
Incremental Pruning: A Simple, Fast, Exact Method forPartially Observable Markov Decision ProcessesAnthony CassandraComputer Science Dept.Brown UniversityProvidence, RI 02912arc@cs.brown.edu Michael L. LittmanDept. of Computer ScienceDuke UniversityDurham, NC 27708-0129mlittman@cs.duke.edu Nevin L. ZhangComputer Science Dept.The Hong Kong U. of Sci. & Tech.Clear Water Bay, Kowloon, HKlzhang@cs.ust.hkAbstractMost exact algorithms for general par-tially observable Markov decision processes(pomdps) use a form of dynamic program-ming in which a piecewise-linear and con-vex representation of one value function istransformed into another. We examine vari-ations of the \incremental pruning" methodfor solving this problem and compare them toearlier algorithms from theoretical and em-pirical perspectives. We �nd that incremen-tal pruning is presently the most e�cient ex-act method for solving pomdps.1 INTRODUCTIONPartially observable Markov decision processes(pomdps) model decision theoretic planning problemsin which an agent must make a sequence of decisionsto maximize its utility given uncertainty in the e�ectsof its actions and its current state (Cassandra, Kael-bling, & Littman 1994; White 1991). At any momentin time, the agent is in one of a �nite set of possiblestates S and must choose one of a �nite set of possibleactions A. After taking action a 2 A from state s 2 S,the agent receives immediate reward ra(s) 2 < and theagent's state becomes some state s0 with the probabil-ity given by the transition function Pr(s0js; a) 2 [0; 1].The agent is not aware of its current state, and in-stead only knows its information state x, which is aprobability distribution over possible states (x(s) isthe probability that the agent is in state s). Aftereach transition, the agent makes an observation z ofits current state from a �nite set of possible obser-vations Z . The function Pr(zjs0; a) 2 [0; 1] gives theprobability that observation z will be made after theagent takes action a and makes a transition to states0. This results in a new information state xaz de�ned

by xaz(s0) = Pr(zjs0; a)Ps2S Pr(s0js; a)x(s)Pr(zjx; a) ; (1)wherePr(zjx; a) = Xs02S Pr(zjs0; a)Xs2S Pr(s0js; a)x(s):Solving a pomdp means �nding a policy � that mapseach information state into an action so that theexpected sum of discounted rewards is maximized(0 � 
 � 1 is the discount rate, which controls howmuch future rewards count compared to near-term re-wards). There are many ways to approach this prob-lem based on checking which information states canbe reached (Washington 1996; Hansen 1994), search-ing for good controllers (Platzman 1981), and usingdynamic programming (Smallwood & Sondik 1973;Cheng 1988; Monahan 1982; Littman, Cassandra, &Kaelbling 1996).Most exact algorithms for general pomdps use aform of dynamic programming in which a piecewise-linear and convex representation of one value func-tion is transformed into another. This includes algo-rithms that solve pomdps via value iteration (Sawaki& Ichikawa 1978; Cassandra, Kaelbling, & Littman1994), policy iteration (Sondik 1978), acceleratedvalue iteration (White & Scherer 1989), structuredrepresentations (Boutilier & Poole 1996), and ap-proximation (Zhang & Liu 1996). Because dynamic-programming updates are critical to such a wide ar-ray of pomdp algorithms, identifying fast algorithmsis crucial.Several algorithms for dynamic-programming updateshave been proposed, such as one pass (Sondik 1971),exhaustive (Monahan 1982), linear support (Cheng1988), and witness (Littman, Cassandra, & Kaelbling1996). Cheng (1988) gave experimental evidence thatthe linear support algorithm is more e�cient than the



one-pass algorithm. Littman, Cassandra and Kael-bling (1996) compared the exhaustive algorithm, thelinear support algorithm, and the witness algorithmand found that, except for tiny problems with approx-imately 2 observations or 2 states, which all three al-gorithms could solve quickly, witness was the fastestand had a number of superior theoretical properties.Recently, Zhang and Liu (1996) proposed a newmethod for dynamic-programming updates in pomdpscalled incremental pruning. In this paper, we analyzethe basic algorithm and a novel variation and com-pare them to the witness algorithm. We �nd thatthe incremental-pruning-based algorithms allow us tosolve problems that could not be solved within reason-able time limits using the witness algorithm.2 DP UPDATESThe fundamental idea of the dynamic-programming(DP) update is to de�ne a new value function V 0 interms of a given value function V . Value functionsare mappings from information states to expected dis-counted total reward. In value-iteration algorithms, V 0incorporates one additional step of reward comparedto V and in in�nite-horizon algorithms, V 0 representsan improved approximation that is closer to the opti-mal value function.The function V 0 maps information states to values andis de�ned byV 0(x) = maxa2A  Xs2S ra(s)x(s) + 
Xz2Z Pr(zjx; a)V (xaz)! :(2)In words, Equation 2 says that the value for an infor-mation state x is the value of the best action that canbe taken from x of the expected immediate reward forthat action plus the expected discounted value of theresulting information state (xaz , as de�ned in Equa-tion 1).We can break up the value function V 0 de�ned inEquation 2 into simpler combinations of other valuefunctions:V 0(x) = maxa2A V a(x) (3)V a(x) = Xz V az (x) (4)V az (x) = Ps ra(s)x(s)jZj + 
 Pr(zjx; a)V (xaz): (5)These de�nitions are somewhat novel and form an im-portant step in the derivation of the incremental prun-ing method, described in Section 4. Each V a andV az function is a value function mapping information

states to value and is de�ned in terms of relativelysimple transformations of other value functions.The transformations preserve piecewise linearity andconvexity (Smallwood & Sondik 1973; Littman, Cas-sandra, & Kaelbling 1996). This means that if thefunction V can be expressed as V (x) = max�2S x � �for some �nite set of jSj-vectors S (which it can inmost applications), then we can express V az (x) =max�2Saz x � �, V a(x) = max�2Sa x � �, and V 0(x) =max�2S0 x �� for some �nite sets of jSj-vectors Saz , Sa,and S0 (for all a 2 A, and z 2 Z). These sets have aunique representation of minimum size (Littman, Cas-sandra, & Kaelbling 1996), and we assume that thesymbols Saz , Sa, and S0 refer to the minimum-size sets.Here is a brief description of the set and vector nota-tion we will be using. Vector comparisons are com-ponentwise: �1 � �2 if and only if for all s 2 S,�1(s) � �2(s). Vector sums are also componentwise.Vector dot products are de�ned by ��� =Ps �(s)�(s).In vector comparisons and dot products, 0 is a vectorof all zeros and 1 a vector of all ones. For all s 2 S, thevector es is all zeros except es(s) = 1. The cross sumof two sets of vectors is A�B = f�+�j� 2 A; � 2 Bg;this extends to collections of vector sets as well. Setsubtraction is de�ned by AnB = f� 2 Aj� 62 Bg.Using this notation, we can characterize the \S" setsdescribed earlier asS0 = purge [a2ASa! (6)Sa = purge Mz2Z Saz! (7)Saz = purge(f�(�; a; z)j� 2 Sg); (8)where �(�; a; z) is the jSj-vector given by�(�; a; z)(s)= (1=jZj)ra(s) + 
Xs0 �(s0) Pr(zjs0; a) Pr(s0js; a);and purge(�) takes a set of vectors and reduces it to itsunique minimum form. Equations 6 and 7 are easilyjusti�ed by Equations 3 and 4 and basic properties ofpiecewise-linear convex functions. Equation 8 comesfrom substituting Equation 1 into Equation 5, sim-plifying, and using basic properties of piecewise-linearconvex functions.The focus of this paper is on e�cient implementationsfor computing Sa (Equation 7). Equations 6 and 8can be implemented e�ciently using an e�cient im-plementation of the purge function, described in thenext section.



3 PURGING SETS OF VECTORSGiven a set of jSj-vectors A and a vector �, de�neR(�;A) = fxjx � 0; x�1 = 1; x�� > x��0; �0 2 Anf�gg;(9)it is the set of information states for which vector � isthe clear \winner" (has the largest dot product) com-pared to all the other vectors in A. The set R(�;A) iscalled the witness region of vector �, because for anyinformation state x in this set max�02Anf�g x � �0 6=max�02A[f�g x � �0; in a sense, x can testify that � isneeded to represent the piecewise-linear convex func-tion given by A [ f�g.Using the de�nition of R, we can de�nepurge(A) = f�j� 2 A;R(�;A) 6= ;g;it is the set of vectors in A that have non-empty wit-ness regions and is precisely the minimum-size set forrepresenting the piecewise-linear convex function givenby A (Littman, Cassandra, & Kaelbling 1996)1.Figure 1 gives an implementation of purge(F )|givena set of vectors F , Filter(F ) returns the vectors in Fthat have non-empty witness regions, thereby \purg-ing" or \�ltering" or \pruning" out the unnecessaryvectors. The algorithm is due to Lark (White 1991);Littman, Cassandra, & Kaelbling (1996) analyze thealgorithm and describe the way that the argmax op-erators need to be implemented for the analysis tohold (ties must be broken lexicographically). TheDominate(�;A) procedure called in line 8 returns aninformation state x for which � gives a larger dot prod-uct than any vector in A (or ? if no such x exists)|that is, it returns an information state in the regionR(�;A). It is implemented by solving a simple linearprogram, illustrated in Figure 2.The Filter algorithm plays a crucial role in the in-cremental pruning method, so it deserves some addi-tional explanation. The setW , initially empty, is �lledwith vectors ! that have non-empty witness regionsR(!; F ); they are the \winners." Lines 3{5 �nd thosewinning vectors at the es information states.The \while" loop starting on line 6 goes through thevectors � 2 F one by one. For each, Dominate isused to see if there is an x 2 R(�;W ). If there is not,we know R(�; F ) is empty, since x 2 R(�; F ) impliesx 2 R(�;W ) since W � F . If Dominate �nds an x 2R(�;W ), we add the winning vector (not necessarily�) at x to W and continue. Each iteration removesa vector from F , and when it is empty, every vectorfrom F will have been classi�ed as either a winner ornot a winner.1This assumes that A is a true set in that it containsno duplicate vectors.

Filter(F )1 W  ;2 for each s in S3 do !  argmax�2F es � �4 W  W [ f!g5 F  F n f!g6 while F 6= ;7 do � 2 F8 x Dominate(�;W )9 if x = ?10 then F  F n f�g11 else !  argmax�2F x � �12 W  W [ f!g13 F  F n f!g14 return WFigure 1: Lark's algorithm for purging a set of vectors.Dominate(�;A)1 L LP(variables:x(s); �; objective:max �)2 for each �0 in A n f�g3 do AddConstraint(L; x � � � � + x � �0)4 AddConstraint(L; x � 1 = 1)5 AddConstraint(L; x � 0)6 if Infeasible(L)7 then return (?)8 else (x; �) SolveLP(L)9 if � > 010 then return (x)11 else return ?Figure 2: Linear-programming approach to �nding aninformation state in a vector's witness region.3.1 USING PURGE IN DPGiven the Filter procedure, it is trivial to computethe Saz sets from S and to compute S0 from the Sa sets(Equations 8 and 6).A straightforward computation of the Sa sets from theSaz sets (Equation 7) is also easy, and amounts to anexhaustive enumeration of all possible combinationsof vectors followed by �ltering the resulting sets. Thisalgorithm is not e�cient because the number of com-binations of vectors grows exponentially in jZj. Thiscan be a large number of vectors even when the Sasets are relatively small. This approach to computingthe Sa sets from the Saz sets was essentially proposedby Monahan (1982) (under the name of \Sondik's one-pass algorithm").



3.2 COMPLEXITY ANALYSISWe seek to express the running time of algorithmsin terms of the number of linear programs they solveand the size of these linear programs. We choose thismetric because all of the algorithms in this paper uselinear programming as a fundamental subroutine (inthe form of calls to Dominate(�;A)) and the solu-tion of these linear programs is by far the most time-consuming part of the algorithms. In addition, tra-ditional \operation count" analyses are cumbersomeand unenlightening because of the di�culty of pre-cisely characterizing the number of primitive opera-tions required to solve each linear program.We will express the running time of W  Filter(F )in terms of the size of the sets F and W , the numberof states jSj, and m, the number of vectors in W thatare found by checking the es information states.As is evident in Figure 1, each iteration of the \while"loop on line 6 removes one vector from F , and m vec-tors are removed before the loop. This means the whileloop is executed precisely jF j�m times. Each iterationof the \while" loop makes a single call to Dominate,so there are jF j�m linear programs solved in all cases.Each of these linear programs has one variable for eachstate in S and one for �. The total number of con-straints in any one of these linear programs will bebetween m+1 and jW j+1. In the best case, the totalnumber of constraints will be jF j(m + 1) � mjW j +jW j(jW j � 1)=2�m(m+1)=2 and the worst case willhave an additional (jF j � jW j)(jW j �m) constraints.When checking the es information states, at least onevector in W will be found. Further, when jW j > 1 weare guaranteed to �nd at least two of the vectors inW . For the remainder of this paper, we assume thatjW j > 1, since the case of jW j = 1 is trivial.The witness algorithm has been analyzed previ-ously (Littman, Cassandra, & Kaelbling 1996), andwe list the basic results here for easy comparison.The total number of linear programs solved by wit-ness is (Pz jSaz j � jZj)jSaj + jSaj � 1; asymptoti-cally, this is �(jSajPz jSaz j). Note that this is nota worst-case analysis; this many linear programs willalways be required. The number of constraints in eachlinear program is bounded by jSaj + 1. The totalnumber of constraints over all the linear programs is�(jSaj2Pz jSaz j) asymptotically2.2In the best case there are 1=2(Pz jSaz j�jZj+1)(jSaj+1)(jSaj + 2) �Pz jSaz j + jZj � 3 constraints and in theworst case there are jSaj(jSaj + 1)(Pz jSaz j � jZj � 1=2)constraints.

IncPrune(Saz1 ; : : : ; Sazk)1 W  Filter(Saz1 � Saz2)2 for i 3 to k3 do W  Filter(W � Sazi)4 return WFigure 3: The incremental pruning method.4 INCREMENTAL PRUNINGThis section describes the incremental pruningmethod (Zhang & Liu 1996), which computes Sa e�-ciently from the Saz sets.Recall the de�nition for Sa in Equation 7:Sa = purge Mz2Z Saz! = purge(Saz1 � Saz2 � : : :� Sazk);here, k = jZj. Note thatpurge(A�B � C) = purge(purge(A�B)� C);so Equation 7 can be rewritten asSa = purge(: : : purge(purge(Saz1�Saz2)�Saz3) : : :�Sask):(10)The expression for Sa in Equation 10 leads to a verynatural solution method, called incremental pruning,illustrated in Figure 3. In addition to being conceptu-ally simpler than the witness algorithm, we will showthat it can be implemented to exhibit superior perfor-mance and asymptotic complexity.The critical fact required to analyze incremental prun-ing is that if A = purge(A) and B = purge(B) (neithercontain extra vectors) and W = purge(A�B), thenjW j � max(jAj; jBj): (11)Equation 11 follows from the observation that for ev-ery ! 2 W , every R(!;W ) region is contained withinR(�;A) and R(�;B) for some � 2 A and � 2 B.This means that the size of the W set in IncPruneis monotonically non-decreasing; it never grows explo-sively compared to its �nal size.Figure 3 illustrates a family of algorithms that we col-lectively call the incremental pruning method ; speci�cincremental pruning algorithms di�er in their imple-mentations of the Filter procedure. The most basicincremental pruning algorithm is given by implement-ing Filter by Lark's algorithm (Figure 1); we callthe resulting algorithm IP. In Section 5, we describeseveral other variations.



The complexity of IP is �(jSajPz jSaz j) linear pro-grams and O(jSaj2Pz jSaz j) constraints3. In the worstcase, these bounds are identical to those of the witnessalgorithm (Section 3.2). However, there are pomdpsfor which the expression for the total number of con-straints is arbitrarily loose; the best-case total numberof constraints for IP is asymptotically better than forwitness.5 GENERALIZING IPAll the calls to Filter in IncPrune (Figure 3) areof the form Filter(A�B). This section modi�es theimplementation of Filter to take advantage of thefact that the set of vectors being processed has a greatdeal of regularity. The modi�cation yields a family ofFilter algorithms, some of which render incrementalpruning more e�cient than when the standard versionappearing in Figure 1 is used.The change is to replace line 8 in Figure 1 withx Dominate(�;D n f�g): (12)Any set D of vectors satisfying the properties belowcan be used and still give a correct algorithm (recallthat we are �ltering the set of vectors A � B and Wis the set of winning vectors found so far):1. D � (A�B).2. Let (� + �) = � for � 2 A and � 2 B. For every�1 2 A and �1 2 B, if (�1+�1) 2 W , then either(�1 + �1) 2 D, or (�1 + �) 2 D, or (�+ �1) 2 D.There are a number of choices for D that satisfy theabove properties. For example,D = A�B; (13)D = (f�g �B) [ (A� f�g); (14)D = W; (15)D = (f�g �B) [ f�1 + �j(�1 + �) 2Wg; (16)D = (A� f�g) [ f�1 + �j(� + �1) 2Wg; (17)The following lemma shows that any such choice of Dallows us to use the domination check in Equation 12to either remove � from consideration, or to �nd avector in purge(A � B) that has not yet been addedto W (note that � 62 W ).Lemma 1 If R(�;Dnf�g) = ;, then R(�;A�B) = ;.If x 2 R(�;D n f�g), then x 2 R(!;W ) for some! 2 (A�B) nW .3Simple upper bounds on the IP algorithm arejSajPz jSaz j linear programs and jSaj(jSaj+ 1)Pz jSaz j �3jZj total constraints. Note that tighter, though more com-plicated, upper bounds are possible.

Proof: First, if R(�;D n f�g) is empty, we need toshow that R(�;A�B) is empty. We can show this bycontradiction. Assume there is an x� 2 R(�;A � B).Since (D n f�g) � A�B, x� 2 R(�;D n f�g). But weknow that R(�;D n f�g) is empty, so this cannot be.To prove the second part, let ! = argmax�02A�B x ��0.The lemma is proved if we can show that x�! > x�!0for all !02W . Let (�1 + �1) = !0 for any !0 2 W ,�1 2 A and �1 2 B and let (�+ �) = � for � 2 A and� 2 B. By the conditions on D, we know that either(�1 + �1) 2 D, or (�1 + �) 2 D, or (� + �1) 2 D.Assume (�1+�) 2 D (the other two cases are similar).Since x 2 R(�;Dnf�g), x�� = x �(�+�) > x �(�1+�).This implies that x�� > x��1. Adding �1 to both sidesgives us that x � (�+�1) > x � (�1+�1) = x�!0. By thede�nition of !, x�! � x � (� + �1). Hence x�! > x�!0.The lemma follows. 2Di�erent choices of D result in di�erent incrementalpruning algorithms. In general, the smaller the D set,the more e�cient the algorithm. Equation 13 is equiv-alent to using Monahan's (1982) �ltering algorithm inIncPrune, Equation 15 is equivalent to using Lark's�ltering algorithm (White 1991) in IncPrune (i.e., IP,as described earlier).We refer to variations of the incremental pruningmethod using a combination of Equations 16 and 17as the restricted region (RR) algorithm. Using eitherEquation 16 or 17 exclusively in the incremental prun-ing algorithm will improve the total constraint com-plexity of the algorithm to O(jSajPz jSaz j2+ jSaj2jZj)constraints. Although the asymptotic total number oflinear programs does not change, RR actually requiresslightly more linear programs than IP in the worstcase. However, empirically it appears that the savingsin the total constraints usually saves more time thanthe extra linear programs require.An even better variation of incremental pruning selectswhichever D set is smallest from among Equations 15,16 and 17. This will usually yield a faster algorithm inpractice, though it makes this variation much harderto analyze. The only extra work that is required issome bookkeeping to track how vectors were createdand the sizes of the various sets that we will choosefrom.In principle, it is also possible to choose a D set that isthe smallest set satisfying conditions 1 and 2. This ap-pears to be closely related to the NP-hard vertex-coverproblem; we are investigating e�cient alternatives.



6 EMPIRICAL RESULTSAlthough asymptotic analyses provide useful informa-tion concerning the complexity of the various algo-rithms, they provide no intuition about how well algo-rithms perform in practice on typical problems. An-other shortcoming of these analyses is that they canhide important constant factors and operations re-quired outside of the linear programs. To address theseshortcomings, we have implemented IP and variationsand have run them on a suite of test problems to gaugetheir e�ectiveness. All times given are in CPU secondson a SPARC-10.We pro�led the execution and found that more than95% of the total execution time was spent solving lin-ear programs4, verifying that the linear programs arethe single most important contributor to the complex-ity of the algorithms.To ensure fairness in comparison, we embedded all ofthe algorithms in the same value-iteration code andused as many common subroutines as possible. Wealso used a commercial linear programming packageto maximize the stability and e�ciency of the imple-mentation.We ran IP, RR, exhaustive and linear support al-gorithms on 9 di�erent test problems listed in Ta-ble 1 (complete problem de�nitions are available athttp://www.cs.brown.edu/people/arc/research/pomdp-examples.html). The \Stages" column reportsthe number of iterations of value iteration we ran andthe \jVf j" column indicates the number of vectors inthe �nal value function5.Table 2 lists the total running time for each algorithmon each of the 9 test problems. The results indicatethat RR works extremely well on a variety of test prob-lems. We do not list run times for the linear supportalgorithm because, in all cases, it was unable to runto completion. This is because of memory limitations;space requirements for the linear support algorithmincrease dramatically as a function of the number ofstates. We terminated algorithms that failed to com-plete in 8 hours (28800 seconds); as a result, the ex-haustive algorithm (\Exh.") was only able to completethree of the test problems (all of which had only twoobservations). On the three small test problems the4This pro�ling data was computed running witness, IP,and RR on the 4x3 problem for 8 stages.5The number of stages was determined by �nding themaximum number of stages that the witness algorithm wasable to complete within 7200 seconds. In some of the testproblems, the witness algorithm found the optimal in�nite-horizon value function in under 7200 seconds, so we pickedthe number of iterations required to converge to withinmachine precision of the optimal value function.

Table 2: Total execution time (sec.)TTOTALTest Problem Witness IP RR Exh.1D maze 9.3 2.3 2.3 2.24x3 727.1 346.0 157.0 >288004x4 3226.0 1557.0 909.2 216.7Cheese 351.8 215.7 203.3 >28800Part painting 5608.4 4249.2 5226.4 1116.9Network 6422.9 1066.6 722.5 >28800Aircraft ID 417.0 234.1 166.0 >28800Shuttle 1676.7 200.8 145.9 >288004x3 CO 24.6 22.8 22.7 >28800Table 3: Total execution time (sec.) for extended tests.TTOTALTest Problem Stages Witness IP RRNetwork 20 >28800 4976.8 2621.3Shuttle 9 >28800 5121.3 2767.7exhaustive algorithm was able to complete, it actuallyout performed all the other algorithms.For all but two of the test problems, the witness al-gorithm was within a factor of 5 of the performanceof RR. To highlight the advantage of the incremental-pruning-based algorithms, we chose the two test prob-lems for which RR was more than 5 times faster thanwitness (Network, 8.9, and Shuttle, 11.5), and ran fora larger number of stages. As shown in Table 3, thewitness algorithm is unable to solve a problem in 8hours that RR can solve in 43 minutes (2621 seconds).Although linear programming consumes most of therunning time in the algorithms we examined, thereare actually three phases of the value-iteration algo-rithm that contribute linear programs: �nding theminimum-size Saz sets, constructing the Sa sets fromthe Saz sets, and constructing S0 by combining the Sasets. Of these, only constructing the Sa sets is di�er-ent between witness, IP, and RR, so we have chosen topresent the execution times in two ways. The �rst, asillustrated in Table 2 as TTOTAL, represents the com-plete running time for all stages and all phases. Thesecond, shown in Table 4 as TSa�BUILD, is the exe-cution time over all stages that was devoted to con-structing the Sa sets from the Saz sets.As the data in Tables 2 and 4 show, IP performs betterthan the witness algorithm on all the test problems.These tables also show how di�cult it is to analyzethe exact amount of savings IP yields; the amount ofsavings achieved varies considerably across problems.



Table 1: Test problem parameter sizes.Test Problem States Acts. Obs. Stages jVf j Reference1D maze 4 2 2 70 44x3 11 4 6 8 436 Parr & Russell (1995)4x3 CO 11 4 11 367 4 Russell & Norvig (1994)4x4 16 4 2 374 20 Cassandra, Kaelbling, & Littman (1994)Cheese 11 4 7 373 14 McCallum (1993)Part painting 4 4 2 371 9 Kushmerick, Hanks, & Weld (1995)Network 7 4 2 14 438Shuttle 8 3 5 7 481 Chrisman (1992)Aircraft ID 12 6 5 4 258Table 4: Total time (sec.) spent constructing Sa sets.TSa�BUILDTest Problem Witness IP RR1D maze 7.1 <0.1 <0.14x3 599.1 220.5 31.04x4 2252.6 644.4 0.9Cheese 221.9 84.4 72.2Part painting 5226.5 3834.4 4819.5Network 5954.7 615.4 255.4Aircraft ID 359.1 176.4 108.3Shuttle 1566.2 92.5 38.14x3 CO 2.6 0.9 0.9For RR, the set D was de�ned by Equation 16 ifjBj < jAj and Equation 17 otherwise; in most cases,this is equivalent to using the equation that leads tothe smaller size for D. Looking at the data for RR, wesee that in all but one case it is faster than IP. Again,the precise amount of savings varies and is di�cult toquantify in general.7 DISCUSSION & CONCLUSIONSIn this paper, we examined the incremental pruningmethod for performing dynamic-programming updatesin partially observable Markov decision processes. In-cremental pruning compares favorably in terms of easeof implementation to the simplest of the previous al-gorithms (exhaustive), has asymptotic performance asgood as or better than the most e�cient of the previ-ous algorithms (witness), and is empirically the fastestalgorithm of its kind for solving a variety of standardpomdp problems.A complete incremental pruning algorithm (RR) isshown in Figure 4.There are several important outstanding issues thatshould be explored. The �rst is numerical precision|

DP-Update(S)1 for each a in A2 do for each z in Z3 do Saz  Filter (f�(�; a; z)j� 2 St�1g)4 Sa  IncPrune(Saz1 ; : : : ; Sazk)5 S0  Filter (Sa Sa)6 return S0IncPrune(Saz1 ; : : : ; Sazk)1 W  RR(Saz1 ; Saz2)2 for i 3 to k3 do W  RR(W;Sazi)4 return WRR(A;B)1 F  A� B2 W  ;3 for each s in S4 do !  argmax�2F es � �5 W  W [ f!g6 F  F n f!g7 while F 6= ;8 do (�+ �) 2 F9 D1  (f�g �B) [ f�1 + �j(�1 + �) 2Wg10 D2  (A� f�g) [ f�1 + �j(�+ �1) 2Wg11 if jBj < jAj12 then D  D113 else D  D214 x Dominate(�+ �;D)15 if x = ?16 then F  F n f�+ �g17 else !  argmax�2F x � �18 W  W [ f!g19 F  F n f!g20 return WFigure 4: Complete RR algorithm.



each of the algorithms we studied, witness, IP, andRR, have a precision parameter �, but the e�ect ofvarying � on the accuracy of the answer di�ers fromalgorithm to algorithm. Future work will seek to de-velop an algorithm with a tunable precision parameterso that sensible approximations can be generated.From a theoretical standpoint, there is still some workto be done developing better best-case and worst-caseanalyses for RR. This type of analysis might shed somelight on whether there is yet some other variation thatwould be a consistent improvement over IP.In any event, even the slowest variation of the incre-mental pruning method that we studied is a consistentimprovement over earlier algorithms. We feel that thisalgorithm will make it possible to greatly expand theset of pomdp problems that can be solved e�ciently.ReferencesBoutilier, C., and Poole, D. 1996. Computing optimalpolicies for partially observable decision processes us-ing compact representations. In Proceedings of theThirteenth National Conference on Arti�cial Intelli-gence, 1168{1175. AAAI Press/The MIT Press.Cassandra, A. R.; Kaelbling, L. P.; and Littman,M. L. 1994. Acting optimally in partially observ-able stochastic domains. In Proceedings of the TwelfthNational Conference on Arti�cial Intelligence, 1023{1028.Cheng, H.-T. 1988. Algorithms for Partially Observ-able Markov Decision Processes. Ph.D. Dissertation,University of British Columbia, British Columbia,Canada.Chrisman, L. 1992. Reinforcement learning withperceptual aliasing: The perceptual distinctions ap-proach. In Proceedings of the Tenth National Con-ference on Arti�cial Intelligence, 183{188. San Jose,California: AAAI Press.Hansen, E. A. 1994. Cost-e�ective sensing dur-ing plan execution. In Proceedings of the TwelfthNational Conference on Arti�cial Intelligence. AAAIPress/The MIT Press. 1029{1035.Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995.An algorithm for probabilistic planning. Arti�cialIntelligence 76(1-2):239{286.Littman, M. L.; Cassandra, A. R.; and Kaelbling,L. P. 1996. E�cient dynamic-programming updatesin partially observable Markov decision processes.Technical Report CS-95-19, Brown University, Prov-idence, RI.McCallum, R. A. 1993. Overcoming incomplete per-ception with utile distinction memory. In Proceedings

of the Tenth International Conference on MachineLearning, 190{196. Amherst, Massachusetts: Mor-gan Kaufmann.Monahan, G. E. 1982. A survey of partially observ-able Markov decision processes: Theory, models, andalgorithms. Management Science 28(1):1{16.Parr, R., and Russell, S. 1995. Approximating op-timal policies for partially observable stochastic do-mains. In Proceedings of the International Joint Con-ference on Arti�cial Intelligence.Platzman, L. K. 1981. A feasible computational ap-proach to in�nite-horizon partially-observed Markovdecision problems. Technical report, Georgia Insti-tute of Technology, Atlanta, GA.Russell, S. J., and Norvig, P. 1994. Arti�cial Intel-ligence: A Modern Approach. Englewood Cli�s, NJ:Prentice-Hall.Sawaki, K., and Ichikawa, A. 1978. Optimal controlfor partially observable Markov decision processesover an in�nite horizon. Journal of the OperationsResearch Society of Japan 21(1):1{14.Smallwood, R. D., and Sondik, E. J. 1973. The opti-mal control of partially observable Markov processesover a �nite horizon. Operations Research 21:1071{1088.Sondik, E. 1971. The Optimal Control of PartiallyObservable Markov Processes. Ph.D. Dissertation,Stanford University.Sondik, E. J. 1978. The optimal control of partiallyobservable Markov processes over the in�nite horizon:Discounted costs. Operations Research 26(2):282{304.Washington, R. 1996. Incremental Markov-modelplanning. In Proceedings of TAI-96, Eighth IEEE In-ternational Conference on Tools With Arti�cial In-telligence, 41{47.White, III, C. C., and Scherer, W. T. 1989. Solu-tion procedures for partially observed Markov deci-sion processes. Operations Research 37(5):791{797.White, III, C. C. 1991. Partially observed Markovdecision processes: A survey. Annals of OperationsResearch 32.Zhang, N. L., and Liu, W. 1996. Planning in stochas-tic domains: Problem characteristics and approxi-mation. Technical Report HKUST-CS96-31, Depart-ment of Computer Science, Hong Kong University ofScience and Technology.


