
CLP(R) and Some Electrical Engineering Problems�Nevin Heintze Spiro MichaylovSchool of Computer Science,Carnegie Mellon University,Pittsburgh, PA 15213, U.S.A. Peter StuckeyIBM Thomas J. Watson Research Center,P.O. Box 218,Yorktown Heights, NY 10598, U.S.A.November 25, 1991AbstractThe Constraint Logic Programming Scheme de�nes a class of languages designed forprogramming with constraints using a logic programming approach. These languagesare soundly based on a uni�ed framework of formal semantics. In particular, as aninstance of this scheme with real arithmetic constraints, the CLP(R) language facilitatesand encourages a concise and declarative style of programming for problems involvinga mix of numeric and non-numeric computation.In this paper we illustrate the practical applicability of CLP(R) with examples ofprograms to solve electrical engineering problems. This �eld is particularly rich in prob-lems that are complex and largely numeric, enabling us to demonstrate a number ofthe unique features of CLP(R). A detailed look at some of the more important pro-gramming techniques highlights the ability of CLP(R) to support well-known, powerfultechniques from constraint programming. Our thesis is that CLP(R) is an embodimentof these techniques in a language that is more general, elegant and versatile than theearlier languages, and yet is practical.1 IntroductionThe Constraint Logic Programming Scheme [8] de�nes a family of declarative and formally-based languages for reasoning about constraints. An instance of this scheme, the CLP(R)language [6, 9], deals particularly with arithmetic constraints. In this paper we demonstratethe features of CLP(R) with some problems from electrical engineering. This importantproblem domain, requiring a variety of di�erent solving techniques, provided the drivingexamples for the pioneering work on constraint programming [3, 15, 18]. The complexityof the systems arising in electrical engineering problems, together with the large number ofarithmetic constraints typically involved, made this problem domain an obvious candidatefor the application of constraint programming languages.�To appear in the Journal of Automated Reasoning. An earlier version of this paper appeared in theproceedings of the 4th International Conference on Logic Programming, Melbourne, May 1987. Much ofthis work was carried out while the authors were at Monash University, Melbourne, Australia.1

It is not our intention in this paper to propose new techniques for solving these problems,but rather to show how e�ectively the well-known techniques developed by researchers inconstraint programming can be used in conjunction with the CLP(R) language. In fact,while these techniques could previously be applied only in special purpose hand-craftedcode, here we incorporate them in simple programs within a cleaner and more general pro-gramming framework. Furthermore, while CLP(R) cannot claim to solve all the problems ofconstraint programming, it is more easily applicable to a much larger class of problems thanany of its predecessors. Signi�cantly, our experience has also indicated that the resultingprograms are usually practical | often surprisingly so.The remainder of the paper is organized as follows. In section 2 we give a brief descriptionof the CLP(R) language and system. Then in section 3 we examine some approachesto programming with constraints, comparing the CLP(R) approach with that of otherconstraint languages. In section 4 we discuss software for the analysis of circuits. Thetwo major examples are steady-state analysis of RLC circuits, and synthesis and analysisof transistor ampli�er circuits. Section 5 describes software for the simulation of digital�ltering circuits. Finally, in section 6 we discuss the analysis of electro-magnetic �elds.2 The CLP(R) Language and SystemWe give a very brief description of the CLP(R) language. For more details, see [6, 7, 9].Arithmetic terms are constructed from real constants, variables, +, �, �, =, sin, cos, tan,pow where all of these symbols have the usual meanings and parentheses may be usedin the usual way to resolve ambiguity. Constraints are built up from arithmetic termsusing the binary relation symbols =, �, �, >, <. For example 1:234 + X < Y andX + Y � (sin(T)� 1) = tan(Z) are constraints. Any variable that appears in an arithmeticterm is said to be an arithmetic variable, and cannot take a non-arithmetic value. Termsare constructed from variables, arithmetic terms and uninterpreted functors. For example,(X+Y)=4 and g(22; h(4�(Y +X))) are terms, while f(X)+g(X) and a�3 are not. Atomsare of the form p(t1; � � � ; tn) where p is an n-ary predicate symbol and the ti are terms.Finally a program is a �nite collection of rules, each of the form:H :{ B1; � � � ;Bmwhere H is an atom and each Bi is either a constraint or an atom.For example, the following single{rule program models the relationship between twocomplex numbers and their product, where each complex number, X + iY , is representedas c(X;Y).c_mult(c(R1,I1), c(R2,I2), c(R3,I3)):-R3 = R1 * R2 - I1 * I2 ,I3 = R1 * I2 + R2 * I1 .The operational model for CLP(R) is an obvious generalization of that for PROLOG.Brie
y, a goal consists of a number of solvable constraints and a number of atoms. Aderivation step consists of �rst matching a selected atom with the head of an input rule(whose variables have been suitably renamed). This matching in general generates newconstraints. The solvability of the collection of constraints consisting of (a) the constraints2

in the previous goal, (b) those new constraints generated by the head matching, and (c) theconstraints in the body of the rule, is then determined. If (a-c) is solvable, a new (derived)goal is constructed, consisting of this new collection of (solvable) constraints and the atomsof the previous goal, with the exception that the selected goal atom is replaced by the atomsin the body of the input rule. We refer the reader to [6, 7] for more details.Consider the complex multiplication program given previously. Any of the followinggoals will return a unique answer. The �rst goal asks for the product of two complexnumbers, while the other two ask for the result when one complex number is divided byanother. ?- c_mult(c(1, 1), c(2, 2), Z),?- c_mult(c(1, 1), Y, c(0, 4)),?- c_mult(X, c(2, 2), c(0, 4)),The examples in this paper were developed on the CLP(R) system of [7, 9]. This systemis an approximation to the operational model of the CLP(R) language because: (a) the atomselection rule is \left-to-right" (and so the system is incomplete in the same sense that aPROLOG system is incomplete), (b) constraints involving non-arithmetic terms are solvedby a uni�cation algorithm which omits the occurs check (and so the system is unsound inthe same sense that a PROLOG system is unsound), (c) a
oating point representationis used for arithmetic, and (d) any non-linear arithmetic constraints are assumed to besatis�able, and are \delayed" from consideration | such a constraint may become linearat some time later in a computation1, at which stage it will be considered for satis�ability.Point (d) represents a compromise between generality and e�ciency. It restricts consid-eration to a class of constraints which can be solved e�ciently. However, by relaxing thecondition of satis�ability for non-linear constraints, rather than disallowing them altogether,the CLP(R) system admits an important additional class of programs.Brie
y, the CLP(R) system solves constraints in the following way. Linear arithmeticconstraints (both equalities and inequalities) are maintained in a solved form. As each linearconstraint is added, it is checked for satis�ability with the previous constraints (already insolved form). If the system is satis�able, the new constraint is incorporated to generatea new solved form. A delayed (non-linear) constraint is woken and added to the solvedform when a su�cient number of its variables have been determined to make it linear. Forexample in the program:hyp(X, Y, pow(X*X + Y*Y, 0.5)).available(X,Y):- X = Y.?- X + Y = 10, Z <= 8, hyp(X,Y,Z), available(X,Y).execution proceeds by collecting the two linear constraints, X +Y = 10, and Z � 8; clearlyjointly satis�able. Next, the matching of the goal atom hyp(X,Y,Z) and the head of therule hyp(X, Y, pow(X*X + Y*Y, 0.5)) gives Z = pow(X �X+Y �Y; 0:5). This constraintis delayed since it is not linear. The next constraint collected is X = Y , and this togetherwith X + Y = 10, determine the values X = 5, and Y = 5. Now the delayed constraint iswoken and Z = pow(5 � 5 + 5 � 5; 0:5) = 7:07 is added to the linear constraints. Since thelinear constraints are satis�able the goal succeeds.1This may happen when some of the variables contained in a non-linear constraint become ground.3

3 Comparison with Other Constraint LanguagesA constraint programming language allows reasoning in some domain through the use ofconstraints over objects in that domain. For example, consider the problem of modelingan electrical system consisting of a collection of components of di�erent types. To programthis in a constraint language, we could write down constraints describing each of the typesof component. Further constraints would be used to describe the interconnection of thesecomponents.An important language question concerns the treatment of constraints appearing in aprogram { do they represent constraints as such, or are they templates for constructingconstraints at runtime? We will refer to the former as static constraints, and to the latteras dynamic constraints, and to runtime copies of such constraints as constraint instances.Consider the electrical modeling problem again. If we only have static constraints, thenconstraints will have to be written for each component. However the ability to program withdynamic constraints allows us to de�ne a constraint \template" for each type of component,and then for each component instance, to construct a copy (or instance) of the \template",possibly with extra values �lled in. This leads to a notion of collection of (instances of)constraints at runtime.In THINGLAB [1] constraints are static. Steele's language [16] is slightly more general,as it allows programs to contain macro constraint de�nitions. However, it disallows recur-sion, so that the number of instances of each constraint, and the relationship between theinstances, is �xed. In CLP(R) the use of recursive rule application allows the number ofinstances of each constraint, and the relationship between those instances, to be determinedat run-time.A second question is whether properties of the constraint system collected so far may in-
uence the future collection of constraints. That is, whether the structure of the constraintsystem constructed at runtime can be in
uenced by properties of the partially constructedconstraint system. Most constraint languages do not support this technique. However inCLP(R) it is inherited directly from the operational model, since at each stage in a deriva-tion the constraint system collected so far is checked for satis�ability. Hence constraintsarising from head matching or appearing in the body of a rule may be used to \check"various properties of the current constraint system, before the rule is used to replace theselected goal atom.Additionally, CLP(R) provides the usual PROLOG-like function symbols for dealingwith aggregate data such as lists and records. This not only means that CLP(R) subsumesPROLOG, providing support for symbolic computation, but it also provides a simple wayto store data needed to set up constraint instances and to keep the results of solving theseconstraints.Much of the programming methodology described in this paper, and support for manyof the constraint programming techniques discussed, rely heavily on these features.Execution of a constraint program involves constructing the constraint system (or sys-tems) dictated by the program and determining if the system is satis�able [as well asconstructing a representation of the answer constraints]. There is an important distinc-tion between the constraint programming language, and the algorithm used to solve theconstraints | the constraint solver.There are many approaches to solving a given set of (numerical) constraints. One4

I I I
T 1 2

V 1 2R RFigure 1: Simple Resistive Circuitapproach is local propagation. This is the sole method for solving arithmetic constraints inthe work of Steele [16, 17], in PROLOG systems including MU-Prolog [12] and NU-Prolog[19], and elsewhere. A system of constraints is solved by local propagation if all the variablesin the system become determined after a �nite number of local propagation steps. A localpropagation step occurs when a constraint has a su�cient number of determined variablesfor some of its other variables to be determined. These newly determined variables maythen precipitate further local propagation steps in other constraints. For example considerthe simple electrical circuit in Figure 1.This circuit can be modeled by the constraintsIT = I1 + I2V = I1 �R1V = I2 �R2Suppose that we are given values for V , R1 and IT , then all unknowns can be determinedusing local propagation as follows:I1 V=R1I2 IT � I1R2 V=I2where denotes assignment. On the other hand if we are given R1, R2 and IT , it isnot possible to order the equations so that they can be solved by this simple evaluationand assignment method since there are cyclic interdependencies between the variables; thesystem cannot be solved by local propagation. Such situations occur frequently during thesolving of electrical circuit problems. This prompted Sussman & Stallman [18] to introducea special heuristic to handle the voltage divider law in their circuit analysis package {however this approach is limited to solving a few special cases.In general, solving systems of constraints involving cyclic interdependencies requires theuse of more powerful techniques than local propagation. Among the approaches taken inthe literature are relaxation methods [1], and linear equation solving with user assistance[20]. To solve general arithmetic constraints, which may be nonlinear, still more power-ful techniques are required, such as those of symbolic algebra packages like REDUCE [14]and MACSYMA [11]. Though the power and generality of such constraint solvers is en-viable, they are usually too slow to be incorporated in a general purpose programming5

language. For example a critical issue in the constraint systems EL/ARS [15, 18] andSYN [3] which used MACSYMA as the basic constraint solver, was the development ofintelligent backtracking to reduce the amount of work being performed by MACSYMA.In the CLP(R) system, linear constraints are solved directly and non-linear constraints aredelayed as described in the previous section. This provides more power than the methods oflocal propagation, but avoids incurring the sti� computation expense involved in the morepowerful general-purpose symbolic algebra constraint solvers.While it is possible to augment any language with constraint facilities, an important issueis how the underlying language interacts with the constraint facilities. In some constraintlanguages this interaction is clumsy, requiring the user to give a great deal of informa-tion about how constraints are to be collected and solved (for example [5, 10, 20]). Theconstraint logic programming scheme, in contrast, de�nes a clean interaction between theunderlying logic programming framework and constraint facilities. Other languages in thisgroup include Prolog III [2] and CHIP [4]. Both languages include equations and inequali-ties over rational numbers (in addition to other domains). However in these languages theprogrammer is responsible for ensuring that nonlinear expressions have become linear bythe time they are encountered during program execution, thus compromising the declarativereading of the constraints. Finally, all arithmetic in both languages is based on an exactrepresentation of rational numbers, and it has yet to be demonstrated that this representa-tion is e�cient enough for the kinds of numerically intensive applications considered in thispaper.We conclude this section with a CLP(R) program which illustrates the use of dynamicconstraints, data structures, and the use of satis�ability requirements to control search.Although this example is very simple, it would be extremely di�cult to program it in theearlier constraint languages, and would be impossible in many of them. The programmodelsany circuit component using a piecewise linear model.linpiece(X,[piece(C1,C2,F1,F2)|Ps]) :-C1 < X,X <= C2,F1 = F2.linpiece(X,[P|Ps]) :-linpiece(X,Ps).Intuitively the program checks whether the value X falls within the limits C1 and C2and if so creates an equation F1 = F2. The simplest circuit component can be modeled asfollowsresistor(V, I, R):-linpiece(V, [piece(_,_, V, I * R)]).Diode behavior can be modeled using the piecewise linear approximation of Figure 2.The three linear pieces correspond to the three areas of operation of the diode | reversebreakdown, reverse biased and forward biased. Non-determinism and backtracking togethertake care of the question of which state the diode may be in for a particular circuit.6

V

I

forward
bias

reverse
bias

reverse
breakdown

+
-

Figure 2: Piecewise linear diode modeldiode(V, I):-linpiece(V, [piece(_, -100, I, (V+100)*10-0.1),piece(-100, 0.6, I, 0.001*v),piece(0.6, _, I, (V-0.6)*100+0.0006)]).The following goal determines the behavior of the circuit in Figure 3 for circuit valuesV = 5 volts;R1 = 100
;R2 = 50
;R3 = 50
;R4 = 100
?- V = 5, R1 = 100, R2 = 50, R3 = 50, R4 = 100,resistor(V-A, I1, R1),resistor(A, I2, R2),resistor(V-B, I3, R3),resistor(B, I4, R4),diode(B-A, I5),I1 + I5 = I2, I3 = I5 + I4.4 Analysis and Synthesis of Analogue CircuitsBefore considering examples of the analysis and synthesis of analogue circuits in CLP(R), wewill brie
y sketch a broad methodology for such programming. In general the constraintsof such a system can be viewed in terms of a hierarchy. Leaf constraints describe therelationship between variables at a sub-system or \local" level, for example Ohm's law for aresistor in a circuit. Parent constraints describe the interaction between these sub-systems,for example the use of Kircho�'s current law in node analysis, which states that the sum ofcurrents
owing into a node is zero. This distinction assists the writing of programs whosehierarchical structure re
ects that of the problem to be solved. Such programs are easierto understand and reason about. In this programming methodology, leaf constraints areusually encapsulated within a single rule, while parent constraints are programmed as asingle rule which combines a number of program modules.7

V1

V V1

R1 R3

R4R2Figure 3: Resistive circuit with diode4.1 Analysis of Steady-State RLC CircuitsWe �rst consider the application of this approach to the analysis of sinusoidal steady-stateRLC circuits. We represent (sinusoidal) voltages and currents in the circuit as phasors usingcomplex numbers, where c(X;Y) is used to represent X + iY . For example the inductorand capacitor have voltage (V) { current (I) relationships V = I(i!L) and V = I=(i!C)respectively, where L is inductance, C is capacitance and ! is angular frequency. Thesedevices may be modeled by the following rules:inductor(V, I, L, Omega) :-c_mult(I, c(0, Omega*L), V).capacitor(V, I, C, Omega) :-c_mult(V, c(0, Omega*C), I).To connect networks of these components together, we have to satisfy the various con-servation laws at the interface of the components. This can be done by ensuring that:� all component terminals that are connected together are at the same voltage, and� for each node, the sum of the currents
owing into the node is zero.Appendix I contains a general package for solving arbitrary sinusoidal steady-state RLCcircuits which incorporates these ideas. The hierarchy of constraints begins with opera-tions for complex number arithmetic, then circuit element internal relationships in terms ofcomplex arithmetic operations, and �nally circuit structure relationships in terms of circuitelement variables. The use of this approach has resulted in a program which is structurallysimilar to the problem to be solved. It has also aided reasoning about the program. Inparticular it has helped to ensure that all information about the circuit has been capturedand that important constraints have not been inadvertently omitted.The package is run using the predicate circuit solve() with four arguments. Theyare respectively: the source frequency, circuit representation, the nodes at ground potentialand the nodes whose values are to be printed after the analysis. The package can also be8

V1 V

R1

R2V1 D1

n1 n2

groundFigure 4: Use of the general package to solve a DC circuitused for D.C. analysis by setting the frequency and imaginary parts of quantities to zero.This is illustrated by the following goal which analyzes the circuit of Figure 4.?- W = 0,Vs = 10,R1 = 100,R2 = 50,circuit_solve(W,[[voltage_source,v1,c(Vs,0),[n1,ground]],[resistor, r1, R1, [n1, n2]],[resistor, r2, R2, [n2, ground]],[diode, d1, in914, [n2, ground]]],[ground],[n2]).Output is:COMPONENT CONNECTIONS TO NODE n2resistor r1: 100 OhmsNode n2 Voltage c(0.60082, 0) Current c(-0.0939918, 0)resistor r2: 50 OhmsNode n2 Voltage c(0.60082, 0) Current c(0.0120164, 0)diode d1: type in914Node n2 Voltage c(0.60082, 0) Current c(0.0819754, 0)The second example shows a larger RLC circuit (Figure 5). The goal shown generates300 equations and is run by the CLP(R) system in 0:5 seconds on a Pyramid 98X.?- W = 100,Vs = 10,Tr1 = 5,Tr2 = 0.2,R1 = 200, 9

V1

R1

TR1

R2

TR2

R3 R4

C1

L1

ground1 ground2 ground3

out

V1

in n1 n2

n3

n4Figure 5: RLC CircuitR2 = 1000,R3 = 50,R4 = 30,C1 = 0.05,L1 = 0.005,circuit_solve(W,[[voltage_source, v1, c(Vs,0),[in, ground1]],[resistor, r1, R1, [in, n1]],[transformer, t1, Tr1,[n1, ground1, n2, ground2]],[resistor, r2, R2, [n2, n3]],[capacitor, c1, C1, [n3, n4]],[resistor, r3, R3, [n4, ground2]],[transformer, t2, Tr2,[n4, ground2, out, ground3]],[resistor, r4, R4, [out, ground3]][inductor, l1, L1, [out, ground3]]],[ground1, ground2, ground3],[out]).Output is:COMPONENT CONNECTIONS TO NODE outtransformer t2: ratio of 0.2Node out V c(3.34983e-06, 0.0001984) C c(-0.0003968 8.78204e-08)resistor r4: 30 OhmsNode out V c(3.34983e-06, 0.0001984) C c(1.11661e-07,6.61185e-06)inductor l1: 0.005 HenryNode out V c(3.34983e-06, 0.0001984) C c(0.0003967, -6.69967e-06)4.2 Transistor Circuits: Analysis and DesignWhile the voltage-current behavior of the transistor is highly non-linear, it can be mod-eled for most practical purposes using piecewise linear techniques. We will illustrate thisapproach through the analysis and design of ampli�er circuits using the bipolar junctiontransistor. This approach is equally applicable to other types of circuit and other types oftransistor. 10

Typical engineering methods for the design of transistor circuits are iterative and guidedby heuristics. This involves estimating key circuit parameters, computing the remainingunknown values, and then making corrections to the original estimates. The programs wepresent use a similar approach. However, we replace iteration by backtracking.The design of transistor ampli�ers falls into three stages. First, the basic form of theampli�er is selected (for example: common-base, emitter-follower). Second, the biasingcircuitry is designed to ensure that the transistor will operate in its active mode withinthe expected range of inputs to the circuit. Design requirements include insensitivity totransistor parameters such as common-emitter current gain, and temperature. Third, therequirements of the small signal operation of the ampli�er are satis�ed. These requirementsmay include high input resistance, low output resistance and predictable gain.The package presented in appendix II provides both simple D.C. analysis for biasingand digital circuitry, and small signal analysis for transistor ampli�ers. The transistor ismodeled by three modes of operation: active, saturated and cuto�. For ampli�er circuitswe are primarily interested in the active mode of operation, while for digital circuits thesaturated and cuto� modes become important. The following rules give the D.C. propertiesof an npn transistor (Figure 6) in the three modes. The variables Beta, Vbe and Vcesat aredevice parameters; Vx and Ix are respectively voltages and currents, where x ranges over b(base), e (emitter), c (collector).transistor_dc(active, npn, Beta, Vbe, Vcesat,Vb, Vc, Ve, Ib, Ic, Ie) :-Vb = Ve + Vbe,Vc >= Vb, Ib >= 0,Ic = Beta*Ib,Ie = Ic + Ib.transistor_dc(saturated, npn, Beta, Vbe, Vcesat,Vb, Vc, Ve, Ib, Ic, Ie) :-Vb = Ve + Vbe,Vc = Ve + Vcesat,Ib >= 0, Ic >= 0,Ie = Ic + Ib.transistor_dc(cutoff, npn, Beta, Vbe, Vcesat,Vb, Vc, Ve, Ib, Ic, Ie) :-Vb < Ve + Vbe,Ib = 0,Ic = 0,Ie = 0.With the addition of the previously de�ned rule for modeling the (D.C.) properties ofresistors (section 3), we are able to analyze some simple circuits. For example the simplebiasing circuit shown in Figure 7 may be analyzed using the following goal:?- resistor(15 - Vb, I1, 100),resistor(-Vb, I2, 50),I1 + I2 = Ib,transistor(State, npn, 100, 0.7, 0.3,Vb, Vc, Ve, Ib, Ic, Ie),resistor(Ve, Ie, 3),resistor(15 - Vc, Ic, 5). 11

V1

b
e

c

Vc

Ve

V
b

Ic

Ie

IbFigure 6: An NPN type transistor
V1

b e

c

RRB1 C

RB2 RE

100k

50k

5k

3k

cc1

gnd

15VVFigure 7: Biasing Circuit for NPN transistor12

The full program in appendix II is an extension of these rules to allow the D.C. analysisof more general transistor circuits, which may include capacitors and diodes. This programis written to re
ect the structure of the problem by de�ning component voltage-currentrelationships at one level, and component connections, at a higher level, in terms of thesevoltage/current parameters. The circuit structure is de�ned by listing the components andtheir connections. For example, the following goal again analyzes the circuit of Figure 6.?- Vcc1 = 15, dc_analysis(Vcc1, _, [[resistor, rb1, 100, [cc1, b]],[resistor, rb2, 50, [gnd, b]],[transistor, t1, [npn,tr1,State], [b,c,e]],[resistor, re, 3, [e,gnd]],[resistor, rc, 5, [c,cc1]]]).Output is:State = activeA number of di�erent types of problems can be solved with this package. For examplethe following goal does not specify the component values, but instead constrains them tolie within certain ranges.?- Vcc1 = 15, 27 <= R1, R1 <= 100, 5 <= R2, R2 <= 27,dc_analysis(Vcc1, _, [[resistor, r1, R1, [cc1,b]],[resistor, r2, R2, [gnd,b]],[transistor, t1, [npn,tr1,State], [b,c,e]],[resistor, r3, 3, [e,gnd]],[resistor, r4, 5, [c,cc1]]]).Output is:State = activeR1 = 50R2 = 27Finally we can re-employ the analysis program as a design program. This can be achievedby constraining the design parameters, choosing a circuit template, and co-routining thesearch for suitable components with a circuit analysis { the test and generate technique.After a circuit template has been chosen, the circuit analysis rules are used to set up theappropriate constraints, and then the search for components takes place. When values arechosen for components, an inappropriate choice will often cause the system of constraints tobecome unsatis�able immediately, leading to backtracking (assuming that the determinationof unsatis�ability does not rely on the consideration of non-linear constraints). In this waywe avoid an exhaustive search to �nd component values that satisfy the design constraints.A goal for designing a positive gain transistor ampli�er is shown below.?- Vcc = 15, Stability < 0.5, Gain > 0.5,Inresistance >= 25, Outresistance <= 0.5,full_analysis(Vcc, _, Circuit, _, _, Type, Stability,Gain, Inresistance, Outresistance).13

delay

input

output

n1 n2 n5n3 n4
delay delay delay

n6

0.2

0.2
0.20.2

0.2Figure 8: High frequency �lterOutput is:Circuit= [[capacitor, c1, C1, [p1,b]],[resistor, r1, 100, [b,cc1]],[resistor, r2, 100, [b,gnd]],[transistor, tr, [npn,tr0,active], [b,cc1,e]],[resistor, re, 5, [e,gnd]],[capacitor, c3, C3, [e,out]]]Type = emitter_followerStability = 0.13Gain = 0.99Inresistance = 45.51Outresistance = 0.47This result is obtained in 46 seconds on an IBM RT PC (APC), after solving over seventhousand linear constraints. The approach of co-routining constraint satisfaction with thesearch for components results in a search space pruning of two orders of magnitude and thetotal time taken is reduced by more than an order of magnitude over the exhaustive searchapproach.5 Digital Signal FlowWe concentrate in this section on the simulation of linear shift-invariant digital systems withtime as the independent variable [13]. We represent digital systems in terms of linear signal-
ow graphs. A signal
ow graph is a collection of nodes and directed branches. Associatedwith each node is a variable which is the signal value at that node. Source nodes have theirsignal value determined at each stage by some input signal. Branches are either multiplierbranches or delay branches. A multiplier branch multiplies the signal at its input end by itslabeling coe�cient to give its output; a delay branch has as output its input at the previoustime step. The signals at each node in the signal
ow graph are such that the signals inany outgoing branches are equal to the sum of the signals in the incoming branches (thesumming constraint). As an example, consider the following digital �lter:We simulate the signal-
ow graph by computing the signal values at the nodes at suc-cessive time steps, starting from some given initial values. This is achieved by collectingbranch equations and summing constraints for each node. This, along with the input signal14

1

0

-1

1

0

-1 Figure 9: Input and output for �ltervalues to the source nodes, is su�cient to determine the signal values at each node for eachtime step.The signal-
ow graph simulator appearing in appendix III is called using the predicateflow() with a description of the graph as the �rst argument and the name of the nodewhere the value is to be printed as the second argument. The following goal describes thelow pass �lter of Figure 8.?- flow([[source, in, n1],[delay, n1, n2],[delay, n2, n3],[delay, n3, n4],[delay, n4, n5],[coeff(0.2), n1, n6],[coeff(0.2), n2, n6],[coeff(0.2), n3, n6],[coeff(0.2), n4, n6],[coeff(0.2), n5, n6]],n6).Figure 9 shows the output from the program in graphical form corresponding to the accom-panying square wave input.6 Electro-Magnetic Field AnalysisOften it is undesirable or impractical to analyze electrical systems in terms of lumped cir-cuit components. In many cases an analysis using electro-magnetic �eld theory is required,typically involving the solution of partial di�erential equations subject to some boundaryor initial conditions. A simple way to solve these problems is to use a �nite di�erence ap-proximation. We will consider the �ve-point approximation to Laplace's equation known as15

ph ah

bh

qh

O

B

Q

P A

uO(ap+ bq)apbq = uAa(a+ p) + aBb(b+ q) + uPp(p+ a) + uQq(q + b)Figure 10: Liebmann's 5-point approximation to Laplace's equationLiebmann's method described in Figure 10, which can be used to solve Dirichlet, Neumannand mixed boundary value problems. The �nite di�erence equations are the leaf constraints| they apply to a neighborhood of points. The complete �nite di�erence problem is a parentconstraint arising from the overlapping of these neighborhoods.The following is a simple program to solve the Dirichlet problem for Laplace's equationin two dimensions.laplace([_,_]).laplace([H1,H2,H3|T]):-laplace_vec(H1,H2,H3),laplace([H2,H3|T]).laplace_vec([_,_],[_,_],[_,_]).laplace_vec([TL,T,TR|T1],[ML,M,MR|T2],[BL,B,BR|T3]):-B + T + ML + MR - 4*M = 0,laplace_vec([T,TR|T1],[M,MR|T2],[B,BR|T3]).?- laplace([[0, 0, 0, 0, 0, 0, 0],[100, _, _, _, _, _, 100],[100, _, _, _, _, _, 100],[100, _, _, _, _, _, 100],[100, _, _, _, _, _, 100],[100, _, _, _, _, _, 100],[100, 100, 100, 100, 100, 100, 100]]).16

x

y

u = 100 V

u = 0 VFigure 11: A 2-dimensional boundary value problemOutput is:[[0, 0, 0, 0, 0, 0, 0],[100, 53.1, 37.1, 33.1, 37.1, 53.1, 100],[100, 75.4, 62.1, 58.1, 62.1, 75.4, 100],[100, 86.5, 77.9, 75.0, 77.9, 86.5, 100],[100, 92.8, 87.9, 86.2, 87.9, 92.8, 100],[100, 96.9, 94.6, 93.9, 94.6, 96.9, 100],[100, 100, 100, 100, 100, 100, 100]]The region of interest is represented as a matrix (list of lists) of anonymous variables,with constants at the edge specifying the boundary values. Constraints (�nite di�erenceequations) are collected at each point of the matrix by \sliding" a \window" of 9 pointsacross the matrix and referencing only the variables in that window. The important pointof this program is the simplicity with which the equations are collected.The central methods of this program are expanded in a more general package to allowthe user to describe the region of interest and the boundary conditions more concisely butstill declaratively. The form of the goal, which is described below, is generalized to cope withNeumann and mixed boundary value problems. It can also deal with irregular boundaries.Figure 11 shows a 2-dimensional region enclosed on 3 sides by a barrier at 0 potential, andfrom one side by a barrier at potential of 100 volts. We may express this as the goal?- gen_laplace([p(0,0),b(0),p(0,50),b(100),p(30,50),b(0),p(30,0),b(0)],0.5,[at(20,20),at(20,40)]).Output is:At (20,20) = 55.78At (20,40) = 42.15where the �rst argument describes the vertices of the region of interest together with theboundary values on the lines joining them, the second argument is the grid separation,17

and the third argument is a list of points at which the value of the potential is required.We could modify the program to provide for non-constant boundary values: they may bespeci�ed as bv(top) instead of b(0), in conjunction with the ruleboundary(top,X,Y,X*X+Y*Y).added to the program by the user to specify that the potential at the top of the boundarydepends on the distance from the bottom left hand corner, where the two axes are X and Y.The program represents the �nite di�erence equations concisely, and utilizes the constraintcollection mechanism of CLP(R) to solve the problem in a natural way.ConclusionWe have considered the application of CLP(R) to a range of electrical engineering problems| RLC circuit analysis, transistor circuit design, digital signal
ow and electro-magnetic�eld analysis | which require symbolic reasoning as well as signi�cant numerical com-putation. Most of the programs in this paper were originally written to investigate theprogramming techniques supported by the CLP(R) language and the practicality of theCLP(R) system. Our experience has indicated that CLP(R) naturally supports problemsolving techniques from the early work on constraint programming languages. Moreover,CLP(R) is a more general, elegant and versatile language, and yet is practical.AcknowledgementsWe are grateful to Joxan Ja�ar and Jean-Louis Lassez as well as the referees for theircomments on earlier versions of this paper.References[1] Borning, A. \The Programming Language Aspects of ThingLab, a Constraint{OrientedSimulation Laboratory", ACM Transactions on Programming Languages and Systems,Vol 3, No 4, October 1981, pp 252{387.[2] Colmerauer, A. \Opening the Prolog III Universe", Byte, 12 (9), August 1987.[3] De Kleer, J. and Sussman, G. J. \Propagation of Constraints applied to Circuit Syn-thesis", Circuit Theory and Applications, Vol 8 (1980) pp 127{144.[4] Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T. and Berthier, F.\The Constraint Logic Programming Language CHIP", Proceedings, Fifth GenerationComputer Systems, Tokyo, December 1988.[5] Hansen, B. S. and Hansen, M. R. \Simple Symbolic and Numeric Computations Basedon Equations and Inequalities", Computer Science Research Report, IBM ResearchLaboratory, San Jose, California. June 1985.[6] Heintze, N. C., Ja�ar, J., Michaylov, S., Stuckey, P. J. and Yap, R. \The CLP(R)Programmer's Manual: Version 2.0", Department of Computer Science, Monash Uni-versity, June 1987. 18

[7] Ja�ar, J., Michaylov, S., Stuckey, P. J. and Yap, R. \The CLP(R) Language andSystem", in preparation, 1989.[8] Ja�ar, J. and Lassez, J.{L. \Constraint Logic Programming", Proceedings, 14th ACMSymposium on POPL, Munich, January 1987.[9] Ja�ar, J. and Michaylov, S. \Methodology and Implementation of a CLP System",Proceedings, Fourth International Conference on Logic Programming, Melbourne, May1987.[10] Konopasek, M. and Jayaraman, S. \Constraint and Declarative Languages for Engi-neering Applications: The TK!Solver Contribution" Proceedings of the IEEE, Vol. 73,No. 12, December 1985.[11] MATHLAB Group, \Macsyma Reference Manual", MIT, 1977.[12] Naish, L. \The MU-PROLOG 3.2db Reference Manual", Technical Report, Depart-ment of Computer Science, University of Melbourne, 1985.[13] Oppenheim, A.V., Willsky, A.S. and Young, I.T. Signals and Systems, Prentice-Hall,1983.[14] Rayna, G. Reduce: Software for Algebraic Computation, Springer{Verlag, New York,1987.[15] Stallman, R. M. and Sussman, G. J. \Forward Reasoning and Dependency DirectedBacktracking in a System for Computer-Aided Circuit Analysis", AI Memo 380 MITArti�cial Intelligence Laboratory, Cambridge, September 1976. Also in Arti�cial Intel-ligence 9 (1977), 135{196.[16] Steele, G. L. Jr. and Sussman, G. J. \Constraints", AI Memo 502 MIT Arti�cialIntelligence Laboratory, Cambridge, November 1978. Invited Paper. Proceedings APL'79. ACM SIGPLAN STAPL APL Quote Quad 9, 4 (June 1979), pp 208{225.[17] Steele, G. L. Jr. \The Implementation and De�nition of a Computer ProgrammingLanguage Based on Constraints", Ph.D. Dissertation, Dept. Electrical Engineeringand Computer Science. MIT, Cambridge, Mass., Aug. 1980. (MIT{AI TR 595)[18] Sussman, G. J. and Stallman, R. M. \Heuristic Techniques in Computer-Aided CircuitAnalysis", AI Memo 328, MIT Arti�cial Intelligence Laboratory, Cambridge, March1975. Also in IEEE Transactions on Circuits and Systems Vol CAS-22 (11) (November1975).[19] Thom, J. and Zobel, J. \NU-Prolog Reference Manual", Version 1.3. Technical Report86/10. Machine Intelligence Project, Department of Computer Science, University ofMelbourne.[20] Zima, H. P. \A Constraint Language and its Interpreter", Computer Science ResearchReport, IBM Research Laboratory, San Jose, California. June 1985.Appendix I: Circuit SolverThis program carries out a steady state phasor analysis of RLC circuits. It is called throughthe predicate circuit solve() which has as arguments19

� the angular frequency for the analysis.� the component list.� the list of nodes which are to be `grounded' | otherwise all voltages are relative.� the `Selection' list | a list of nodes for which computed information is to be printed.The circuit is de�ned by a list of components. Each component is described by thecomponent type, name, value and the nodes to which it is connected. The component typeis used to determine the component characteristics.circuit_solve(W, L, G, Selection) :-get_node_vars(L, NV),solve(W, L, NV, Handles, G),format_print(Handles, Selection).get_node_vars([[Comp, Num, X, Ns]|Ls], NV) :-get_node_vars(Ls, NV1),insert_list(Ns, NV1, NV).get_node_vars([], []).insert_list([N|Ns], NV1, NV3) :-insert_list(Ns, NV1, NV2),insert(N, NV2, NV3).insert_list([], NV, NV).insert(N, [[N, V, I]|NV1], [[N, V, I]|NV1]).insert(N, [[N1, V, I]|NV1], [[N1, V, I]|NV2]) :-insert(N, NV1, NV2).insert(N, [], [[N, V, c(0, 0)]]).solve(W, [X|Xs], NV, [H|Hs], G) :-addcomp(W, X, NV, NV1, H),solve(W, Xs, NV1, Hs, G).solve(W, [], NV, [], G) :-zero_currents(NV),ground_nodes(NV, G).zero_currents([[N, V, c(0, 0)]|Ls]) :-zero_currents(Ls).zero_currents([]).ground_nodes(Vs, [N|Ns]) :-ground_node(Vs, N),ground_nodes(Vs, Ns).ground_nodes(Vs, []).ground_node([[N, c(0, 0), I]|Vs], N).ground_node([[N1, V, I]|Vs], N) :-ground_node(Vs, N).% 20

% The following rules deal with two-terminal components.%addcomp(W, [Comp2, Num, X, [N1, N2]], NV, NV2,[Comp2, Num, X, [N1, V1, I1], [N2, V2, I2]]):-c_neg(I1, I2),iv_reln(Comp2, I1, V, X, W),c_add(V, V2, V1),subst([N1, V1, Iold1], [N1, V1, Inew1], NV, NV1),subst([N2, V2, Iold2], [N2, V2, Inew2], NV1, NV2),c_add(I1, Iold1, Inew1),c_add(I2, Iold2, Inew2).%% Voltage/current relationships for two-terminal components.%iv_reln(resistor, I, V, R, W) :-c_mult(I, c(R, 0), V).iv_reln(voltage_source, I, V, V, W).iv_reln(isource, I, V, I, W).iv_reln(capacitor, I, V, C, W) :-c_mult(c(0, W*C), V, I).iv_reln(inductor, I, V, L, W) :-c_mult(c(0, W*L), I, V).iv_reln(connection, I, c(0, 0), L, W).iv_reln(open, c(0, 0), V, L, W).iv_reln(diode, I, V, D, W) :-diode(D, I, V).%% Three rules per diode type.%diode(in914, c(I, 0), c(V, 0)) :-V < -100, DV = V + 100, I = 10*DV.diode(in914, c(I, 0), c(V, 0)) :-V >= -100, V < 0.6, I = 0.001*V.diode(in914, c(I, 0), c(V, 0)) :-V >= 0.6, DV = V - 0.6, I = 100*DV.%% The following rules deal with transistors.%addcomp(W, [transistor, Num, X, [N1, N2, N3]], NV, NV3,[transistor, Num, X, [N1, V1, I1],[N2, V2, I2], [N3, V3, I3]]):-transistor(X, R, Gain),c_add(I1, I3, IT),c_neg(I2, IT),c_add(Vin, V2, V1),c_mult(I1, c(R, 0), Vin),c_mult(I1, c(Gain, 0), I3),subst([N1, V1, Iold1], [N1, V1, Inew1], NV, NV1),21

subst([N2, V2, Iold2], [N2, V2, Inew2], NV1, NV2),subst([N3, V3, Iold3], [N3, V3, Inew3], NV2, NV3),subst([N4, V4, Iold4], [N4, V4, Inew4], NV3, NV4),c_add(I1, Iold1, Inew1),c_add(I2, Iold2, Inew2),c_add(I3, Iold3, Inew3),c_add(I4, Iold4, Inew4).% We need one fact for each kind of transistor we wish to consider.transistor(bc108, 1000, 100).%% The following rule deals with transformers.%addcomp(W, [transformer, Num, X, [N1, N2, N3, N4]], NV, NV4,[transformer, Num, X, [N1, V1, I1], [N2, V2, I2],[N3, V3, I3], [N4, V4, I4]]):-c_neg(I1, I2),c_neg(I3, I4),c_add(Vin, V2, V1),c_add(Vout, V4, V3),c_mult(Vout, c(X, 0), Vin),c_mult(I1, c(X, 0), I4),subst([N1, V1, Iold1], [N1, V1, Inew1], NV, NV1),subst([N2, V2, Iold2], [N2, V2, Inew2], NV1, NV2),subst([N3, V3, Iold3], [N3, V3, Inew3], NV2, NV3),subst([N4, V4, Iold4], [N4, V4, Inew4], NV3, NV4),c_add(I1, Iold1, Inew1),c_add(I2, Iold2, Inew2),c_add(I3, Iold3, Inew3),c_add(I4, Iold4, Inew4).subst(X, Y, [X|L1], [Y|L1]).subst(X, Y, [Z|L1], [Z|L2]) :-subst(X, Y, L1, L2).%% These rules define complex arithmetic.%c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-Re3 = Re1*Re2 + -1*Im1*Im2,Im3 = Re1*Im2 + Re2*Im1.c_add(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-Re3 = Re1 + Re2,Im3 = Im1 + Im2.c_neg(c(Re, Im), c(Re1, Im1)) :-Re1 = -Re, Im1 = -Im . 22

c_eq(c(Re1, Im1), c(Re2, Im2)) :-Re1 = Re2, Im1 = Im2 .c_real(c(Re, Im), Re).c_imag(c(Re, Im), Im).% format_print(H, Selection) --- Print out node information.Appendix II: Transistor Circuit Analysis and DesignThis program solves transistor ampli�er design and analysis problems, and D.C. circuitanalysis problems involving transistors, diodes and capacitors. The �rst main goal, usedfor dc analysis of circuits, is?- dc_analysis(Vcc1, Vcc2, Circuit).The parameters are two (optional) source voltages which will ensure that the node cc1 isat voltage Vcc1, similarly for cc2, and a circuit description in the following form: a list ofelements each of which is a list containing four elements, the component type, the componentname, the data for the component, and a list of nodes that the component connects.The second main goal, used for transistor ampli�er design and analysis, is?- full_analysis(Vcc1, Vcc2, Circuit, In, Out, Type,Stability, Gain, Inresist, Outresist).The �rst three parameters are as above. The rest are the input node for the ampli�er, theoutput node for the ampli�er, and the type (emitter-follower, common-base) of the ampli�er.The �nal four parameters are design parameters: the stability of collector currents on 50%deviation of Beta values and 10% deviation of Vbe values for the transistors of the ampli�er,the gain of the ampli�er, and �nally the open-circuit input resistance and output resistanceof the ampli�er.Note that several conventions are followed in this program. In the D.C. case, capacitorsare considered to be open circuits. However, for small signal analysis, they are consideredto be short circuits. Additionally, it is assumed that any ampli�er circuit type used for afull analysis appears in the database of circuits and that all components used appear in thedatabase of components.%% Entry Points.%dc_analysis(Vcc1, Vcc2, Circuit):-choose_circuit(Circuit),solve_dc(mean, Circuit, [n(cc1, Vcc1, [_]),n(cc2, Vcc2, [_]), n(gnd, 0, [_])],Nodelist, Collector_Currents),current_solve(Nodelist),print_circuit(Circuit),print_value(Nodelist). 23

full_analysis(Vcc1, Vcc2, Circuit, In, Out, Type,Stability, Gain, Inresist, Outresist):-% Choose a circuit template.circuit(Vcc1, Vcc2, Circuit, In, Out, Type),% Construct circuit constraints.solve_dc(mean, Circuit, [n(cc1, Vcc1, [_]),n(cc2, Vcc2, [_]), n(gnd, 0, [_])],Nodelist, Collector_Currents),current_solve(Nodelist),% Determine stability constraints.stability(Vcc1, Vcc2, Circuit, Collector_Currents, Stability),% Determine input resistance and gain constraints.solve_ss(Circuit, Collector_Currents,[n(cc1, 0, [_]), n(cc2, 0, [_]),n(gnd, 0, [_]), n(In, 1, [Iin]),n(Out, Vout, [])], Nodelist2),current_solve(Nodelist2),Inresist = -1 / Iin,Gain = Vout,% Determine Output resistance constraintssolve_ss(Circuit, Collector_Currents,[n(cc1, 0, [_]), n(cc2, 0, [_]),n(gnd, 0, [_]), n(Out, 1, [Iout])], Nodelist3),current_solve(Nodelist3),Outresist = -1 / Iout,% Choose circuit values - all (real) choice points occur herechoose_circuit(Circuit).%% Small signal equivalent circuit analysis.%solve_ss([], [], List, List).solve_ss([[Component, _, Data, Points]|Rest], CCin, Innodes, Outnodes):-connecting(Points, Volts, Amps, Innodes, Tmpnodes),component_ss(Component, Data, Volts, Amps, CCin, CCout),solve_ss(Rest, CCout, Tmpnodes, Outnodes).component_ss(resistor, R, [V1, V2], [I, -1*I], Cc, Cc):-V1-V2 = R*I.component_ss(capacitor, _, [V, V], [I, -1*I], Cc, Cc).component_ss(transistor, [npn, Code, active, Mean, _, _],[Vb, Vc, Ve], [Ib, Ic, Ie], [Icol|CC], CC):-Mean = data(Beta, _, _, Vt),Vb - Ve = (Beta*Vt / Icol)*Ib,Ic = Beta*Ib,Ie + Ic + Ib = 0.%% D.C. component solving. 24

%solve_dc(_, [], List, List, []).solve_dc(Kind, [[Component, _, Data, Points] | Rest], Inlist, Outlist, CCin):-connecting(Points, Volts, Amps, Inlist, Tmplist),component_dc(Component, Data, Volts, Amps, CCin, CCout, Kind),solve_dc(Kind, Rest, Tmplist, Outlist, CCout).component_dc(resistor, R, [V1, V2], [I, -1*I], Cc, Cc, _):-V1-V2 = R*I.component_dc(capacitor, _, [V1, V2], [0, 0], Cc, Cc, _).component_dc(transistor, [Type, Code, State, Mean, Min, Max],Volts, [Ib, Ic, Ie], [Ic|CC], CC, mean):-Mean = data(Beta, Vbe, Vcestat, _),transistor_state(Type, State, Beta, Vbe, Vcesat, Volts, [Ib, Ic, Ie]component_dc(transistor, [Type, Code, State, Mean, Min, Max],Volts, [Ib, Ic, Ie], [Ic|CC], CC, minn):-Min = data(Beta, Vbe, Vcestat, _),transistor_state(Type, State, Beta, Vbe, Vcesat, Volts, [Ib, Ic, Ie])component_dc(transistor, [Type, Code, State, Mean, Min, Max],Volts, [Ib, Ic, Ie], [Ic|CC], CC, maxx):-Max = data(Beta, Vbe, Vcestat, _),transistor_state(Type, State, Beta, Vbe, Vcesat, Volts, [Ib, Ic, Ie])component_dc(diode, [Code, State, Vf, Vbreak], Volts, Amps, Cc, Cc, _):-diode_state(State, Vf, Vreak, Volts, Amps).%% Diode and transistor states / relationships.%diode_state(forward, Vf, Vbreak, [Vp, Vm], [I, -1*I]):-% forward biasedVp - Vm = Vf,I >= 0.diode_state(reverse, Vf, Vbreak, [Vp, Vm], [I, -1*I]):-% reverse biasedVp - Vm < Vf,Vm - Vp < Vbreak,I = 0.transistor_state(npn, active, Beta, Vbe, _, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb = Ve + Vbe,Vc >= Vb,Ib >= 0,Ic = Beta*Ib,Ie+Ib+Ic = 0.transistor_state(pnp, active, Beta, Vbe, _, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb = Ve + Vbe,Vc <= Vb,Ib <= 0,Ic = Beta*Ib,Ie+Ib+Ic = 0. 25

transistor_state(npn, saturated, Beta, Vbe,Vcesat, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb = Ve + Vbe,Vc = Ve + Vcesat,Ib >= 0,Ic >= 0,Ie+Ib+Ic = 0.transistor_state(pnp, saturated, Beta, Vbe,Vcesat, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb = Ve + Vbe,Vc = Ve + Vcesat,Ib <= 0,Ic <= 0,Ie+Ib+Ic = 0.transistor_state(npn, cutoff, Beta, Vbe,Vcesat, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb <= Ve + Vbe,Ib = 0,Ic = 0,Ie = 0.transistor_state(pnp, cutoff, Beta, Vbe,Vcesat, [Vb, Vc, Ve], [Ib, Ic, Ie]):-Vb >= Ve + Vbe,Ib = 0,Ic = 0,Ie = 0.%% Component connections.%connecting([], [], [], List, List).connecting([P|PR], [V|VR], [I|IR], Inlist, Outlist):-connect(P, V, I, Inlist, Tmplist),connecting(PR, VR, IR, Tmplist, Outlist).connect(P, V, I, [], [n(P, V, [I])]):-!.connect(P, V, I, [n(P, V, Ilist) | Rest], [n(P, V, [I|Ilist])|Rest]):-!.connect(P, V, I, [A|Rest], [A|Newrest]) :-connect(P, V, I, Rest, Newrest).%% Stability analysis.%stability(Vcc1, Vcc2, Circuit, CollectorCurrents, Stability):-solve_dc(minn, Circuit, [n(cc1, Vcc1, [_]),n(cc2, Vcc2, [_]), n(gnd, 0, [_])],Nodelist1, MinCurrents),current_solve(Nodelist1),solve_dc(maxx, Circuit , [n(cc1, Vcc1, [_]),n(cc2, Vcc2, [_]), n(gnd, 0, [_])],Nodelist2, MaxCurrents), 26

current_solve(Nodelist2),calculate(MinCurrents, MaxCurrents, CollectorCurrents, Stability).calculate(MinCurrents, MaxCurrents, CollectorCurrents, Stability):-cal(MinCurrents, MaxCurrents, CollectorCurrents, Percents),maxi(Percents, 0, Stability).cal([Min|Rin], [Max|Rax], [Ic|Rc], [Pc|Rpc]):-Pc = max(Ic-Min, Max-Ic),cal(Rin, Rax, Rc, Rpc).cal([], [], [], []).maxi([N1|R], N2, P):-M = max(N1, N2),maxi(R, M, P).maxi([], P, P).current_solve([]).current_solve([n(_, _, L) | Rest]) :-kcl(L),current_solve(Rest).print_value([]).print_value([n(P, V, I) | Rest]) :-printf("% at % %\n", [P, V, I]),print_value(Rest).print_circuit([]).print_circuit([[Comp, Name, Data, Points] | Rest]) :-printf(" % at % %\n", [Comp, Name, Data]),print_circuit(Rest).sum([X|T], Z) :-X+P = Z,sum(T, P).sum([], 0).kcl(L) :-sum(L, 0).%% Choose circuit values.%choose_circuit([[Component_type, _, Data, _] | RestofCircuit]):-choose_component(Component_type, Data),choose_circuit(RestofCircuit).choose_circuit([]).choose_component(resistor, R):-resistor_val(R). 27

choose_component(capacitor, _).choose_component(diode, [Code, _, Vf, Vbreak]):- diode_type(Code, Vf, Vbreak).choose_component(transistor, [Type, Code, _, Mean, Min, Max]):-transistor_type(Type, Code, MeanBeta,MeanVbe, MeanVcestat, MeanVt, mean),Mean = data(MeanBeta, MeanVbe, MeanVcestat, MeanVt),transistor_type(Type, Code, MinBeta,MinVbe, MinVcestat, MinVt, minn),Min = data(MinBeta, MinVbe, MinVcestat, MinVt),transistor_type(Type, Code, MaxBeta,MaxVbe, MaxVcestat, MaxVt, maxx),Max = data(MaxBeta, MaxVbe, MaxVcestat, MaxVt).%% Database of circuits and components.%resistor_val(100).resistor_val(50).resistor_val(27).resistor_val(10).resistor_val(5).resistor_val(2).resistor_val(1).diode_type(di1, 0.6, 100).transistor_type(npn, tr0, 100, 0.7, 0.3, 0.025, mean).transistor_type(npn, tr0, 50, 0.8, 0.3, 0.025, minn).transistor_type(npn, tr0, 150, 0.6, 0.3, 0.025, maxx).transistor_type(pnp, tr1, 100, -0.7, -0.3, 0.025, mean).transistor_type(pnp, tr1, 50, -0.8, -0.3, 0.025, minn).transistor_type(pnp, tr1, 150, -0.6, -0.3, 0.025, maxx).circuit(15, 0, [[capacitor, c1, c1, [in, b]],[resistor, r1, R1, [b, cc1]],[resistor, r2, R2, [b, gnd]],[transistor, tr, [npn, tr0, active, Mean, Minn, Maxx], [b, c, e]],[resistor, re, Re, [e, gnd]],[capacitor, c2, c2, [c, out]],[resistor, rc, Rc, [c, cc1]],[capacitor, c3, c3, [e, gnd]]],in, out, common_emitter).circuit(15, 0, [[capacitor, c1, C1, [gnd, b]],[resistor, r1, R1, [b, cc1]],[resistor, r2, R2, [b, gnd]],[transistor, tr, [pnp, tr1, active, Mean, Minn, Maxx], [b, c, e]],[resistor, re, Re, [e, gnd]], 28

[capacitor, c2, C2, [c, in]],[resistor, rc, Rc, [c, cc1]],[capacitor, c3, C3, [e, out]]],in, out, common_base).circuit(15, 0, [[capacitor, c1, C1, [in, b]],[resistor, r1, R1, [b, cc1]],[resistor, r2, R2, [b, gnd]],[transistor, tr, [npn, tr0, active, Mean, Minn, Maxx], [b, cc1, e]],[resistor, re, Re, [e, gnd]],[capacitor, c3, C3, [e, out]]],in, out, emitter_follower).Appendix III: Signal Flow Graph SimulationThis program simulates the signal
ow graph presented to it as input, and describes thevalue at the required node at each time interval by drawing a graph. The goal is of theform?- flow(Spec, Output).The �rst argument describes the signal
ow graph as a list of arcs and the second is either thename of a node in the graph for which the value is to be plotted, or an empty list signifyingthat the value at each node is to be printed at each time interval. Each arc description isof the form [delay, node1, node2] or [coeff(coefficient), node1, node2].%% First convert the goal to an internal representation.%flow(Spec, Output) :-convert_list(Spec, Specd, [Nodes, Sources]),get_node_index(Output, Nodes, _, Oindex, no), !,analyze(Specd, Oindex).convert_list([S|Ss], Spec2, Info2) :-convert_list(Ss, Spec1, Info1),convert_arc(S, Spec1, Spec2, Info1, Info2).convert_list([], [], [[], Sources]) :-read_sources(Sources).convert_arc([Type, In, Out], Spec1, Spec4, Info1, Info3) :-get_index(Type, In, Info1, Info2, Index1, Newnode_flag1),get_index(not_source, Out, Info2, Info3, Index2, Newnode_flag2),node_insert(Spec1, Spec2, Newnode_flag1),node_insert(Spec2, Spec3, Newnode_flag2),insert(Spec3, Spec4, Index2, [Type, Index1]).get_index(source, N, [Nodes1, Sources], [Nodes1, Sources], Index, no) :-29

get_node_index(N, Sources, _, Index, no).get_index(Type, Node, [Nodes1, Sources], [Nodes2, Sources],Index, Newnode_flag) :-get_node_index(Node, Nodes1, Nodes2, Index, Newnode_flag).%% Find an index to a node in the list, adding it if necessary.%% get_node_index(Node, Old_node_list, New_node_list, Index, Newnode_flag)%get_node_index(X, [X|Ns], [X|Ns], 1.0, no).get_node_index(X, [Xd|Ns], [Xd|Nds], V + 1, Newnode_flag) :-get_node_index(X, Ns, Nds, V, Newnode_flag).get_node_index(X, [], [X], 1, yes).%% Add new nodes by setting up a new list on the specification list.%node_insert(S, S, no).node_insert([S1|Ss1], [S1|Ss2], yes) :-node_insert(Ss1, Ss2, yes).node_insert([], [[]], yes).%% Insert the arc in the new specification.%insert([S|Ss], [S|Ts], Index, Arc) :-Index > 1,insert(Ss, Ts, Index-1, Arc).insert([S|Ss], [[Arc|S]|Ss], 1, Arc).analyze(Spec, Output) :-getinitial(Old),sigflow(Old, Spec, Output).sigflow(Old, Spec, Output) :-getsources(Sources),stepflow(Old, Sources, New, Spec, New),printnodes(New, Output),sigflow(New, Spec, Output).getsources(Ss) :-readsources(Ss).getsources(0, []).getinitial(Old) :-readinitial(Old).%% stepflow(Oldnodes, Sources, Newnodes, Spec, Newnodes_left_to_process)% 30

stepflow(Oldnodes, Sources, Newnodes, [S|Spec], [N|New]) :-stepflow(Oldnodes, Sources, Newnodes, Spec, New),calcnode(Oldnodes, Sources, Newnodes, S, N).stepflow(Oldnodes, Sources, Newnodes, [], []).% calcnode(Oldnodes, Sources, Newnodes, Arcs, Newnode)calcnode(Oldnodes, Sources, Newnodes, [Arc|Arcs], New) :-New = New1 + New2,calcarc(Oldnodes, Sources, Newnodes, Arc, New1),calcnode(Oldnodes, Sources, Newnodes, Arcs, New2).calcnode(Oldnodes, Sources, Newnodes, [], 0).%% calcarc(Oldnodes, Sources, Newnodes, Arc, New)%calcarc(Oldnodes, Sources, Newnodes, [coeff(C), Arc], New) :-New - C*Value = 0,find_index(Value, Newnodes, Arc).calcarc(Oldnodes, Sources, Newnodes, [delay, NIndex], New) :-New - Value = 0,find_index(Value, Oldnodes, NIndex).calcarc(Oldnodes, Sources, Newnodes, [source, Name], New) :-New - Value = 0,find_index(Value, Sources, Name).%% find_index(item, list of items, place in list)%find_index(V, [V|Vs], 1).find_index(VV, [V|Vs], N) :-N > 0,NN = N-1,find_index(VV, Vs, NN).% printnodes() - print out output signal% readsources(), readinital() - read data from files
31

