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urity of Symmetri
-Key Cryptographi
 PrimitivesZul�kar Ramzan Leonid Reyzin�.November 30, 2000Abstra
tWe put forward a new model for understanding the se
urity of symmetri
-key primitives,su
h as blo
k 
iphers. The model 
aptures the fa
t that many su
h primitives often 
onsist ofiterating simpler 
onstru
ts for a number of rounds, and may provide insight into the se
urityof su
h designs.We 
ompletely 
hara
terize the se
urity of four-round Luby-Ra
ko� 
iphers in our model,and show that the 
iphers remain se
ure even if the adversary is given bla
k-box a

ess to themiddle two round fun
tions. A similar result 
an be obtained for message authenti
ation 
odesbased on universal hash fun
tions.1 Introdu
tion1.1 Blo
k CiphersA blo
k 
ipher is a family of permutations on a message spa
e indexed by a se
ret key. Ea
hpermutation in the family deterministi
ally maps plaintext blo
ks of some �xed length to 
iphertextblo
ks of the same length; both the permutation and its inverse are eÆ
iently 
omputable giventhe key.Motivated originally by the study of se
urity of the blo
k 
ipher DES [16℄, Luby and Ra
ko�provided a formal model for the se
urity of blo
k 
iphers in their seminal paper [14℄. They 
on-sider a blo
k 
ipher to be se
ure (\super pseudorandom," or se
ure under both \
hosen plaintext"and \
hosen 
iphertext" atta
ks) if, without knowing the key, a polynomial-time adversary withora
le a

ess to both dire
tions of the permutation is unable to distinguish it from a truly randompermutation on the same message spa
e. This de�nition is an extension of the de�nition of a pseu-dorandom fun
tion generator from [12℄, where the adversary has ora
le a

ess only to the forwarddire
tion of the fun
tion.11.2 The Natural Round Stru
ture of Symmetri
-Key PrimitivesIn addition to de�ning se
urity of blo
k 
iphers, Luby and Ra
ko� also provided a 
onstru
tion ofa se
ure blo
k 
ipher based on a pseudorandom fun
tion generator. Their blo
k 
ipher 
onsists offour rounds of Feistel [11℄ permutations, ea
h of whi
h 
onsists of an appli
ation of a pseudorandom�Laboratory for Computer S
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 IACR1The paper [14℄ also 
onsiders blo
k 
iphers that are just pseudorandom, or se
ure against 
hosen plaintext atta
konly, where the adversary has a

ess only to the forward dire
tion of the permutation.1



fun
tion and an ex
lusive-or operation. Ea
h round's output is used for the next round's input,ex
ept for the last round, whose output is the output of the blo
k 
ipher.Mu
h of the theoreti
al resear
h that followed the work of [14℄ fo
used on eÆ
ien
y improve-ments to this 
onstru
tion (e.g., see [15℄, [18℄ and referen
es therein). All of these variations 
analso be naturally broken up into rounds.This theme of an inherent round stru
ture in blo
k 
iphers is also seen extensively in pra
ti
e.For example, a number of 
iphers, in
luding DES [16℄ and many of the AES submissions [17℄ havean inherent round stru
ture (though not ne
essarily involving Feistel permutations), where theoutput of one round is used as input to the next.In addition to blo
k 
iphers, 
onstru
tions of other 
ryptographi
 primitives often also pro
eedin rounds. For example, universal-hash-fun
tion-based message authenti
ation 
odes (UHF MACs)[6℄, [22℄, [9℄ 
an be viewed as 
onsisting of two rounds. Moreover, 
ryptographi
 hash fun
tions(e.g., MD-5 [19℄), and the various message authenti
ation s
hemes that are built on top of them(e.g., HMAC [1℄), have an indu
ed round stru
ture as well.Consequently, it should 
ome as little surprise that 
ryptanalysts have often 
onsidered lookingat individual rounds in order to better understand the se
urity properties of a given design; forexample, a large number of papers have been written analyzing redu
ed-round variants of blo
k
iphers and hash fun
tions (see [5℄, [21℄, and the referen
es therein).It thus seems that a theoreti
al framework in
orporating the notion of rounds would be desirable.This paper proposes su
h a framework. Although our model is a simple extension of the 
lassi
almodels of se
urity for symmetri
 primitives ([14℄, [12℄, [2℄), it allows one to obtain a number ofinteresting results not 
aptured by the traditional models. In parti
ular, we analyze the se
urity ofthe original Luby-Ra
ko� 
onstru
tion, some of its variants, and UHF MACs within our framework.1.3 Our Contributions1.3.1 A New ModelThe de�nition of a se
ure blo
k 
ipher from [14℄, or of a se
ure MAC from [3℄, allows the adversaryonly bla
k-box a

ess to the primitive. We develop the notion round se
urity, whi
h 
onsiders whathappens when the adversary has additional a

ess to some of the internal rounds of the 
omputationof the primitive. We fo
us on blo
k 
iphers, but our te
hniques 
an be extended to other primitivessu
h as MACs.For example, in the 
ase of blo
k 
iphers, we study what happens when the adversary is allowed,in addition to its 
hosen-plaintext and 
hosen-
iphertext queries, to input a value dire
tly to someround i of the blo
k 
ipher and view the output after some round j, with restri
tions on i andj. The adversary's job is still the same: to distinguish whether the 
hosen-
iphertext and 
hosen-plaintext queries are being answered by the blo
k 
ipher or by a random permutation. The queriesto internal rounds are always answered by the blo
k 
ipher.As dis
ussed below, this model allows us gain a better understanding of what makes symmetri

onstru
tions se
ure, and enables us to make statements about se
urity that are not 
aptured bythe traditional model.1.3.2 Round Se
urity of Luby-Ra
ko� CiphersWe 
ompletely 
hara
terize the round se
urity of the Luby-Ra
ko� 
onstru
tion and its more eÆ-
ient variants from [15℄ and [18℄. That is, we pre
isely spe
ify the sets of rounds that the adversary2




an a

ess for the 
ipher to remain se
ure, and show that a

ess to other sets of rounds will makethe 
ipher inse
ure.The 
ipher proposed by Luby and Ra
ko� [14℄ operates on a 2n-bit string (L;R) and 
an bedes
ribed simply as follows: S = L� h1(R)T = R� f1(S)V = S � f2(T )W = T � h2(V );where h1; h2; f1; f2 are pseudorandom fun
tions, � represents the ex
lusive-or, and the output is(V;W ).Naor and Reingold [15℄ demonstrated that pseudorandom fun
tions h1 and h2 
an be repla
edby XOR-universal hash fun
tions, thus suggesting that strong randomness is important only in themiddle two rounds. We extend their observation by showing that, in fa
t, se
re
y is important inthe �rst and last rounds, while randomness (but no se
re
y) is needed in the middle two rounds.Spe
i�
ally, we show that:� The 
ipher remains se
ure even if the adversary has ora
le a

ess to both f1 and f2.� The 
ipher be
omes inse
ure if the adversary is allowed a

ess to any other round ora
les.Moreover, we demonstrate that instantiating h1 and h2 as hash fun
tions instead of as pseudoran-dom fun
tions does not signi�
antly lower the round se
urity of the blo
k 
ipher, thus supportingthe observation that strong randomness is not needed in the �rst and last rounds of the Luby-Ra
ko� 
onstru
tion.1.3.3 Round Se
urity of Universal Hash Fun
tion MACsUsing te
hniques in our paper, one 
an also 
hara
terize the round se
urity of a 
lass of Universal-Hash Fun
tion-based Message Authenti
ation Codes (UHF MACs). In the �rst round, these UHFMACs apply a universal hash fun
tion h to a relatively large message, to get a shorter intermediarystring. Then, in the se
ond round, they use a pseudorandom fun
tion f on the shorter string toget a �nal tag. It turns out that:� A UHF MAC remains se
ure if the adversary has ora
le a

ess to f .� A UHF MAC is, in general, inse
ure if the adversary has ora
le to h.1.3.4 Impli
ations for the Random Ora
le ModelOur work has interesting impli
ations for Luby-Ra
ko� 
iphers and UHF MACs in the randomora
le model. One 
an easily de�ne se
urity of blo
k 
iphers and MACs in this model given thework of [4℄: one simply allows all parties (in
luding the adversary) a

ess to the same ora
le, andthe adversary has to su

eed for a random 
hoi
e of the ora
le.Our results imply that the Luby-Ra
ko� 
ipher remains se
ure in the random ora
le model ifone repla
es the fun
tions f1 and f2 with random ora
les. That is, in the random ora
le model,keying material will only be ne
essary for h1 and h2, whi
h, as shown in [15℄ and [18℄, 
an be just(variants of) universal hash fun
tions. 3



Similarly, the UHF MAC remains se
ure if the pseudorandom fun
tion, used in the se
ondround, is repla
ed with a random ora
le. Thus, again, in the random ora
le model, keying materialis needed only for the hash fun
tion.Blo
k 
iphers have been analyzed in the random-ora
le model before. For example, Even andMansour [10℄ 
onstru
t a 
ipher using a publi
 random permutation ora
le P (essentially, the
onstru
tion is y = P (k1 � x)� k2, where k1 and k2 
onstitute the key, x is the plaintext, and y isthe resulting 
iphertext). They show their 
onstru
tion is hard to invert and to existentially forge.We 
an re
ast their 
onstru
tion in our model, as a three-round 
ipher, where the adversary hasa

ess to the se
ond round. Using the te
hniques in our paper, we 
an, in fa
t, obtain a strongerresult; namely, that their 
ipher is super pseudorandom.Of 
ourse, whether a s
heme in the random ora
le model 
an be instantiated se
urely in the realworld (that is, with polynomial-time 
omputable fun
tions in pla
e of random ora
les) is un
ertain,parti
ularly in light of the results of Canetti, Goldrei
h and Halevi [7℄. However, our results openup an interesting dire
tion: is it possible to repla
e pseudorandom fun
tions with unkeyed fun
tionsin any of the 
onstru
tions we dis
uss?2 Prior De�nitions and Constru
tionsBelow we des
ribe the relevant de�nitions and prior 
onstru
tions. Our presentation is in the\
on
rete" (or \exa
t") se
urity model as opposed to the asymptoti
 model (though our results
an be made to hold for either). Our treatment follows that of Bellare, Kilian, and Rogaway [3℄,and Bellare, Canetti, Kraw
zyk [2℄.2.1 De�nitions2.1.1 NotationFor a bit string x, we let jxj denote its length. If x has even length, then xL and xR denote the leftand right halves of the bits respe
tively; we sometimes write x = (xL; xR). If x and y are two bitstrings of the same length, x�y denotes their bitwise ex
lusive OR. If S is a probability spa
e, thenx R S denotes the pro
ess of pi
king an element from S a

ording to the underlying probabilitydistribution. Unless otherwise spe
i�ed, the underlying distribution is assumed to be uniform. Welet In denote the set of bit strings of length n: f0; 1gn.By a �nite fun
tion (or permutation) family F , we denote a set of fun
tions with 
ommondomain and 
ommon range. Let Randk!l be the set of all fun
tions going from Ik to Il, and letPermm be the set of all permutations on Im. We 
all a �nite fun
tion (or permutation) familykeyed if every fun
tion in it 
an be spe
i�ed (not ne
essarily uniquely) by a key a. We denote thefun
tion given by a as fa. We assume that given a, it is possible to eÆ
iently evaluate fa at anypoint (as well as f�1a in 
ase of a keyed permutation family). For a given keyed fun
tion family,a key 
an be any string from Is, where s is known as \key length." (Sometimes it is 
onvenientto have keys from a set other than Is; we do not 
onsider su
h fun
tion families simply for 
larityof exposition|our results do not 
hange in su
h a 
ase.) For fun
tions f and g, g Æ f denotes thefun
tion x 7! g(f(x)).2.1.2 Model of ComputationThe adversary A is modeled as a program for a Random A

ess Ma
hine (RAM) that has bla
k-boxa

ess to some number k of ora
les, ea
h of whi
h 
omputes some spe
i�ed fun
tion. If (f1; : : : ; fk)4



is a k-tuple of fun
tions, then Af1;:::;fk denotes a k-ora
le adversary who is given bla
k-box ora
lea

ess to ea
h of the fun
tions f1; : : : ; fk. We de�ne A's \running time" to be the number of timesteps it takes plus the length of its des
ription (to prevent one from embedding arbitrarily largelookup tables in A's des
ription).2.1.3 Pseudorandom Fun
tions and Blo
k CiphersThe pseudorandomness of a keyed fun
tion family F with domain Ik and range Il 
aptures its
omputational indistinguishability from Randk!l. This de�nition is a slightly modi�ed version ofthe one given by Goldrei
h, Goldwasser and Mi
ali [12℄.De�nition 1 A pseudorandom fun
tion family F is a keyed fun
tion family with domain Ik, rangeIl, and key length s. Let A be a 1-ora
le adversary. Then we de�ne A's advantage asAdvprfF (A) = ���Pr[a R Is : Afa = 1℄� Pr[f R Randk!l : Af = 1℄��� :For any integers q; t � 0, we de�ne an inse
urity fun
tion AdvprfF (q; t):AdvprfF (q; t) = maxA fAdvprfF (A)g:The above maximum is taken over 
hoi
es of adversary A su
h that:� A makes at most q ora
le queries, and� the running time of A, plus the time ne
essary to sele
t a R Is and answer A's queries, is atmost t.We are now ready to de�ne a se
ure blo
k 
ipher, or what Luby and Ra
ko� [14℄ 
all a superpseudorandom permutation. The notion 
aptures the pseudorandomness of a permutation familyon Il in terms of its indistinguishability from Perml, where the adversary is given a

ess to bothdire
tions of the permutation. In other words, it measures se
urity of a blo
k 
ipher against 
hosenplaintext and 
iphertext atta
ks.De�nition 2 A blo
k 
ipher F is a keyed permutation family with domain and range Il and keylength s. Let A be a 2-ora
le adversary. Then we de�ne A's advantage asAdvsprpF (A) = ���Pr[a R Is : Afa;f�1a = 1℄� Pr[f R Perml : Af;f�1 = 1℄��� :For any integers q; t � 0, we de�ne an inse
urity fun
tion AdvsprpF (q; t) similarly to De�nition 1.2.1.4 Hash Fun
tionsOur de�nitions of hash fun
tions follow those given in [8℄, [18℄, [22℄, [13℄, [20℄.De�nition 3 Let H be a keyed fun
tion family with domain Ik, range Il, and key length s. Let�1; �2; �3; �4 � 2�l. H is an �1-uniform family of hash fun
tions if for all x 2 Ik; z 2 Il, Pr[a R Is :ha(x) = z℄ � �1. H is �2-XOR-universal if for all x 6= y 2 Ik; z 2 Il, Pr[a R Is : ha(x) � ha(y) =z℄ � �2. It is �3-bisymmetri
 if for all x; y 2 Ik (here we allow x = y), z 2 Il, Pr[a1 R Is; a2 R Is :ha1(x)� ha2(y) = z℄ � �3. It is �4-universal if for all x 6= y 2 Ik, Pr[a R Is : ha(x) = ha(y)℄ � �4.5



We note that in some of the past literature, hash fun
tions are assumed to be uniform by default.We prefer to separate uniformity from other properties.An example of a family that has all four properties for �1 = �2 = �3 = �4 = 2�l is a family keyedby a random l � k matrix A over GF (2) and a random l-bit ve
tor v, with hA;v(x) = Ax+ v [8℄.Remark 1 We will use the phrase \h is a uniform (XOR-universal, bisymmetri
, universal) hashfun
tion" to mean \h is drawn from a uniform (XOR-universal, bisymmetri
, universal) family ofhash fun
tions."2.2 Constru
tions of Luby-Ra
ko� CiphersWe now de�ne Feistel stru
tures, whi
h are the main tool for 
onstru
ting pseudorandom permu-tations on 2n bits from fun
tions on n bits.De�nition 4 (Basi
 Feistel Permutation) Let f be a mapping from In to In. Let x = (xL; xR)with xL; xR 2 In: We denote by f the permutation on I2n de�ned as f(x) = (xR; xL� f(xR)): Notethat it is a permutation be
ause f�1(y) = (yR � f(yL); yL).De�nition 5 (Feistel Network) If f1; : : : ; fs are mappings with domain and range In, then wedenote by 	(f1; : : : ; fs) the permutation on I2n de�ned as 	(f1; : : : ; fs) = fs Æ : : : Æ f1Luby and Ra
ko� [14℄ were the �rst to 
onstru
t pseudorandom permutations. They did so usingfour independently-keyed pseudorandom fun
tions. The main theorem in their paper is:Theorem 1 (Luby-Ra
ko�) Let h1; f1; f2; h2 be independently-keyed fun
tions from a keyed fun
-tion family F with domain and range In and key spa
e Is. Let P be the family of permutations onI2n with key spa
e I4s de�ned by P = 	(h1; f1; f2; h2) (the key for an element of P is simply the
on
atenation of keys for h1; f1; f2; h2). ThenAdvsprpP (q; t) � AdvprfF (q; t) +  q2!�2�n+1 + 2�2n+1� :Naor and Reingold [15℄ optimized the above 
onstru
tion by enabling the use of XOR-universalhash fun
tions in the �rst and last rounds.Theorem 2 (Naor-Reingold) Let f1 and f2 be independently-keyed fun
tions from a keyed fun
-tion family F with domain and range In and key spa
e Is1. Let h1; h2 be �-XOR-universal hashfun
tions, keyed independently of ea
h other and of f1; f2, from a keyed fun
tion family H withdomain and range In and key spa
e Is2 . Let P be the family of permutations on I2n with key spa
eI2s1+2s2 de�ned by p = 	(h1; f1; f2; h2). ThenAdvsprpP (q; t) � AdvprfF (q; t) + q2!�2�+ 2�2n+1� :Patel, Ramzan, and Sundaram [18℄, following a suggestion in [15℄, optimized the 
onstru
tionfurther by allowing the same pseudorandom fun
tion to be used in the middle rounds, thus redu
ingthe key size. This required an additional 
ondition on the hash fun
tion.6



Theorem 3 (Patel-Ramzan-Sundaram) Let f be a fun
tion from a keyed fun
tion family Fwith domain and range In and key spa
e Is1 . Let h1; h2 be �1-bisymmetri
 �2-XOR-universal hashfun
tions, keyed independently of ea
h other and of f , from a keyed fun
tion family H with domainand range In and key spa
e Is2 . Let P be the family of permutations on I2n with key spa
e Is1+2s2de�ned by P = 	(h1; f; f; h2). ThenAdvsprpP (q; t) � AdvprfF (2q; t) + q2�1 +  q2!�2�2 + 2�2n+1�3 New Model: Round Se
urityHaving presented the 
lassi
al de�nitions and 
onstru
tions of blo
k 
iphers, we are now ready tode�ne the new model of round se
urity. The de�nitions 
an be easily extended to other symmetri
primitives, su
h as MACs.Let P;F1;F2; : : : ;Fr be keyed permutation families, ea
h with domain and range Il and keylength s, su
h that for any key a 2 Is, pa = f ra Æ : : : Æ f1a . Then F1; : : : ;Fr is 
alled an r-roundde
omposition for P. For i � j, denote by (i ! j)a the permutation f ja Æ : : : Æ f ia, and by (i  j)athe permutation �f ja Æ : : : Æ f ia��1. Denote by i ! j and i  j the 
orresponding keyed fun
tionfamilies.Note that having ora
le a

ess to a member of i! j means being able to give inputs to roundi of the forward dire
tion of a blo
k 
ipher and view outputs after round j. Likewise, having ora
lea

ess to i  j 
orresponds to being able to give inputs to round j of the reverse dire
tion of theblo
k 
ipher and view outputs after round i. Thus, the ora
le for 1 ! r = P 
orresponds to theora
le for 
hosen plaintext atta
k, and the ora
le for 1  r 
orresponds to the ora
le for 
hosen
iphertext atta
k.We are now ready to de�ne se
urity in this round-based model. This de�nition 
losely mimi
sDe�nition 2. The di�eren
e is that the adversary is allowed ora
le a

ess to some subset K of theset fi! j; i j : 1 � i � j � rg, and the inse
urity fun
tion additionally depends on K.De�nition 6 Let P be a blo
k 
ipher with domain and range Il, key length s and some r-roundde
omposition F1; : : : ;Fr. Fix some subset K = f�1; : : : ; �kg of the set fi! j; i j : 1 � i � j �rg, and let A be a k + 2-ora
le adversary. Then we de�ne A's advantage asAdvsprpP;F1;:::;Fr;K(A) =���Pr[a R Is : Apa;p�1a ;�1a;:::;�ka = 1℄� Pr[p R Perml; a R Is : Ap;p�1;�1a;:::;�ka = 1℄���For any integers q; t � 0 and set K, we de�ne an inse
urity fun
tionAdvsprpP;F1;:::;Fr(q; t;K)similarly to De�nition 2.4 Round Se
urity of Luby-Ra
ko� CiphersHaving developed a round se
urity framework for blo
k 
iphers, we examine the spe
i�
 
ase ofa four-round 
ipher des
ribed in Se
tion 2.2. Our goal is to 
hara
terize the inse
urity fun
tionde�ned above depending on the set K of ora
les.7



We are able to do so 
ompletely, in the following sense. We pla
e every set K in one oftwo 
ategories: either the inse
urity fun
tion is una

eptably high, or it is almost as low as inthe standard model. That is, we 
ompletely 
hara
terize the a

eptable sets of ora
les for the
onstru
tion to remain se
ure in our model.Moreover, we do so for all three 
iphers presented in Se
tion 2.2 (although we need to add an�-uniformity 
ondition on the hash fun
tions in the se
ond and third 
onstru
tions in order forthem to remain se
ure; this is a mild 
ondition, often already a
hieved by a hash fun
tion family).As it turns out, the round se
urity of the three 
onstru
tions is the same. Spe
i�
ally, all three
iphers remain se
ure if the adversary is given a

ess to the se
ond and third rounds. These resultssuggest, in some sense, that the so-
alled \whitening" steps, performed in the �rst and last rounds,require se
re
y but only weak randomness, whereas the middle rounds require strong randomnessbut no se
re
y.We present our results in two parts. First, in Se
tion 4.1, we examine what 
ombinations ofora
les make the 
ipher inse
ure. Then, in Se
tion 4.2, we show that any other 
ombination leavesit se
ure.4.1 Negative ResultsIn this se
tion we demonstrate whi
h ora
les make the 
ipher inse
ure. Our negative results arestrong, in the sense that they hold regardless of what internal fun
tions h1; h2; f1; f2 are used. Thatis, the 
ipher 
an be distinguished from a random permutation even if ea
h of these fun
tions is
hosen truly at random. Thus, our results hold for all three 
iphers presented in Se
tion 2.2.Theorem 4 Regardless of how the fun
tions h1; f1; f2; h2 are 
hosen from the set of all fun
tionswith domain and range In, let P = 	(h1; f1; f2; h2). Let t be the time required to 
ompute 17 n-bitXOR operations, a 
omparison of two n-bit strings, and 9 ora
le queries.2 ThenAdvsprpP;h1;f1;f2;h2(9; t;K) � 1� 2�n;as long as K is not a subset of f2! 2; 2 2; 3 ! 3; 3  3; 2! 3; 2  3g. That is, P is inse
ureas long as the adversary has a

ess to an ora
le that in
ludes the �rst or fourth rounds.We will prove the theorem by eliminating ora
les that allow the adversary to distinguish the
ipher from a random permutation. This involves using the atta
k against a three-round 
ipherfrom [14℄. The 
omplete proof is given in Appendix A.4.2 Positive ResultsIn this se
tion, we prove what is essentially the 
onverse of the results of the previous se
tion.Namely, we show that if K is the set given in Theorem 4, then the 
ipher is se
ure. Of 
ourse, ifK is a subset of it, then the 
ipher is also se
ure.Theorem 5 Suppose K � f2! 2; 2 2; 3! 3; 3 3; 2! 3; 2 3g.Let h1; f1; f2; h2 and P be as in Theorem 1. ThenAdvsprpP;h1;f1;f2;h2(q; t;K) � AdvprfF (q; t) +  q2!�2�n+1 + 2�2n+1�+ q2 �2�n�1� :2The values 17 and 9 
an be redu
ed by more 
areful 
ounting; it is un
lear, however, if there is any reason toexpend e�ort �nding the minimal numbers that work. 8



If h1; f1; f2; h2 and P are as in Theorem 2, with the additional 
ondition that h1 and h2 be �3-uniform, then AdvsprpP;h1;f1;f2;h2(q; t;K) � AdvprfF (q; t) +  q2!�2�+ 2�2n+1�+ q2�3=2:Finally, if h1; f; h2 and P are as in Theorem 3, with the additional 
ondition that h1 and h2 be�3-uniform, thenAdvsprpP;h1;f;f;h2(q; t) � AdvprfF (2q; t) + q2(�1 + �3) +  q2!�2�2 + 2�2n+1� :We fo
us our proof on the last part of the theorem. The proofs of other 
ases are very similar.Our proof te
hnique is a generalization of the te
hniques of Naor and Reingold [15℄ designed todeal with the extra queries. Moreover, we analyze 
on
rete, rather than asymptoti
, se
urity.First, in the following simple 
laim, we redu
e the statement to the 
ase when f is a trulyrandom fun
tion.Claim 1 Suppose AdvsprpP;h1;f;f;h2(q; t) � Æwhen f is pi
ked from Randn!n, rather than from a pseudorandom family. ThenAdvsprpP;h1;f;f;h2(q; t) � Æ + AdvprfF (2q; t)when is f pi
ked from F .Proof. Indeed, suppose A is an adversary for the blo
k 
ipher P, with advantage 
. Build anadversary A0 for pseudorandom fun
tion family F as follows: A0 sele
ts at random h1 and h2 froma suitable family, and runs A on the 
ipher 	(h1; f; f; h2). In order to answer the queries of A, A0simply queries f where appropriate and 
omputes the answer a

ording to the Feistel stru
ture.A0 then outputs the same result as A.Note that A has advantage at least 
 if f is from F , and at most Æ for a truly random f . By astandard appli
ation of the triangle inequality, AdvprfF (A0) � 
 � Æ.We note that a

ess to the ora
les of K is equivalent to a

ess to the ora
le for f (althoughone query to 2! 3 or 3! 2 
an be simulated by two queries to f). Thus, it suÆ
es to prove thefollowing theorem.Theorem 6 Let f be a random fun
tion, and let h1; h2 be �1-bisymmetri
 �2-XOR-universal �3-uniform hash fun
tions with domain and range In, 	 = 	(h1; f; f; h2), and R be a random permu-tation on I2n: Then, for any 3-ora
le adversary A (we do not restri
t the running time of A) thatmakes at most q
 queries to its �rst two ora
les and at most qo queries to its third ora
le,���Pr[A	(h1;f;f;h2);	�1(h1;f;f;h2);f = 1℄� Pr[AR;R�1 ;f = 1℄���� q2
�1 + 2qoq
�3 +  q
2!�2�2 + 2�2n+1� :The remainder of this se
tion gives the proof of this theorem. To summarize, the �rst part of theproof fo
uses on the trans
ript (a.k.a. the \view") of the adversary, and shows that ea
h possibletrans
ript is about as likely to o

ur whenA is given 	 as whenA is given R. The se
ond part uses aprobability argument to show that this implies that A will have a small advantage in distinguishing	 from R. 9



4.2.1 Proof of Theorem 6To start with, let P denote the permutation ora
le (either 	(h1; f; f; h2) or R) that A a

esses. LetOf denote the ora
le that 
omputes the fun
tion f (note that when A gets 	 as its permutationora
le, f is a
tually used as the round fun
tion in the 
omputation of the ora
le P = 	; whenA gets R as its permutation ora
le, f is 
ompletely independent of P = R). The ma
hine A hastwo possibilities for queries to the ora
le P : (+; x) whi
h asks to obtain the value of P (x), or(�; y) whi
h asks to obtain the value of P�1(y) { where both x and y are in I2n. We 
all these
ipher queries. We de�ne the query-answer pair for the ith 
ipher query as hxi; yii 2 I2n � I2nif A's query was (+; x) and y is the answer it re
eived from P or its query was (�; y) and x isthe answer it re
eived. We assume that A makes exa
tly q
 queries and we 
all the sequen
efhx1; y1i; : : : ; hxq
 ; yq
igP the 
ipher-trans
ript of A.In addition, A 
an make queries to Of . We 
all these ora
le queries. We denote these queriesas: (Of ; x0) whi
h asks to obtain f(x0). We de�ne the query-answer pair for the ith ora
le queryas hx0i; y0ii 2 In� In if A's query was (Of ; x0) and the answer it re
eived was y0. We assume that Amakes qo queries to this ora
le. We 
all the sequen
e fhx01; y01i; : : : ; hx0qo ; y0qoigOf the ora
le-trans
riptof A.Note that sin
e A is 
omputationally unbounded, we 
an make the standard assumption thatA is a deterministi
 ma
hine. Under this assumption, the exa
t next query made by A 
an bedetermined by the previous queries and the answers re
eived. We formalize this as follows:De�nition 7 Let CA[fhx1; y1i; : : : ; hxi; yiigP ; fhx01; y01i; : : : ; hx0j ; y0jigOf ℄, where either i < q
 or j <qo, denote the i+ j + 1st query A makes as a fun
tion of the �rst i+ j query-answer pairs in A's
ipher and ora
le trans
ripts. Let CA[fhx1; y1i; : : : ; hxq
 ; yq
igP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ℄ denotethe output A gives as a fun
tion of its 
ipher and ora
le trans
ripts.De�nition 8 Let � be the pair of sequen
es(fhx1; y1i; : : : ; hxq
 ; yq
igP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf );where for 1 � i � q
 we have that hx1; y1i 2 I2n�I2n, and for 1 � j � qo, we have that hx0; y0i 2 In.Then, � is a 
onsistent A-trans
ript if for every 1 � i � q
 :CA[fhx1; y1i; : : : ; hxi; yiigP ; fhx01; y01i; : : : ; hx0j ; y0jigOf ℄ 2f(+; xi+1); (�; yi+1); (Of ; x0j+1)g:We now 
onsider another pro
ess for answering A's 
ipher queries that will be useful to us.De�nition 9 The random pro
ess ~R answers the ith 
ipher query of A as follows:1. If A's query is (+; xi) and for some 1 � j < i the jth query-answer pair is hxi; yii, then ~Ranswers with yi.2. If A's query is (�; yi) and for some 1 � j < i the jth query-answer pair is hxi; yii, then ~Ranswers with xi.3. If neither of the above happens, then ~R answers with a uniformly 
hosen element in I2n.Note that ~R's answers may not be 
onsistent with any fun
tion, let alone any permutation. Weformalize this 
on
ept. 10



De�nition 10 Let � = fhx1; y1i; : : : ; hxq
 ; yq
igP be any possible A-
ipher trans
ript. We say that� is in
onsistent if for some 1 � j < i � q
 the 
orresponding query-answer pairs satisfy xi = xjbut yi 6= yj, or xi 6= xj but yi = yj.Note 1 If � = (fhx1; y1i; : : : ; hxq
 ; yq
igP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ) is a possible A-trans
ript, weassume from now on that if � is 
onsistent and if i 6= j then xi 6= xj, yi 6= yj, and x0i 6= x0j. Thisformalizes the 
on
ept that A never repeats a query if it 
an determine the answer from a previousquery-answer pair.Fortunately, we 
an show that the pro
ess ~R often \behaves" exa
tly like a permutation. It turns outthat if A is given ora
le a

ess to either ~R or R to answer its 
ipher queries, it will have a negligibleadvantage in distinguishing between the two. We prove this more formally in proposition 1. Beforedoing so, we �rst 
onsider the distributions on the various trans
ripts seen by A as a fun
tion ofthe di�erent distributions on answers it 
an get.De�nition 11 The random variables T	; TR; T ~R denote the 
ipher-trans
ript / ora
le trans
riptpair seen by A when its 
ipher queries are answered by 	, R, ~R respe
tively, and its ora
le queriesare all answered by Of .Remark 2 Observe that a

ording to our de�nitions and assumptions, A	;	�1;f and CA(T	) de-note the same random variable. The same is true for AR;R�1;f and CA(TR):Proposition 1 ��Pr ~R[CA(T ~R) = 1℄� PrR[CA(TR) = 1℄�� � �q
2 � � 2�2nProof.For any possible and 
onsistent A-trans
ript � we have that:PrR [TR = �℄ = (22n � q
)!22n! � 2�qon = Pr~R [T ~R = � j T ~R is 
onsistent℄:Thus TR and T ~R have the same distribution 
onditioned on T ~R being 
onsistent. We now boundthe probability that T ~R is in
onsistent. Re
all that T ~R is in
onsistent if there exists an i and j with1 � j < i � q
 for whi
h xi = xj but yi 6= yj , or xi 6= xj but yi = yj: For a parti
ular i and j thisevent happens with probability 2�2n. So,Pr~R [T ~R is in
onsistent℄ �  q
2! � 2�2n:We 
omplete the proof via a standard argument:����Pr~R [CM (T ~R) = 1℄� PrR [CM (TR) = 1℄����� ����Pr~R [T ~R = � j T ~R is 
onsistent℄� PrR [CM (TR) = 1℄���� � Pr~R [T ~R is 
onsistent℄+ ����Pr~R [T ~R = � j T ~R is in
onsistent℄� PrR [CM (TR) = 1℄���� � Pr~R [T ~R is in
onsistent℄� Pr~R [T ~R is in
onsistent℄ �  q
2! � 2�2n:11



This 
ompletes the proof of the proposition.We now pro
eed to obtain a bound on the advantage that A will have in distinguishing betweenT	 and T ~R. It turns out that T	 and T ~R are identi
ally distributed unless the same value is inputto f on two di�erent o

asions (we show this in Lemma 1). This depends only on the 
hoi
e of h1and h2. We 
all this event \BAD" (in the next de�nition) and obtain a bound on the probabilitythat it a
tually o

urs (in Proposition 2).De�nition 12 For every spe
i�
 pair of fun
tions h1; h2 de�ne BAD(h1; h2) to be the set of allpossible and 
onsistent trans
ripts� = (fhx1; y1i; : : : ; hxq
 ; yq
igP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf )satisfying at least one of the following events:� B1: there exists 1 � i < j � q
 su
h that h1(xRi )� xLi = h1(xRj )� xLj , or� B2: there exists 1 � i < j � q
 su
h that yRi � h2(yLi ) = yRj � h2(yLj ), or� B3: there exists 1 � i; j � q
 su
h that h1(xRi )� xLi = yRj � h2(yLj ), or� B4: there exists 1 � i � q
, 1 � j � qo su
h that h1(xRi )� xLi = x0j, or� B5: there exists 1 � i � q
, 1 � j � qo su
h that yRi � h2(yLi ) = x0j:Proposition 2 Let h1; h2 be �1-bisymmetri
 �2-XOR-universal �3-uniform hash fun
tions. Then,for any possible and 
onsistent A� trans
ript �, we have thatPrh1;h2[� 2 BAD(h1; h2)℄ � q2
�1 + 2qoq
�3 +  q
2! � 2�2Proof. Re
all that a trans
ript � 2 BAD(h1; h2) if one of the events Bi o

ur. It is straightforwardto determine the individual probabilities of ea
h of these events separately by using the propertiesof h, and apply the union bound to add up the probabilities for ea
h event.Lemma 1 Let � = (fhx1; y1i; : : : ; hxq
 ; yq
igP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ) be any possible and 
on-sistent M � trans
ript; thenPr	 [T	 = �j� =2 BAD(h1; h2)℄ = Pr~R [T ~R = �℄:Proof. It is not hard to see that Pr ~R[T ~R = �℄ = 2�(2q
+qo)n (see [15℄ for more details).Now, �x h1; h2 to be su
h that � =2 BAD(h1; h2). We will now 
ompute Prf [T	 = �℄ (note thatthe probability is now only over the 
hoi
e of f). Sin
e � is a possible A-trans
ript, it follows thatT	(h1;f;f;h2) = � i� yi = 	(h1; f; f; h2)(xi) for all 1 � i � q
 and y0j = f(x0j) for all 1 � j � qo. Ifwe de�ne Si = xLi � h1(xRi )Ti = yRi � h2(yLi );12



then (yLi ; yRi ) = 	(xLi ; xRi ), f(Si) = Ti � xRi and f(Ti) = yLi � Si:Now observe that for all 1 � i < j � q
, Si 6= Sj and Ti 6= Tj (otherwise � 2 BAD(h1; h2)).Similarly, for all 1 < i; j < q
, Si 6= Tj. In addition, it follows again from the fa
t that � =2BAD(h1; h2) that for all 1 � i � q
 and 1 � j � qo, x0i 6= Sj and x0i 6= Tj . So, if � =2 BAD(h1; h2)all the inputs to f are distin
t. Sin
e f is a random fun
tion, Prf [T	 = �℄ = 2�(2q
+qo)n (The
ipher trans
ript 
ontributes 2�2nq
 and the ora
le trans
ript 
ontributes 2�qon to the probability).Thus, for every 
hoi
e of h1; h2 su
h that � =2 BAD(h1; h2), the probability that T	 = � isexa
tly the same: 2�(2q
+qo)n. Therefore:Pr	 [T	 = �j� =2 BAD(h1; h2)℄ = 2�(2q
+qo)n:whi
h 
ompletes the proof of the lemma.The rest of the proof 
onsists of using the above lemma and Propositions 1 and 2 in a probabilityargument.Let � be the set of all possible and 
onsistent trans
ripts � su
h that CA(�) = 1: Then����Pr	 [A	;	�1;f = 1℄� PrR [AR;R�1;f = 1℄����= ����Pr	 [CA(T	) = 1℄� PrR [CA(TR) = 1℄����� ����Pr	 [CA(T	) = 1℄� Pr~R [CA(T ~R) = 1℄����+  q
2! � 2�2nThe last inequality follows from the previous by proposition 1. Now, let T denote the set of allpossible trans
ripts (whether or not they are 
onsistent), and let � denote the set of all possiblein
onsistent trans
ripts � su
h that CA(�) = 1. Noti
e that � [ � 
ontains all the possibletrans
ripts su
h that CA(�) = 1, and T � (� [�) 
ontains all the possible trans
ripts su
h thatCA(�) = 0. Then: ����Pr	 [CA(T	) = 1℄� Pr~R [CA(T ~R) = 1℄����= �����X�2T Pr	 [CA(�) = 1℄ � Pr	 [T	 = �℄�X�2T Pr~R [CA(�) = 1℄ � Pr~R [T ~R = �℄������ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)�����+ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)������ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)�����+ Pr~R [T ~R is in
onsistent℄:Re
all (from the proof of Proposition 1) that Pr ~R[T ~R is in
onsistent℄ � �q
2 � � 2�2n. We now wantto bound the �rst term of the above expression. �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)������ �����X�2�(Pr	 [T	 = �j� 2 BAD(h1; h2)℄� Pr ~R[T ~R = �℄) � Pr	 [� 2 BAD(h1; h2)℄�����13



+ �����X�2�(Pr	 [T	 = �j� =2 BAD(h1; h2)℄� Pr~R [T ~R = �℄) � Pr	 [� =2 BAD(h1; h2)℄�����Now, we 
an apply Lemma 1 to get that the last term of the above expression is equal to 0. Allthat remains is to �nd a bound for the �rst term:�����X�2�(Pr	 [T	 = �j� 2 BAD(h1; h2)℄� Pr~R [T ~R = �℄) � Pr	 [� 2 BAD(h1; h2)℄������ max� Pr	 [� 2 BAD(h1; h2)℄�max(X�2�(Pr	 [T	 = �j� 2 BAD(h1; h2)℄;X�2�Pr~R [T ~R = �℄)) :Note that the last two sums of probabilities are both between 0 and 1, so the above expression isbounded by max� Pr	[� 2 BAD(h1; h2)℄, whi
h is, by Proposition 2, bounded by q2
�1 + 2qoq
�3 +�q
2 � � 2�2.Finally, 
ombining the above 
omputations, we get:����Pr	 [A	;	�1;f = 1℄� PrR [AR;R�1;f = 1℄���� � q2
�1 + 2qoq
�3 +  q
2!(2�2 + 2�2n+1);whi
h 
ompletes the proof of Theorem 6.5 A
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A Proof of Theorem 4First, we note the following fa
t.Lemma 2 If we give the adversary A a way to 
ompute the values of h1 on arbitrary inputs, thenthere exists A that asks three queries to h1, two queries to the 
hosen-plaintext ora
le p, and onequery to the 
hosen-
iphertext ora
le p�1, performs 8 XOR operations, and has an advantage of1� 2�n.Proof. This is so be
ause a

ess to h1 allows the adversary to \peel o�" the �rst round of the
ipher, and then use the atta
k of [14℄ against a three-round 
ipher.Consider an adversary who performs the following steps:1. pi
k three arbitrary n-bit strings L1; R1; R2;2. query the plaintext ora
le on (L1; R1) to get (V1;W1)3. query the plaintext ora
le on (L1 � h1(R1)� h1(R2); R2) to get (V2;W2)4. query the 
iphertext ora
le on (V2;W2 �R1 �R2)5. output 1 if h1(R3)� L3 = V1 � V2 � L1 � h1(R1)Re
all the the goal of the adversary is to output 1 when given the plaintext and 
iphertextora
les for a random permutation with noti
eably di�erent probability than when given ora
les forthe blo
k 
ipher.Clearly, if the plaintext and 
iphertext ora
les are truly random, then the adversary will output1 with probability 2�n, be
ause V1 and L3 are then random and independent of the rest of theterms. However, if the plaintext and 
iphertext ora
les are for the blo
k 
ipher, then the adversarywould output 1 with probability 1. Here is why.Let Si, Ti (1 � i � 3) be the intermediate values 
omputed in rounds 1 and 2 of the blo
k 
ipherfor the three queries. Let L2 = L1 � h1(R1) � h1(R2), V3 = V2 and W3 = W2 � R1 � R2. Notethat S1 = L1 � h1(R1) = L2 � h1(R2) = S2. Then T3 = W3 � h2(V3) = W2 �R1 � R2 � h2(V2) =T2�R1�R2 = f2(S2)�R2�R1�R2 = f2(S1)�R1 = T1. Finally, h1(R3)�L3 = S3 = V3�f3(T3) =V2 � f3(T1) = V2 � V1 � S1 = V2 � V1 � L1 � h1(R1).Note that this fa
t 
an be similarly shown for h2. The lemma above allows us to easily provethe following result.Lemma 3 If K 
ontains at least one of the following ora
les: 1 ! 4, 1  4, 2 ! 4, 2  4,1 ! 3, 1  3, 1 ! 1, 1 ! 2, 1  1, 1  2, 4  4, 3  4, 4 ! 4 or 3  4, then there existsA making no more than 9 queries to the ora
les and performing no more than 17 XOR operationswhose advantage is 1� 2�n.Proof. If K 
ontains 1 ! 4 or 1 ! 3, then A 
an input an arbitrary pair (L;R) to either ofthese and re
eive (V;W ) or (T; V ). A then inputs (L;R) to the 
hosen plaintext ora
le p to re
eive(V 0;W 0), and 
he
ks if V = V 0.Similarly for 1 4 or 2 4.If K 
ontains 2! 4, then A 
an input an arbitrary pair (R;S) to it to re
eive (V;W ). A theninputs (V;W ) to the 
hosen 
iphertext ora
le p�1 to re
eive (L;R0) and 
he
ks if R = R0. Similarlyfor 1 3. 16



IfK 
ontains 1! 1 or 1! 2, then A 
an input (L;R) and re
eive, in parti
ular, S = L�h1(R).A 
an then 
ompute h1(R) = S � L, and use the pro
edure of Lemma 2.A

ess to 1 1 allows A to input (R;S) and re
eive (L = S � h1(R); R). A 
an then 
omputeh1(R) = L� S.A

ess to 1 2 allows A to 
ompute h1(R) as follows:1. query the 1 2 ora
le on an arbitrary pair (S1; T1) to get (L1; R1);2. let T2 = T1 �R1 �R and S2 = S1;3. query the 1 2 ora
le on (S2; T2) to get (L2; R2); then R2 = T2 � f1(S2) = (T1 �R1 �R)�(R1 � T1) = R;4. 
ompute h1(R) = L2 � S2.Thus, any of the ora
les 1 ! 1; 1 ! 2; 1  1; 1  2 gives A a

ess to h1 and thus makes the
ipher inse
ure.Similarly for 4 4; 3 4, 4! 4 and 3! 4.Finally, to prove Theorem 4, note that there are 20 possible ora
les. Of those, 14 are ruled outby the above lemma, leaving only 6 possible ora
les to 
hoose from.
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