
On the Round Seurity of Symmetri-Key Cryptographi PrimitivesZul�kar Ramzan Leonid Reyzin�.November 30, 2000AbstratWe put forward a new model for understanding the seurity of symmetri-key primitives,suh as blok iphers. The model aptures the fat that many suh primitives often onsist ofiterating simpler onstruts for a number of rounds, and may provide insight into the seurityof suh designs.We ompletely haraterize the seurity of four-round Luby-Rako� iphers in our model,and show that the iphers remain seure even if the adversary is given blak-box aess to themiddle two round funtions. A similar result an be obtained for message authentiation odesbased on universal hash funtions.1 Introdution1.1 Blok CiphersA blok ipher is a family of permutations on a message spae indexed by a seret key. Eahpermutation in the family deterministially maps plaintext bloks of some �xed length to iphertextbloks of the same length; both the permutation and its inverse are eÆiently omputable giventhe key.Motivated originally by the study of seurity of the blok ipher DES [16℄, Luby and Rako�provided a formal model for the seurity of blok iphers in their seminal paper [14℄. They on-sider a blok ipher to be seure (\super pseudorandom," or seure under both \hosen plaintext"and \hosen iphertext" attaks) if, without knowing the key, a polynomial-time adversary withorale aess to both diretions of the permutation is unable to distinguish it from a truly randompermutation on the same message spae. This de�nition is an extension of the de�nition of a pseu-dorandom funtion generator from [12℄, where the adversary has orale aess only to the forwarddiretion of the funtion.11.2 The Natural Round Struture of Symmetri-Key PrimitivesIn addition to de�ning seurity of blok iphers, Luby and Rako� also provided a onstrution ofa seure blok ipher based on a pseudorandom funtion generator. Their blok ipher onsists offour rounds of Feistel [11℄ permutations, eah of whih onsists of an appliation of a pseudorandom�Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA 02139. E-mail:fzulfikar, reyzing�theory.ls.mit.edu. URL: http://theory.ls.mit.edu/f~zulfikar, ~reyzing. This workappears in Advanes in Cryptology | Crypto 2000, Mihir Bellare, editor, Leture Notes in Computer Siene vol.1880, Springer-Verlag, 2000.  IACR1The paper [14℄ also onsiders blok iphers that are just pseudorandom, or seure against hosen plaintext attakonly, where the adversary has aess only to the forward diretion of the permutation.1



funtion and an exlusive-or operation. Eah round's output is used for the next round's input,exept for the last round, whose output is the output of the blok ipher.Muh of the theoretial researh that followed the work of [14℄ foused on eÆieny improve-ments to this onstrution (e.g., see [15℄, [18℄ and referenes therein). All of these variations analso be naturally broken up into rounds.This theme of an inherent round struture in blok iphers is also seen extensively in pratie.For example, a number of iphers, inluding DES [16℄ and many of the AES submissions [17℄ havean inherent round struture (though not neessarily involving Feistel permutations), where theoutput of one round is used as input to the next.In addition to blok iphers, onstrutions of other ryptographi primitives often also proeedin rounds. For example, universal-hash-funtion-based message authentiation odes (UHF MACs)[6℄, [22℄, [9℄ an be viewed as onsisting of two rounds. Moreover, ryptographi hash funtions(e.g., MD-5 [19℄), and the various message authentiation shemes that are built on top of them(e.g., HMAC [1℄), have an indued round struture as well.Consequently, it should ome as little surprise that ryptanalysts have often onsidered lookingat individual rounds in order to better understand the seurity properties of a given design; forexample, a large number of papers have been written analyzing redued-round variants of blokiphers and hash funtions (see [5℄, [21℄, and the referenes therein).It thus seems that a theoretial framework inorporating the notion of rounds would be desirable.This paper proposes suh a framework. Although our model is a simple extension of the lassialmodels of seurity for symmetri primitives ([14℄, [12℄, [2℄), it allows one to obtain a number ofinteresting results not aptured by the traditional models. In partiular, we analyze the seurity ofthe original Luby-Rako� onstrution, some of its variants, and UHF MACs within our framework.1.3 Our Contributions1.3.1 A New ModelThe de�nition of a seure blok ipher from [14℄, or of a seure MAC from [3℄, allows the adversaryonly blak-box aess to the primitive. We develop the notion round seurity, whih onsiders whathappens when the adversary has additional aess to some of the internal rounds of the omputationof the primitive. We fous on blok iphers, but our tehniques an be extended to other primitivessuh as MACs.For example, in the ase of blok iphers, we study what happens when the adversary is allowed,in addition to its hosen-plaintext and hosen-iphertext queries, to input a value diretly to someround i of the blok ipher and view the output after some round j, with restritions on i andj. The adversary's job is still the same: to distinguish whether the hosen-iphertext and hosen-plaintext queries are being answered by the blok ipher or by a random permutation. The queriesto internal rounds are always answered by the blok ipher.As disussed below, this model allows us gain a better understanding of what makes symmetrionstrutions seure, and enables us to make statements about seurity that are not aptured bythe traditional model.1.3.2 Round Seurity of Luby-Rako� CiphersWe ompletely haraterize the round seurity of the Luby-Rako� onstrution and its more eÆ-ient variants from [15℄ and [18℄. That is, we preisely speify the sets of rounds that the adversary2



an aess for the ipher to remain seure, and show that aess to other sets of rounds will makethe ipher inseure.The ipher proposed by Luby and Rako� [14℄ operates on a 2n-bit string (L;R) and an bedesribed simply as follows: S = L� h1(R)T = R� f1(S)V = S � f2(T )W = T � h2(V );where h1; h2; f1; f2 are pseudorandom funtions, � represents the exlusive-or, and the output is(V;W ).Naor and Reingold [15℄ demonstrated that pseudorandom funtions h1 and h2 an be replaedby XOR-universal hash funtions, thus suggesting that strong randomness is important only in themiddle two rounds. We extend their observation by showing that, in fat, serey is important inthe �rst and last rounds, while randomness (but no serey) is needed in the middle two rounds.Spei�ally, we show that:� The ipher remains seure even if the adversary has orale aess to both f1 and f2.� The ipher beomes inseure if the adversary is allowed aess to any other round orales.Moreover, we demonstrate that instantiating h1 and h2 as hash funtions instead of as pseudoran-dom funtions does not signi�antly lower the round seurity of the blok ipher, thus supportingthe observation that strong randomness is not needed in the �rst and last rounds of the Luby-Rako� onstrution.1.3.3 Round Seurity of Universal Hash Funtion MACsUsing tehniques in our paper, one an also haraterize the round seurity of a lass of Universal-Hash Funtion-based Message Authentiation Codes (UHF MACs). In the �rst round, these UHFMACs apply a universal hash funtion h to a relatively large message, to get a shorter intermediarystring. Then, in the seond round, they use a pseudorandom funtion f on the shorter string toget a �nal tag. It turns out that:� A UHF MAC remains seure if the adversary has orale aess to f .� A UHF MAC is, in general, inseure if the adversary has orale to h.1.3.4 Impliations for the Random Orale ModelOur work has interesting impliations for Luby-Rako� iphers and UHF MACs in the randomorale model. One an easily de�ne seurity of blok iphers and MACs in this model given thework of [4℄: one simply allows all parties (inluding the adversary) aess to the same orale, andthe adversary has to sueed for a random hoie of the orale.Our results imply that the Luby-Rako� ipher remains seure in the random orale model ifone replaes the funtions f1 and f2 with random orales. That is, in the random orale model,keying material will only be neessary for h1 and h2, whih, as shown in [15℄ and [18℄, an be just(variants of) universal hash funtions. 3



Similarly, the UHF MAC remains seure if the pseudorandom funtion, used in the seondround, is replaed with a random orale. Thus, again, in the random orale model, keying materialis needed only for the hash funtion.Blok iphers have been analyzed in the random-orale model before. For example, Even andMansour [10℄ onstrut a ipher using a publi random permutation orale P (essentially, theonstrution is y = P (k1 � x)� k2, where k1 and k2 onstitute the key, x is the plaintext, and y isthe resulting iphertext). They show their onstrution is hard to invert and to existentially forge.We an reast their onstrution in our model, as a three-round ipher, where the adversary hasaess to the seond round. Using the tehniques in our paper, we an, in fat, obtain a strongerresult; namely, that their ipher is super pseudorandom.Of ourse, whether a sheme in the random orale model an be instantiated seurely in the realworld (that is, with polynomial-time omputable funtions in plae of random orales) is unertain,partiularly in light of the results of Canetti, Goldreih and Halevi [7℄. However, our results openup an interesting diretion: is it possible to replae pseudorandom funtions with unkeyed funtionsin any of the onstrutions we disuss?2 Prior De�nitions and ConstrutionsBelow we desribe the relevant de�nitions and prior onstrutions. Our presentation is in the\onrete" (or \exat") seurity model as opposed to the asymptoti model (though our resultsan be made to hold for either). Our treatment follows that of Bellare, Kilian, and Rogaway [3℄,and Bellare, Canetti, Krawzyk [2℄.2.1 De�nitions2.1.1 NotationFor a bit string x, we let jxj denote its length. If x has even length, then xL and xR denote the leftand right halves of the bits respetively; we sometimes write x = (xL; xR). If x and y are two bitstrings of the same length, x�y denotes their bitwise exlusive OR. If S is a probability spae, thenx R S denotes the proess of piking an element from S aording to the underlying probabilitydistribution. Unless otherwise spei�ed, the underlying distribution is assumed to be uniform. Welet In denote the set of bit strings of length n: f0; 1gn.By a �nite funtion (or permutation) family F , we denote a set of funtions with ommondomain and ommon range. Let Randk!l be the set of all funtions going from Ik to Il, and letPermm be the set of all permutations on Im. We all a �nite funtion (or permutation) familykeyed if every funtion in it an be spei�ed (not neessarily uniquely) by a key a. We denote thefuntion given by a as fa. We assume that given a, it is possible to eÆiently evaluate fa at anypoint (as well as f�1a in ase of a keyed permutation family). For a given keyed funtion family,a key an be any string from Is, where s is known as \key length." (Sometimes it is onvenientto have keys from a set other than Is; we do not onsider suh funtion families simply for larityof exposition|our results do not hange in suh a ase.) For funtions f and g, g Æ f denotes thefuntion x 7! g(f(x)).2.1.2 Model of ComputationThe adversary A is modeled as a program for a Random Aess Mahine (RAM) that has blak-boxaess to some number k of orales, eah of whih omputes some spei�ed funtion. If (f1; : : : ; fk)4



is a k-tuple of funtions, then Af1;:::;fk denotes a k-orale adversary who is given blak-box oraleaess to eah of the funtions f1; : : : ; fk. We de�ne A's \running time" to be the number of timesteps it takes plus the length of its desription (to prevent one from embedding arbitrarily largelookup tables in A's desription).2.1.3 Pseudorandom Funtions and Blok CiphersThe pseudorandomness of a keyed funtion family F with domain Ik and range Il aptures itsomputational indistinguishability from Randk!l. This de�nition is a slightly modi�ed version ofthe one given by Goldreih, Goldwasser and Miali [12℄.De�nition 1 A pseudorandom funtion family F is a keyed funtion family with domain Ik, rangeIl, and key length s. Let A be a 1-orale adversary. Then we de�ne A's advantage asAdvprfF (A) = ���Pr[a R Is : Afa = 1℄� Pr[f R Randk!l : Af = 1℄��� :For any integers q; t � 0, we de�ne an inseurity funtion AdvprfF (q; t):AdvprfF (q; t) = maxA fAdvprfF (A)g:The above maximum is taken over hoies of adversary A suh that:� A makes at most q orale queries, and� the running time of A, plus the time neessary to selet a R Is and answer A's queries, is atmost t.We are now ready to de�ne a seure blok ipher, or what Luby and Rako� [14℄ all a superpseudorandom permutation. The notion aptures the pseudorandomness of a permutation familyon Il in terms of its indistinguishability from Perml, where the adversary is given aess to bothdiretions of the permutation. In other words, it measures seurity of a blok ipher against hosenplaintext and iphertext attaks.De�nition 2 A blok ipher F is a keyed permutation family with domain and range Il and keylength s. Let A be a 2-orale adversary. Then we de�ne A's advantage asAdvsprpF (A) = ���Pr[a R Is : Afa;f�1a = 1℄� Pr[f R Perml : Af;f�1 = 1℄��� :For any integers q; t � 0, we de�ne an inseurity funtion AdvsprpF (q; t) similarly to De�nition 1.2.1.4 Hash FuntionsOur de�nitions of hash funtions follow those given in [8℄, [18℄, [22℄, [13℄, [20℄.De�nition 3 Let H be a keyed funtion family with domain Ik, range Il, and key length s. Let�1; �2; �3; �4 � 2�l. H is an �1-uniform family of hash funtions if for all x 2 Ik; z 2 Il, Pr[a R Is :ha(x) = z℄ � �1. H is �2-XOR-universal if for all x 6= y 2 Ik; z 2 Il, Pr[a R Is : ha(x) � ha(y) =z℄ � �2. It is �3-bisymmetri if for all x; y 2 Ik (here we allow x = y), z 2 Il, Pr[a1 R Is; a2 R Is :ha1(x)� ha2(y) = z℄ � �3. It is �4-universal if for all x 6= y 2 Ik, Pr[a R Is : ha(x) = ha(y)℄ � �4.5



We note that in some of the past literature, hash funtions are assumed to be uniform by default.We prefer to separate uniformity from other properties.An example of a family that has all four properties for �1 = �2 = �3 = �4 = 2�l is a family keyedby a random l � k matrix A over GF (2) and a random l-bit vetor v, with hA;v(x) = Ax+ v [8℄.Remark 1 We will use the phrase \h is a uniform (XOR-universal, bisymmetri, universal) hashfuntion" to mean \h is drawn from a uniform (XOR-universal, bisymmetri, universal) family ofhash funtions."2.2 Construtions of Luby-Rako� CiphersWe now de�ne Feistel strutures, whih are the main tool for onstruting pseudorandom permu-tations on 2n bits from funtions on n bits.De�nition 4 (Basi Feistel Permutation) Let f be a mapping from In to In. Let x = (xL; xR)with xL; xR 2 In: We denote by f the permutation on I2n de�ned as f(x) = (xR; xL� f(xR)): Notethat it is a permutation beause f�1(y) = (yR � f(yL); yL).De�nition 5 (Feistel Network) If f1; : : : ; fs are mappings with domain and range In, then wedenote by 	(f1; : : : ; fs) the permutation on I2n de�ned as 	(f1; : : : ; fs) = fs Æ : : : Æ f1Luby and Rako� [14℄ were the �rst to onstrut pseudorandom permutations. They did so usingfour independently-keyed pseudorandom funtions. The main theorem in their paper is:Theorem 1 (Luby-Rako�) Let h1; f1; f2; h2 be independently-keyed funtions from a keyed fun-tion family F with domain and range In and key spae Is. Let P be the family of permutations onI2n with key spae I4s de�ned by P = 	(h1; f1; f2; h2) (the key for an element of P is simply theonatenation of keys for h1; f1; f2; h2). ThenAdvsprpP (q; t) � AdvprfF (q; t) +  q2!�2�n+1 + 2�2n+1� :Naor and Reingold [15℄ optimized the above onstrution by enabling the use of XOR-universalhash funtions in the �rst and last rounds.Theorem 2 (Naor-Reingold) Let f1 and f2 be independently-keyed funtions from a keyed fun-tion family F with domain and range In and key spae Is1. Let h1; h2 be �-XOR-universal hashfuntions, keyed independently of eah other and of f1; f2, from a keyed funtion family H withdomain and range In and key spae Is2 . Let P be the family of permutations on I2n with key spaeI2s1+2s2 de�ned by p = 	(h1; f1; f2; h2). ThenAdvsprpP (q; t) � AdvprfF (q; t) + q2!�2�+ 2�2n+1� :Patel, Ramzan, and Sundaram [18℄, following a suggestion in [15℄, optimized the onstrutionfurther by allowing the same pseudorandom funtion to be used in the middle rounds, thus reduingthe key size. This required an additional ondition on the hash funtion.6



Theorem 3 (Patel-Ramzan-Sundaram) Let f be a funtion from a keyed funtion family Fwith domain and range In and key spae Is1 . Let h1; h2 be �1-bisymmetri �2-XOR-universal hashfuntions, keyed independently of eah other and of f , from a keyed funtion family H with domainand range In and key spae Is2 . Let P be the family of permutations on I2n with key spae Is1+2s2de�ned by P = 	(h1; f; f; h2). ThenAdvsprpP (q; t) � AdvprfF (2q; t) + q2�1 +  q2!�2�2 + 2�2n+1�3 New Model: Round SeurityHaving presented the lassial de�nitions and onstrutions of blok iphers, we are now ready tode�ne the new model of round seurity. The de�nitions an be easily extended to other symmetriprimitives, suh as MACs.Let P;F1;F2; : : : ;Fr be keyed permutation families, eah with domain and range Il and keylength s, suh that for any key a 2 Is, pa = f ra Æ : : : Æ f1a . Then F1; : : : ;Fr is alled an r-rounddeomposition for P. For i � j, denote by (i ! j)a the permutation f ja Æ : : : Æ f ia, and by (i  j)athe permutation �f ja Æ : : : Æ f ia��1. Denote by i ! j and i  j the orresponding keyed funtionfamilies.Note that having orale aess to a member of i! j means being able to give inputs to roundi of the forward diretion of a blok ipher and view outputs after round j. Likewise, having oraleaess to i  j orresponds to being able to give inputs to round j of the reverse diretion of theblok ipher and view outputs after round i. Thus, the orale for 1 ! r = P orresponds to theorale for hosen plaintext attak, and the orale for 1  r orresponds to the orale for hoseniphertext attak.We are now ready to de�ne seurity in this round-based model. This de�nition losely mimisDe�nition 2. The di�erene is that the adversary is allowed orale aess to some subset K of theset fi! j; i j : 1 � i � j � rg, and the inseurity funtion additionally depends on K.De�nition 6 Let P be a blok ipher with domain and range Il, key length s and some r-rounddeomposition F1; : : : ;Fr. Fix some subset K = f�1; : : : ; �kg of the set fi! j; i j : 1 � i � j �rg, and let A be a k + 2-orale adversary. Then we de�ne A's advantage asAdvsprpP;F1;:::;Fr;K(A) =���Pr[a R Is : Apa;p�1a ;�1a;:::;�ka = 1℄� Pr[p R Perml; a R Is : Ap;p�1;�1a;:::;�ka = 1℄���For any integers q; t � 0 and set K, we de�ne an inseurity funtionAdvsprpP;F1;:::;Fr(q; t;K)similarly to De�nition 2.4 Round Seurity of Luby-Rako� CiphersHaving developed a round seurity framework for blok iphers, we examine the spei� ase ofa four-round ipher desribed in Setion 2.2. Our goal is to haraterize the inseurity funtionde�ned above depending on the set K of orales.7



We are able to do so ompletely, in the following sense. We plae every set K in one oftwo ategories: either the inseurity funtion is unaeptably high, or it is almost as low as inthe standard model. That is, we ompletely haraterize the aeptable sets of orales for theonstrution to remain seure in our model.Moreover, we do so for all three iphers presented in Setion 2.2 (although we need to add an�-uniformity ondition on the hash funtions in the seond and third onstrutions in order forthem to remain seure; this is a mild ondition, often already ahieved by a hash funtion family).As it turns out, the round seurity of the three onstrutions is the same. Spei�ally, all threeiphers remain seure if the adversary is given aess to the seond and third rounds. These resultssuggest, in some sense, that the so-alled \whitening" steps, performed in the �rst and last rounds,require serey but only weak randomness, whereas the middle rounds require strong randomnessbut no serey.We present our results in two parts. First, in Setion 4.1, we examine what ombinations oforales make the ipher inseure. Then, in Setion 4.2, we show that any other ombination leavesit seure.4.1 Negative ResultsIn this setion we demonstrate whih orales make the ipher inseure. Our negative results arestrong, in the sense that they hold regardless of what internal funtions h1; h2; f1; f2 are used. Thatis, the ipher an be distinguished from a random permutation even if eah of these funtions ishosen truly at random. Thus, our results hold for all three iphers presented in Setion 2.2.Theorem 4 Regardless of how the funtions h1; f1; f2; h2 are hosen from the set of all funtionswith domain and range In, let P = 	(h1; f1; f2; h2). Let t be the time required to ompute 17 n-bitXOR operations, a omparison of two n-bit strings, and 9 orale queries.2 ThenAdvsprpP;h1;f1;f2;h2(9; t;K) � 1� 2�n;as long as K is not a subset of f2! 2; 2 2; 3 ! 3; 3  3; 2! 3; 2  3g. That is, P is inseureas long as the adversary has aess to an orale that inludes the �rst or fourth rounds.We will prove the theorem by eliminating orales that allow the adversary to distinguish theipher from a random permutation. This involves using the attak against a three-round ipherfrom [14℄. The omplete proof is given in Appendix A.4.2 Positive ResultsIn this setion, we prove what is essentially the onverse of the results of the previous setion.Namely, we show that if K is the set given in Theorem 4, then the ipher is seure. Of ourse, ifK is a subset of it, then the ipher is also seure.Theorem 5 Suppose K � f2! 2; 2 2; 3! 3; 3 3; 2! 3; 2 3g.Let h1; f1; f2; h2 and P be as in Theorem 1. ThenAdvsprpP;h1;f1;f2;h2(q; t;K) � AdvprfF (q; t) +  q2!�2�n+1 + 2�2n+1�+ q2 �2�n�1� :2The values 17 and 9 an be redued by more areful ounting; it is unlear, however, if there is any reason toexpend e�ort �nding the minimal numbers that work. 8



If h1; f1; f2; h2 and P are as in Theorem 2, with the additional ondition that h1 and h2 be �3-uniform, then AdvsprpP;h1;f1;f2;h2(q; t;K) � AdvprfF (q; t) +  q2!�2�+ 2�2n+1�+ q2�3=2:Finally, if h1; f; h2 and P are as in Theorem 3, with the additional ondition that h1 and h2 be�3-uniform, thenAdvsprpP;h1;f;f;h2(q; t) � AdvprfF (2q; t) + q2(�1 + �3) +  q2!�2�2 + 2�2n+1� :We fous our proof on the last part of the theorem. The proofs of other ases are very similar.Our proof tehnique is a generalization of the tehniques of Naor and Reingold [15℄ designed todeal with the extra queries. Moreover, we analyze onrete, rather than asymptoti, seurity.First, in the following simple laim, we redue the statement to the ase when f is a trulyrandom funtion.Claim 1 Suppose AdvsprpP;h1;f;f;h2(q; t) � Æwhen f is piked from Randn!n, rather than from a pseudorandom family. ThenAdvsprpP;h1;f;f;h2(q; t) � Æ + AdvprfF (2q; t)when is f piked from F .Proof. Indeed, suppose A is an adversary for the blok ipher P, with advantage . Build anadversary A0 for pseudorandom funtion family F as follows: A0 selets at random h1 and h2 froma suitable family, and runs A on the ipher 	(h1; f; f; h2). In order to answer the queries of A, A0simply queries f where appropriate and omputes the answer aording to the Feistel struture.A0 then outputs the same result as A.Note that A has advantage at least  if f is from F , and at most Æ for a truly random f . By astandard appliation of the triangle inequality, AdvprfF (A0) �  � Æ.We note that aess to the orales of K is equivalent to aess to the orale for f (althoughone query to 2! 3 or 3! 2 an be simulated by two queries to f). Thus, it suÆes to prove thefollowing theorem.Theorem 6 Let f be a random funtion, and let h1; h2 be �1-bisymmetri �2-XOR-universal �3-uniform hash funtions with domain and range In, 	 = 	(h1; f; f; h2), and R be a random permu-tation on I2n: Then, for any 3-orale adversary A (we do not restrit the running time of A) thatmakes at most q queries to its �rst two orales and at most qo queries to its third orale,���Pr[A	(h1;f;f;h2);	�1(h1;f;f;h2);f = 1℄� Pr[AR;R�1 ;f = 1℄���� q2�1 + 2qoq�3 +  q2!�2�2 + 2�2n+1� :The remainder of this setion gives the proof of this theorem. To summarize, the �rst part of theproof fouses on the transript (a.k.a. the \view") of the adversary, and shows that eah possibletransript is about as likely to our whenA is given 	 as whenA is given R. The seond part uses aprobability argument to show that this implies that A will have a small advantage in distinguishing	 from R. 9



4.2.1 Proof of Theorem 6To start with, let P denote the permutation orale (either 	(h1; f; f; h2) or R) that A aesses. LetOf denote the orale that omputes the funtion f (note that when A gets 	 as its permutationorale, f is atually used as the round funtion in the omputation of the orale P = 	; whenA gets R as its permutation orale, f is ompletely independent of P = R). The mahine A hastwo possibilities for queries to the orale P : (+; x) whih asks to obtain the value of P (x), or(�; y) whih asks to obtain the value of P�1(y) { where both x and y are in I2n. We all theseipher queries. We de�ne the query-answer pair for the ith ipher query as hxi; yii 2 I2n � I2nif A's query was (+; x) and y is the answer it reeived from P or its query was (�; y) and x isthe answer it reeived. We assume that A makes exatly q queries and we all the sequenefhx1; y1i; : : : ; hxq ; yqigP the ipher-transript of A.In addition, A an make queries to Of . We all these orale queries. We denote these queriesas: (Of ; x0) whih asks to obtain f(x0). We de�ne the query-answer pair for the ith orale queryas hx0i; y0ii 2 In� In if A's query was (Of ; x0) and the answer it reeived was y0. We assume that Amakes qo queries to this orale. We all the sequene fhx01; y01i; : : : ; hx0qo ; y0qoigOf the orale-transriptof A.Note that sine A is omputationally unbounded, we an make the standard assumption thatA is a deterministi mahine. Under this assumption, the exat next query made by A an bedetermined by the previous queries and the answers reeived. We formalize this as follows:De�nition 7 Let CA[fhx1; y1i; : : : ; hxi; yiigP ; fhx01; y01i; : : : ; hx0j ; y0jigOf ℄, where either i < q or j <qo, denote the i+ j + 1st query A makes as a funtion of the �rst i+ j query-answer pairs in A'sipher and orale transripts. Let CA[fhx1; y1i; : : : ; hxq ; yqigP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ℄ denotethe output A gives as a funtion of its ipher and orale transripts.De�nition 8 Let � be the pair of sequenes(fhx1; y1i; : : : ; hxq ; yqigP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf );where for 1 � i � q we have that hx1; y1i 2 I2n�I2n, and for 1 � j � qo, we have that hx0; y0i 2 In.Then, � is a onsistent A-transript if for every 1 � i � q :CA[fhx1; y1i; : : : ; hxi; yiigP ; fhx01; y01i; : : : ; hx0j ; y0jigOf ℄ 2f(+; xi+1); (�; yi+1); (Of ; x0j+1)g:We now onsider another proess for answering A's ipher queries that will be useful to us.De�nition 9 The random proess ~R answers the ith ipher query of A as follows:1. If A's query is (+; xi) and for some 1 � j < i the jth query-answer pair is hxi; yii, then ~Ranswers with yi.2. If A's query is (�; yi) and for some 1 � j < i the jth query-answer pair is hxi; yii, then ~Ranswers with xi.3. If neither of the above happens, then ~R answers with a uniformly hosen element in I2n.Note that ~R's answers may not be onsistent with any funtion, let alone any permutation. Weformalize this onept. 10



De�nition 10 Let � = fhx1; y1i; : : : ; hxq ; yqigP be any possible A-ipher transript. We say that� is inonsistent if for some 1 � j < i � q the orresponding query-answer pairs satisfy xi = xjbut yi 6= yj, or xi 6= xj but yi = yj.Note 1 If � = (fhx1; y1i; : : : ; hxq ; yqigP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ) is a possible A-transript, weassume from now on that if � is onsistent and if i 6= j then xi 6= xj, yi 6= yj, and x0i 6= x0j. Thisformalizes the onept that A never repeats a query if it an determine the answer from a previousquery-answer pair.Fortunately, we an show that the proess ~R often \behaves" exatly like a permutation. It turns outthat if A is given orale aess to either ~R or R to answer its ipher queries, it will have a negligibleadvantage in distinguishing between the two. We prove this more formally in proposition 1. Beforedoing so, we �rst onsider the distributions on the various transripts seen by A as a funtion ofthe di�erent distributions on answers it an get.De�nition 11 The random variables T	; TR; T ~R denote the ipher-transript / orale transriptpair seen by A when its ipher queries are answered by 	, R, ~R respetively, and its orale queriesare all answered by Of .Remark 2 Observe that aording to our de�nitions and assumptions, A	;	�1;f and CA(T	) de-note the same random variable. The same is true for AR;R�1;f and CA(TR):Proposition 1 ��Pr ~R[CA(T ~R) = 1℄� PrR[CA(TR) = 1℄�� � �q2 � � 2�2nProof.For any possible and onsistent A-transript � we have that:PrR [TR = �℄ = (22n � q)!22n! � 2�qon = Pr~R [T ~R = � j T ~R is onsistent℄:Thus TR and T ~R have the same distribution onditioned on T ~R being onsistent. We now boundthe probability that T ~R is inonsistent. Reall that T ~R is inonsistent if there exists an i and j with1 � j < i � q for whih xi = xj but yi 6= yj , or xi 6= xj but yi = yj: For a partiular i and j thisevent happens with probability 2�2n. So,Pr~R [T ~R is inonsistent℄ �  q2! � 2�2n:We omplete the proof via a standard argument:����Pr~R [CM (T ~R) = 1℄� PrR [CM (TR) = 1℄����� ����Pr~R [T ~R = � j T ~R is onsistent℄� PrR [CM (TR) = 1℄���� � Pr~R [T ~R is onsistent℄+ ����Pr~R [T ~R = � j T ~R is inonsistent℄� PrR [CM (TR) = 1℄���� � Pr~R [T ~R is inonsistent℄� Pr~R [T ~R is inonsistent℄ �  q2! � 2�2n:11



This ompletes the proof of the proposition.We now proeed to obtain a bound on the advantage that A will have in distinguishing betweenT	 and T ~R. It turns out that T	 and T ~R are identially distributed unless the same value is inputto f on two di�erent oasions (we show this in Lemma 1). This depends only on the hoie of h1and h2. We all this event \BAD" (in the next de�nition) and obtain a bound on the probabilitythat it atually ours (in Proposition 2).De�nition 12 For every spei� pair of funtions h1; h2 de�ne BAD(h1; h2) to be the set of allpossible and onsistent transripts� = (fhx1; y1i; : : : ; hxq ; yqigP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf )satisfying at least one of the following events:� B1: there exists 1 � i < j � q suh that h1(xRi )� xLi = h1(xRj )� xLj , or� B2: there exists 1 � i < j � q suh that yRi � h2(yLi ) = yRj � h2(yLj ), or� B3: there exists 1 � i; j � q suh that h1(xRi )� xLi = yRj � h2(yLj ), or� B4: there exists 1 � i � q, 1 � j � qo suh that h1(xRi )� xLi = x0j, or� B5: there exists 1 � i � q, 1 � j � qo suh that yRi � h2(yLi ) = x0j:Proposition 2 Let h1; h2 be �1-bisymmetri �2-XOR-universal �3-uniform hash funtions. Then,for any possible and onsistent A� transript �, we have thatPrh1;h2[� 2 BAD(h1; h2)℄ � q2�1 + 2qoq�3 +  q2! � 2�2Proof. Reall that a transript � 2 BAD(h1; h2) if one of the events Bi our. It is straightforwardto determine the individual probabilities of eah of these events separately by using the propertiesof h, and apply the union bound to add up the probabilities for eah event.Lemma 1 Let � = (fhx1; y1i; : : : ; hxq ; yqigP ; fhx01; y01i; : : : ; hx0qo ; y0qoigOf ) be any possible and on-sistent M � transript; thenPr	 [T	 = �j� =2 BAD(h1; h2)℄ = Pr~R [T ~R = �℄:Proof. It is not hard to see that Pr ~R[T ~R = �℄ = 2�(2q+qo)n (see [15℄ for more details).Now, �x h1; h2 to be suh that � =2 BAD(h1; h2). We will now ompute Prf [T	 = �℄ (note thatthe probability is now only over the hoie of f). Sine � is a possible A-transript, it follows thatT	(h1;f;f;h2) = � i� yi = 	(h1; f; f; h2)(xi) for all 1 � i � q and y0j = f(x0j) for all 1 � j � qo. Ifwe de�ne Si = xLi � h1(xRi )Ti = yRi � h2(yLi );12



then (yLi ; yRi ) = 	(xLi ; xRi ), f(Si) = Ti � xRi and f(Ti) = yLi � Si:Now observe that for all 1 � i < j � q, Si 6= Sj and Ti 6= Tj (otherwise � 2 BAD(h1; h2)).Similarly, for all 1 < i; j < q, Si 6= Tj. In addition, it follows again from the fat that � =2BAD(h1; h2) that for all 1 � i � q and 1 � j � qo, x0i 6= Sj and x0i 6= Tj . So, if � =2 BAD(h1; h2)all the inputs to f are distint. Sine f is a random funtion, Prf [T	 = �℄ = 2�(2q+qo)n (Theipher transript ontributes 2�2nq and the orale transript ontributes 2�qon to the probability).Thus, for every hoie of h1; h2 suh that � =2 BAD(h1; h2), the probability that T	 = � isexatly the same: 2�(2q+qo)n. Therefore:Pr	 [T	 = �j� =2 BAD(h1; h2)℄ = 2�(2q+qo)n:whih ompletes the proof of the lemma.The rest of the proof onsists of using the above lemma and Propositions 1 and 2 in a probabilityargument.Let � be the set of all possible and onsistent transripts � suh that CA(�) = 1: Then����Pr	 [A	;	�1;f = 1℄� PrR [AR;R�1;f = 1℄����= ����Pr	 [CA(T	) = 1℄� PrR [CA(TR) = 1℄����� ����Pr	 [CA(T	) = 1℄� Pr~R [CA(T ~R) = 1℄����+  q2! � 2�2nThe last inequality follows from the previous by proposition 1. Now, let T denote the set of allpossible transripts (whether or not they are onsistent), and let � denote the set of all possibleinonsistent transripts � suh that CA(�) = 1. Notie that � [ � ontains all the possibletransripts suh that CA(�) = 1, and T � (� [�) ontains all the possible transripts suh thatCA(�) = 0. Then: ����Pr	 [CA(T	) = 1℄� Pr~R [CA(T ~R) = 1℄����= �����X�2T Pr	 [CA(�) = 1℄ � Pr	 [T	 = �℄�X�2T Pr~R [CA(�) = 1℄ � Pr~R [T ~R = �℄������ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)�����+ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)������ �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)�����+ Pr~R [T ~R is inonsistent℄:Reall (from the proof of Proposition 1) that Pr ~R[T ~R is inonsistent℄ � �q2 � � 2�2n. We now wantto bound the �rst term of the above expression. �����X�2�(Pr	 [T	 = �℄� Pr~R [T ~R = �℄)������ �����X�2�(Pr	 [T	 = �j� 2 BAD(h1; h2)℄� Pr ~R[T ~R = �℄) � Pr	 [� 2 BAD(h1; h2)℄�����13
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A Proof of Theorem 4First, we note the following fat.Lemma 2 If we give the adversary A a way to ompute the values of h1 on arbitrary inputs, thenthere exists A that asks three queries to h1, two queries to the hosen-plaintext orale p, and onequery to the hosen-iphertext orale p�1, performs 8 XOR operations, and has an advantage of1� 2�n.Proof. This is so beause aess to h1 allows the adversary to \peel o�" the �rst round of theipher, and then use the attak of [14℄ against a three-round ipher.Consider an adversary who performs the following steps:1. pik three arbitrary n-bit strings L1; R1; R2;2. query the plaintext orale on (L1; R1) to get (V1;W1)3. query the plaintext orale on (L1 � h1(R1)� h1(R2); R2) to get (V2;W2)4. query the iphertext orale on (V2;W2 �R1 �R2)5. output 1 if h1(R3)� L3 = V1 � V2 � L1 � h1(R1)Reall the the goal of the adversary is to output 1 when given the plaintext and iphertextorales for a random permutation with notieably di�erent probability than when given orales forthe blok ipher.Clearly, if the plaintext and iphertext orales are truly random, then the adversary will output1 with probability 2�n, beause V1 and L3 are then random and independent of the rest of theterms. However, if the plaintext and iphertext orales are for the blok ipher, then the adversarywould output 1 with probability 1. Here is why.Let Si, Ti (1 � i � 3) be the intermediate values omputed in rounds 1 and 2 of the blok ipherfor the three queries. Let L2 = L1 � h1(R1) � h1(R2), V3 = V2 and W3 = W2 � R1 � R2. Notethat S1 = L1 � h1(R1) = L2 � h1(R2) = S2. Then T3 = W3 � h2(V3) = W2 �R1 � R2 � h2(V2) =T2�R1�R2 = f2(S2)�R2�R1�R2 = f2(S1)�R1 = T1. Finally, h1(R3)�L3 = S3 = V3�f3(T3) =V2 � f3(T1) = V2 � V1 � S1 = V2 � V1 � L1 � h1(R1).Note that this fat an be similarly shown for h2. The lemma above allows us to easily provethe following result.Lemma 3 If K ontains at least one of the following orales: 1 ! 4, 1  4, 2 ! 4, 2  4,1 ! 3, 1  3, 1 ! 1, 1 ! 2, 1  1, 1  2, 4  4, 3  4, 4 ! 4 or 3  4, then there existsA making no more than 9 queries to the orales and performing no more than 17 XOR operationswhose advantage is 1� 2�n.Proof. If K ontains 1 ! 4 or 1 ! 3, then A an input an arbitrary pair (L;R) to either ofthese and reeive (V;W ) or (T; V ). A then inputs (L;R) to the hosen plaintext orale p to reeive(V 0;W 0), and heks if V = V 0.Similarly for 1 4 or 2 4.If K ontains 2! 4, then A an input an arbitrary pair (R;S) to it to reeive (V;W ). A theninputs (V;W ) to the hosen iphertext orale p�1 to reeive (L;R0) and heks if R = R0. Similarlyfor 1 3. 16



IfK ontains 1! 1 or 1! 2, then A an input (L;R) and reeive, in partiular, S = L�h1(R).A an then ompute h1(R) = S � L, and use the proedure of Lemma 2.Aess to 1 1 allows A to input (R;S) and reeive (L = S � h1(R); R). A an then omputeh1(R) = L� S.Aess to 1 2 allows A to ompute h1(R) as follows:1. query the 1 2 orale on an arbitrary pair (S1; T1) to get (L1; R1);2. let T2 = T1 �R1 �R and S2 = S1;3. query the 1 2 orale on (S2; T2) to get (L2; R2); then R2 = T2 � f1(S2) = (T1 �R1 �R)�(R1 � T1) = R;4. ompute h1(R) = L2 � S2.Thus, any of the orales 1 ! 1; 1 ! 2; 1  1; 1  2 gives A aess to h1 and thus makes theipher inseure.Similarly for 4 4; 3 4, 4! 4 and 3! 4.Finally, to prove Theorem 4, note that there are 20 possible orales. Of those, 14 are ruled outby the above lemma, leaving only 6 possible orales to hoose from.
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