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Abstract

There are many different ways of representing knowledge, and for each of these ways there are
many different discovery algorithms. How can we compare different representations? How can we
mix, match and merge representations and algorithms on new problems with their own unique
requirements? This chapter introduces probabilistic modeling as a philosophy for addressing
these questions and presents graphical models for representing probabilistic models. Probabilis-
tic graphical models are a unified qualitative and quantitative framework for representing and

reasoning with probabilities and independencies.

4.1 Introduction

Perhaps one common element of the discovery systems described in this and previous
books on knowledge discovery is that they are all different. Since the class of discov-
ery problems is a challenging one, we cannot write a single program to address all of
knowledge discovery. The KEFIR, discovery system applied to health care by Matheus,
Piatetsky-Shapiro, and McNeill (1995), for instance, is carefully tailored for a particu-
lar class of situations and could not have been easily used on the SKICAT application
(Fayyad, Djorgovski, and Weir 1995). T do not know of a universal learning or discovery
algorithm (Buntine 1990), and a universal problem description for discovery is arguably
too broad to be used as a program specification.

As a consequence, the power to perform in an application lies in the way knowledge
about the application is obtained, used, represented and modified. Unfortunately with
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today’s technology, it is not possible to dump data into a discovery system and later
read off the dollar savings. Rather one has to work closely with the experts involved, for
instance in selecting and customizing tools. See the chapter by Brachman and Anand
(1995) in this book for an account of the interactive aspects of knowledge discovery.

It is important then to have knowledge discovery techniques that allow flexibility in
the way knowledge can be encoded, represented and discovered. Probabilistic graphi-
cal models offer such a technique. Probabilistic graphical models are a framework for
structuring, representing and decomposing a problem using the notion of conditional
independence. They have special cases and variations including Bayesian networks, in-
fluence diagrams, Markov networks, and causal probabilistic networks. These models
are useful for the same reason that constraint satisfaction graphs are used in scheduling,
data flow diagrams are used in scientific modeling, and fault trees are used in systems
health management. They allow access to the structure of the problem without getting
bogged down in the mathematical detail. Probabilistic graphical models do this by repre-
senting the variables in a problem and the relationships between them. Associated with
graphical models themselves are the mathematical details such as the equations linking
variables in the model, and algorithms for performing exact and approximate inference
on the model.

Probabilistic graphical models are an attractive modeling tool for knowledge discovery
because:

e They are a lucid representation for a variety of problems, allowing key dependencies
within a problem to be expressed and irrelevancies to be ignored. They are flexible
enough to represent supervised and unsupervised learning systems, neural networks,
and many hybrids.

e They come with well understood techniques for key tasks in the discovery process:

— problem formulation and decomposition,

designing a learning algorithm (Buntine 1994),

— identification of valuable knowledge (using decision theory), and

generation of explanations (Madigan, Mosurski, and Almond 1995).

Only a simple form of graphical model is considered in this chapter, the Bayesian network.
Reasoning about the value of knowledge on Bayesian networks can be done by adding
“value” nodes, and using the tools of influence diagrams and utility theory (Shachter
1986), part of modern decision theory. This is not covered in this chapter. Bayesian
networks are introduced in Section 4.2, problem decomposition is discussed in Section 4.3,
knowledge refinement is discussed in Section 4.4, and relationships to a variety of learning
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representations are discussed in Section 4.5. Implications to discovery are given in the
conclusion.

4.2 Introduction to graphical models

Graphs are used to represent models. A model in general 1s some proposed representation
of the problem at hand showing the different variables involved, data and parameters,
and the probabilistic or deterministic relationships between them. The basic model we
consider consists of nodes representing variables, and arcs that indicate dependencies
between variables (or, no arcs indicating independencies). The wariables represented
may be real valued or discrete, and may be

e variables whose values are given in the data,

e “hidden” variables believed to exist such as medical syndromes or hypothesized
classes in a data base of stars, or

e parameters used to specify a model such as the weights in a neural network, the
standard deviation of a Gaussian, the radius of diffusion in an instrument, or the
error rate along a transmission channel.

These are all variables but often considered different from data. Their difference being
that some might have their values currently known, some might be revealed to us in the
future, some we might reasonably measure indirectly, and some we only hypothesize they
exist and use the calculus of probability to estimate.

Below we introduce the basic kind of graphical model, a Bayesian network, and give a
brief insight into its interpretation. This brief tour is necessary before applying graphical
models to discovery and learning. A Bayesian network is a graphical model that uses
directed arcs exclusively to form an directed acyclic graph (i.e., a directed graph without
directed cycles). Figure 4.1, adapted from Shachter and Heckerman (1987), shows a

Figure 4.1
A simplified medical problem.

simple Bayesian network for a simplified medical problem. This graph represents a
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domain modelfor the problem. This organizes variables in the way the medical specialist
would usually like to understand the problem, and arcs in the graph intuitively correspond
to the notion can cause or influence. For instance, it may be thought that disease causes
symptoms, and that age, occupation and climate causes disease. Under no stretch of
the imagination could a disease be said to be caused by its symptoms!. The graph of
Figure 4.1 can also be called a causal model. Other graphical models might represent
the variables in a different ordering depending on whether the graph is being used to
represent the domain model, a computational model for use by a program, or a particular
view representative of some user. Graphical models can be manipulated to represent all
these different views of a probabilistic knowledge base.

Graphical models are a language for expressing problem decomposition. They show
how to decompose a problem into simpler subproblems. For a directed acyclic graph,
this is done by a conditional decomposition of the joint probability (see, for instance,
Lauritzen et al. [1990], and Pearl [1988] for more detail including other interpretations).
This is as follows (full variable names have been abbreviated). M here represents the
context. All probability statements are relative to context (context is dropped in later
discussions for brevity).

p(Age, Occ, Clim, Dis, Symp|M) = (4.2.1)
p(Age| M) p(Oce| M) p(Clim|M) p(Dis|Age, Oce, Clim, M) p(Symp|Dis, M) .

Fach variable is written down conditioned on its parents, where parents(z) is the set of
variables with a directed arc into #. The general form for this for a set of variables X is

p(X|M) = H p(x|parents(x), M) . (4.2.2)

Compare Equation (4.2.1) with one way of writing the complete joint probability:

p(Age, Oce, Clim, Dis, Symp|M) = p(Age|M)p(Oce|Age, M) (4.2.3)
p(Clim|Age, Oce, M) p(Dis|Age, Occ, Clim, M) p(Symp|Age, Oce, Clim, Dis, M) .

This complete joint is an identity of probability theory, and makes no independence
assumptions about the problem.

Probability models such as these are used primarily for performing inference on new
problems. Graphical models are useful here because many kinds of inference can be per-
formed on them. Basic inference involves calculating probabilities for arbitrary sets of
variables (Shachter, Andersen and Szolovits 1994). Graphical models have been used in
domains such as diagnosis, probabilistic expert systems, in planning and control (Dean

1Unless there was some kind of time delay and feedback involved.
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and Wellman 1991; Chan and Shachter 1992), and in statistical analysis of data (Gilks,
Thomas, and Spiegelhalter 1993), which is often more goal directed than typical knowl-
edge discovery. Graphical models also generalize some aspects of Kalman filters (Poland
1994) used in control and hidden Markov models, the basic tool used in speech recogni-
tion (Rabiner and Juang 1986) and fault diagnosis (Smyth and Mellstrom 1992). There-
fore graphical models are also used for dynamic systems and forecasting (Kjeeruff 1992;
Dagum et al. 1995). Various methods for learning simple kinds of graphical models from
data also exist (Heckerman 1995). More extensive introductions to probabilistic graph-
ical models can be found in (Henrion, Breese, and Horvitz 1991; Whittaker 1990; Pearl
1988; Spiegelhalter et al. 1993), and to learning in graphical models can be found in
(Spiegelhalter et al. 1993; Buntine 1994; Heckerman 1995).

4.3 Problem decomposition

Learning and discovery problems rarely come neatly packaged and labeled according to
their type. It is common for the practitioner to spend some time analyzing a problem as
to how and where data analysis should be applied. This analysis and decomposition of a
problem is routinely done for knowledge acquisition and software development, but has
not attracted as much attention in the data analysis, discovery and learning literature.
This section introduces the technique of problem decomposition using graphical models.
The reasons for doing decomposition are two-fold. First and clearly, simplifying a problem
is good in itself. Second and more importantly, a simpler model is easier to learn from
data because it has less parameters. This makes discovery feasible and more reliable.
Graphical models are a convenient way of making the structure of the decomposition
apparent without going into the precise mathematical detail.

This section illustrates the process of problem decomposition by working through an
example of topic spotting. Several other examples could equally well have illustrated
this process. The topic spotting example addresses two common problems in supervised
learning: a large input space and a multi-class decision problem.

Associated Press produces short newswires at a rate of tens of thousands per year.
These come in approximately 90 broad topics and contain in all some 11,000 different
words. Although a single newswire may only be 400 words long. A typical newswire is
given below.

PRECIOUS METALS CLIMATE IMPROVING, SAYS MONTAGU
LONDON, April 1 — The climate for precious metals is improving with prices
benefiting from renewed inflation fears and the switching of funds from dollar
and stock markets ... Silver prices in March gained some 15 pct in dollar
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terms due to a weak dollar and silver is felt to be fairly cheap relative to gold
... The report said the firmness in o1l prices was likely to continue in the short
term ...

REUTER

The topics for this newswire are gold, silver and precious metals. The topics for any given
newswire are often given in the subject line, as written by the author of the newswire.
However, we ignore this for the purposes of illustration.

Suppose we wish to predict the topics from the text of the newswire, ignoring the
subject line. The naive approach is to attempt to predict the 90 topics from the 400
words using a monolithic classifier with 11,000 inputs. Instead, this problem can be
readily decomposed: The 90 or so topics can be broken down into sub-topics and co-
topics because the topic space has a rich structure. Moreover, the space of input words
has structure itself: Suppose a newswire is known to have the topic “precious metals”.
The presence of the word “beef” is irrelevant when trying to determine whether the
sub-topic is gold or silver. However, the word “beef” would be relevant if the topic were
known to be relevant to agriculture.

A partial decomposition for this problem is given in Figure 4.2. These three Bayesian

(b)

precious metals = true

(c

)

Figure 4.2
Three components of a topics-subtopics model (shaded nodes have known values).

networks are different to the previous in that some nodes are shaded and some are not. By
convention, shaded nodes have their values known at the time of inference, and unshaded
nodes do not. The partial decomposition goes as follows: First, we break the 90 topics up
into groups. In Figure 4.2(a) these are the boolean variables agriculture, precious-metals,
tourism and so forth. These topic variables can be recognized as the unshaded nodes in
the graph. This graph is a model for these topics conditioned on the presence of various
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words in the newswire text. Variables consisting of quoted words indicate whether the
word appears in the text. For instance, the variable “gold” in Figure 4.2(a) will be true if
the word gold appears in the text, and false otherwise. Note this is different to whether
the topic of the text is gold. In practice, word frequency counts are used and there are
many more hundreds of words. Ignore this complication for the purposes of illustration.
Also, all these quoted variables appear in shaded nodes. This indicates that we have the
text before us, so we know the value of each of these word variables, whereas we do not
know the topics.

Each topic now has its own graph to predict subtopics, and perhaps sub-subtopics.
For instance, Figure 4.2(b) shows a sample subtopic graph for precious metals. Notice
this graph has the top boolean variable precious-metals whose value is known to be true.
This notation is used to indicate that this subgraph is contingent on precious-metals
being a true topic. Likewise, Figure 4.2(c) shows a graph contingent on either cattle or
diary being true. This graph assumes at least one of them is true and is used to predict
whether one, the other, or both are true.

Probability i1s the unifying framework used to combine these different graphical models
into a global model to predict the complete set of topics. This is done as follows: Adapting
Equation (4.2.2) for the three graphs of Figure 4.2 yield three formulae for the following
probabilities:

o p(precious-metals, banking, exchange, commodities, agriculture, tourism|
“ChicagoBoard”, “gold”, “weather” , “Cliticorp”, ete.)

o p(gold, silver, platinum|precious-metals = true, “gold”, ete.)

o p(dairy, cattle|dairy = true OR cattle = true, “beef”, “McDonald’s”  etc.)
Likewise, corresponding formulae are obtained for the other graphs not depicted here.
These probabilities can then be manipulated and combined to yield individual proba-
bilities. For instance, suppose we wish to evaluate the probability p(silver|newswire),
where newswire indicates the contents of the newswire is given and so all the words like
“beef” are also given. This can be computed using the two probability identities:
p(silver|newswire) =

p(silver|precious-metals = true, newswire) p(precious-metals = true|newswire)

p(silver|precious-metals = true, newswire) =

Z Z p(gold, silver, platinum|precious-metals = true, newswire)
golde{T ,F} platinume{T,F}

where p(precious-metals = true|newswire) is computed similarly by summing out the
other topic variables in Figure 4.2(a). Methods for combining probabilities from multiple



72 Buntine

networks can involve more complex schemes. A method developed for medical diagnosis
that is suitable to the topic spotting problem considered here is similarity networks
(Heckerman 1990). This is based on many graphs of the form of Figure 4.2(c) used to
distinguish pairs of topics.

There are number of interesting questions for this decomposition approach. How do
we develop such a decomposition? In diagnosis domains such as medicine, this kind
of decomposition has been done manually in the development of probabilistic expert
systems. It is found that experts are able to explain their own decompositions of a
problem. Second, how can the decomposition be done automatically? While this is an
open research question, standard techniques for learning should adapt to the task.

4.4 Knowledge Refinement

Unsupervised learning is a standard tool in statistics and pattern recognition. A well
known example in discovery is the Autoclass application to the TRAS star database
(Cheeseman and Stutz 1995). While these applications of unsupervised learning some-
times proceed routinely, it is more often the case that discovery is an iterative process.
Initial exploration reveals some details and the discovery algorithm is modified as a result.
Here, the discovery process parallels the iterative refinement strategies popular in soft-
ware engineering. These strategies are made possible by rapid prototyping software such
as Tecl/Tk used for developing interfaces (Ousterhout 1994). This aspect of discovery is
discussed further by Brachman and Anand (1995). The application of iterative refine-
ment to knowledge discovery and knowledge acquisition is one way of viewing knowledge
refinement (Ginsberg, Weiss, and Politakis 1988; Towell, Shavlik, and Noordewier 1990).

An application where this kind of refinement was required is the analysis of aviation
safety data given by Kraft and Buntine (1993). The task was to discover classes of
aircraft incidents. In this case, standard unsupervised learning revealed incident classes
that the domain expert believed were confounded by basic relationships expected in the
data. A graphical model illustrating and simplifying the standard unsupervised learning
is given in Figure 4.3.  The algorithm used in this initial investigation was an algorithm
called SNOB (Wallace and Boulton 1970), related to Autoclass. This algorithm builds
a classification model as represented in the figure. For a given aircraft incident, details
are recorded on the pilot, the controller, the kind of aircraft, its mission, and other
information. Figure 4.3 indicates that if a set of aircraft is of the same hidden incident
class, then the details recorded are rendered independent. That is, the joint probability
of the recorded details and the hidden incident class read from the graph is

p(incident-class) p(airspace|incident-class) p(controller|incident-class)
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Figure 4.3
Simple unsupervised model of the aircraft incident domain.

p(facility|incident-class) p(aireraft|incident-class) ...

Each of these probabilities i1s evaluated using parameters set by the learning algorithm.
For instance, a particular hidden incident class might have predominantly wide-body
aircraft, experienced pilots, and have equipment failure, but otherwise the details are
similar to the general population of incidents. The occurrence of wide-body aircraft,
experienced pilots, and equipment failure would occur independently in this class, as
indicated by the figure.

Aviation psychologists experienced in this domain expected relationships, for instance,
between the pilot’s qualifications and the type of aircraft, the type of aircraft and the
phase of flight: for instance, wide-body aircraft do not go on joy rides. In some cases,
these relationships where encoded as requirements of the Federal Aviation Authority,
and in other cases they were well understood causal relationships. The discovered classes
of aircraft incidents tended to be confounded by these known relationships. A way
around this problem is to construct a hybrid model as given in Figure 4.4. The expected
relationships are encoded into the model. For instance, that the pilot’s qualifications
are influenced by the aircraft, and that the facility tracking the aircraft depends on
the type of aircraft and which airspace it is in (commercial, private and military air-
craft have different behaviors) are encoded. This leaves the hidden incident class to
explain the remaining regularity in the domain. That is, probability tables would be
elicited from the aviation psychologists for the understood probability relations such as
p(controller| facility, aircraft) and these fixed in the model. The learning system now
needs to refine the model by filling in the remaining parts of the model that are left
unspecified by this knowledge elicitation.

Again, there are a number of interesting questions about this refinement approach.
How can the refinement algorithm proceed with some parts of model fixed? This is not a
difficult problem in the sense that standard algorithm schemes like the expectation max-
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Figure 4.4
Hybrid unsupervised model of the aircraft incident domain.

imization (EM) algorithm used in SNOB and Autoclass are known to handle learning in
this context (Buntine 1994). Software suited to this exact task is not currently available,
however. So on this problem the iterative refinement process of knowledge discovery
stops after one iteration, due to lack of available software.

4.5 Models for Learning and Discovery

This section outlines how various learning and discovery representations can be modeled
with probabilistic graphical models. A characteristic problem is given along with the
graphical model. The intention is to illustrate the rich variety of discovery tasks that can
be represented with graphical models. Given the generality of the language, it should be
clear that many hybrid models are represented as well, such as the hybrid unsupervised
model of Figure 4.4.

The graphical models given here have their model parameters as well as the problem
inputs marked as known. Of course, in the practice of data analysis, the model parameters
are unknown and need to be learned from the data, and the training set or sample will
usually have both problem inputs and outputs known for each case in the set. However,
this represents the subsequent inference task underlying the problem, not the learning
problem itself. In some cases, the functional form is also given for the probabilistic model
implied by the graphical model.

4.5.1 Linear regression

Linear regression is the classic method in statistics for doing curve fitting, that is, predict-
ing a real valued variable from input variables, real or discrete. See Casella and Berger
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(1990), for instance, for a standard undergraduate introduction. Linear regression, in
its most general form, fits non-linear curves as well because the term “linear” implies
that the mean prediction for the variable is a linear function of the parameters of the
model, but can be a non-linear function of the input variables. In the standard model,
a Gaussian error function with constant standard deviation is used. This is shown in
Figure 4.5. This is an instance of a generalized linear model (McCullagh and Nelder

Linear

C)Gaussian

Figure 4.5
Linear regression with Gaussian error.

1989), so has a linear node at its core. The M basis functions basisy, ..., basisy are
known deterministic functions of the input variables z1,...,z,. Variables that are de-
terministic functions of their inputs are represented with deterministic nodes that have
double ellipses. These deterministic functions would typically be non-linear orthogonal
functions such as Legendre polynomials. The linear node combines these linearly with
the parameters 8 to produce the mean m for the Gaussian.

M
m = Zﬁibasisi(l‘).
i=1

The graphical model of Figure 4.5 implies the above equation (each deterministic node
implies an equality holds) and the conditional probability

1
p(y|x1a"'axna9a0-) = 6_(y_m)2/202 3

2no
the standard normal density with mean m and standard deviation ¢. This graph also
shows that the inputs z; to z, are given, and so there is no particular distribution for
them.
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4.5.2 Weighted rule-based systems

Weighted rule-based systems are an interesting representation because they have been
independently suggested in artificial intelligence, neural networks, and statistics, with
each community using their own notation. The system, given in Figure 4.6, is the discrete
version of the linear regression network given in Figure 4.5. Like linear regression, this is

Linear

e ogistic

Figure 4.6
A weighted rule network.

also an instance of a generalized linear model, so has the linear construction of Figure 4.5
at its core. Each of the deterministic nodes for variables ruley, ..., rule,, represents a
rule, an indicator function with the value 1 if the rule fires, and the value 0 otherwise.
Those rules that fire cause weights () to be added up, and consequently a prediction to
be made.

In the binary classification case (¢ € {0,1}), when multiple rules fire, probability that
the class ¢ = 1 is given by the transformation

plc=1|21,...,2,,0) = Logistic™* (Zrulezﬂi)

i=1
The functional type for the Logistic node is the function,

eu

_ o . — |
T en = 1 — Sigmoid(u) Logistic™ (u) , (4.5.4)

ple=1lu) =

which maps a real value u onto a probability for the binary variable ¢. This function 1s
the inverse of the logistic or logit function used in generalized linear models, and is also
related to the sigmoid function used in feed-forward neural networks.
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According to this weighting scheme, if a rule rule; fires in isolation, the probability
that class ¢ = 1 becomes Logistic™1(0;). Hence 0; can be interpreted as the log odds of
pi (Logistic(p;)), where p; is the probability that ¢ will be 1 when only the single rule ¢
fires. If multiple rules fire then this formula corresponds to combining the probabilities p;
using the original Prospector combining formula (Duda, Hart, and Nilsson 1976; Berka

and Tvanek 1994)

pi P
pi-pj +(1=pi) - (1—pj)

This combining formula is associative and commutative so the order of combination is

Combine(p;,p;) =

irrelevant.

This approach thus implements a weighted rule-based system for classification using the
Prospector combining formula. The model can also be interpreted as a neural network
since the output node corresponds to a sigmoid, and the intermediate deterministic nodes
can be interpreted as unparameterized hidden nodes. By using other combination rules
different effects can be achieved; even for instance, fuzzy-style combinations.

4.5.3 Hierarchical mixtures of experts

Jordan and Jacobs (1993) have developed a classification approach based on the notion
of a “mixture of experts”. Like the weighted rule-based system, this model predicts a
class ¢ from a vector of inputs x. It does so, however, by combining a number of linear
models to form a more complex classifier.

The decision tree representation and the DAG for this mixture model is given in the
left and right of Figure 4.7 respectively. The decision tree is presented here for the case
of discrete variables. In general both inputs and outputs can be real valued or discrete.
Traversing the tree in the left of the figure down to a leaf node leads one to the leaf,
which represents an “expert”. These experts then combine to make the prediction for the
class ¢. The prediction is done with a log-linear model, using the parameters p' = 14,4,
for the two “gates” g1, g2. Suppose the class is C-valued, so ¢ € {1,2,...,C}. The class
prediction is:

Bt
C o
Zj:l € ‘

This is similar to the weighted rule-based system described in Section 4.5.2, where the

ple =ilz, 1) = log-linear(i,z, u') =

rules correspond to the vector #. y’ is a matrix of dimension C' x dim(x), and by con-
vention g, = 0. For ¢ binary, this is equivalent to the logistic node used in Section 4.5.2.
The decision tree also has two variables denoting “gates”, g1 at the first node and ¢
at the two second level nodes, however, these are not present in the data. The values
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G Log-linear

V1 g1?
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p_ = = =O =1
1% T \

Figure 4.7
A two level mixture of “experts”.

for the gates g1 and go are predicted using the data and the parameters vy and vy,
respectively. At the first level is discrete valued gate g (in the tree this is represented as
binary, however, it can be N-ary in general). The first value is chosen in a probabilistic
fashion according to the log-linear model with parameters v;.

plg1 = iz, v1) = log-linear(i,x,v1) .

vy 1s a matrix of dimension C' X dim(x), and by convention vy ¢ = 0. A second gate
g2 1s then chosen, again in a probabilistic fashion according to a log-linear model, but
this time based on the first gate as well as the input z. The final probabilities for ¢ are
generated by another log-linear model as given by the first formula above.

In the graphical model this goes as follows. There are three log-linear models, two
for the gates g1 and g2 and one for the final class probability. Gating nodes (which do
matrix lookup) select the parameters for the log-linear nodes based on the values of other
variables.

The graphical model of Figure 4.7 therefore yields the following conditional probability:

plele, v, vap, p12) = Z log-lin(gq, x,v1) Z log-lin(ga, x,va)4, ) log-lin(c, x, g, 4,) -

91 g2
This is a mizture model (Titterington, Smith, and Makov 1985), in the sense that it sums
over hidden variables g; and g2, where the basic joint probability p(c, g1, g2|2, v1, vay1, pt12)
isin a standard form. If only one layer were used (so g and associated gates were deleted),
then this model corresponds to a supervised version of the unsupervised Autoclass system
described next in Section 4.5.4.
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4.5.4 Unsupervised learning

There are a range of unsupervised learning systems in statistics, neural networks, and
artificial intelligence. Many of these can be represented as graphical models with hidden
nodes that are used to represent hidden classes. In a sense, the learning of Bayesian
networks from data can be called unsupervised learning as well, however, it is more
accurately termed model discovery. This is described by Heckerman (1995). The aviation
safety model given in Figure 4.4 is a hybrid of these different kinds of models.

Consider Autoclass I1T and the probabilistic unsupervised learning systems it 1s based
on. For instance, a simple Autoclass III classification for three boolean variables vary,
vary and vars has the parameterization ¢, 6, s and 03 given in Figure 4.8.  The

Figure 4.8
Explicit parameters for a simple Autoclass model.

class is unobserved or “hidden”. If the class assignment where known, then the variables
vary, vars and vars would be rendered statistically independent, or “explained” in some
sense. More complex models allow correlations between variables, but Autoclass I1I does
not introduce this. The parameters ¢ (a vector of class probabilities) here gives the
proportions for the hidden classes, and the three parameters 1, 8> and 83 give how the
variables are distributed within each hidden class. For instance, if there are 10 classes,
then ¢ is a vector of 10 class probabilities such that the prior probability for a case being
in class ¢ is ¢.. If var; is a binary variable, then §; would be 10 probabilities, one for
each class, such that if the case is known to be in class ¢, then the probability var; 1s
true is given by ¢; . and the probability var; is false is given by 1 — 6, ..

There are many other models for unsupervised learning that can be similarly repre-
sented with probabilistic graphs. Sometimes this includes undirected graphs or mixtures
of directed and undirected graphs (Buntine 1994). This includes the stochastic networks
used in Hopfield models and others in neural networks Hertz, Krogh, and Palmer (1991),
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more complex unsupervised learning systems such as Autoclass IV which has a variety
of covariances (Hanson, Stutz, and Cheeseman 1991), and systems with multiple classes.

4.6 Learning algorithms

Methods have been developed for learning simple discrete and Gaussian Bayesian net-
works from data, and for learning simple unsupervised models such as those mentioned in
Section 4.5.4. Given that all the previous models such as linear regression and weighted
rule-based systems can also be represented as Bayesian networks, will these same learning
algorithms apply? Unfortunately not. However, there are general categories of algorithm
schemes for learning that can be mixed and matched to these various problems. Four cat-
egories considered here are represented by the models they address, given in Figure 4.9.
This section briefly explains these categories. Algorithms for learning them are described

Exponential model Partial Exponential model
(a) (b)

Exp. Family

@ Exp. Family| T
4

Mixture model Generic
’ (d)
O+—(o)
CO+—{ o)
Exp. Family

Figure 4.9
Four categories of models.

in (Buntine 1994), and references therein.

The simplest category of learning models have exact, closed form solutions to the
learning problem. This category is the exponential family of distributions, which includes
the Gaussian, the multinomial, and other basic distributions (Bernardo and Smith 1994),
but also the decision tree or Gaussian Bayesian network of known fixed structure, and
linear regression with Gaussian error described in Section 4.5.1. These exponential family
distributions all have closed form solutions to the learning problem which are linear in the
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sample size (Bernardo and Smith 1994; Buntine 1994). For instance, if X has a univariate
Gaussian distribution, then we estimate its unknown mean and standard deviation from
the sample mean and sample standard deviation (usually along with some adjustment
to make the estimate unbiased). No search or numerical optimization is involved. The
exponential family category is represented by the exponential model in Figure 4.9(a).
The probability model for the data given the parameters, p(X|0) is shown in this figure
to be in the exponential family.

Two important categories of learning models are based on the exponential family cat-
egory. The second category of learning models is where a useful subset of the model
does fall into the exponential family. This is represented by the partial exponential model
in Figure 4.9(b). The part of the problem that is exponential family can be solved in
closed form, as mentioned above. The remaining part of the problem is typically han-
dled approximately. Decision trees and Bayesian networks over multinomial or Gaussian
variables fall into second category (Buntine 1991a; Buntine 1991b; Spiegelhalter et al.
1993) when the structure of the tree or network is not known, as does linear regression
with subset selection of relevant variables. In the figure, this is represented as follows. If
we know the structure 7', then the model is in the exponential family with parameters
f7. So the probability model p(X |07, T) is in the exponential family if we hold T fixed.

The third category of learning models is where, if some hidden variables are introduced
into the data, the problem becomes exponential family if the hidden values were known.
This is represented by the mizture model in Figure 4.9(c). In general, this family of
models has that p(X|C, #) is in the exponential family where C' is the hidden variable (or
variables) and # are the model parameters. C' does not occur in the data so this yields
a probability model for X given by:

p(X10) = > p(X|C,0)p(C|0) .

Two examples of this category are the mixture of experts model of Section 4.5.3, and
the unsupervised learning models mentioned in Section 4.5.4. This category of models
are used to model unsupervised learning, incomplete data in the classification problems,
robust regression, and general density estimation (Titterington et al. 1985). The mixture
model category can often be learned using the EM algorithm. The EM algorithm has
an 1nner loop using the closed form solution found for the underlying exponential family
model.

The final category of problems is a catch-all represented by the generic model in Fig-
ure 4.9(d). In this case the data X has the unconstrained probability model p(X|€), and
we assume nothing about its form. This includes feed-forward neural networks and the
weighted rule-based model of Section 4.5.2. These models can be learned by algorithms
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such as the maximum a posteriori (MAP) algorithm and other general error minimization
schemes. Notice that in general the other three categories of learning models can be cast
into this form by ignoring some structural detail of the model. Hence the algorithms like
the MAP algorithm can be applied to all the other categories of learning models as well.

4.7 Conclusion

The graphical component of the probabilistic models presented here is only relevant as
a visual aid for describing models. However, the graphs provide a structural view of a
probability model without getting lost in the mathematical detail. This is invaluable in
the same way that a qualitative physical model can be invaluable for explaining behavior
without recourse to the numeric detail. So what of probabilistic modeling? What does
all this buy you?

First, probabilistic models provide a language for performing problem decomposition
and recomposition, illustrated in Section 4.3, and knowledge refinement, illustrated in
Section 4.4. Inference on the probabilistic models developed can be performed using a
variety of probabilistic inference schemes, as listed in Section 4.2.

Second, because of the flexibility of probabilistic graphical models, they are a suitable
language to represent a wide variety of learning models. Of course, the same can be said
of C++4. However, probabilistic models allow probability theory to be applied directly
to derive inference algorithms via principles such as maximum likelihood, maximum
a posterior, and other probabilistic schemes. Some relevant algorithms are discussed
in Section 4.6. This offers a unifying conceptual framework for the developer, with, for
instance, smooth transitions into other modes of probabilistic reasoning such as diagnosis,
explanation, and information gathering.

Third, this probabilistic framework offers a computational approach to developing
learning and discovery algorithms. The conceptual framework for this is given in Fig-
ure 4.10. Probability and decision theory are used to decompose a problem into a com-
putational prescription, and then search and optimization techniques are used to fill the
prescription. A software tool exists that implements a special case of this conceptual
framework using Gibbs sampling as the computational scheme (Gilks et al. 1993). The
Gibbs sampler is but one family of algorithms, and many more can be fit into this general
framework. As explained by Buntine (1994), the framework of Figure 4.10 can use the
categories of learning models described in Section 4.6 as its basis.

The real gain from the scheme of Figure 4.10 does not arise from the potential re-
implementation of existing software, but from understanding gained by putting different
models for learning and discovery in a common language, the ability to create novel hybrid
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A software generator.

algorithms, and the ability to tailor special purpose algorithms for specific problems. For
instance, by recognizing the connection between logistic regression, neural networks and
Prospector rules, done in Section 4.5.2; we are able to borrow algorithms from other fields
to address the task. The scheme of Figure 4.10 supports the problem decomposition and
iterative knowledge refinement processes described in Sections 4.3 and 4.4.
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