
From Competition to Amalgamation ofDi�erent Programming ParadigmsSergei G. MaslovUdmurt UniversityDept. of Mathematics & Computer ScienceRussiap.c.: 426011, city: Izhevsk, 275-61 Udmurtskay str.e-mail: miss@matsim.udmurtia.su, Fax: 3412 75 15 18NATO ASI Constraint Programming August 13-24 93 P�arnu, EstoniaAbstractThis paper describes the basic elements (data, actions, tunings, voids,mixtures,...) and principles of programming (strati�cation, implicit knowl-edge, limited freedom,...), directed to amalgamating of di�erent program-ming paradigms (imperative, object-oriented, functional, constraint,...) ina uni�ed process of generating computer system models. Compositionsof elements and their projections on axes of representation (visual, audio,tactile, and linguistic) make it possible to construct di�erent algorithmicstructures, which have their own syntactic form and operating seman-tics. Development of compositions is a goal-oriented activity controlledby constraints (resource, domain, coexistence,...). This action creates bothstrati�cation system of concepts and operations on them (generalization,specialization, mapping, transformation,...). A proposed approach is prin-cipally evolutionary one. It is devoted to clarify the fundamental basis offorms and principles of a heterogeneous knowledge represented in a com-puter. It allows to stratify program synthesis into levels of representation.In particular, some aspects of conceptual synthesis are concerned.1. IntroductionThe research and development process is a movement on the boundary be-tween the known and the unknown. It is characterized by subjective perceptionof the object in view. Both require repeated and prompt modi�cation of theproblem statement and advanced versatile interface, helping to detect additionalanalogies and to de�ne more exactly "blank spaces" in the research object. In-complete knowledge causes irregularity of the research process, frequent moves128

from one aspect of the research object to another, or even simultaneously inves-tigating them all. The semantic layers are activated or avoided in accordancewith a research goal and with the current computation state and the subject'sactions.Enormous volume and relational complexity of knowledge in computer sys-tem models (CSM), heterogeneity of the knowledge and representation formsresult in the incapability for a single or more designers from one branch ofknowledge to de�ne faithfully and to research and develop an object. Hereversatile, coordinated and unique de�nitions are most important factors.The most acute problems are adequacy of the description means, the meansto organize a professional's knowledge interaction in a computer form, problemsof search and recognition. Solving of these problems allows to move from thecollection of facts and processes (database or knowledge base) to knowledgeinvestment.Obviously, in this situation something more is required than what is involvedin each particular programming paradigm. Simple replacement of the program-ming paradigm doesn't help either, but can worsen the situation, leading toendless programming and provoking a revolutanary way of designing.One of the current approaches to solving problems that arise is amalgamat-ing of programming paradigms (imperative, object-oriented, functional, logic,concurent, constraint) in a uni�ed process of CSM construction. This approachis known and used in the following forms:� procedural extention of programming language (Lisp [HS86], Forth [TF]);� syntax and semantic design and development of languages (Kaleidoscope[LFB93], AKL [HJ93], Life [AKP93], FP + LV [DGK93], Falcon [GY93],NUT [MT92, PT93])� research of di�erent formalizations (Horn clause logic with equality [GM87],Linear logic [DGK93], OSF logic & algebra [AKP93], ...).Here a constructive base of this approarch is extended and systematized. It isformed on the basis of strati�cation, taking into account the heterogenity ofknowledge forms in CSM. What is a basic set of constructive elements? Whatproperties must they have to represent clearly the compound nature of theobject being researched and to exibly control its construction? What is thecrystallizing compound that unites the elements in the composition? Where isthat boundary or the moment of crossover from one programming paradigm toanother or their amalgamating? What economizes our intellectual, physical andemotional resources and strictly directs to the stated goal? These questions wereemerging regularly to the author during the creation of a CSM for researchingthe goal-directed three-dimensional motions of a human.129

2. About elementsDevelopment of a conceptual system for special reseach area is accompaniedby regularly including new concepts, the revision of parameterization, the basetypes of data and algorithm representation, the di�erent representation forms(linguistic, visual, audio, tactile, ...), the continual improvement of hardware- all of which, from one hand, permit us to represent a research object moree�ectively, adequately and from di�erent viewpoints, and from the other hand,require constant programming and reprogramming. However the enormous vol-ume and complex structures of algorithms and data make reprogramming un-desirable, i. e. minimalization or only automatization is needed.Experience shows that it is insu�cient for complex domains to constructsimply semantically strati�ed descriptions: what is needed is to declare in themthe fundemental basis, that is genotype and phenotype with the contruction of atransformation system (�rst with the operations of ident�cation, generalization,specialization, imaging, and transformation). Such systematization, as a rule,has a principally evolutional character and will probably be accompanied by thecollapse of semantic layers. Then the internal "life" of CSM with its own lawsof existence and development arises.Concepts are characterized by a certain set of degrees of freedom, whichgives a possibility to compose of them. Degrees of freedom are the axes ofmulti-aspect or multi-functional representation of a concept. They represent, inparticular, the form of representation, parameterization, the types of conversion,and semantic invariability relative to composition. Involving all the above, thestructure of concepts can be represented as follows:Concept� Name � Features � Values � Relations � ParametersFeatures Relations� Classes � Operators� Properties � FunctionsValues � Equations� Evaluations � Constraints� Forms of Representation � Resources� Linguistic � Intellectual� Epistemological � Physical� Conceptual � Time� Logical � Memory� Math � Economic� Algorithmic � Emotional� Program � Area� Video � Domain� Audio � Coexistence130

� Sensoric � Structure� ControlA more detailed representation can be found in article [MS93].System and logical analysis of CSM development and use let us to clarifythe basis B: of elements of consructive representation and to freeze a certainfunctional assignment:� B1 - organize information in complex structure (mixture),� B2 - generate information (action),� B3 - coordination of information (tuning),� B4 - preserving information (data),� B5 - indeterminate information (void).This classi�cation was obtained independently from M. Lehman's SPE -classi�cation [LM80], but corrobarate his major conclusion on the evolution ofprograms. Moreover this classi�cation is brought to a concrete form of repre-sentation [MS93].The element of a class is called a concept. Any element of a conceptualsystem is constructed either by de�ning a concrete form of representation, orby composing concepts from some concept set.3. About compositionsThe de�nition and usage associate concepts to the algorithmic structure(AS). This structure has its own syntax form and mechanism of calculation.It is necessary to list a number of features.Feature of the Syntax Form �[Ex/Im]plicit �Parametrisability�Richness of Associations �Causality�Separation �Computability�InvarianceThe feature [ex/im]plicit is connected to constructivity and descriptivity ofsyntax form. Parametrizability is the possibility to translate quite exy therequested syntax unit into formal or actual parameter of syntax form. Richnessof Associations is the restriction of syntax forms, which is made by means ofdirect references or special or speicial algorithms. Causality is ability of syntaxforms or its units to activate and synchronize its roles. In other words, thestates of compute process can activate various interpretations of AS and con-cepts involved in AS (as processes, data or parameters of operating of computeprocess). Separation express the spliting of syntax form in accordance with ac-cess mode, scope, and semantic independence. Computability is a possibility ofcomputing of syntax form and reseiving various types of result (numeric, logic,symbol, image,...). It is possible to design new features of syntax form using thebase features, for example: 131

Inheritance � Richness of Associations� CausalityThe features are considered as degrees of freedom in construction of syntaxform.The creation of compositions is the goal-oriented process of building of newconcepts with given properties. This action is accompanied with utilization ofbeing allocated resources and imposing constraints on a set of concepts. Actu-ally, we impose linkages on degrees of freedom of syntax units. Coordination ofroles of various concepts in the AS is in the same time designing de�nition unitsand interpretation rules in calculation process.Rules of CompositionsConcept Data Action Data ActionData Structure Object � �Action Function Construct � �Data � � Lazy comp. Partial comp.Action � � Operated comp. Nested comp.A number of base operations can be extracted in process of construction ofAS and operations with it:� Generalization � Specialization � Mapping � TransformationGeneralization is the AS constructing from given set of AS by its unitingwith possible truncation of individual features and matching of common ones.Specialization is constriction (or projection) of AS by given parameters, condi-tions or propeties. Transformation is AS mapping into another AS inside therange of given basis of techniques. Mapping is setting of correspondence be-tween AS, in particular, from various layers of representation. More complexoperations on AS can be constructed on base of above-described operations:� Editing � Synthesis � Optimization � Analysis � Analitic conversionDescribed system of concept is particular implemented as a system of mi-crolanguages without low level (mx - algorithmic hypertext, mi - tensor & indexnotations, module(x) - module language...). These languages have unify syntaxskeleton:� global description N k C1 : : : k Cn� local description [N k C1 : : : k Cn]� modi�cation of description [[N k C1 : : : k Cn]]� call [N P1 : : : Pn]where N - name of notionC � A) B (D , SA;D - constraints for BB - actived notionS - solution speci�cation of BP - actual parameters132

Let us to illustrate the application of mx and mi languages.Example - mxGreatestk X > Y) Xk X � Y) YDe�nition of the three-dimensional position of the bodies composing a biome-chanical system with a tree structure is reduced to construction of recurrentforms which are analitic expressions of the coordinates relative through gener-alized and other coordinates. Directed exhaustion of these forms is performedusing a structure of the biomechanical system. For spherical joints it can be asfollows:Example - miKinematicsk ::& z::& D::& ?x::)[A k (x�p + a�ipz�i<�>)� = z�p<0>[i p k 1 2 3] [� k j D1 j] [� k D3] [k 1� +1(D2 = 0]xf�; �fpgg][B k (x�p + a�ipz�i<>)# = (x�p + a�ipz�i<>)�[i p k 1 2 3] [� k j D1 j] [# k D3] [� k D�3][� k D2] [k 1� + 1((D2 > 0)&(D3 > 0)]xf�; #; �; �fpgg]4. About computationThe accepted structure and forms of representation of information cause notonly a compact strati�ed code, but strati�ed synthesis and execution, creationstrati�ed semantic check points, more e�ective location and interpretation oferrors, natural interaction, dynamics and so on. Accumalation of knowledge onobjects (or a single object) occurs in parallel in various layers and can lead tonew and unexpected results (for user of given layer) gotten due to establishmentof one-to-one onto functions and mappings (the princple of implicit knowledge).It is possible to intervent into object structure, in process point any level ofrepresentation in any time in case of having su�cient information (principle oflimited all-permission). It is important to bring out moments and elements offailure into light (to highlight the misunderstood or simply unknown), just hereobjective and subobjective are interacted.Process of computing for AS is realized on the base of knowledge of stateof environment and knowledge of syntax form. Features of state of computeenvironment are; 133

Types of Action � Local� Localised� Global Type of Control � [Non]Deterministic� Sequential� Parallel� Partial-OrderedAll kinds of actions di�er by their e�ect on the computational environment:local e�ects only a previously bounded part; localised e�ects locally that part ofenvironment which have been allocated in a global search process; global e�ectsthe environment as a rule entirely.At present the common form of computation is linguistic one, other formsare used as interfaces. Therefore it is being set up the hypothesis about exitingof multidimensional space of representation in which calculations are realizedon base of "resonance processes" and more e�ective than linguistic.One of the base form of linguistic calculations is goal-oriented synthesis-generalization of a group of AS with the same structure. Multidimensionalrepresentations discriminate synthesis not only by syntax form but by semanticfeatures. Synthesis is mixed with veri�cation and other calculations what allowto react more exy on local change of compute situation and to control the deepof derivation and area of solution search. In this case parallelism of synthesis invarious layers has a natural character.Here conceptual synthesis is being considered. Expressed on mx languageand re�ned statements of computability, proposed by Tyugu[TE84]:Statement of Computability� simple A f! B� with condition P) A g! C� with subgoal 8s(DX s! EY) RX h(s)! GY)The �rst statement correspond with simple axioms, speci�nig functions ofprogram system in following form:[A:B (C D)-in E-out] or [A:B (int int��)-in graph�-out]If functions realize computation with similar semantic and (or) have thesame data parameterizied axioms are introduced to decrease the search timeand the requested memory for axioms:[[A: k X&Y) [:X (C D)-in Y -out]]Here X,Y are free variables in Refal style, "." is concatenation. The processof designing of parameterizied axioms is generalization, the process of usage isconcretization, being written in the below form:[A B E]; [A N S]134

The base of axioms allow to formulate various goal of search, calculation,costruction of AS:� for function [$ A-in B-out]� for data [F (A $)-in B-out]� for mixter [$ (C $)-in $-out]Let the sign$designates a goal element, which can be named by the followingidenti�er. The goals are parameterizied as is the case with axioms:$:A k Y) Z-in Y -outIt is stated here that a wider class of problems than in traditional systemsof conceptual programming. Besides, here speci�cations are executable. Simi-larily to PRIZ it permits speci�cation of high order functionals in a form of theparameterized axioms with subgoals:[[M k X & Y) [$ X-in Z-out] [$ X-in W -out]]]The derivation rules for compositions and generation of subgoals:Rule.Onek-feature mixturekN-id [C k 1] [L k (A : out �B : in)-the 6= ;) fA Bg, [N ((A+ B) : in � (A : out �B : in))-in (A +B) : -out]k (A : out �B : in)-the = ;&C = 1) [C k 0] [L A B]k E-exp) [message E]k E-exp) [message E]Rule.Twok ([S (D X)-(list in) (E Y)-(list out)]![H (R X)-(list in) (Q Y)-(list out) [$]])&F) [H (R X)-in (Q Y)-outf[$ (R X)-in D-out] [S (D X)-in (E Y)-out]g], [F (R X)-in (Q Y)-out]k ([S (D X)-(list in) (E Y)-(list out)]![H (R X)-(list in) (Q Y)-(list out) [$]]) &D-out&F) f[$ (R X)-in D-out][H (R X)-in (Q Y)-out [S (D X)-in (E Y)-out]]g, [F (R X)-in (Q D Y)-out]Note that the second form of generation of subgoals is somewhat like toplanning on undependence tasks of Tyugu, but allows automatic generation ofthe subgoals. The rules with if and do are in the traditional form.135

References[AKP93] Ait-Kaci H., Podelski A. Towards a meaning of LIFE. The Journal ofLogic Programming, 16, 1993, pp. 195{234.[DGK93] Darlington J., Guo Y., Kohler M. Functional Programming Languageswith Logical Variables: A Linear Logic View. Proc. of the Fifth Inter-national Symposium PLILP'93 Lect. Notes of Comp. Sci., 714, SpringerVerlag, 1993, pp. ???[GM87] Goguen J.A., Meseguer J. Models and equality for logical programming.Proc. of TAPSOFT, 250 of Lect. Notes in Comp. Sci., 87, SpringerVerlag, 1987, pp.1{22[GY93] Guo Y. FALCON: Functional and Logic Language with Constraints. Adraft prepared for the 6 of Ph.D thesis: De�nition al Constraint Program-ming. Dep. of Comp. Imperial College, 180 Queen's Gate London SW72BZ U.K., 1993.[HS86] Hyvonen E., Seppanen J. LISP - MAAILMA. 1. Johdatus kieleen ja olyel-mointiin, 1986, 2. Ohjelmointimenetelmat ja j�arjestelmat { KirjayhtymaOy, Helsinki, 1987 (in Finnish)[HJ93] Haridi S., Janson S., Montelius J.,Franzen T., Brand P., Boortz K., Daniels-son B., Carlson B., Keisu T., Sahlin D., Sjoland T. Concurent ConstraintProgramming at SICS with the Andorra Kernel Language (Extended Ab-stract). Workshop on Principles and Practices of Constraint Program-ming, ???, 1993.[LFB93] Lopez G., Freeman-Benson B., Borning A. Kaleidoscope: A ConstraintImperative Programming Language. In Constraint Programming. NATOASI Series. Springer Verlag, 1994 (To appear)[LM80] Lehman M. Life Cycles, and Laws of Software Evolution, IEEE 68, N 9,September 1980, pp. 1060{1075.[MS93] Maslov S. The Program Base is Knowlege Investments. STI, An informa-tional processes and systems. 1, 1993, pp. 1{9 (in Russian)[MT92] Matskin M., Tyugu E. The NUT Language. TRITA - TCS - SE - 9212- TR. Royal Institute of Technology Dep. of Teleinformatics SoftwareEngineering, Stockholm, 1992.[PT93] Penjam J., Tyugu E. Constraits in NUT. In Constraint Programming.NATO ASI Series. Springer Verlag, 1994. (To appear)[TE84] Tyugu E. Conceptual programming. Moscow, Nauka, 1984 (in Russian)136

[TF] Townsend C., Feucht D. Designing and programming personal expert sys-tems. TAB Book Inc. Blue Ridge Summit, PA 17214,

137

