
4 Graphical Models for DiscoveringKnowledgeWray BuntineResearch Institute for Advanced Computing Sciences,Computational Sciences Division, NASA Ames Re-search Center AbstractThere are many di�erent ways of representing knowledge, and for each of these ways there aremany di�erent discovery algorithms. How can we compare di�erent representations? How can wemix, match and merge representations and algorithms on new problems with their own uniquerequirements? This chapter introduces probabilistic modeling as a philosophy for addressingthese questions and presents graphical models for representing probabilistic models. Probabilis-tic graphical models are a uni�ed qualitative and quantitative framework for representing andreasoning with probabilities and independencies.4.1 IntroductionPerhaps one common element of the discovery systems described in this and previousbooks on knowledge discovery is that they are all di�erent. Since the class of discov-ery problems is a challenging one, we cannot write a single program to address all ofknowledge discovery. The KEFIR discovery system applied to health care by Matheus,Piatetsky-Shapiro, and McNeill (1995), for instance, is carefully tailored for a particu-lar class of situations and could not have been easily used on the SKICAT application(Fayyad, Djorgovski, and Weir 1995). I do not know of a universal learning or discoveryalgorithm (Buntine 1990), and a universal problem description for discovery is arguablytoo broad to be used as a program speci�cation.As a consequence, the power to perform in an application lies in the way knowledgeabout the application is obtained, used, represented and modi�ed. Unfortunately with



66 Buntinetoday's technology, it is not possible to dump data into a discovery system and laterread o� the dollar savings. Rather one has to work closely with the experts involved, forinstance in selecting and customizing tools. See the chapter by Brachman and Anand(1995) in this book for an account of the interactive aspects of knowledge discovery.It is important then to have knowledge discovery techniques that allow 
exibility inthe way knowledge can be encoded, represented and discovered. Probabilistic graphi-cal models o�er such a technique. Probabilistic graphical models are a framework forstructuring, representing and decomposing a problem using the notion of conditionalindependence. They have special cases and variations including Bayesian networks, in-
uence diagrams, Markov networks, and causal probabilistic networks. These modelsare useful for the same reason that constraint satisfaction graphs are used in scheduling,data 
ow diagrams are used in scienti�c modeling, and fault trees are used in systemshealth management. They allow access to the structure of the problem without gettingbogged down in the mathematical detail. Probabilistic graphical models do this by repre-senting the variables in a problem and the relationships between them. Associated withgraphical models themselves are the mathematical details such as the equations linkingvariables in the model, and algorithms for performing exact and approximate inferenceon the model.Probabilistic graphical models are an attractive modeling tool for knowledge discoverybecause:� They are a lucid representation for a variety of problems, allowing key dependencieswithin a problem to be expressed and irrelevancies to be ignored. They are 
exibleenough to represent supervised and unsupervised learning systems, neural networks,and many hybrids.� They come with well understood techniques for key tasks in the discovery process:{ problem formulation and decomposition,{ designing a learning algorithm (Buntine 1994),{ identi�cation of valuable knowledge (using decision theory), and{ generation of explanations (Madigan, Mosurski, and Almond 1995).Only a simple form of graphical model is considered in this chapter, the Bayesian network.Reasoning about the value of knowledge on Bayesian networks can be done by adding\value" nodes, and using the tools of in
uence diagrams and utility theory (Shachter1986), part of modern decision theory. This is not covered in this chapter. Bayesiannetworks are introduced in Section 4.2, problem decomposition is discussed in Section 4.3,knowledge re�nement is discussed in Section 4.4, and relationships to a variety of learning



Graphical Models for Discovering Knowledge 67representations are discussed in Section 4.5. Implications to discovery are given in theconclusion.4.2 Introduction to graphical modelsGraphs are used to represent models. A model in general is some proposed representationof the problem at hand showing the di�erent variables involved, data and parameters,and the probabilistic or deterministic relationships between them. The basic model weconsider consists of nodes representing variables, and arcs that indicate dependenciesbetween variables (or, no arcs indicating independencies). The variables representedmay be real valued or discrete, and may be� variables whose values are given in the data,� \hidden" variables believed to exist such as medical syndromes or hypothesizedclasses in a data base of stars, or� parameters used to specify a model such as the weights in a neural network, thestandard deviation of a Gaussian, the radius of di�usion in an instrument, or theerror rate along a transmission channel.These are all variables but often considered di�erent from data. Their di�erence beingthat some might have their values currently known, some might be revealed to us in thefuture, some we might reasonably measure indirectly, and some we only hypothesize theyexist and use the calculus of probability to estimate.Below we introduce the basic kind of graphical model, a Bayesian network, and give abrief insight into its interpretation. This brief tour is necessary before applying graphicalmodels to discovery and learning. A Bayesian network is a graphical model that usesdirected arcs exclusively to form an directed acyclic graph (i.e., a directed graph withoutdirected cycles). Figure 4.1, adapted from Shachter and Heckerman (1987), shows a
Occupation ClimateAge

DiseaseSymptomsFigure 4.1A simpli�ed medical problem.simple Bayesian network for a simpli�ed medical problem. This graph represents a



68 Buntinedomain model for the problem. This organizes variables in the way the medical specialistwould usually like to understand the problem, and arcs in the graph intuitively correspondto the notion can cause or in
uence. For instance, it may be thought that disease causessymptoms, and that age, occupation and climate causes disease. Under no stretch ofthe imagination could a disease be said to be caused by its symptoms1. The graph ofFigure 4.1 can also be called a causal model. Other graphical models might representthe variables in a di�erent ordering depending on whether the graph is being used torepresent the domain model, a computational model for use by a program, or a particularview representative of some user. Graphical models can be manipulated to represent allthese di�erent views of a probabilistic knowledge base.Graphical models are a language for expressing problem decomposition. They showhow to decompose a problem into simpler subproblems. For a directed acyclic graph,this is done by a conditional decomposition of the joint probability (see, for instance,Lauritzen et al. [1990], and Pearl [1988] for more detail including other interpretations).This is as follows (full variable names have been abbreviated). M here represents thecontext. All probability statements are relative to context (context is dropped in laterdiscussions for brevity).p(Age;Occ; Clim;Dis; SympjM ) = (4.2.1)p(AgejM ) p(OccjM ) p(ClimjM ) p(DisjAge;Occ; Clim;M ) p(SympjDis;M ) :Each variable is written down conditioned on its parents, where parents(x) is the set ofvariables with a directed arc into x. The general form for this for a set of variables X isp(XjM ) = Yx2X p(xjparents(x);M ) : (4.2.2)Compare Equation (4.2.1) with one way of writing the complete joint probability:p(Age;Occ; Clim;Dis; SympjM ) = p(AgejM ) p(OccjAge;M ) (4.2.3)p(ClimjAge;Occ;M ) p(DisjAge;Occ; Clim;M ) p(SympjAge;Occ; Clim;Dis;M ) :This complete joint is an identity of probability theory, and makes no independenceassumptions about the problem.Probability models such as these are used primarily for performing inference on newproblems. Graphical models are useful here because many kinds of inference can be per-formed on them. Basic inference involves calculating probabilities for arbitrary sets ofvariables (Shachter, Andersen and Szolovits 1994). Graphical models have been used indomains such as diagnosis, probabilistic expert systems, in planning and control (Dean1Unless there was some kind of time delay and feedback involved.



Graphical Models for Discovering Knowledge 69and Wellman 1991; Chan and Shachter 1992), and in statistical analysis of data (Gilks,Thomas, and Spiegelhalter 1993), which is often more goal directed than typical knowl-edge discovery. Graphical models also generalize some aspects of Kalman �lters (Poland1994) used in control and hidden Markov models, the basic tool used in speech recogni-tion (Rabiner and Juang 1986) and fault diagnosis (Smyth and Mellstrom 1992). There-fore graphical models are also used for dynamic systems and forecasting (Kj�ru� 1992;Dagum et al. 1995). Various methods for learning simple kinds of graphical models fromdata also exist (Heckerman 1995). More extensive introductions to probabilistic graph-ical models can be found in (Henrion, Breese, and Horvitz 1991; Whittaker 1990; Pearl1988; Spiegelhalter et al. 1993), and to learning in graphical models can be found in(Spiegelhalter et al. 1993; Buntine 1994; Heckerman 1995).4.3 Problem decompositionLearning and discovery problems rarely come neatly packaged and labeled according totheir type. It is common for the practitioner to spend some time analyzing a problem asto how and where data analysis should be applied. This analysis and decomposition of aproblem is routinely done for knowledge acquisition and software development, but hasnot attracted as much attention in the data analysis, discovery and learning literature.This section introduces the technique of problem decomposition using graphical models.The reasons for doing decomposition are two-fold. First and clearly, simplifyinga problemis good in itself. Second and more importantly, a simpler model is easier to learn fromdata because it has less parameters. This makes discovery feasible and more reliable.Graphical models are a convenient way of making the structure of the decompositionapparent without going into the precise mathematical detail.This section illustrates the process of problem decomposition by working through anexample of topic spotting. Several other examples could equally well have illustratedthis process. The topic spotting example addresses two common problems in supervisedlearning: a large input space and a multi-class decision problem.Associated Press produces short newswires at a rate of tens of thousands per year.These come in approximately 90 broad topics and contain in all some 11,000 di�erentwords. Although a single newswire may only be 400 words long. A typical newswire isgiven below.PRECIOUS METALS CLIMATE IMPROVING, SAYS MONTAGULONDON, April 1 { The climate for precious metals is improving with pricesbene�ting from renewed in
ation fears and the switching of funds from dollarand stock markets ... Silver prices in March gained some 15 pct in dollar



70 Buntineterms due to a weak dollar and silver is felt to be fairly cheap relative to gold... The report said the �rmness in oil prices was likely to continue in the shortterm ...REUTERThe topics for this newswire are gold, silver and precious metals. The topics for any givennewswire are often given in the subject line, as written by the author of the newswire.However, we ignore this for the purposes of illustration.Suppose we wish to predict the topics from the text of the newswire, ignoring thesubject line. The naive approach is to attempt to predict the 90 topics from the 400words using a monolithic classi�er with 11,000 inputs. Instead, this problem can bereadily decomposed: The 90 or so topics can be broken down into sub-topics and co-topics because the topic space has a rich structure. Moreover, the space of input wordshas structure itself: Suppose a newswire is known to have the topic \precious metals".The presence of the word \beef" is irrelevant when trying to determine whether thesub-topic is gold or silver. However, the word \beef" would be relevant if the topic wereknown to be relevant to agriculture.A partial decomposition for this problem is given in Figure 4.2. These three Bayesian
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Graphical Models for Discovering Knowledge 71words in the newswire text. Variables consisting of quoted words indicate whether theword appears in the text. For instance, the variable \gold" in Figure 4.2(a) will be true ifthe word gold appears in the text, and false otherwise. Note this is di�erent to whetherthe topic of the text is gold. In practice, word frequency counts are used and there aremany more hundreds of words. Ignore this complication for the purposes of illustration.Also, all these quoted variables appear in shaded nodes. This indicates that we have thetext before us, so we know the value of each of these word variables, whereas we do notknow the topics.Each topic now has its own graph to predict subtopics, and perhaps sub-subtopics.For instance, Figure 4.2(b) shows a sample subtopic graph for precious metals. Noticethis graph has the top boolean variable precious-metals whose value is known to be true.This notation is used to indicate that this subgraph is contingent on precious-metalsbeing a true topic. Likewise, Figure 4.2(c) shows a graph contingent on either cattle ordiary being true. This graph assumes at least one of them is true and is used to predictwhether one, the other, or both are true.Probability is the unifying framework used to combine these di�erent graphical modelsinto a global model to predict the complete set of topics. This is done as follows: AdaptingEquation (4.2.2) for the three graphs of Figure 4.2 yield three formulae for the followingprobabilities:� p(precious-metals; banking; exchange; commodities; agriculture; tourismj\ChicagoBoard"; \gold"; \weather"; \Citicorp"; etc:)� p(gold; silver; platinumjprecious-metals = true; \gold"; etc:)� p(dairy; cattlejdairy = true OR cattle = true; \beef"; \McDonald0s"; etc:)Likewise, corresponding formulae are obtained for the other graphs not depicted here.These probabilities can then be manipulated and combined to yield individual proba-bilities. For instance, suppose we wish to evaluate the probability p(silverjnewswire),where newswire indicates the contents of the newswire is given and so all the words like\beef" are also given. This can be computed using the two probability identities:p(silverjnewswire) =p(silverjprecious-metals = true; newswire) p(precious-metals = truejnewswire)p(silverjprecious-metals = true; newswire) =Xgold2fT;Fg Xplatinum2fT;Fgp(gold; silver; platinumjprecious-metals = true; newswire)where p(precious-metals = truejnewswire) is computed similarly by summing out theother topic variables in Figure 4.2(a). Methods for combining probabilities frommultiple



72 Buntinenetworks can involve more complex schemes. A method developed for medical diagnosisthat is suitable to the topic spotting problem considered here is similarity networks(Heckerman 1990). This is based on many graphs of the form of Figure 4.2(c) used todistinguish pairs of topics.There are number of interesting questions for this decomposition approach. How dowe develop such a decomposition? In diagnosis domains such as medicine, this kindof decomposition has been done manually in the development of probabilistic expertsystems. It is found that experts are able to explain their own decompositions of aproblem. Second, how can the decomposition be done automatically? While this is anopen research question, standard techniques for learning should adapt to the task.4.4 Knowledge Re�nementUnsupervised learning is a standard tool in statistics and pattern recognition. A wellknown example in discovery is the Autoclass application to the IRAS star database(Cheeseman and Stutz 1995). While these applications of unsupervised learning some-times proceed routinely, it is more often the case that discovery is an iterative process.Initial exploration reveals some details and the discovery algorithm is modi�ed as a result.Here, the discovery process parallels the iterative re�nement strategies popular in soft-ware engineering. These strategies are made possible by rapid prototyping software suchas Tcl/Tk used for developing interfaces (Ousterhout 1994). This aspect of discovery isdiscussed further by Brachman and Anand (1995). The application of iterative re�ne-ment to knowledge discovery and knowledge acquisition is one way of viewing knowledgere�nement (Ginsberg, Weiss, and Politakis 1988; Towell, Shavlik, and Noordewier 1990).An application where this kind of re�nement was required is the analysis of aviationsafety data given by Kraft and Buntine (1993). The task was to discover classes ofaircraft incidents. In this case, standard unsupervised learning revealed incident classesthat the domain expert believed were confounded by basic relationships expected in thedata. A graphical model illustrating and simplifying the standard unsupervised learningis given in Figure 4.3. The algorithm used in this initial investigation was an algorithmcalled SNOB (Wallace and Boulton 1970), related to Autoclass. This algorithm buildsa classi�cation model as represented in the �gure. For a given aircraft incident, detailsare recorded on the pilot, the controller, the kind of aircraft, its mission, and otherinformation. Figure 4.3 indicates that if a set of aircraft is of the same hidden incidentclass, then the details recorded are rendered independent. That is, the joint probabilityof the recorded details and the hidden incident class read from the graph isp(incident-class) p(airspacejincident-class) p(controllerjincident-class)
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ight: for instance, wide-body aircraft do not go on joy rides. In some cases,these relationships where encoded as requirements of the Federal Aviation Authority,and in other cases they were well understood causal relationships. The discovered classesof aircraft incidents tended to be confounded by these known relationships. A wayaround this problem is to construct a hybrid model as given in Figure 4.4. The expectedrelationships are encoded into the model. For instance, that the pilot's quali�cationsare in
uenced by the aircraft, and that the facility tracking the aircraft depends onthe type of aircraft and which airspace it is in (commercial, private and military air-craft have di�erent behaviors) are encoded. This leaves the hidden incident class toexplain the remaining regularity in the domain. That is, probability tables would beelicited from the aviation psychologists for the understood probability relations such asp(controllerjfacility; aircraft) and these �xed in the model. The learning system nowneeds to re�ne the model by �lling in the remaining parts of the model that are leftunspeci�ed by this knowledge elicitation.Again, there are a number of interesting questions about this re�nement approach.How can the re�nement algorithm proceed with some parts of model �xed? This is not adi�cult problem in the sense that standard algorithm schemes like the expectation max-
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airspaceFigure 4.4Hybrid unsupervised model of the aircraft incident domain.imization (EM) algorithm used in SNOB and Autoclass are known to handle learning inthis context (Buntine 1994). Software suited to this exact task is not currently available,however. So on this problem the iterative re�nement process of knowledge discoverystops after one iteration, due to lack of available software.4.5 Models for Learning and DiscoveryThis section outlines how various learning and discovery representations can be modeledwith probabilistic graphical models. A characteristic problem is given along with thegraphical model. The intention is to illustrate the rich variety of discovery tasks that canbe represented with graphical models. Given the generality of the language, it should beclear that many hybrid models are represented as well, such as the hybrid unsupervisedmodel of Figure 4.4.The graphical models given here have their model parameters as well as the probleminputs marked as known. Of course, in the practice of data analysis, the model parametersare unknown and need to be learned from the data, and the training set or sample willusually have both problem inputs and outputs known for each case in the set. However,this represents the subsequent inference task underlying the problem, not the learningproblem itself. In some cases, the functional form is also given for the probabilistic modelimplied by the graphical model.4.5.1 Linear regressionLinear regression is the classic method in statistics for doing curve �tting, that is, predict-ing a real valued variable from input variables, real or discrete. See Casella and Berger



Graphical Models for Discovering Knowledge 75(1990), for instance, for a standard undergraduate introduction. Linear regression, inits most general form, �ts non-linear curves as well because the term \linear" impliesthat the mean prediction for the variable is a linear function of the parameters of themodel, but can be a non-linear function of the input variables. In the standard model,a Gaussian error function with constant standard deviation is used. This is shown inFigure 4.5. This is an instance of a generalized linear model (McCullagh and Nelder
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GaussianFigure 4.5Linear regression with Gaussian error.1989), so has a linear node at its core. The M basis functions basis1; : : : ; basisM areknown deterministic functions of the input variables x1; : : : ; xn. Variables that are de-terministic functions of their inputs are represented with deterministic nodes that havedouble ellipses. These deterministic functions would typically be non-linear orthogonalfunctions such as Legendre polynomials. The linear node combines these linearly withthe parameters � to produce the mean m for the Gaussian.m = MXi=1 �ibasisi(x) :The graphical model of Figure 4.5 implies the above equation (each deterministic nodeimplies an equality holds) and the conditional probabilityp(yjx1; : : : ; xn; �; �) = 1p2��e�(y�m)2=2�2 ;the standard normal density with mean m and standard deviation �. This graph alsoshows that the inputs x1 to xn are given, and so there is no particular distribution forthem.



76 Buntine4.5.2 Weighted rule-based systemsWeighted rule-based systems are an interesting representation because they have beenindependently suggested in arti�cial intelligence, neural networks, and statistics, witheach community using their own notation. The system, given in Figure 4.6, is the discreteversion of the linear regression network given in Figure 4.5. Like linear regression, this is
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LogisticFigure 4.6A weighted rule network.also an instance of a generalized linear model, so has the linear construction of Figure 4.5at its core. Each of the deterministic nodes for variables rule1; : : : ; rulem represents arule, an indicator function with the value 1 if the rule �res, and the value 0 otherwise.Those rules that �re cause weights (�) to be added up, and consequently a prediction tobe made.In the binary classi�cation case (c 2 f0; 1g), when multiple rules �re, probability thatthe class c = 1 is given by the transformationp(c = 1jx1; : : : ; xn; �) = Logistic�1  mXi=1 rulei�i!The functional type for the Logistic node is the function,p(c = 1ju) = eu1 + eu = 1� Sigmoid(u) = Logistic�1(u) ; (4.5.4)which maps a real value u onto a probability for the binary variable c. This function isthe inverse of the logistic or logit function used in generalized linear models, and is alsorelated to the sigmoid function used in feed-forward neural networks.



Graphical Models for Discovering Knowledge 77According to this weighting scheme, if a rule rulei �res in isolation, the probabilitythat class c = 1 becomes Logistic�1(�i). Hence �i can be interpreted as the log odds ofpi (Logistic(pi)), where pi is the probability that c will be 1 when only the single rule i�res. If multiple rules �re then this formula corresponds to combining the probabilities piusing the original Prospector combining formula (Duda, Hart, and Nilsson 1976; Berkaand Iv�anek 1994)Combine(pi; pj) = pi � pjpi � pj + (1� pi) � (1� pj) :This combining formula is associative and commutative so the order of combination isirrelevant.This approach thus implements a weighted rule-based system for classi�cation using theProspector combining formula. The model can also be interpreted as a neural networksince the output node corresponds to a sigmoid, and the intermediate deterministic nodescan be interpreted as unparameterized hidden nodes. By using other combination rulesdi�erent e�ects can be achieved; even for instance, fuzzy-style combinations.4.5.3 Hierarchical mixtures of expertsJordan and Jacobs (1993) have developed a classi�cation approach based on the notionof a \mixture of experts". Like the weighted rule-based system, this model predicts aclass c from a vector of inputs x. It does so, however, by combining a number of linearmodels to form a more complex classi�er.The decision tree representation and the DAG for this mixture model is given in theleft and right of Figure 4.7 respectively. The decision tree is presented here for the caseof discrete variables. In general both inputs and outputs can be real valued or discrete.Traversing the tree in the left of the �gure down to a leaf node leads one to the leaf,which represents an \expert". These experts then combine to make the prediction for theclass c. The prediction is done with a log-linear model, using the parameters �0 = �g1g2 ,for the two \gates" g1; g2. Suppose the class is C-valued, so c 2 f1; 2; : : :; Cg. The classprediction is:p(c = ijx; �0) = log-linear(i; x; �0) = ex��0iPCj=1 ex��0i :This is similar to the weighted rule-based system described in Section 4.5.2, where therules correspond to the vector x. �0 is a matrix of dimension C � dim(x), and by con-vention �0C = 0. For c binary, this is equivalent to the logistic node used in Section 4.5.2.The decision tree also has two variables denoting \gates", g1 at the �rst node and g2at the two second level nodes, however, these are not present in the data. The values
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Graphical Models for Discovering Knowledge 794.5.4 Unsupervised learningThere are a range of unsupervised learning systems in statistics, neural networks, andarti�cial intelligence. Many of these can be represented as graphical models with hiddennodes that are used to represent hidden classes. In a sense, the learning of Bayesiannetworks from data can be called unsupervised learning as well, however, it is moreaccurately termed model discovery. This is described by Heckerman (1995). The aviationsafety model given in Figure 4.4 is a hybrid of these di�erent kinds of models.Consider Autoclass III and the probabilistic unsupervised learning systems it is basedon. For instance, a simple Autoclass III classi�cation for three boolean variables var1;var2 and var3 has the parameterization �, �1, �2 and �3 given in Figure 4.8. The
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φclassFigure 4.8Explicit parameters for a simple Autoclass model.class is unobserved or \hidden". If the class assignment where known, then the variablesvar1, var2 and var3 would be rendered statistically independent, or \explained" in somesense. More complex models allow correlations between variables, but Autoclass III doesnot introduce this. The parameters � (a vector of class probabilities) here gives theproportions for the hidden classes, and the three parameters �1, �2 and �3 give how thevariables are distributed within each hidden class. For instance, if there are 10 classes,then � is a vector of 10 class probabilities such that the prior probability for a case beingin class c is �c. If var1 is a binary variable, then �1 would be 10 probabilities, one foreach class, such that if the case is known to be in class c, then the probability var1 istrue is given by �1;c and the probability var1 is false is given by 1� �1;c.There are many other models for unsupervised learning that can be similarly repre-sented with probabilistic graphs. Sometimes this includes undirected graphs or mixturesof directed and undirected graphs (Buntine 1994). This includes the stochastic networksused in Hop�eld models and others in neural networks Hertz, Krogh, and Palmer (1991),



80 Buntinemore complex unsupervised learning systems such as Autoclass IV which has a varietyof covariances (Hanson, Stutz, and Cheeseman 1991), and systems with multiple classes.4.6 Learning algorithmsMethods have been developed for learning simple discrete and Gaussian Bayesian net-works from data, and for learning simple unsupervised models such as those mentioned inSection 4.5.4. Given that all the previous models such as linear regression and weightedrule-based systems can also be represented as Bayesian networks, will these same learningalgorithms apply? Unfortunately not. However, there are general categories of algorithmschemes for learning that can be mixed and matched to these various problems. Four cat-egories considered here are represented by the models they address, given in Figure 4.9.This section brie
y explains these categories. Algorithms for learning them are described
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(d)Figure 4.9Four categories of models.in (Buntine 1994), and references therein.The simplest category of learning models have exact, closed form solutions to thelearning problem. This category is the exponential family of distributions, which includesthe Gaussian, the multinomial, and other basic distributions (Bernardo and Smith 1994),but also the decision tree or Gaussian Bayesian network of known �xed structure, andlinear regression with Gaussian error described in Section 4.5.1. These exponential familydistributions all have closed form solutions to the learning problem which are linear in the



Graphical Models for Discovering Knowledge 81sample size (Bernardo and Smith 1994; Buntine 1994). For instance, ifX has a univariateGaussian distribution, then we estimate its unknown mean and standard deviation fromthe sample mean and sample standard deviation (usually along with some adjustmentto make the estimate unbiased). No search or numerical optimization is involved. Theexponential family category is represented by the exponential model in Figure 4.9(a).The probability model for the data given the parameters, p(Xj�) is shown in this �gureto be in the exponential family.Two important categories of learning models are based on the exponential family cat-egory. The second category of learning models is where a useful subset of the modeldoes fall into the exponential family. This is represented by the partial exponential modelin Figure 4.9(b). The part of the problem that is exponential family can be solved inclosed form, as mentioned above. The remaining part of the problem is typically han-dled approximately. Decision trees and Bayesian networks over multinomial or Gaussianvariables fall into second category (Buntine 1991a; Buntine 1991b; Spiegelhalter et al.1993) when the structure of the tree or network is not known, as does linear regressionwith subset selection of relevant variables. In the �gure, this is represented as follows. Ifwe know the structure T , then the model is in the exponential family with parameters�T . So the probability model p(Xj�T ; T ) is in the exponential family if we hold T �xed.The third category of learning models is where, if some hidden variables are introducedinto the data, the problem becomes exponential family if the hidden values were known.This is represented by the mixture model in Figure 4.9(c). In general, this family ofmodels has that p(XjC; �) is in the exponential family where C is the hidden variable (orvariables) and � are the model parameters. C does not occur in the data so this yieldsa probability model for X given by:p(Xj�) = XC p(XjC; �) p(Cj�) :Two examples of this category are the mixture of experts model of Section 4.5.3, andthe unsupervised learning models mentioned in Section 4.5.4. This category of modelsare used to model unsupervised learning, incomplete data in the classi�cation problems,robust regression, and general density estimation (Titterington et al. 1985). The mixturemodel category can often be learned using the EM algorithm. The EM algorithm hasan inner loop using the closed form solution found for the underlying exponential familymodel.The �nal category of problems is a catch-all represented by the generic model in Fig-ure 4.9(d). In this case the data X has the unconstrained probability model p(Xj�), andwe assume nothing about its form. This includes feed-forward neural networks and theweighted rule-based model of Section 4.5.2. These models can be learned by algorithms



82 Buntinesuch as the maximuma posteriori (MAP) algorithm and other general error minimizationschemes. Notice that in general the other three categories of learning models can be castinto this form by ignoring some structural detail of the model. Hence the algorithms likethe MAP algorithm can be applied to all the other categories of learning models as well.4.7 ConclusionThe graphical component of the probabilistic models presented here is only relevant asa visual aid for describing models. However, the graphs provide a structural view of aprobability model without getting lost in the mathematical detail. This is invaluable inthe same way that a qualitative physical model can be invaluable for explaining behaviorwithout recourse to the numeric detail. So what of probabilistic modeling? What doesall this buy you?First, probabilistic models provide a language for performing problem decompositionand recomposition, illustrated in Section 4.3, and knowledge re�nement, illustrated inSection 4.4. Inference on the probabilistic models developed can be performed using avariety of probabilistic inference schemes, as listed in Section 4.2.Second, because of the 
exibility of probabilistic graphical models, they are a suitablelanguage to represent a wide variety of learning models. Of course, the same can be saidof C++. However, probabilistic models allow probability theory to be applied directlyto derive inference algorithms via principles such as maximum likelihood, maximuma posterior, and other probabilistic schemes. Some relevant algorithms are discussedin Section 4.6. This o�ers a unifying conceptual framework for the developer, with, forinstance, smooth transitions into other modes of probabilistic reasoning such as diagnosis,explanation, and information gathering.Third, this probabilistic framework o�ers a computational approach to developinglearning and discovery algorithms. The conceptual framework for this is given in Fig-ure 4.10. Probability and decision theory are used to decompose a problem into a com-putational prescription, and then search and optimization techniques are used to �ll theprescription. A software tool exists that implements a special case of this conceptualframework using Gibbs sampling as the computational scheme (Gilks et al. 1993). TheGibbs sampler is but one family of algorithms, and many more can be �t into this generalframework. As explained by Buntine (1994), the framework of Figure 4.10 can use thecategories of learning models described in Section 4.6 as its basis.The real gain from the scheme of Figure 4.10 does not arise from the potential re-implementation of existing software, but from understanding gained by putting di�erentmodels for learning and discovery in a common language, the ability to create novel hybrid
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