free absorbing final states
4 We introduce the distribution of initial states in order to properly define the

maximization problem tackled by approximated RL algorithms.
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The optimal policy with the initial state distribution DD
S is thus the

policy that minimizes the empirical risk.

• Per-decision reward. When using per-decision rewards, the total reward
of one trajectory is:

η(π, s) = r(s1 = s,a1) + · · · + r(sT−1,aT−1) + r(sT ,aT )

= −
(

∆(ȳ2,y) − ∆(ȳ1,y)
)

−
(

∆(ȳ3,y) − ∆(ȳ2,y)
)

· · · −
(

∆(ȳT+1,y) − ∆(ȳT ,y)
)

= −
(

∆(ŷ,y) − ∆(ȳ1,y)
)

Since the initial output is ȳǫ, we have: η(π, s) = −
(

∆(ŷ,y) − ∆(ȳǫ,y)
)

.
The total reward of one trajectory with per-decision rewards is the negative
loss of the predicted output plus a constant value. Minimizing the expected
total reward can thus be reformulated as follows:

π∗
θ = argmax

θ∈Rd

E
s∼DD

S
{η(πθ, s)} = argmin

θ∈Rd

E(x,y)∼D{∆(ŷ,y) − ∆(ȳǫ,y)}

= argmin
θ∈Rd

1

n

∑

(x(i),y(i))∈D

∆(ŷ = fθ(x
(i)),y(i)) −

1

n

∑

(x(i),y(i))∈D

∆(ȳǫ,y
(i))

= argmin
θ∈Rd

1

n

∑

(x(i),y(i))∈D

∆(ŷ = fθ(x
(i)),y(i))

With both rewards, the expectation of total reward maximization prob-
lem is thus equivalent to the SP empirical risk minimization problem.

Note that the correct outputs are required to compute rewards. These
outputs are available for training but not for testing on new inputs. Rewards
can then be computed only for the subset of the SP-MDP corresponding
to states reachable from a initial training state sinitial(x(i)). SP-MDP are
thus different from traditional RL problems, where the reward function is
known anytime. From the point of view of RL, this special setting has two
main consequences: a policy can only be trained on a subset of the SP-MDP
and approximated policies are needed in order to generalize to the whole
state-action space.

3.4 Approximate RL algorithms

The equivalence between RL and SP described previously makes it possible
to use a large range of RL algorithms to perform SP. In our experiments,
we have applied algorithms which are representative of two families: value-
based RL and policy gradient RL.

• Approximated Value-based RL. A usual way to define a policy is to in-
troduce an action-value function Q : S × A → R that assigns scores to
candidate actions a in a given state s. This allows us to define the greedy

policy, which always chooses actions that maximize Q:

π
greedy
Q (s) = argmax

a∈As

Q(s,a)
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Approximation for large MDPs such as ours is often introduced via a linear
function:

Qθ(s,a)
approx

= 〈θ, φ(s,a)〉

where φ(s,a) is a joint state-action feature description function and θ are
the parameters of the approximated value function. In order to illustrate
the use of value-based RL, we use the approximated Sarsa(0) algorithm
[21].

Note that Sarsa, as most value-based RL algorithms, maximizes a dis-
counted reward function:

η(π, s) =

∞
∑

t=1

γtr(st, π(st))

where the choice of the discount factor γ leads to a continuous range of
problems of increasing complexity, from maximizing the immediate reward
(γ = 0) to maximizing the total reward (γ → 1). In our case, since the
horizon is bounded for each example, we can use γ = 1, which corresponds
to a total reward. However, in the experiments, we have also performed tests
with smaller discount values. This point is discussed in Sections 5 and 6.

• Policy Gradient RL. Policy gradient algorithms directly solve RL prob-
lems, without using value functions. These algorithms make use of stochastic
policies and estimate the gradient ∇θEs∼DS

{η(π, s)} through simulation.
In our experiments, we used the Olpomdp algorithm [1] with log-linear
policies. This algorithm maximizes the expected reward-per-step in infinite
horizon problems. After each decision step, it updates the currents estimate
of the expected reward-per-step gradient and performs a stochastic ascent
update on the parameters θ. In order to apply Olpomdp on our decision
problems, we adopt the same approach as [12]: we create an infinite horizon
problem by connecting each final state of an example i ∈ [1, n] to the initial
state of the next example. On this new problem, the limit at infinity of the
expected reward-per-step is equal to the expected reward-per-step for one
pass on the training set D:

lim
T→∞

1

T

T
∑

t=1

r(st, π(st)) =
1

TD

TD
∑

t=1

r(st, π(st))

where TD =
∑n

i=1 T (i) is the total number of steps required to process all
the examples of D. The average reward-per-step for one pass on the training
set is equal to the SP empirical risk multiplied by a constant factor n

TD
:

1

TD

TD
∑

t=1

r(st, π(st)) =
1

TD

n
n

n
∑

i=1

T (i)
∑

t=1

r(s
(i)
t , π(s

(i)
t )) with s

(i)
1 = sinitial(x(i))

=
n

TD

( 1

n

∑

(x(i),y(i))∈D

−∆(ŷ = fθ(x
(i)),y(i))

)
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Maximizing the expected reward-per-step is thus equivalent to the SP empir-

ical risk minimization. Once Olpomdp learning is finished, as for Sarsa,
we use the deterministic policy:

π(s) = argmax
a∈As

〈θ, φ(s,a)〉

3.5 Inference with an SP policy

Once a policy has been learned in an SP-MDP, it can be used for inference
on any new incoming example. In order to make a prediction, we start with
the initial partial output and choose the actions of the learned policy until
reaching a final state. In order to choose the action in state s, we evaluate
all available actions in As and take the one that maximizes 〈θ, φ(s,a)〉.
The final state then contains the predicted output. The complexity of the
inference process is O(T.a) where T is the depth of the SP-MDP and a is
the mean number of available actions: E{card(As)}.

4 Discussion

Having introduced the SP-MDP model and its use with RL algorithms,
we will now compare this model to state-of-the-art methods. We first pro-
vide a comparison of incremental versus global models and then discuss in
more details the specificities of the proposed approach w.r.t. two reference
incremental methods: LaSO and Searn.

4.1 Incremental Models versus Global Models

All global models assume that the following argmax problem can be solved
efficiently:

fθ(x) = argmax
y∈Yx

F (x,y; θ)

This step, which is most of the time involved in both learning and infer-
ence, is usually handled with dynamic programming techniques. This has
two major drawbacks. First, dynamic programming requires strong inde-
pendence assumptions, which are often unrealistic for real-world data. For
example, in sequence labeling, it is often assumed that a label only inter-
acts with the previous and next labels. This strategy does not allow us
to cope with complex output dependencies. Second, even with such inde-
pendence assumptions, dynamic programming algorithms may have a pro-
hibitive complexity. For example, when predicting trees, the best dynamic
programming algorithms have a cubic complexity in the number of leaf
nodes [20]. This limits the use of such methods to small trees, e.g. less than
50 nodes. More generally, the argmax problem prohibits the use of global
methods on large-scale problems.
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The incremental models aim at solving this dynamic programming step
using greedy inference. They can be applied both for large-size problems and
for complex dependencies. On the other hand, when facing local ambiguities,
greedy inference may lead to sub-optimal solutions. In such cases, when
tractable, global models have more chances to find the best compromises.

4.2 SP-MDP versus other Incremental Models

The main difference between the proposed RL approach and the LaSO and
Searn algorithms concerns the supervision information the algorithms rely
on. LaSO and Searn are respectively based on the Optimal Learning Trajec-

tory (OLT) and Optimal Learning Policy (OLP) assumptions (see Section
2.3), while SP-MDP is not limited by these assumptions.

In some simple SP tasks, the OLTs and the OLP can be computed
trivially in O(1). This is the case for example in sequence labeling, where,
whatever the current state is, the best decision is to select a correct label.
In some other tasks, such as the tree transformation described in Section 6,
OLTs and OLPs computation is a non-trivial or even intractable combina-
torial search problem. In particular, computing the OLP means solving the
following equation:

π∗(s) = argmin
a∈As

{ min
ŷ∈U(T (s,a))

∆(ŷ,y)}

where U(s) ⊂ Y is the set of reachable solutions when starting from state s.
In cases where the OLP is not trivially computed, a possibility is to directly
solve the search problem given above. This is the solution proposed in [6]
where the authors use a greedy beam-search algorithm for finding an ap-
proximate OLP for automatic summarization. However, this combinatorial
problem may be too complex.

When using SP-MDP with classical RL algorithms like Sarsa or Olpomdp,
we neither need to provide an OLP nor OLTs. In the following sections, we
show that:

– If the OLP is available, it should be used, since it solves the RL explo-
ration problem and makes training much faster.

– When OLP is available, RL algorithms may reach the same level of ac-
curacy as OLP methods without using this rich supervised information.
They typically require one or two order of magnitude more training it-
erations on sequence labeling problems.

– When the OLP is not available, RL methods can still be applied. This
allows RL methods to solve SP problems – particularly large-scale and
complex problem – that cannot be solved by other SP techniques.

Note that, by using approximated RL algorithms, we lose some nice the-
oretical convergence properties and learning bounds of methods like LaSO
and Searn. In approximated value-based RL, we have no convergence proof5

5 Except in some special cases that are unrealistic w.r.t. our applications [21].
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and the algorithms can diverge in some cases. However, in practice, when
the feature space is rich enough, divergence does not occur. The Olpomdp

algorithm is known to converge to a local optimum of the expected average
reward-per-step. This might be a problem since we have no guaranty to
find the globally optimal policy. However, this argument has to be mod-
erated in practice, since we reach state-of-the-art performances on most of
our experiments with Olpomdp.

5 Experiments on Sequence labeling

We present below experiments on sequence labeling problems. Sequence la-
beling is the traditional benchmark for structured prediction methods. The
aim of this section is twofold. Firstly, it illustrates the different notions in-
troduced for the description of our approach on a concrete task. Secondly, it
allows performing an experimental comparison of several approaches for SP:
global models versus incremental models, and state-of-the-art incremental
models versus RL incremental models. The results presented in this section
extend those of the preliminary work [17].

Let x = (x1, . . . ,xT ) and y = (y1, . . . ,yT ) respectively denote an input
sequence and the corresponding label sequence. Label yt corresponds to the
observation xt and belongs to the set of possible labels L.

5.1 SP-MDP Instantiation

We will now detail the initial outputs, the actions and the loss function, in
order to fully define the sequence labeling SP-MDP. We introduce a special
label ǫ for denoting variables yt not yet labeled.

• Initial Outputs. The initial partial outputs in sequence labeling are se-
quences where no label has been decided yet. The initial output ȳǫ is thus
ȳǫ = (ǫ, ǫ, . . . , ǫ).

• Actions. Actions correspond to single label predictions. We have compared
two sets of actions corresponding to left-to-right labeling and order-free la-
beling. In the former, the first label y1 is decided at the first step, the second
label y2 at the second step and so forth. At each step, there are card(L)
possible actions corresponding to all possible labels for the current element.
In order-free labeling, any unlabeled element can be labeled at any time (as
in Figure 2). This allows the system to first perform the easier decisions
(e.g. recognize easy letters) in order to gain more contextual information
for harder decisions (e.g. recognize partially hidden letters).

• Loss function. In order to evaluate the quality of a particular labeling, we
use the Hamming Loss ∆. This loss function simply returns the number of
labeling errors: ∆(ŷ,y) = card({i ∈ [1, T ], ŷi 6= yi}). In most experiments,
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Fig. 3 Feature function for (left-to-right) sequence labeling actions. The current
state contains the input sequence x (handwritten letters) and the current pre-
diction ȳ = (H,E, L, ǫ, ǫ). The current action consists in recognizing the next
letter as a L. The joint description φ(s, a) of this state-action pair is given on the
right. It contains content features (those related to the handwritten digits) and
structural features (those related to previous predictions).

we use the per-decision reward that reduces to:

rdecision(s = (x, ȳ),a) =

{

1 if a is a correct labeling action w.r.t. y

0 otherwise

5.2 Feature Descriptions

We describe here the feature function φ : S × A → Rd used for sequence
labeling actions. As illustrated in Figure 3, we use content and structural
features that lead to large sparse descriptions (e.g. from 103 to 106 dimen-
sions).

• Content features. The content features describe a joint aspect of the action
and of the current input element xt. Features related to input elements
depend on the task: they may correspond to pixel values in handwritten
recognition or word prefixes and suffixes in part-of-speech tagging. In Figure
3, input elements are black-and-white bitmaps and we use one feature fl,p

per possible label l ∈ L and per possible pixel position p:

fl,p(s,a) =

{

1 if action label = l ∧ pixel p is black in xt

0 otherwise

• Structural features. The structural features describe the context of the
currently predicted label. The context of the label ȳt is {ȳt−C , . . . , ȳt−1}
in left-right labeling and {ȳt−C

2
, . . . , ȳt+ C

2
} in order-free labeling, where C
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is a context size parameter. Choosing C = 1 corresponds to the Markov
assumption. Larger C values lead to features describing long-term depen-
dencies. For a label pair (l1, l2), we use one feature per possible value of
(l1, l2) ∈ L × (L ∪ {ǫ}) and per possible context position6 δ:

fl1,l2,δ(s,a) =

{

1 if action label = l1 ∧ ȳt−δ = l2

0 otherwise

If we consider 8 × 16 black-and-white pixels, 26 possible labels and a
context size of 10, there are 8 × 16 × 26 = 3328 distinct content features
and 26 × (26 + 1) × 10 = 7020 distinct structural features7. However, for a
given state-action pair, all the features corresponding to labels other than
the selected one and those corresponding to white pixels are null. This
leads to a sparse representation with, most of the time, less than 100 non-
zero features. In practice, sparsity can be exploited efficiently by an imple-
mentation that only takes the non-zero features into account. Such sparse
high-dimensional representations are commonly used for maximum entropy
models [2] or related techniques like CRFs. They are fast to compute and
allow us to efficiently use linear learning machines.

5.3 Datasets

We performed our experiments on three classical sequence labeling datasets:

• Spanish Named Entity Recognition (Ner) This dataset, introduced in the
CoNLL 2002 shared task8, is made of spanish sentences where the aim is to
find persons, locations and organisms names (there are 9 distinct labels in
L). We used two train/test splits: Ner-Large (8,324 training sentences)
and Ner-Small (300 training sentences), as in [6] and [24]. Input features
include the words, the prefixes and suffixes of the words in a window of +/-
2 words. Statistics for all datasets are provided in Table 1.

• Chunk. This dataset comes from the CoNLL-2000 shared task9. The aim
is to divide sentences into non-overlapping phrases. In this task, each chunk

consists of a noun phrase. This task can be seen as a sequence-labeling
task thanks to the ”BIO encoding”: each word can be the Beginning of a
new chunk, Inside a chunk or Outside a chunk. This standard dataset put
forward by [19] consists of Sections 15-18 of the Wall Street Journal corpus
as training material and Section 20 of that corpus as test material. Input

6 Note that ȳt−δ may sometimes not be defined due to border effects. In order
to handle all cases in a uniform way, we introduce a special label, N/A, to denote
elements that are beyond the bounds of the sequence.

7 These are the settings of the HandWritten experiments described in the next
part.

8 http://www.cnts.ua.ac.be/conll2002/ner/
9 http://www.cnts.ua.ac.be/conll2000/chunking/
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Training Set Evaluation Set
Sequences Elements Sequences Elements Labels Features

Ner-Small 300 7059 8,323 264,715 9 175,531
Ner-Large 8,323 264,715 1,517 51,533 9 188,248

HandWritten-Small 626 4,617 6,251 47,535 26 128
HandWritten-Large 6,251 47,535 626 4,617 26 128

Chunk 8,936 211,727 2,012 47,377 3 143,310

Table 1 Statistics of the Sequence Labeling corpora. From left to right: number
of sequences and elements for the training and testing sets, number of labels and
number of input features.

features are similar to those used for the NER dataset plus one additional
feature per word that corresponds to the part-of-speech of the word.

• Handwriting Recognition. This corpus was created for handwritting recog-
nition and was introduced by [15]. It includes 6,600 sequences of handwrit-
ten characters that correspond to 6,600 words collected from 150 subjects.
Each word is composed of letters, which are 8 × 16 pixels images, raster-
ized into a binary representation. As in [6], we used two variants of the
set: HandWritten-Small is a random split of 10% words for training
and 90% for testing. HandWritten-Large is composed of 90% training
words and 10% testing words. Letters are described using one feature per
pixel, as in Figure 3.

We empirically determined the best values for the context size parameter
C. In the following, we use C = 2 for Ner, C = 10 for HandWritten and
C = 6 for Chunk.

5.4 Baselines

For comparing the approaches, we have performed tests with both indepen-
dent classification and global SP methods. The former treat each element
as an independent prediction problem, while the latter attempt to capture
interdependencies between the neighboring elements.

• Independent Classification. We give results for maximum entropy clas-
sifiers and support vector machines. L1-Maxent and L2-Maxent10 are
maximum entropy classifiers, which differ in the regularizer and learner
they use. For SVMs, we have used the LibSVM11 implementation with
linear kernels.

• Structured Prediction. We have performed test with two of the global SP
methods described in Section 2: CRFs and SVMstruct. For CRFs, we have

10 Implementation from http://nieme.lip6.fr.
11 Implementation from http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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Independent Classification SP
L2-Maxent L1-Maxent LibSVM CRF SVM

struct

Ner-Small 93.00 92.87 93.26 91.86 93.45

Ner-Large 96.57 96.75 - 96.96 -
HandWritten-Small 71.65 71.20 77.59 66.86 76.94
HandWritten-Large 78.69 78.56 82.78 75.45 -

Chunk 96.36 96.56 - 96.71 -

Table 2 Baselines scores for Sequence Labeling. All the scores are percentages of
correctly predicted labels in the test set. The − symbol denotes experiments that
failed due to their excessive memory or CPU time requirement.

used the FlexCRFs implementation [18]. For SVMstruct approach, we have
used SVMhmm12.

We tuned each baseline and report the best results on the test set in
Table 2.

5.5 Experiments

• Models. Experiments have been performed with the left-to-right and
order-free models combined with three learning algorithms: Sarsa,
Olpomdp (see Section 3.4) and Searn (see Section 2.3). All methods make
use of linear learning machines trained with stochastic ascent/descent. The
learning rate is an inversely proportional function of the time. In both Sarsa

and Olpomdp, we performed softmax exploration with Gibbs distributions
[21]. The temperature of this distribution was chosen to be an inversely
proportional function of the time. For each dataset and labeling method,
we tuned the following parameters using grid search:

– Sarsa: learning rate, temperature, discount
– Olpomdp: learning rate, β (the bias-variance tradeoff)
– Searn: learning rate, β (the mixture coefficient between two successive

policies)

To evaluate each set of parameters, we performed 100 training iterations13

with 75% of training data and evaluated the learned policy on the remaining
25% of training data.

• Per-episode vs. Per-decision Rewards. In order to evaluate the benefit of
decomposing the reward among successive decision steps, we performed a
set of experiments comparing per-decision and per-episode rewards. Figure
4 shows the behavior of Olpomdp depending on which reward function is

12 Implementation from http://svmlight.joachims.org/svm_struct.html.
13 In the following, each training iteration corresponds to a whole pass on the
training set. The number of RL episodes is the number of training iterations times
the training set size.
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Fig. 4 Behavior of Olpomdp depending on which reward function is used. The
figures illustrates experiments performed on the HandWritten-Small dataset.
Left: train accuracy as a function of the number of training iterations. Right:
impact of the β parameter with both rewards on the train and test scores of
Olpomdp.

Best Left-Right Order-Free
Baseline Sarsa Olpomdp Searn Sarsa Olpomdp

Ner-Small 93.45 91.90 93.73 93.83 91.28 93.63
Ner-Large 96.96 96.31 96.87 97.43 96.32 96.64

HandWritten-Small 77.59 75.20 82.46 83.13 81.56 84.36

HandWritten-Large 82.78 85.88 89.74 90.39 92.21 90.75
Chunk 96.71 96.08 96.50 96.79 96.17 96.14

Table 3 Comparison of Sarsa, Olpomdp and Searn on left-to-right and order-
free sequence labeling. Each row corresponds to a dataset and each column cor-
responds to a learning method. For each combination, we give the percentage of
correctly predicted labels on the test-set. The best test scores are shown in bold.

used. Although the per-episode rewards make the learning problem more
difficult, Olpomdp is still able to learn a good policy. However, training
requires much more iterations, which makes the per-decision rewards hard
to apply in practice. With per-episode rewards, since the whole loss is given
at the final states, the best value of the β parameter of Olpomdp is one,
i.e. the algorithm requires maximal propagation of the rewards to perform
effective learning. At the opposite, when using the per-decision reward, only
few propagation of the reward is required, which leads to low optimal β

values. In all the remaining experiments, we use the per-decision reward.

• Global SP vs. Incremental SP. For each dataset, we performed 1000
iterations of Searn, Sarsa and Olpomdp and computed the accuracies
of the resulting policies on the test set. The results are given in Table 3.
On all datasets, the incremental SP methods are competitive with state-of-
the-art sequence labeling methods. On the HandWritten datasets, they
even clearly outperform them (thanks to the use of long-term dependencies).
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Fig. 5 Training behavior of Sarsa, Olpomdp and Searn on the Ner-Small

(left) and HandWritten-Small (right) corpora. For each method, we display the
number of correctly predicted labels on the test-set as a function of the number
of passes over the training set.

Note that inference in incremental models is several orders faster than with
global ones, since it simply consists in greedily executing the learned policy.

• left-to-right vs. order-free. Our experiments with order-free labeling ac-
tions exhibit two different behaviors. On Ner and Chunk, the increased
complexity of order-free labeling slightly degrades the test (and train) ac-
curacies. However, on the handwritten recognition task, order-free labeling
significantly improves the prediction accuracies over left-to-right labeling:
+4.4% for HandWritten-Small and +3.7% for HandWritten-Large.

• RL vs. Supervised. The main difference between Searn and Sarsa

or Olpomdp is the supervision information that is used during training.
Searn relies on the OLP which directly gives local supervision. The RL
methods use a weaker supervision in the form of scalar rewards. Our re-
sults show that, although using much weaker supervision, the RL methods
reach nearly the same accuracy as the supervised Searn method on most
datasets. Figure 5 gives the training curves for each method with left-to-
right labeling. On nearly all datasets, we observed the following behavior:
Sarsa converges towards a sub-optimal solution and Olpomdp converges
to nearly the same result as Searn, but requires one or two orders of mag-
nitude more training iterations. In summary, removing the rich supervision
required by Searn impacts the required training time but not the accuracy
of the model.

• Sarsa Discount. In order to maximize the total reward criterion, Sarsa

should be used with a discount factor of 1. We also performed experiments
with smaller discount values since this sometimes lead to an increased per-
formance. Figure 6 shows the behavior of Sarsa as a function of the dis-
count value on the HandWritten dataset. In practice, the best discount
values were close to zero for most corpora. Since maximizing the immedi-
ate per-decision reward leads to an optimal behavior, a null discount seems
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Fig. 6 Impact of the discount parameter in Sarsa with left-to-right labeling and
order-free labeling. The curves correspond to the training scores after 100 and
1000 training iteration and to the test score after 1000 iterations.

natural for left-to-right labeling. Using a discount factor greater than zero
would suggest that some decisions should perhaps go against the correct
label for the sake of future reward. In the order-free labeling case, discount-
ing makes more sense: discount factors greater than zero tend to enforce
actions that make further predictions easier, i.e. between two different cor-
rect labeling actions, we should prefer the position that most disambiguate
the remaining prediction problems.

• Olpomdp β parameter. The impact of β on Olpomdp is similar to the
one of the discount on Sarsa (see Figure 4 for an example). The tuning
process led to small, but non-null, values for β: typically from 0.05 to 0.2
for left-to-right labeling and less than 0.15 for order-free labeling.

In this section we illustrated the use of RL to solve sequence labeling
tasks. Thanks to greedy inference, all the RL based methods perform very
fast inference, while leading to competitive results. The generality of the
approach allows us to consider much harder tasks than the simple sequence
labeling, such as the transformation task described in the next section.

6 Experiments on Tree Transformation

Let us now introduce a new challenging SP task: ordered labeled tree trans-
formation. This task deals with large trees (thousand of nodes), complex
transformations (structure and text processing, node creations, deletions
and displacements) and very high dimensional learning (often more than
one million distinct features). This is a large size and quite complex in-
stance of the more general problem of tree mapping. To our knowledge,
there is no method able to deal with this type of problem yet.

This tree transformation task is motivated by the amount of available
semi-structured data and the diversity of existing formats for these doc-
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uments. Most documents available on the Web are expressed in layout-
oriented formats (flat text, wiki-text and HTML), while document-processing
applications require more and more semantic-oriented information, in the
form of XML dedicated formats for example. This leads to the need for
automatic conversion tools between semi-structured document formats [25]
with application in domains like document engineering [3] and information
retrieval [9,14]. We propose here to model such conversions as an SP task,
where both inputs and outputs are ordered labeled trees. From the point of
view of the user, he will simply have to provide a set of documents expressed
in both source and target formats, in order to learn the conversion process.

6.1 SP-MDP Instantiation

In the following, we model the input tree x through its sequence of leaves
(x1, . . . ,xT ). The outputs are rooted labeled ordered trees, whose labels
belong to the set L.

The key idea of the SP-MDP is that one input leaf xt is processed per
time step t. Several alternative actions may then be selected. Each action of
the SP-MDP may involve multiple internal node creations. The input leaf
content will be inserted as a leaf of the last created node if any, or as a
leaf of an existing output node. Let us now describe the initial outputs, the
actions and the loss function that were used in the SP-MDP.

• Initial Output. The initial output ȳǫ is composed of a single root node.
We here assume that all the target trees share the same root label.

• Actions. We consider here a generalization of the action set used in [5].
In addition to [5] one allows node displacements and deletions. An action
at time t consists in inserting the textual content xt at some place in the
current partial output tree. Formally, we consider that an action a is a se-
quence of triplets

(

(li, pi, ci)
)

i∈[1..|a|]
where li ∈ L corresponds to a possible

label of a node, pi corresponds to the position of the node w.r.t. its parent
and ci ∈ {true, false} indicates whether the node has to be created or not.
Figure 7 illustrates the tree transformation actions. The first example ac-
tion

(

(car, 1, false), (info, 1, false), (contact, 2, true), (name, 1, true)
)

cor-
responds to inserting a subpath contact → name as the second children
of the first child info of the car root node of the current partial solution.
The current input content, here “John Walter”, is inserted as the leaf of the
last created node, here Info. We also consider an additional possible action
denoted Skip that consists in skipping the current leaf.

The possible action set induced by our formalism is very large (i.e pos-
sibly infinite) and we use additional constraints in order to reduce its size:

– We only consider actions that are consistent w.r.t. the current partial
output tree. For example, using the example in figure 7, the action
(

(car, 1, false), (brend, 3, false), (contact, 1, true)
)

is not valid w.r.t. the
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Fig. 7 Tree Transformation states and actions. The left part of the figure illus-
trates the current partial output at time t = 4 and the current input leaf x4

= “John Walter” to be inserted. The middle part of the figure illustrates three
possible actions in this state. The first action is composed of four triplets that
correspond to the insertion of two new internal nodes plus the current content
“John Walter” as a leaf. The second action only inserts the current content as a
leaf of an existing node while the third action is the Skip action. The right part
of the figure gives the new partial output trees corresponding to each action. The
nodes that were created by these actions are shaded in red.

partial tree in figure 7 because there is no brend node at position 3 under
the root of the tree.

– We only consider the actions where the sequence of labels
(

l1, l2, ...., l|a|
)

appears at least once in the training set.
– At last, we only consider actions that respect the sequential order of

nodes w.r.t. the training set i.e: a valid action cannot create a node
with label l as a right sibling of a node with label l′ if there is no node
with label l as a right sibling of a node with label l′ in the training set.

Depending of the tree transformation datasets, we also consider addi-
tional constraints that reduce the size of the set of possible actions (addi-
tional details are provided in the experiments section):

– PathOccurrencesThreshold(n) (POT) Only the label paths that ap-
pear at least n times in the training output trees are considered.
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Fig. 8 Computation of the Fstructure, Fpath and Fcontent similarity measures.
The left and right parts of the figure respectively correspond to the predicted
tree and the correct tree. For each similarity measure, the trees are decomposed
into set of elements (structure elements, path elements or content elements). The
bottom part of the figure gives the similarity scores, which are the F1 score between
predicted and correct elements.

– MoveMaxDistance(n) (MMD) Large displacement of nodes are dis-
abled: when processing the leaf xt, only actions that put the text under
leaves with indices in [t − n, t + n] are allowed.

– NoSkip (NS) This constraint removes the Skip action.

At each step of the process, the set of possible action is enumerated
recursively by a simple procedure. Note that, in the proposed experiments,
we obtained up to 5,000 distinct actions per state.

• Loss function. In order to evaluate the quality of the predicted outputs, we
make use of three tree-similarity F1 scores, which are illustrated in Figure 8.
The Fstructure, Fpath and Fcontent measures are computed by decomposing
each tree into a set of parts and by computing the F1 scores14 on these
decompositions. The three F1 scores are always in the interval [0, 1] and
perfectly predicted trees lead to similarity scores of 1. Fcontent focuses on
the proportion of correctly labeled leaves, Fpath concerns the proportion of
correctly recovered paths and Fstructure concerns the proportion of correctly
recovered subtrees. The loss function used for learning is:

∆(ŷ,y) = 1 − Fstructure(ŷ,y)

14 The F1 score between two sets a and b is: F1(a, b) = 2×card(a∩b)
card(a)+card(b)

.
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6.2 Feature Descriptions

In order to describe tree transformation state-action φ(s,a), we used a large
set of sparse binary features. These features are described in details in Ap-
pendix and we just briefly give here a general description. Note that these
features follow the same idea than the ones for the sequence labeling task
(see Section 5.2). The features are created with a few hand defined feature
generators and lead to sparse descriptions in a very large feature space. For
the tree transformation task, a new feature subset is generated by consid-
ering sequentially each triplet defining an action. The feature subsets are
then gathered in order to obtain the full feature description. For each triplet
(li, pi, ci), we generate four kind of features:

– Input Content Features describe the current textual content.
– Input Path Features describe the structural context of the current

node in the input tree.
– Prediction Path Features describe parent labels of the new nodes in

the output-tree.
– Prediction Neighborhood Features describe sibling labels of the

new nodes in the output-tree.

6.3 Complexity of the task

Tree transformation is a particularly challenging large-scale SP task with
several real-world applications. We provide below a short discussion on why
most existing SP algorithms cannot cope with the complexity or the scale
of such a task.

• Global SP models and tree transformation. Global SP models assume that
the argmax problem (see Section 2.2 and Section 4) can be solved efficiently
at each learning iteration. In tree transformation, the argmax computation
is intractable for two reasons:

– The loss function Fstructure is not additively decomposable. Solving the
argmax thus leads to a complex optimization problem.

– Even with a simpler loss and a simpler transformation task, the optimiza-
tion is intractable with dynamic programming algorithms. For example,
[25] and [3] propose methods using dynamic programming on a restricted
tree transformation problem (one-to-one tree mapping: leaf nodes can
nor be displaced, neither suppressed). Due to their cubic complexity in
the number of leaves, those dynamic programming methods do not scale
to document containing thousands of leaves such as ours.

• Incremental SP models and tree transformation. As discussed in Section
4, other incremental SP models make assumptions like OLT or OLP avail-
ability. In some cases, when the output space is complex, computing OLP -
i.e. given any partial output (which may contain errors) find the best action

to take is not a trivial problem. In such cases, the authors of Searn suggest
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Corpus Formats Size Internal Nodes Leaves Depth Labels

RealEstate XML→ XML 2,367 ≃ 33 ≃ 19 ≃ 6 37
Mixed-Movie HTML → XML 13,048 ≃ 64 ≃ 39 5 35
Shakespeare Text → XML 750 ≃ 236 ≃ 194 ≃ 4.3 7

Inex-Ieee Text → XML 12,107 ≃ 650 ≃ 670 ≃ 9.1 139
Wikipedia HTML → XML 10,681 ≃ 200 ≃ 160 ≃ 7.7 256

Table 4 Tree transformation corpora statistics. From left to right: the name of
the corpus, the input and output formats, the number of documents, the mean
number of internal nodes per tree, the mean number of leaves per tree, the mean
tree depth and the number card(L) of output labels.

to use a search-procedure to (approximately) find the best action. Consider
for example a greedy beam-search procedure. The complexity of searching
the optimal actions for one training trajectory15 is O(T 2 × b× a2), where b

is the size of the beam, T is the depth of the search (in our case the number
of input leaves) and a is the mean number of available actions per state.

On large-scale tasks such as tree transformation, determining an approx-
imate OLP with beam search has a prohibitive complexity. Let us perform a
naive computation of the time required to process one typical document with
T = 100 leaves and up to a = 5, 000 actions per state with a beam size of 5.
On such documents, our implementation performs inference – with O(T ×a)
complexity – in ≈ 1s. The time required to search the best action in each
visited state for one document is thus of the order of 1s×100×5000×5 ≈ 1
month computation time. This solution is then clearly intractable. On the
other hand, the RL formalism provides algorithms that can naturally handle
such complex SP problems because they do not rely on any OLP computa-
tion.

6.4 Datasets

We used three medium-scale datasets and two large-scale datasets whose
statistics are summarized in Table 4.

• RealEstate [10]. This corpus, proposed by Anhai Doan16 is made of
2,367 data-oriented XML documents. The documents are expressed in two
different XML formats. The aim is to learn the transformation from one
format to the other.

• Mixed-Movie [9]. The second corpus is made of more than 13,000 movie
descriptions available in three versions: two mixed different XHTML ver-
sions and one XML version. This corresponds to a scenario where two dif-

15 Given a state-action pair, finding the best completion of the partial output,
takes O(T × b × a) time. This search has to be launched for each action a ∈ As

in each visited state s of the trajectory: O(T × a) times.
16 http://www.cs.wisc.edu/~anhai/
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Corpus Constraints Features
MMD NS POT Content In. Path Pred. Path Pred. Neigh.

RealEstate ∞ 0 0 2 2 2
Mixed-Movie 10 0 6 6 6 4
Shakespeare 0

√
0 6 0 5 6

Inex-Ieee 0
√

0 6 0 5 6
Wikipedia 10 5 6 6 6 4

Table 5 Tree transformation SP-MDP constraints and feature parameters. From
left to right: the dataset name, the MoveMaxDistance constraint, the NoSkip
constraint, the PathOccurencesThreshold constraint, the context size for content
features, the context size for input path features, the context size for prediction
path features and the context size for prediction neighborhood features. All pa-
rameters here have been roughly tuned on the training sets.

ferent websites have to be mapped onto a predefined mediated schema. The
transformation includes node suppression and some node displacements.

• Shakespeare [3]. This corpus is composed of 60 Shakespeare scenes17.
These scenes are small trees, with an average length of 85 leaf nodes and 20
internal nodes over 7 distinct tags. The documents are given in two versions:
a flat segmented version and the XML version. The tree transformation task
aims at recovering the XML structure using only the text segments as input.

• Inex-Ieee [11]. The Inex-Ieee corpus is composed of 12,017 scientific
articles in XML format, coming from 18 different journals. The tree trans-
formation task aims at recovering the XML structure using only the text
segments as input.

• Wikipedia [8]. This corpus is composed of 12,000 wikipedia pages. For
each page, we have one XML representation dedicated to wiki-text and
the HTML code. The aim is to use the layout information available in the
HTML version, for predicting the semantical XML representation.

For each corpus, we randomly extracted 100 examples to form the train-
ing set. As mentioned in Section 6.1, we use some constraints to limit the
number of possible actions. These constraints are given in Table 5. We
also give in this table the context size parameters that were used into the
feature function φ. Few tuning effort was spent on these parameters. For
the RealEstate dataset, the transformation that has to be learned only
depends on the labels, so we removed the content features. For the Shake-

speare and Inex-Ieee datasets, the input documents are flat segmented
documents, so that input path features are unavailable.

6.5 Experiments

• Models. We applied the Sarsa and Olpomdp algorithms to our tree
transformation corpora by using the same settings as for sequences. We also

17 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
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used the same tuning process as previously, with 100 training iterations for
each trial.

• Baselines. We only have one learning-based baseline on two of these
datasets for the complexity reasons explained in Section 6.3. The baseline
model Pcfg+Me [3] is a global model for the restricted tree transformation
problem where the order of the leaves in the input tree and the correspond-
ing output tree are exactly the same. It models the probability of outputs by
using probabilistic context free grammars (PCFG) and maximum-entropy
(ME) classifiers. Inference is then performed with a dynamic-programming
algorithm that has a cubic complexity in the number of input leaves. This
model can only operate on the two smallest datasets RealEstate and
Shakespeare.

In order to compare our scores on all datasets, we performed a set of ex-
periments by running non-learning baselines using a random policy πrandom

– which selects actions randomly – and two greedy policies π
greedy
structure and

π
greedy
path . These greedy policies make use of the correct output and select ac-

tions whose execution most increase the Fstructure or Fpath similarity scores.

For example, π
greedy
structure is defined in the following way:18

π
greedy
structure(s = (x, ȳ)) = argmax

a∈As

Fstructure(a(ȳ),y)

Note that, since they rely on the correct outputs, the baseline greedy policies
cannot generalize on new examples. The three scores of π

greedy
structure could be

considered as upper-bounds for the performance reachable by learning to
maximize the immediate reward, e.g. with Sarsa and a discount factor of
0.

• Medium-scale results. Our experimental results on the three medium-
scale datasets are given in Table 6. On RealEstate and Mixed-Movie,
the RL approaches give significantly better results than the greedy policy
baselines. This result is very satisfactory and has two major implications.
Firstly, it shows that RL algorithms are able to find a better strategy than

greedily moving toward the correct output. Secondly, it shows that the al-
gorithms perform an effective learning and generalization of this strategy.
On Shakespeare, the scores of RL algorithms is slightly inferior to those
of the greedy policies. Since greedy policies perform nearly perfectly on
this corpus, the main difficulty here is more related to generalization than
exploration.

• Comparison with state-of-the-art. The RealEstate collection corre-
sponds to an XML database where we need to label the leaves correctly
and to put them in the correct order. The task is easy, and most RL ap-
proaches achieve > 99% on the different scores. Pcfg+Me only performs
7 % on the Fpath score and about 50 % on the Fstructure score for two rea-
sons: this model is based on the MMD(0) constraint (see part 6.1) which

18 If multiple actions equally increase the similarity scores, one of these actions
is selected randomly.
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RL Baselines
Corpus Score Sarsa Olpomdp π

greedy
structure π

greedy

path
πrandom

Pcfg+Me

RealEstate

Fstructure 99.54 99.99 87.09 97.09 3.27 49.8
Fpath 99.87 99.99 84.42 100 3.91 7
Fcontent 99.88 100 100 100 5.10 99.9

Mixed-Movie

Fstructure 86.22 86.50 47.04 44.15 3.54 /
Fpath 91.53 91.88 52.02 52.18 5.29 /
Fcontent 91.53 92.05 52.02 52.18 5.67 /

Shakespeare

Fstructure 96.03 95.88 98.65 75.16 11.34 94.7
Fpath 97.88 97.72 98.91 100 16.47 97.0
Fcontent 98.87 98.40 99.83 100 18.25 98.7

Table 6 Tree transformation results for medium-scale datasets. For each dataset
and each method, we give the three average similarity scores Fstructure, Fpath

and Fcontent between the predicted and correct trees of the test set. The two
first columns correspond to the Sarsa and Olpomdp RL algorithms. The next
three columns are baselines which do not rely on learning. The last column is the
Pcfg+Me [3] baseline. The / symbol denotes results that could not be computed
due to the complexity of Pcfg+Me.

Fig. 9 Training behavior of Sarsa and Olpomdp on the Mixed-Movie (left)
and Shakespeare (right) corpora. We give the train and test Fstructure scores
for each method as a function of the number of training iterations.

is not verified in this collection and Pcfg+Me is not able to delete input
leaves, which is required here. On the Shakespeare corpus, Pcfg+Me

gives slightly lowers results than RL methods. This result might be related
to the different kind of features exploited by the methods. Since Pcfg+Me

relies on a PCFG, it cannot deal with some of the features that we use here
(e.g. the prediction path features, see Appendix).

• Training behavior. The training behavior of Sarsa and Olpomdp is
illustrated by Figure 9. We have often observed that the training behavior
of Sarsa is slightly more noisy than that of Olpomdp. On our datasets,
the number of training iterations needed to converge was reasonable in all
cases.
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Fig. 10 Impact of the discount parameter in tree transformation with Sarsa. The
curves correspond to the training scores after 100 and 1000 training iterations and
the test scores after 1000 training iterations.

RL Baselines

Corpus Score Sarsa π
greedy
structure π

greedy
path πrandom

Inex-Ieee

Fstructure 67.5 76.32 49.94 2.17
Fpath 74.4 39.23 97.20 1.00

Fcontent 75.8 82.91 97.20 8.62

Wikipedia

Fstructure 65.6 57.37 23.53 5.51
Fpath 74.3 2.28 32.28 0.12

Fcontent 80.2 72.92 39.34 12.35

Table 7 Large scale tree transformation. For each method and each dataset, we
give the three average similarity scores on the test set. We compare Sarsa with
the baseline policies, which do not use learning.

• Sarsa Discount. The impact of the discount factor on Sarsa is illus-
trated in Figure 10. The optimal discount factor values highly depend on
the corpus. On some corpora, such as Mixed-Movie, discount factors close
to 1 are required to outperform the greedy policy baselines. In some other
cases, such as Shakespeare, the optimal discount factors are close to 0.5.
As for sequences, the optimal discount factors are not 1. We believe that
discount factors smaller than 1 lead to simpler exploration problems, which
makes learning easier. This may also be related to the use of Sarsa with
a limited amount of training material. The study of the number of training
examples on the behavior of RL algorithms is left for future work.

• Olpomdp β parameter. As for sequences, β has a similar impact on
Olpomdp as the discount on Sarsa has. For the Mixed-Movie and Shake-

speare corpora, the best β value were respectively 0.85 and 0.5.

• Large-scale tree transformation. In order to demonstrate the scalabil-
ity of the RL approach, we have performed experiments with Sarsa on
the two large-scale corpora. Since, in our implementation, episodes with
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Olpomdp take about 50 more time than episodes with Sarsa19, we did
not use Olpomdp on the large-scale datasets. These experiments required
≈ 5 days training time in order to perform 1000 training iterations, i.e. 105

RL episodes, for each dataset using Sarsa. This huge amount of time has
to be contrasted with the scale of the task: these corpora involve particu-
larly large documents (the biggest documents in these corpora contain up
to 10.000 nodes), complex operations (nodes displacements or nodes dele-
tions), highly heterogeneous documents and large number of labels (139
labels for Inex-Ieee and 256 labels for Wikipedia). The results are given
in Table 7. On Wikipedia, Sarsa outperforms the scores of the greedy
policy baselines, which is very satisfactory, given the large number of labels
on this corpus. On Inex-Ieee, Sarsa does not reach the level of the greedy
policy baselines. Note that this corpuscontains a huge amount noise.

To summarize, these experiments emphasize three interesting character-
istics of the RL approach for tree transformation:

– Scalability: the Sarsa method is able to learn with all our large-scale
real-world datasets.

– Inference speed: most documents are processed in less than one second,
which, on the small datasets, is about 50 times faster than Pcfg+Me

inference.
– Relevancy of RL: on most datasets, RL algorithms find better strategies

than the greedy behavior and succeed in learning and generalizing these
strategies.

7 Conclusion

We have proposed a formalization of the supervised structured prediction
problem as a Markov Decision Process. We have shown that solving the
policy for this Decision Process is equivalent to optimizing the empirical
loss for supervised learning. Thanks to this relation, one can use approxi-
mate RL algorithm for solving SP. This provides a principled approach for
a large range of SP problems. The proposed model is general and makes
fewer assumptions than most existing SP models. It can be used for solv-
ing complex and large-scale SP problems. The performance of our approach
was demonstrated on two kinds of SP problems: sequence labeling and tree
transformation. From the point of view of RL, the proposed MDP has some
unique and unusual features. This example also shows that RL can be used
to handle large-scale problems expressed in very high dimensional spaces.
This work opens the way for exploring the potential of RL methods and
their many variants for SP.

19
Sarsa runs much faster thanks to a particularity of our implementation, which

is able to compute 〈φ(s,a), θ〉 values without storing the φ(s,a) vectors in memory.
In Olpomdp, the main cpu-time bottleneck is the allocation and deletion of data
structures for storing these vectors.
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A Appendix

The features correspond to the joint representation of both an action a
and a state s. For tree transformation, actions are sequences of triplets
(li, pi, ci). For each triplet (li, pi, ci), we generate a set of features describing
jointly the current triplet and the state s. All the triplet features are then
concatened in order to obtain the action features. These features are mapped
onto the vector representation φ(s,a) of the s,a pair. Figure 11 illustrates
the features corresponding to the third triplet (phone, 2, true) for action
a =

(

(car, 1, false), (contact, 3, false), (phone, 2, true)
)

. There are four

kinds of features used in the experiments:

Input Content Features describe the textual content of the current input
leaf. The input leaf content is first summarized by the p first and the p last
leaf word where p is a context parameter which depends on the application.
Then, features are computed only for these words. There are three types of
features called word, character type and pattern:

– Word features are computed for each word: there is one feature de-
noted fi,c,l,j,w for each triplet i ∈ [1, |a|], output label l ∈ L, creation
flag c ∈ {true, false}, word position j in the leaf word sequence and
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title h1 div

Rent a 
car

html

body

Ferrari

head

$217,310

b

John 
Walter

i

305-235-
4378

x1          x2          x3           x4   x5 

car

price brend
contact

name
Ferrari$217,310

John 
Walter

Input Content Features
l3 = phone ∧ c3 ∧ word[1] = 305-235-4378
l3 = phone ∧ c3 ∧ chars[1] = ddd-ddd-dddd
l3 = phone ∧ c3 ∧ pattern[1] = d-d-d
l3 = phone ∧ c3 ∧ word[2] = N/A
l3 = phone ∧ c3 ∧ word[end-2] = N/A
l3 = phone ∧ c3 ∧ word[end-1] = 305-235-4378
l3 = phone ∧ c3 ∧ chars[end-1] = ddd-ddd-dddd
l3 = phone ∧ c3 ∧ pattern[end-1] = d-d-d
Input Path Features
l3 = phone ∧ c3 ∧ inputLabel[1] = i
l3 = phone ∧ c3 ∧ inputLabel[2] = div
l3 = phone ∧ c3 ∧ inputLabel[3] = bodyPrediction Path Features

l3 = phone ∧ c3 ∧ parentLabel[2] = car
l3 = phone ∧ c3 ∧ parentLabel[1] = contact
Prediction Neighborhood Features

l3 = phone ∧ c3 ∧ label[p3-2] = N/A
l3 = phone ∧ c3 ∧ label[p3-1] = name
l3 = phone ∧ c3 ∧ label[p3] = N/A
l3 = phone ∧ c3 ∧ label[p3+1] = N/A

Input and current leaf

Partial output                    Active Features 

phone

305-235-
4378

(car,1,false)

(contact,3,false)

(phone,2,true)

Action

Fig. 11 Tree transformation action features. The top-left part of the figure gives
the current partial output and a candidate action. The candidate action consists
in creating a phone node into the contact node. The bottom-left part of the figure
gives the input tree and the current input leaf x5. The right part of the figure lists
the active features corresponding to the third triplet of the action: (phone, 2, true).
The active features are those which have a value of 1. The rectangles in red
indicate the context considered for each feature type. This context is the number
of ancestors, siblings or adjacent words considered for computing the features.
Since there is only one word in the current textual content, the same word appears
in the first words features and the last words features.

word w:

fi,c,l,j,w(s,a) =

{

1 if li = l ∧ ci = c ∧ inputWord[j] = w

0 otherwise

where inputWord[j] is the word number at position j in the current leaf.
– Character type features correspond to the type of characters used in

words. The type of a character can be a digit, an upper case or lower
case letter of the alphabet, or other. The character type features of a
word are constructed by replacing each lower letter of the word by ’l’,
each upper letter by ’u’, each digit by ’d’ and other by ’o’.

– Pattern features of a word are built based on the Character type
features by replacing successive occurrences of the same character type
by a unique occurrence. This roughly corresponds to a regular expres-
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sion over the types of characters of a particular word. Figure 11 gives
examples of such features.

Input Path Features Input Path Features correspond to the structural con-
text of the current input leaf xt. They encode the leaf path in the input
tree. There is one such feature per triplet index i ∈ [1, |a|], creation flag
c ∈ {true, false}, output label l ∈ L, height h in the input tree and possi-
ble label l′ in the input tree.

fi,c,l,h,l′(s,a) =

{

1 if li = l ∧ ci = c ∧ inputLabel[h] = l′

0 otherwise

where inputLabel[h] is the label of the ancestor of the current leaf at height
h. The last two types of features encode node information in the partial

output tree.

Prediction Path Features Prediction Path Features encode the descrip-
tion of the node corresponding to the triplet (li, pi, ci) and of its ances-
tors. There is one such feature per triplet index i ∈ [1, |a|], creation flag
c ∈ {true, false}, pair of labels (l, l′) ∈ L2 and ancestor height h:

fi,c,l,l′,h(s,a) =

{

1 if li = l ∧ ci = c ∧ parentLabel[h] = l′

0 otherwise

where parentLabel[h] is the label of the ancestor of the node concerned by
triplet i at height h.

Prediction Neighborhood Features These features are similar to the predic-
tion path features, except that they encode the sibling labels of the node
to be inserted instead of its parent labels. For each triplet index i ∈ [1, |a|],
creation flag c ∈ {true, false}, label pair (l, l′) ∈ L2 and context position
δ, one defines a feature as:

fi,c,l,l′,δ(s,a) =

{

1 if li = l ∧ ci = c ∧ neighboringLabel[pi + δ] = l′

0 otherwise

where neighboringLabel[pi + δ] corresponds to the label of the sibling of
node concerned by the triplet i at position pi + δ.

Not all the siblings and ancestors are considered while computing the
features. The number of sibling and ancestors considered in the experiments
is provided in Table 5 and correspond to the context of the node illustrated
in Figure 11

At last we introduce a special label called N/A to denote out-of-bounds
elements, i.e. elements that do not exists in the tree. Typically, if we consider
a leaf with only ine word and we want to compute the feature of the second
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word (see Input Content Features) of the leaf which does not exist, we will
use this special label. This is illustrated in Figure 11.

Our four kind of features lead to very high dimensional feature spaces:
there are often more than 106 distinct features. However, for a given state-
action pair, the number of non-null features is relatively low (e.g. less than
100 non-null features). Once again, sparsity can be exploited through a
smart implementation considering only non-null features. All the features
are generated automatically from the data, using the above definitions.


