From Competition to Amalgamation of
Different Programming Paradigms

Sergei G. Maslov

Udmurt University
Dept. of Mathematics & Computer Science
Russia
p.c.: 426011, city: Izhevsk, 275-61 Udmurtskay str.
e-mail: miss@matsim.udmurtia.su, Fax: 3412 75 15 18
NATO ASI Constraint Programming August 13-24 98 Pdrnu, Fstonia

Abstract

This paper describes the basic elements (data, actions, tunings, voids,
mixtures,...) and principles of programming (stratification, implicit knowl-
edge, limited freedom,...), directed to amalgamating of different program-
ming paradigms (imperative, object-oriented, functional, constraint,...) in
a unified process of generating computer system models. Compositions
of elements and their projections on axes of representation (visual, audio,
tactile, and linguistic) make it possible to construct different algorithmic
structures, which have their own syntactic form and operating seman-
tics. Development of compositions is a goal-oriented activity controlled
by constraints (resource, domain, coexistence,...). This action creates both
stratification system of concepts and operations on them (generalization,
specialization, mapping, transformation,...). A proposed approach is prin-
cipally evolutionary one. It is devoted to clarify the fundamental basis of
forms and principles of a heterogeneous knowledge represented in a com-
puter. It allows to stratify program synthesis into levels of representation.
In particular, some aspects of conceptual synthesis are concerned.

1. Introduction

The research and development process is a movement on the boundary be-
tween the known and the unknown. It is characterized by subjective perception
of the object in view. Both require repeated and prompt modification of the
problem statement and advanced versatile interface, helping to detect additional
analogies and to define more exactly ”blank spaces” in the research object. In-
complete knowledge causes irregularity of the research process, frequent moves

128

from one aspect of the research object to another, or even simultaneously inves-
tigating them all. The semantic layers are activated or avoided in accordance
with a research goal and with the current computation state and the subject’s
actions.

Enormous volume and relational complexity of knowledge in computer sys-
tem models (CSM), heterogeneity of the knowledge and representation forms
result in the incapability for a single or more designers from one branch of
knowledge to define faithfully and to research and develop an object. Here
versatile, coordinated and unique definitions are most important factors.

The most acute problems are adequacy of the description means, the means
to organize a professional’s knowledge interaction in a computer form, problems
of search and recognition. Solving of these problems allows to move from the
collection of facts and processes (database or knowledge base) to knowledge
mvestment.

Obviously, in this situation something more is required than what is involved
in each particular programming paradigm. Simple replacement of the program-
ming paradigm doesn’t help either, but can worsen the situation, leading to
endless programming and provoking a revolutanary way of designing.

One of the current approaches to solving problems that arise is amalgamat-
ing of programming paradigms (imperative, object-oriented, functional, logic,
concurent, constraint) in a unified process of CSM construction. This approach
i1s known and used in the following forms:

e procedural extention of programming language (Lisp [HS86], Forth [TF]);

e syntax and semantic design and development of languages (Kaleidoscope
[LFB93], AKL [HJ93], Life [AKP93], FP + LV [DGK93], Falcon [GY93],
NUT [MT92, PT93])

o research of different formalizations (Horn clause logic with equality [GM8T],

Linear logic [DGK93], OSF logic & algebra [AKP93], ...).

Here a constructive base of this approarch is extended and systematized. It is
formed on the basis of stratification, taking into account the heterogenity of
knowledge forms in CSM. What is a basic set of constructive elements? What
properties must they have to represent clearly the compound nature of the
object being researched and to flexibly control its construction? What is the
crystallizing compound that unites the elements in the composition? Where is
that boundary or the moment of crossover from one programming paradigm to
another or their amalgamating? What economizes our intellectual, physical and
emotional resources and strictly directs to the stated goal? These questions were
emerging regularly to the author during the creation of a CSM for researching
the goal-directed three-dimensional motions of a human.

129

2. About elements

Development of a conceptual system for special reseach area is accompanied
by regularly including new concepts, the revision of parameterization, the base
types of data and algorithm representation, the different representation forms
(linguistic, visual, audio, tactile, ...), the continual improvement of hardware
- all of which, from one hand, permit us to represent a research object more
effectively, adequately and from different viewpoints, and from the other hand,
require constant programming and reprogramming. However the enormous vol-
ume and complex structures of algorithms and data make reprogramming un-
desirable, 1. e. minimalization or only automatization is needed.

Experience shows that it is insufficient for complex domains to construct
simply semantically stratified descriptions: what is needed is to declare in them
the fundemental basis, that is genotype and phenotype with the contruction of a
transformation system (first with the operations of identfication, generalization,
specialization, imaging, and transformation). Such systematization, as a rule,
has a principally evolutional character and will probably be accompanied by the
collapse of semantic layers. Then the internal ”life” of CSM with its own laws
of existence and development arises.

Concepts are characterized by a certain set of degrees of freedom, which
gives a possibility to compose of them. Degrees of freedom are the axes of
multi-aspect or multi-functional representation of a concept. They represent, in
particular, the form of representation, parameterization, the types of conversion,
and semantic invariability relative to composition. Involving all the above, the
structure of concepts can be represented as follows:

Concept
e Name o Features e Values e Relations e Parameters
Features Relations
e Classes e Operators
e Properties e Functions
Values e Equations
e Evaluations e Constraints
e Forms of Representation e Resources
e Linguistic e Intellectual
e Epistemological e Physical
e Conceptual e Time
e Logical e Memory
e Math e Economic
e Algorithmic e Emotional
e Program e Area
e Video e Domain
e Audio e Coexistence

130

e Sensoric e Structure
e Control

A more detailed representation can be found in article [MS93].

System and logical analysis of CSM development and use let us to clarify
the basis B. of elements of consructive representation and to freeze a certain
functional assignment:

e Bj - organize information in complex structure (mixture),
e By - generate information (action),

e Bj - coordination of information (tuning),

e B, - preserving information (data),

e By - indeterminate information (void).

This classification was obtained independently from M. Lehman’s SPE -
classification [LM80], but corrobarate his major conclusion on the evolution of
programs. Moreover this classification is brought to a concrete form of repre-
sentation [MS93].

The element of a class is called a concept. Any element of a conceptual
system is constructed either by defining a concrete form of representation, or
by composing concepts from some concept set.

3. About compositions

The definition and usage associate concepts to the algorithmic structure
(AS). This structure has its own syntax form and mechanism of calculation.
It is necessary to list a number of features.

o[Ex/Tm]plicit eParametrisability

Feature of the Syntax Form oRlchnegs of Associations eCausality N
eSeparation eComputability
elnvariance

The feature [ex/im]plicit is connected to constructivity and descriptivity of
syntax form. Parametrizability is the possibility to translate quite flexy the
requested syntax unit into formal or actual parameter of syntax form. Richness
of Associations is the restriction of syntax forms, which is made by means of
direct references or special or speicial algorithms. Causality is ability of syntax
forms or its units to activate and synchronize its roles. In other words, the
states of compute process can activate various interpretations of AS and con-
cepts involved in AS (as processes, data or parameters of operating of compute
process). Separation express the spliting of syntax form in accordance with ac-
cess mode, scope, and semantic independence. Computability is a possibility of
computing of syntax form and reseiving various types of result (numeric, logic,
symbol, image,...). Tt is possible to design new features of syntax form using the
base features, for example:

131

o Richness of Associations
e Causality
The features are considered as degrees of freedom in construction of syntax
form.

Inheritance

The creation of compositions is the goal-oriented process of building of new
concepts with given properties. This action i1s accompanied with utilization of
being allocated resources and imposing constraints on a set of concepts. Actu-
ally, we impose linkages on degrees of freedom of syntax units. Coordination of
roles of various concepts in the AS is in the same time designing definition units
and interpretation rules in calculation process.

Rules of Compositions

Concept Data Action Data Action
Data Structure Object . .
Action Function | Construct
Data . . Lazy comp. Partial comp.
Action . . Operated comp. | Nested comp.

A number of base operations can be extracted in process of construction of
AS and operations with it:

e Generalization e Specialization e Mapping e Transformation

Generalization is the AS constructing from given set of AS by its uniting
with possible truncation of individual features and matching of common ones.
Specialization is constriction (or projection) of AS by given parameters, condi-
tions or propeties. Transformation is AS mapping into another AS inside the
range of given basis of techniques. Mapping is setting of correspondence be-
tween AS, in particular, from various layers of representation. More complex
operations on AS can be constructed on base of above-described operations:

e Editing e Synthesis o Optimization e Analysis e Analitic conversion

Described system of concept is particular implemented as a system of mi-
crolanguages without low level (mz - algorithmic hypertext, mi - tensor & index
notations, module(z) - module language...). These languages have unify syntax
skeleton:

e global description aN| C1 ... || Cym
o local description [N || C1 ... || Cn]
e modification of description [N || €1 ... | Cy]
o call [NP ... P

N - name of notion

C =A=B&D&S

where AD - con.straints .for B

B - actived notion

S - solution specification of B

P - actual parameters

132

Let us to illustrate the application of mz and m: languages.
Example - mx
o Greatest
[X>Y = X
[X<Y =Y
u
Definition of the three-dimensional position of the bodies composing a biome-
chanical system with a tree structure is reduced to construction of recurrent
forms which are analitic expressions of the coordinates relative through gener-
alized and other coordinates. Directed exhaustion of these forms is performed
using a structure of the biomechanical system. For spherical joints it can be as
follows:

Example - mi
o Kinematics
|V & 2. & D & 7. =
[A|l (2.p + @ipZaic->)s = Zap<os
[ip || 123] [af[[Dy]] [0 Dys] [yl 1&y+1 <= Dy =0]
§7{c, 0{p}}]
[B] (25 + ipZaics)o = (¥p + CipZaics)
[ip (| 123] [af[[Dyl [P Dys] [0 Dss
[6]] Dy2] [y |l L&y + 1< (Dy2 > 0)&(Dys > 0)]
§7{, 9,0, 6{p}}]

u
4. About computation

The accepted structure and forms of representation of information cause not
only a compact stratified code, but stratified synthesis and execution, creation
stratified semantic check points, more effective location and interpretation of
errors, natural interaction, dynamics and so on. Accumalation of knowledge on
objects (or a single object) occurs in parallel in various layers and can lead to
new and unexpected results (for user of given layer) gotten due to establishment
of one-to-one onto functions and mappings (the princple of implicit knowledge).

It is possible to intervent into object structure, in process point any level of
representation in any time in case of having sufficient information (principle of
limited all-permission). Tt is important to bring out moments and elements of
failure into light (to highlight the misunderstood or simply unknown), just here
objective and subobjective are interacted.

Process of computing for AS is realized on the base of knowledge of state
of environment and knowledge of syntax form. Features of state of compute
environment are;

133

¢ [Non |Deterministic

* Local e Sequential
Types of Action e Localised Type of Control d
e Parallel
e Global

e Partial-Ordered

All kinds of actions differ by their effect on the computational environment:
local effects only a previously bounded part; localised effects locally that part of
environment which have been allocated in a global search process; global effects
the environment as a rule entirely.

At present the common form of computation is linguistic one, other forms
are used as interfaces. Therefore it is being set up the hypothesis about exiting
of multidimensional space of representation in which calculations are realized
on base of "resonance processes” and more effective than linguistic.

One of the base form of linguistic calculations is goal-oriented synthesis-
generalization of a group of AS with the same structure. Multidimensional
representations discriminate synthesis not only by syntax form but by semantic
features. Synthesis is mixed with verification and other calculations what allow
to react more flexy on local change of compute situation and to control the deep
of derivation and area of solution search. In this case parallelism of synthesis in
various layers has a natural character.

Here conceptual synthesis is being considered. FExpressed on mz language
and refined statements of computability, proposed by Tyugu[TE84]:

Statement of Computability
e simple AL B
e with condition P= AL C
o with subgoal ~ Vs(DX = EY = RX "¥ Gy)

The first statement correspond with simple axioms, specifinig functions of
program system in following form:

[A.B (C D)-in FE-out] or [A.B (int int..)-in graph.-out]

If functions realize computation with similar semantic and (or) have the
same data parameterizied axioms are introduced to decrease the search time
and the requested memory for axioms:

[A. || X&Y = [[.X (C D)-in Y-out]
Here XY are free variables in Refal style, ”.” is concatenation. The process
of designing of parameterizied axioms is generalization, the process of usage is

concretization, being written in the below form:

[ABE], [ANS]

134

The base of axioms allow to formulate various goal of search, calculation,
costruction of AS:

e for function [£ A-in B-out]
e for data [F' (A £)in B-out]
e for mixter [£ (C £)in L-out]

Let the sign £designates a goal element, which can be named by the following
identifier. The goals are parameterizied as is the case with axioms:

o LAY = Z-in Y-oulm

It is stated here that a wider class of problems than in traditional systems
of conceptual programming. Besides, here specifications are executable. Simi-
larily to PRIZ it permits specification of high order functionals in a form of the
parameterized axioms with subgoals:

M || X&Y = [£ X-in Z-out][£ X-in W-out]]

The derivation rules for compositions and generation of subgoals:

o Rule.One
[|-feature mixture
[[N-id [C' || 1] [L || (A :out-B:in)-the # 0§ = {4 B}
S [N (A+ B):in—(A:out-B:in))-in (A+ B) :-out]
| (A:out -B:in)the=0&C=1=[C || 0] [L A B]
|| E-exp = [message F)
|| E-exp = [message F)

o Rule.Two
[([S (D X)-(list in) (E Y)-(list out)] —
H (R X)-(list in) (Q Y)-(list out) |
=[H (RX)in (QY)-out
{[£ (RX)-in D-out] [S (D X)-in (F Y)-out]}]
< [F (R X)in (QY)-out]

L)&F

[| ([S (D X)-(list in) (E Y)-(list out)] —
H (R X)-(list in) (Q Y)-(list out) [£]]) &D-out&F
={[£ (R X)-in D-out]
[H (RX)in (Q@Y)out [S (D X)in (FY)-out]]}
< [F (R X)-in (Q D Y)-out
u
Note that the second form of generation of subgoals is somewhat like to
planning on undependence tasks of Tyugu, but allows automatic generation of
the subgoals. The rules with if and do are in the traditional form.

135

References

[AKP93]

[DGK93)]

[GM87]

[GY93]

[HS36]

[HJ93]

[LEB93]

[LMS0]

[MS93]

[MT92]

[PT93]

[TES4]

Ait-Kaci H., Podelski A. Towards a meaning of LIFE. The Journal of
Logic Programming, 16, 1993, pp. 195-234.

Darlington J., Guo Y., Kohler M. Functional Programming Languages
with Logical Variables: A Linear Logic View. Proc. of the Fifth Inter-
national Symposium PLILP’93 Lect. Notes of Comp. Sci., 714, Springer
Verlag, 1993, pp. 777

Goguen J.A., Meseguer J. Models and equality for logical programming.
Proc. of TAPSOFT, 250 of Lect. Notes in Comp. Sci., 87, Springer
Verlag, 1987, pp.1-22

Guo Y. FALCON: Functional and Logic Language with Constraints. A
draft prepared for the 6 of Ph.D thesis: Definition al Constraint Program-
ming. Dep. of Comp. Imperial College, 180 Queen’s Gate London SW7
2BZ U.K., 1993.

Hyvonen E., Seppanen J. LISP - MAAILMA. 1. Johdatus kieleen ja olyel-
mointiin, 1986, 2. Ohjelmointimenetelmat ja jarjestelmat — Kirjayhtyma

Oy, Helsinki, 1987 (in Finnish)

Haridi S., Janson S., Montelius J. ,Franzen T., Brand P., Boortz K., Daniels-
son B., Carlson B., Keisu T., Sahlin D., Sjoland T. Concurent Constraint
Programming at SICS with the Andorra Kernel Language (Extended Ab-
stract). Workshop on Principles and Practices of Constraint Program-
ming, 777, 1993.

Lopez G., Freeman-Benson B., Borning A. Kaleidoscope: A Constraint
Imperative Programming Language. In Constraint Programming. NATO
ASI Series. Springer Verlag, 1994 (To appear)

Lehman M. Life Cycles, and Laws of Software Evolution, IEEE 68, N 9,
September 1980, pp. 1060-1075.

Maslov S. The Program Base is Knowlege Investments. STI, An informa-
tional processes and systems. 1, 1993, pp. 1-9 (in Russian)

Matskin M., Tyugu E. The NUT Language. TRITA - TCS - SE - 9212
- TR. Royal Institute of Technology Dep. of Teleinformatics Software
Engineering, Stockholm, 1992.

Penjam J., Tyugu E. Constraits in NUT. In Constraint Programming.
NATO ASI Series. Springer Verlag, 1994. (To appear)

Tyugu E. Conceptual programming. Moscow, Nauka, 1984 (in Russian)

136

[TF] Townsend C., Feucht D. Designing and programming personal expert sys-
tems. TAB Book Inc. Blue Ridge Summit, PA 17214,

137

