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2 G. Agha and others4.3 Partial Collapse 224.4 Equivalence of Con�gurations 245 Laws of Expression Equivalence 255.1 Functional Laws 255.2 Basic Laws for Actor Primitives 276 Proving Expression Equivalence 306.1 The General Method 326.2 Common Reduct Case 346.3 Equivalence by Two Stage Reduction 476.4 Equivalence of Reduction Contexts 507 Discussion 537.1 Future Directions 53References 548 Index of Notations (Not including x5) 571 IntroductionThe modern computing environment is becoming increasingly open and distributed.Research on semantics to support reasoning about components and con�guration inopen distributed systems is in its early stages. The main characteristics of an opendistributed system are that such systems allow the addition of new components,the replacement of existing components, and changes in interconnections betweencomponents, largely without disturbing the functioning of the system. Open dis-tributed systems require a discipline in which a component may not have any directcontrol over other components with which it is connected. Instead, the behavior ofa component is locally determined by its initial state and the history of its interac-tions with the environment. Moreover, interactions between components may occuronly through their interfaces. Thus, the internal state of a component must only beaccessible through operations provided by the interface.The actor model of computation has a built-in notion of local component andinterface, and thus it is a natural model to use as a basis for a theory of opendistributed computation. Speci�cally, we view actors as a model of coordinationbetween autonomous interacting components. The local computation carried outby the components may be speci�ed in any sequential language. However, we carryout the development of an actor semantics in a framework where local computa-tion is speci�ed using a functional language. We extend a functional programminglanguage with actor coordination primitives to model open distributed systems.Our semantic theory uses techniques �rst developed in a functional setting. Thetransition system operational semantics extends the reduction system semantics ofthe functional language. The notion of observational equivalence studied general-izes the now standard notion of operational equivalence for functional languages.The resulting equational theory embodies that of the computational lambda cal-culus and preserves many of the advantages provided by functional programmingfor reasoning about programs and program transformations. The actor language we



Actor Computation 3study provides an alternative approach to concurrent extensions of functional lan-guages that is object based rather than process based. Our components are reactiveinstead of active processes more common in other models of concurrency. Activeprocesses correspond to a thread of control that disappears when execution of thethread is complete; unlike reactive processes, activity in them is not initiated bythe receipt of a message. Note that receiving a message is analogous to a functionbeing invoked. 1.1 OverviewIn this paper we present a study of a particular actor language. Our actor languageis an extension of a simple call-by-value functional language (lambda calculus plusarithmetic primitives and structure constructors, recognizers, and destructors) byprimitives for creating and manipulating actors. Our approach is motivated by a de-sire to bridge the gap between theory and practice. The semantic theory we developis intended to be useful for justifying program transformations for real languages,and to formalize intuitive arguments and properties used by programmers.In our model we make explicit the notion of open system component throughthe notion of an actor con�guration. An actor con�guration is a collection of in-dividually named concurrently executing actors, a collection of messages in route,a set of receptionist names and a set of external actor names. Receptionists arethe externally visible actors of the con�guration, and names of external actors arereferences to actors outside the con�guration. The receptionist and external actornames explicitly de�ne the interface to the environment.A common criticism of the actor model of computation is that actors do notcompose. However actor con�gurations can be combined in a variety of ways toform new con�gurations. As a �rst step towards an algebra of operations on actorcon�gurations, we de�ne a composition operator on con�gurations. Composition isassociative, commutative, and has a unit. This allows large complex con�gurationsto be studied in parts and composed to form the full system. Unlike most notionsof modularity and composability, which are static, the notions we de�ne are funda-mentally dynamic ones that allow for the interface between components to evolveover time.Following the tradition of (Morris, 1968; Plotkin, 1975; Mason and Talcott, 1991;Felleisen and Hieb, 1992; Felleisen and Wright, 1991) we develop the semantics intwo stages. The �rst stage consists in giving an operational semantics for actorcon�gurations. In the second stage various notions of equivalence are investigated,both of expressions and of con�gurations. The operational semantics extends thatof the embedded functional language in such a way that the equational theory ofthe functional language is preserved. In particular the equational laws of the com-putational lambda calculus (Moggi, 1988) as well as the usual laws for pairing andarithmetic hold. This provides a basis for a rich set of equational reasoning prin-ciples. There are also numerous equational laws that relate to actor computations,for instance allowing two adjacent message send operations to be permuted.The operational semantics of actor con�gurations is de�ned by a transition re-



4 G. Agha and otherslation on con�gurations. An important aspect of the actor model is the fairnessrequirement: message delivery is guaranteed, and individual actor computationsare guaranteed to progress. We make the fairness requirement explicit in our se-mantics by requiring in�nite sequences of transitions on actor con�gurations to befair. Although fairness makes some aspects of reasoning more complicated, it sim-pli�es others. Certain classes of intuitively obvious equations fail to hold withoutthe fairness requirement. The assumption of fairness allows equational speci�cationof some liveness properties, and it is particularly important for modular reasoningabout liveness properties.Our equational theory is based on the notion of observational equivalence. Twoexpressions/con�gurations are said to be observationally equivalent if they giverise to the same observations, suitably de�ned, inside all observing contexts. Thisnotion is closely related to testing equivalence (de Nicola and Hennessy, 1984). Weprove that in the presence of fairness, the three standard notions of observationalequivalence collapse to two. Observational equivalence provides a semantic basis fordeveloping sound transformation rules for expressions.OutlineThe remainder of this paper is organized as follows. The rest of this section de-scribes previous work on Actors and related models of concurrent computation. x2gives the syntax and operational semantics of our actor language, and describesa composability result. In x3 we study the notion of observational equivalence foractor expressions. In x4 we state a variety of basic equational laws along with anintuitive explanation of how these laws are established. In x5 we develop methodsfor establishing expression equivalence, and use these methods to prove the laws ofx4. x6 summarizes the highlights of this paper, and discusses future work.1.2 Related WorkWe discuss related work in actors, process algebras and concurrent functional lan-guages. 1.2.1 Research on ActorsWe may brie
y summarize the principles underlying the actor model of compu-tation that we use as follows. Actors are self-contained, concurrently interactingentities of a computing system. They communicate via message passing which isasynchronous and fair. Actors can be dynamically created and the topology of actorsystems can change dynamically. The actor model is a primitive model of compu-tation which nonetheless easily expresses a wide range of computation paradigms.It directly supports encapsulation and sharing, and provides a natural extension ofboth functional programming and object style data abstraction to concurrent opensystems. (See (Agha, 1986a; Agha, 1990; Agha et al., 1993a) for more discussion ofthe actor model, and for many examples of programming with actors.



Actor Computation 5The actor model was originally proposed by Hewitt and the meaning of the termhas evolved over time in the work of Hewitt and associates. We brie
y describe thehistory of actor research, necessarily omitting some of the signi�cant work.In his early work on planner (Hewitt, 1971), Hewitt used the term actor todescribe active entities which, unlike functions, went around looking for patternsto match in order to trigger activity. This concept was later developed into thescienti�c community metaphor where sprites examined facts and added to them ina monotonically growing knowledge base (Kornfeld and Hewitt, 1981). In (Hewittet al., 1973), the notion of actors was close to that of an agent in DistributedArti�cial Intelligence: actors have intentions, resources, contain message monitorsand a scheduler. Irene Greif (Greif, 1975) developed an abstract model of actors interms of event diagrams which recorded local events at each actor and the causalrelations between events.Baker and Hewitt (Baker and Hewitt, 1977) then formalized a set of axioms forconcurrent computation which stated properties that events in actor systems mustobey in order to prevent causality violations. The work in (Hewitt, 1977) containsthe insight that the usual control structures could be represented as patterns ofmessage passing between simple actors which had a conditional construct but nolocal state. It provided a basis for the continuation passing style of programmingas found in Scheme (Abelson and Sussman, 1985).In (Hewitt and Atkinson, 1979), the concept of serializer is described: a serial-izer localizes conditions for resumption of waiting processes and thus improves onmonitors which require explicit signaling of dormant processes. A related notion,namely, that of guardians, was de�ned in (Attardi and Hewitt, 1978). A guardianregulates the use of shared resources, scheduling their access and providing protec-tion and \recovery" boundaries. Guardians thus explicitly incorporated the notionof state. Lieberman implemented an actor language, Act1, incorporating guardians,serializers, and `rock bottom' actors which is best described in (Lieberman, 1987).Will Clinger (Clinger, 1981) developed a semantics of actor systems, showing theconsistency of axioms proposed in (Baker and Hewitt, 1977). A key accomplishmentof Clinger's work was to show that a powerdomain semantics could be developed de-spite the fact that the underlying domain was incomplete due to fairness. The workdid not develop a theory of actor systems { speci�cally, no notion of equivalence ofactor systems was de�ned.The model of actors we use is most closely resembles (Agha, 1986a) which de�neda simple transition system for actors, and developed a notion of con�gurations,receptionists and external actors. The model was implemented by Carl Manningat MIT in the Acore programming language (Manning, 1987) and by Tomlinsonand others at the Microelectronics and Computer Technology Consortium in theRosette programming language (Tomlinson et al., 1989; Tomlinson et al., 1993).It has also provided a basis for dozens of other projects (Agha et al., 1989; Aghaet al., 1991; Agha et al., 1993b). Some of the more recent research on actors hasfocused on coordination structures and meta-architectures (Agha et al., 1993a).



6 G. Agha and others1.2.2 Other Related ResearchWe consider two areas of related work: process algebras and concurrent functionallanguages. In all of the work considered here the underlying model uses synchronouscommunication as primitive instead of asynchronous communication. Synchronouscommunication can be simulated with asynchronous primitives(Amadio, 1994) andvice-versa, and forms of both are required in a realistic programming language.Also in models considered, although processes may be dynmaically created, theyare not �rst class entities that can be directly manipulated. Channels are �rst classentities that can be dynamically created, communicated as values, and used forcommunication. One process can communicate with another only if they happen toshare a communication channel. In general any number of di�erent processes cansend or receive on a given channel, thus processes can interfere with one another. Inactor and other object based models, actors/objects are �rst class, history sensitive,entities whose identity can be communicated and used for communication with theidenti�ed object. The communication medium is not explicitly represented. Again,to some degree each choice of primitives can simulate the other. Further work isneeded to clarify precisely the relative expressive powers of the two approaches.A more important general distinction is that of these models only (Reppy, 1992)incorporates fairness. Without fairness, speci�cations fail to compose | a processmay behave correctly in isolation, but may fail to do so in the presence of otherprocesses (even if it is not interacting with them).Much of the work on process algebras is based on Milner's Calculus of Con-current Systems (CCS) (Milner, 1983), Hoare's CSP (Hoare, 1985), and Milner's�-calculus (Milner et al., 1989). The work on process algebras and the �-calculushas focused on understanding elementary communications between processes, ab-stracting away other programming language issues. The CSP model assumes a �xedinterconnection topology of processes, supports only static storage allocation, anddisallows recursive procedures. The �-calculus is to concurrent programming asthe pure �-calculus is to functional programming in the sense that it provides abare minimum of primitive notions: functions and function application in the caseof the �-calculus; and channels and communication in the case of the �-calculus.A variety of equivalence relations have been de�ned and studied. These includebisimulation (Milner, 1983; Milner, 1989) which de�nes a back-and-forth simula-tion relation between two processes, and trace-based equivalence (Brookes et al.,1984). Various logics have been developed for process algebras, including (Hoare,1985; Milner, 1989; Bergstra and Klop, 1986).Facile (Giacalone et al., 1989; Prasad et al., 1990; Thomsen et al., 1992) is per-haps the �rst language design based on the principle of combining a functionallanguage with concurrency primitives. It di�ers from our approach in using thetyped lambda calculus as the functional component and using concurrency prim-itives based on CSP and CCS. The underlying model of concurrency is one ofprocesses communicating by synchronized message passing over typed channels.Any value of appropriate type, included higher-order values can be communicatedover a channel. In (Giacalone et al., 1989) an operational semantics for Facile is



Actor Computation 7given using a labelled transistion system, and an abstract model of implementa-tion is de�ned. In (Prasad et al., 1990) an algebraic semantics for Facile is givenbased on the operational semantics. The central notion here is bisimlation relations.Bisimulations are indexed by sets of channels called windows. This explicitly ac-counts for the interface of a system to its environment in much the same way asreceptionists do for actor systems. Basic process algebra equations are establishedusing bisimulations as well as the beta-value rule. The authors point out that estab-lishing expression equivalence using bisimulations is much more complicated thanestablishing process algebra equations.An early version of actor semantics presented in this paper appeared in (Aghaet al., 1992). There we de�ned a notion of operational bisimulation that incorpo-rated fairness. Operational bisimulations were intended to serve as tools for estab-lishing observational equivalence, not as equivalence relations per se. We also foundthat operational bisimulations were not an e�ective tool for establishing expres-sion equivalence, since it was di�cult to �nd suitable bisimulations. This led us todevelop the alternative methods presented in this paper.Recently there have been two e�orts (Reppy, 1991; Berry et al., 1992) to combinethe work on ML with the work on process algebras to obtain a concurrent versionof ML. The underlying concurrency model here is the same at that of Facile. InCML (Reppy, 1991) the channel interference problem can be avoided with theuse of ML data abstraction mechanisms. A structured operational semantics andtype inference system for a small kernel language contained in CML is describedin (Reppy, 1991) and a type safety theorem is proved. In addition an implementationof CML is described. Basic properties of the operational semantics of similar kernellanguage are presented in (Berry et al., 1992). At this point, litte has been donetowards developing an equational theory concurrent extensions of ML.2 Actor Language ConstructsOur actor language is an extension of a simple functional language which providesprimitives for coordinating components which carry out local computation. Anindividual actor represents the smallest unit of coordination in the model. Ourlanguage provides a mechanism for specifying the creation and manipulation ofactors. An actor's behavior is described by a lambda abstraction which embodiesthe code to be executed when a message is received. The actor primitives are: send;become; newadr; and initbeh.send is for sending messages; send(a; v) creates a new message with receiver a andcontents v and puts the message into the message delivery system.become is for changing behavior; become(b) creates an anonymous actor to carryout the rest of the current computation, alters the behavior of the actor executingthe become to be b, and frees that actor to accept another message. This providesadditional parallelism. The anonymous actor may send messages or create new



8 G. Agha and othersactors in the process of completing its computation, but will never receive anymessages as its address can never be known.Note that in open distributed systems, the order of arrival of messages fromdi�erent external sources is nondeterministic. The become primitive is necessaryto provide the history-sensitive behavior necessary to model asynchronous accessto shared resources in such systems. A canonical example of the use of become isin modelling a shared bank account accessible by a two or more automatic tellermachines. On the other hand, observe that the current behavior of an actor alwaysremains a deterministic function of the sequence of messages that the actor hasthus far received.newadr and initbeh are for actor creation. newadr() creates a new (uninitialized)actor and returns its address. initbeh(a; b) initializes the behavior of a newly cre-ated actor with address a to be b. An uninitialized actor can only be initializedby the actor which created it. Without this restriction composability of actor con-�gurations is problematic, as it would permit an external actor to initialize aninternally created actor. The allocation of a new address and initialization of theactor's behavior have been separated in order to allow an actor to learn its ownaddress upon initialization. An alternative would be to have a letactor constructsimilar to the Scheme letrec construct.2.1 Trivial ExamplesA simple actor behavior b that expects its message to be an actor address, sendsthe message 5 to that address, and becomes the same behavior, may be expressedas follows.b = rec(�y:�x:seq(send(x; 5); become(y)))where seq is syntactic sugar for expressing sequential composition, and rec is ade�nable (in the pure � fragment) call-by-value �xed-point combinator (cf. (Masonand Talcott, 1991)). An equivalent expression of this behavior is:b = rec(�y:�x:seq(become(y); send(x; 5)))since the order of executing the become and the send cannot be observed. Anexpression that would create an actor with behavior b and send it another actoraddress a ise = letfz := newadr()gseq(initbeh(z; b); send(z; a)):The behavior of a sink, an actor that ignores its messages and becomes this samebehavior, is de�ned bysink = rec(�b:�m:become(b)):



Actor Computation 92.2 Actor CellsIt is easy to represent objects with local state in our language. As an example ofthis we describe an actor akin to an ML reference cell. The actor responds to twosorts of messages. The �rst sort of message is a getmessage, recognized by the get?operation. A get message contains the address (customer) to which the response(i.e the current contents of the cell) should be sent. This address is accessed viathe cust operation. A mkget(a) constructs a get message with customer a. Thesecond message is a set message, recognized by the set? operation. A set messageshould contain the desired new contents of the cell-actor. This value is accessed viathe contents operation. A mkset(c) constructs a set message with new contentsc. Using these operations, the behavior of a cell is given by:Bcell = rec(�b:�c:�m:if(get?(m);seq(become(b(c)); send(cust(m); c))if(set?(m);become(b(contents(m)));become(b(c)))))Evaluatingletfa := newadr()gseq(initbeh(a; Bcell(0)); e) wheree = seq(send(a; mkset(3)); send(a; mkset(4)); send(a; mkget(a)))will result in the actor a receiving a message containing either 0, 3 or 4, dependingon the arrival order. A cell is one of the simplest kinds of history sensitive ob-ject. The become primitive is the key to expressing history sensitivity by allowingnew behaviors to be installed in response to messages. Accumulators, counters andgensym actors are easily constructed in a similar manner.2.3 Join ContinuationsSimple forms of recursion are often amenable to concurrent execution. A typicalexample is tree recursion. Consider the problem of determining the product ofthe leaves of a tree (whose leaves are numbers). The problem can be recursivelysubdivided into the problem of computing the result for the two subtrees, andmultiplying the results. The product is then returned.treeprod = rec(�f:�tree:if(isnat(tree);tree;f(left(tree)) � f(right(tree))))In the above code, a tree is passed to treeprod which tests to see if the tree is anumber (i.e. a leaf). If so it returns the tree, otherwise it subdivides the probleminto two recursive calls. left and right are functions which pick o� the left and



10 G. Agha and othersright branches of the tree. It is clear that the arguments to � may be evaluatedconcurrently. It is also clear that if a zero is encountered then the computation canterminate. In this example we only deal with the former optimization. The latteroptimization, made using continuations, is treated in detail in (Talcott, 1993b;Talcott, 1985; Agha, 1990)Such concurrency can be implemented by using a join continuation which syn-chronizes the evaluation of the di�erent arguments. For example, the treeprodprogram given above can be expressed in terms of actor primitives as:Btreeprod =rec(�b:�self :�m:seq(become(b(self ));if(isnat(tree(m));send(cust(m); tree(m));letfnewcust := newadr()gseq(initbeh(newcust ; Bjoincont(cust(m); 0; nil));send(self ; <left(tree(m)); newcust>);send(self ; <right(tree(m)); newcust>)))))Bjoincont = rec(�b:�cust :�nargs:��rstnum:�numif(eq(nargs ; 0);become(b(cust ; 1; num));seq(become(sink);send(cust ; �rstnum � num))))When an tree product actor (with behavior Btreeprod) receives a tree of numbersthat is not a leaf it creates a customer, called a join continuation, and sends twomessages to itself to evaluate the two halfs of the tree. These messages have thejoin continuation as customer. The join continuation (with behavior Bjoincont)expects to receive two numbers representing the computation of the products ofeach of the two subtrees. When both numbers have arrived, the join continuationmultiplies them and sends the result to its customer. Figure 1 shows some stagesin the computation of of a tree production. The join continuations customer canbe the original requester (root of the tree), or the join continuation of a higherbranch point. Because multiplication is commutative, we need not be concernedabout matching the responses to the order of the parameters. If we were dealingwith an operator which was not commutative, we would need to tag the messagecorresponding to each argument and this tag would be returned with the responsefrom the corresponding subcomputation. The replacement behavior of the join con-tinuation would then depend on the order in which the evaluation of argumentswas completed.An advantage of explicit join continuations is that they provide considerable
exibility { they can be used to control the evaluation order, to do partial com-putations, and to do handle special cases or errors. For example, if the number 0
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Fig. 1. The leaves of tree, contain numbers to be multiplied and Cust is the actor towhich the product is to be sent. (b) the tree is subdivided and two asynchronousmessages are sent to compute the product on the two halves (concurrently). JCrepresents a newly created actor to which the two results should be sent. Each subtreewill be recursively subdivided and new join-continuations will be successively created. (c)When the product of one of the subtrees has been computed, the value is sent to JC. (d)JC does a become to store the �rst number it receives. (e) The second product sends avalue to JC. (f) JC multiplies the second number it receives with the number it hadstored earlier and sends the result to Cust.



12 G. Agha and othersis encountered, the join continuation can immediately return a 0 { in some caseswithout waiting for the results of evaluating the other subtree.The above program may not be optimal in other respects. For example sendsmay be quite expensive. Consequently it may be prudent to check that the sub-computation is worth dispatching. This observation together with the fact, provedin x4, that sends of values commute leads to the possibly faster version:Btreeproduct =rec(�b:�self :�m:seq(become(b);if(isnat(tree(m));send(cust(m); tree(m));letfnewcust := newadr()gseq(initbeh(newcust ; Bjoincont(cust(m); 0; nil))letfl := left(tree(m)); r := right(tree(m))gif(or(isnat(l); isnat(r));send(cust(m); treeprod(l) � treeprod(r));seq(send(self ; <l; newcust>)send(self ; <r; newcust>)))))))2.4 Notation.We use the usual notation for set membership and function application. Let Y; Y0; Y1be sets. We specify meta-variable conventions in the form: let y range over Y , whichshould be read as: the meta-variable y and decorated variants such as y0, y0, : : : ,range over the set Y . Y n is the set of sequences of elements of Y of length n. Y � isthe set of �nite sequences of elements of Y . �y = [y1; : : : ; yn] is the sequence of lengthLen(�y) = n with ith element yi. (Thus [ ] is the empty sequence.) u � v denotes theconcatenation of the sequences u and v. If u is a non-empty sequence, then Last(u)is the last element of u. P![Y ] is the set of �nite subsets of Y . M! [Y ] is the set of(�nite) multi-sets with elements in Y . Y0 f! Y1 is the set of �nite maps from Y0 toY1. [Y0 ! Y1] is the set of total functions, f , with domain Y0 and range containedin Y1. We write Dom(f) for the domain of a function and Rng(f) for its range. Forany function f : ffy := y0g is the function f 0 such that Dom(f 0) = Dom(f) [ fyg,f 0(y) = y0, and f 0(z) = f(z) for z 6= y; z 2 Dom(f); and fcY is the restriction of fto the set Y . 3 A Simple Lambda-Based Actor LanguageIn this section we give the syntax and operational semantics of our actor language.



Actor Computation 133.1 SyntaxWe take as given countable sets X (variables), A t (atoms), and for each n 2 Na (possibly empty) set of n-ary operations, Gn on A t. Fn is the set of primitiveoperations of arity n, which includes Gn , and F = Sn2NFn. We assume A t con-tains t; nil for booleans, as well as constants for natural numbers, N. F containsarithmetic operations, recognizers isatom for atoms, and isnat for numbers (ari-ties 1, 1), branching br (arity 3), pairing ispr; pr; 1st; 2nd (arities 1, 2, 1, 1), andactor primitives newadr, initbeh, send, and become (arities 0, 2, 2, 1). The setsof expressions, E, value expressions (or just values), V, and contexts (expressionswith holes), C , are de�ned inductively as follows.De�nition (E V C ):V= A t [X[ �X:E [ pr(V;V)E = A t [X[ �X:E [ app(E; E) [ Fn(En )C = A t [X[ �X:C [ app(C ; C ) [ Fn(Cn ) [ f�gWe let x; y; z range over X, v range over V, e range over E, and C range over C .Since we are working with a syntactic reduction semantics, there is no distinctionbetween a value expression and the value it denotes. Hence we use the terms valueand value expression interchangeably. �x:e binds the variable x in the expressione. Two expressions are considered equal if they are the same up to renaming ofbound variables. We say that a variable is fresh with respect to a context of use ifit does not occur free or bound in any syntactic entity. We write FV(e) for the setof free variables of e. We write e[x := e0] to denote the expression obtained from eby replacing all free occurrences of x by e0, avoiding the capture of free variables ine0. Contexts are expressions with holes. We use � to denote a hole. C[e] denotes theresult of replacing any holes in C by e. Free variables of e may become bound inthis process. let, if, and seq are the usual syntactic sugar, seq being a sequencingprimitive.letfx := e0ge1 abbreviates app(�x:e1; e0)seq(e0; e1) abbreviates app(app(�z:�x:x; e0); e1)if(e0; e1; e2) abbreviates app(br(e0; �z:e1; �z:e2); nil) for z fresh3.2 Reduction Semantics for Actor Con�gurationsThe operational semantics for actor systems is given by a transition relation oncon�gurations. A con�guration can be thought of as representing a global snapshotof an actor system with respect to some idealized observer (Agha, 1986b). It containsa collection of actors, messages, external actor names, and receptionist names. Thesets of receptionists and external actors are the interface of an actor con�gurationto its environment. They specify what actors are visible and what actor connectionsmust be provided for the con�guration to function. Both the set of receptionistsand the set of external actors may grow as the con�guration evolves.



14 G. Agha and othersThe state of the actors in a con�guration is given by an actor map. An actor mapis a �nite map from actor addresses to actor states. Each actor state is one of(?a) uninitialized, having been newly created by an actor named a;(b) ready to accept a message, where b is its behavior, a lambda abstraction; or[e] busy executing e, here e represents the actor's current (local) processing state.A message m contains the address of the actor to whom it is sent and the messagecontents, <a ( v>. The contents v can be any value constructed from atoms andactor addresses using the pairing constructor. Lambda abstractions and structurescontaining lambda abstractions are not allowed to be communicated in messages.There are two reasons for this restriction. Firstly, allowing lambda abstractionsto be communicated in values violates the actor principle that only an actor canchange its own behavior, because a become in a lambda message may change thereceiving actor behavior. Secondly, if lambda abstractions are communicated toexternal actors, there is no reasonable way to control what actor addresses are ac-tually exported. This has unpleasant consequences in reasoning about equivalence,amongst other things. This restriction is not a serious limitation since the addressof an actor whose behavior is the desired lambda abstraction can be passed in amessage.The transition relation determines the set of possible future con�gurations. Weclassify actor con�guration transitions as internal or external to the con�guration.The internal transitions are:rcv: receipt of a message by an actor not currently busy computing; andexec: an actor executing a step of its current computation.The internal transitions involve a single active actor, which we call the focusactor for the transition. exec transitions may be purely local (a �-transition), ormessages may be sent, or a new actor may be created, or a newly created actormay be initialized. rcv transitions consume a message, putting the focus actor ina busy state.In addition to the internal transitions of a con�guration, there are i=o transitionsthat correspond to interactions with external agents:in: arrival of a message to a receptionist from the outside; andout: passing a message out to an external actor.To capture actor semantics, we require that computations be fair.3.2.1 Actor Con�gurationsWe assume that we are given a countable set A d of actor addresses. To simplifynotation, we identify A d with Xand call variables used in this way actor names.This pun is useful for two reasons: it allows us to use expressions to describe actorstates and message contents; and it allows us to avoid problems of choice of namesfor newly created actors by appealing to an extended form of alpha conversion.(See (Mason and Talcott, 1991; Felleisen and Hieb, 1992) for use of this pun torepresent reference cells.)De�nition (cV A s M): The set of communicable values, cV, the set of actor



Actor Computation 15states, A s, and the set of messages, M , are de�ned as follows.cV= A t [X[ pr(cV; cV) A s = (?X) [ (V)[ [E] M = <V(V>We let cv range over cV and m range over M . Note that actor behaviors are notsyntactically restricted to be lambda abstractions, nor are messages are syntacti-cally restricted to be of the form <A d ( cV>. The reduction system will prevent useof any ill-formed behavior or message. This is in keeping with the untyped natureof our language.De�nition (Actor Con�gurations (K)): An actor con�guration with actormap, �, multi-set of messages, �, receptionists, �, and external actors, �, is writtenDD� �EE��where �; � 2 P![X], � 2 X f! A s, and � 2 M![M ]. Further, it is required that,letting A = Dom(�), the following constraints are satis�ed:(0) � � A and A \ � = ;,(1) if �(a) = (?a 0), then a 0 2 A,(2) if a 2 A, then FV(�(a)) � A [ �, and if <v0 ( v1> 2 �, then FV(vi) � A [ �for i < 2.We let K denote the set of actor con�gurations and let � range over K. The recep-tionists � are names of actors within the con�guration that are externally visible;all other actors in the (actor) con�guration are local and thus inaccessible fromthe outside. The external actors � are names of actors that are outside this con-�guration but to which messages may be directed. A con�guration in which boththe receptionist and external actor sets are empty is said to be closed. For closedcon�gurations we may omit explicit mention of the empty � and � sets. The actormap portion of a con�guration is presented as a list of actor states each subscriptedby the actor address which is mapped to this state. If �0(a) = (b), and � is �0 witha omitted from its domain, we write �0 as (�; (b)a ) to focus attention on a. Wefollow a similar convention for other states subscripted with addresses.The set of possible computations of an actor con�guration is de�ned in terms ofthe labelled transition relation 7! on con�gurations. Although this is, on the surfacean interleaving semantics, it is easy to modify our transition system to obtaina truly concurrent semantics either by forming a labelled transition system withindependence (Sassone et al., 1993), or by using concurrent rewriting (Meseguer,1992). 3.2.2 Decomposition and ReductionTo describe the internal transitions other than message receipt, a non-value expres-sion is decomposed uniquely into a reduction context �lled with a redex. Reduc-tion contexts identify the subexpression of an expression that is to be evaluatednext, they correspond to the standard reduction strategy (left-�rst, call-by-value)of (Plotkin, 1975) and were �rst introduced in (Felleisen and Friedman, 1986). Forfurther discussion of this method of de�ning reduction relations see (Honsell et al.,



16 G. Agha and others1994). In order to distinguish holes used for di�erent purposes, we use the sign forthe hole occurring in a reduction context, and call such holes redex holes (althoughthey may in fact be �lled with non-redex expressions).De�nition (Erdx R): The set of redexes, Erdx , and the set of reduction con-texts, R, are de�ned byErdx = app(V;V)[ (Fn(Vn)� pr(V;V))R= f g [ app(R;E) [ app(V;R)[ Fn+m+1(Vn;R; Em)We let R range over R.An expression e is either a value or it can be decomposed uniquely into a reductioncontext �lled with a redex. Thus, local actor computation is deterministic.Lemma (Unique decomposition):(0) e 2V; or(1) (9!R; r)(e = R[r ])Proof : An easy induction on the structure of e.Redexes can be split into two classes, purely functional and actor redexes. The ac-tor redexes are: newadr(), initbeh(v0; v1), become(v), and send(v0; v1). Reductionrules for the purely functional case are given by a relation �7! on expressions.De�nition ( �7!):(beta-v) R[app(�x:e; v)] �7! R[e[x := v ]](delta) R[�(v1; : : : ; vn)] �7! R[v 0]where � 2 Gn , v1; : : : ; vn 2 A tn , and �(v1; : : : ; vn) = v 0.(br) R[br(v ; v1; v2)] �7! �R[v1] if v 2V� fnilgR[v2] if v = nil(ispr) R[ispr(v)] �7! �R[t] if v 2 pr(V;V)R[nil] if v 2V� pr(V;V)(fst) R[1st(pr(v0; v1))] �7! R[v0](snd) R[2nd(pr(v0; v1))] �7! R[v1](eq) R[eq(v0; v1)] �7! �R[t] if v0 = v1 2 A tR[nil] if v0; v1 2 A t and v0 6= v1The rules for isatom and isnat are analogous to that for ispr. The single-steptransition relation 7! on actor con�gurations is generated by the following rules.Each rule is given a label l consisting of a tag indicating the primitive instruction,and additional parameters. In all cases other than i=o transitions (with tags in; out)the �rst parameter names the focus actor of the transition.De�nition (7!):<fun : a>



Actor Computation 17e �7! e0 ) DD�; [e]a �EE�� 7! DD�; [e0]a �EE��<new : a; a 0>DD�; [R[newadr()]]a �EE�� 7! DD�; [R[a 0]]a ; (?a)a 0 �EE�� a0 fresh<init : a; a 0>DD�; [R[initbeh(a 0; v)]]a ; (?a)a 0 �EE�� 7! DD�; [R[nil]]a ; (v)a 0 �EE��<bec : a; a 0>DD�; [R[become(v)]]a �EE�� 7! DD�; [R[nil]]a 0; (v)a �EE�� a0 fresh<send : a;m>DD�; [R[send(v0; v1)]]a �EE�� 7! DD�; [R[nil]]a �;m EE��m = <v0 ( v1><rcv : a; cv>DD�; (v)a <a ( cv>; �EE�� 7! DD�; [app(v ; cv )]a �EE��<out : m>DD� �;m EE�� 7! DD� �EE�0�if m = <a ( cv>, a 2 �, and �0 = � [ (FV(cv ) \Dom(�))<in : m>DD� �EE�� 7! DD� �;m EE��[(FV(cv)�Dom(�))if m = <a ( cv>, a 2 � and FV(cv ) \Dom(�) � �In the rules for newadr and become, a 0 fresh abbreviates a 0 62 Dom(�) [ fag [ �.We write �0 l�! �1 if �0 7! �1 according to the rule labelled by l . We call thistriple a labelled transition. We say l is enabled in con�guration � if there is some�0 such that � l�! �0. The transitions are labelled to allow us to reason aboutsequences of transitions in terms of the rules applied, and to allow for alternativerepresentation of computations, including: sequences of con�gurations; sequencesof labelled transitions; and sequences of labels. Note that we have chosen the labelsto include su�cient information that �0 is uniquely determined by � and l .i=o transitions are transitions with tags in or out; rcv transitions are transitionswith tag rcv. The remaining transitions are called exec transitions. The exectransitions correspond to the execution of functional or actor redexes.As mentioned above, we allow ill-formed messages to be created, but such mes-sages can never be delivered. The last three rules assure this by restricting the formof the message: the target must be an actor and the contents must be a communi-cable value. In the case of input, the actor is further restricted to be a receptionist.



18 G. Agha and othersWe could easily prevent the formation of ill-formed messages and actor states if sodesired.A clone produced to carry on after a become is not allowed to initialize an actorcreated by its cloner. This is a technical simpli�cation. With some additional book-keeping we could keep track of cloners and allow clones to initialize. Alternatively,this technical detail would disappear if we used the letactor construct for actorcreation.These choices a�ect the details of expression equivalence, but not the basic prop-erties. Such choices will become more important if we want to model an implementedlanguage and consider matters such as signaling of exceptions.3.2.3 Computation Sequences and PathsDe�nition (Computation trees): If � is a con�guration, then we de�ne thecomputation tree for �, T (�), to be the set of all �nite sequences of labelled tran-sitions of the form [�i li�! �i+1 i < n] for some n 2 N. We call such sequencescomputation sequences and let � range over them.Lemma (Anonymity): If � <bec : a; a 0>�! �0 and � is any computation sequencein the computation tree, T (�), then � contains no transitions with label of the form<send : a 0; v>.De�nition (Computation paths): The sequences of a computation tree arepartially ordered by the intial segment relation. A computation path from � is amaximal linearly ordered set of computation sequences in the computation tree,T (�). Note that a path can also be regarded as a (possibly in�nite) sequence oflabelled transitions. We use T 1(�) to denote the set of all paths from �, and let �range over computation paths. When thinking a path as a possibly in�nite sequencewe write [�i li�! �i+1 i < ./] where ./ 2 N[ f!g is the length of the sequence.Since the result of a transition is uniquely determined by the starting con�gu-ration and the transition label, computation sequences and paths can be equallyrepresented by their initial con�guration and the sequence of transitions labels. Thesequence of con�gurations can be computed by induction on the index of occur-rence.De�nition (C�g): Let � be a con�guration and let L = [li i < ./] be asequence of labels corresponding to a computation from �. The ith con�guration ofthe computation from � determined by L, C�g(�; L; i), is de�ned by induction oni as follows.(0) C�g(�; L; 0) = �(1) C�g(�; L � [li]; i+ 1) = �0 where C�g(�; L; i) li�! �0.Thus, the path � determined by �; L is the sequence[C�g(�; L; i) li�! C�g(�; L; i+ 1) i < ./]This notation has the advantage that when an initial starting con�guration is �xed,either implicitly or explicitly, computation sequences in the computation tree can be



Actor Computation 19identi�ed with sequences of labels. When the sequence L is �nite we let C�g(�; L)denote the �nal con�guration: C�g(�; L) = C�g(�; L;Len(L)).De�nition (multi-step transition): Let L = [lj j < n] be a �nite sequenceof transition labels (possibly empty). L is a multi-step transition � L�! �0 just ifC�g(�; L) = C�g(�; L;Len(L)) = �0. Or in other words, we can �nd a [�j j � n]such that � = �0, �0 = �n, and [�j lj�! �j+1 j < n].3.2.4 FairnessWe do not consider all paths admissible. We rule out those computations that areunfair, i.e. those in which there is some transition that should eventually happenand does not.De�nition (Fair paths): A path � = [�i li�! �i+1 i < ./] in the computationtree T 1(�) is fair if each enabled transition eventually happens or becomes perma-nently disabled. That is, if l is enabled in �i and is not of the form <in : m>, then�j l�! �j+1 for some j � i, or l has the form <rcv : a; cv> and for some j � i a isbusy and never again becomes ready to accept a message. For a con�guration � wede�ne F(�) to be the subset of T 1(�) that are fair.Note that �nite computation paths are fair, since by maximality all of the enabledtransitions must have happened.3.3 Composition of Actor Con�gurationsActor con�gurations can be composed to form new actor con�gurations. This com-position operation is commutative, associative, and has the empty con�guration asunit. This is made precise by the following de�nitions and lemmas.De�nition (Composable): Two con�gurations �i = DD�i �i EE�i�i , i < 2 arecomposable if Dom(�0)\Dom(�1) = ;, �0\Dom(�1) � �1, and �1\Dom(�0) � �0.De�nition (Composition, decomposition): The composition �0 k �1 of com-posable con�gurations �i = DD�i �i EE�i�i , i < 2 is de�ned by�0 k �1 = DD�0 [ �1 �0 [ �1 EE�0[�1(�0[�1)�(�0[�1)(�0; �1) is a decomposition of � if �i, i < 2 are composable con�gurations, and� = �0 k �1.Lemma (AC): Let �i = DD�i �i EE�i�i , i < 3 be pairwise composable con�gura-tions. And let �; = DD ; ;EE be the empty con�guration. Then�0 k �1 = �1 k �0�0 k �; = �0(�0 k �1) k �2 = �0 k (�1 k �2)Proof : Using the AC properties of set union, the only thing to check is the



20 G. Agha and othersequality of external actors for the two associations. It is easy to see that(((�0 [ �1)� (�0 [ �1)) [ �2) � (�0 [ �1 [ �2)= (�0 [ �1 [ �2) � (�0 [ �1 [ �2)= (�0 [ ((�1 [ �2) � (�1 [ �2)))� (�0 [ �1 [ �2)Furthermore, it is possible to de�ne composition operations on treesT (�0) k T (�1) and F(�0) k F(�1)such that(1) The computation tree of the composition of actor con�gurations is the com-position of the computation trees of the components.T (�0 k �1) = T (�0) k T (�1)(2) The set of fair computation paths of the composition of actor con�gurationsis the composition of the fair computation paths of the components.F(�0 k �1) = F(�0) k F(�1)4 Equivalence of ExpressionsIn this section we study equivalence of expressions of our actor language. Ournotion of equivalence is a combination of the now classic operational equivalenceof (Plotkin, 1975) and testing equivalence of (de Nicola and Hennessy, 1984). Forthe deterministic functional languages of the sort Plotkin studied, this equivalence isde�ned as follows. Two program expressions are said to be equivalent if they behavethe same when placed in any observing context. An observing context is somecomplete program with a hole, such that all of the free variables in the expressionsbeing observed are captured when the expressions are placed in the hole. The notionof \behave the same" is (for deterministic functional languages) typically equi-termination, i.e. either both converge or both diverge.4.1 EventsThe �rst step is to �nd proper notions of \observing context" and \behave thesame" in an actor setting. The analogue of an observing context is an observingactor con�guration: a con�guration that contains an actor state with a hole. Sincetermination is not relevant for actor con�gurations, we instead introduce an ob-server primitive, event and observe whether or not in a given computation, eventis executed. Our approach is identical in spirit to that used in de�ning testingequivalence for CCS (de Nicola and Hennessy, 1984).De�nition (event): Formally, the language of observing contexts is obtained



Actor Computation 21by introducing a new 0-ary primitive operator, event. We extend the reductionrelation 7! by adding the following rule.<e : a> DD�; [R[event()]]a �EE�� 7! DD�; [R[nil]]a �EE��De�nition (O): For an expression e, the observing con�gurations are con�gu-rations over the extended language of the form DD�; [C]a �EE, such that �llingthe hole in C with e results in a closed con�guration. We use O to denote the setof observing con�gurations, and let O range over O.In our de�nition of observing con�guration, the holes appear in the current stateof an single executing actor. It is not hard to see that allowing holes in any actorstate does not change the resulting notion of equivalence. A generalization of thisfact, (ocx) is proved in x5.Since the language is nondeterministic, three di�erent outcomes are possible inplace of the two in the deterministic case: either event occurs for all possibleexecutions, it occurs in some executions but not others, or it never occurs. Weobserve event transitions in the fair paths. We say that a path succeeds, s, if anevent transition occurs in it. This is the basic unit of observation; on top of thisderived notions can be de�ned. We say a computation is observed to fail, f , if it isnot observed to succeed. obs(�) is s if � succeeds, and f otherwise, and Obs(�) isthe set of observations possible for all paths of a closed actor con�guration.De�nition (observations): Let � be a con�guration of the extended language,and let � = [�i li�! �i+1 i < ./] be a fair path, i.e. � 2 F(�). De�neobs(�) = � s if (9i < ./; a)(li = <e : a>)f otherwiseObs(�) = 8<: s if (8� 2 F(�))(obs (�) = s)sf if (9� 2 F(�))(obs (�) = s) and (9� 2 F(�))(obs(�) = f )f if (8� 2 F(�))(obs (�) = f )4.2 Three EquivalencesThe natural notion of observational equivalence is that equal observations are madein all closing con�guration contexts. However, it is possible in some cases to use aweaker equivalence. An sf observation may be considered as good as an s observa-tion, and a new equivalence arises if these observations are equated. Similarly, ansf observation may be as bad as an f observation. We de�ne the following threeequivalences.De�nition (�=1;2;3):(1) (testing or convex or Plotkin or Egli-Milner)e0 �=1 e1 i� Obs(O [e0]) = Obs(O [e1]) for all observing contexts O 2 O(2) (must or upper or Smyth)e0 �=2 e1 i� Obs(O [e0]) = s , Obs(O [e1]) = s for all observing contextsO 2 O(3) (may or lower or Hoare)



22 G. Agha and otherse0 �=3 e1 i� Obs(O [e0]) = f , Obs(O [e1]) = f for all observing contextsO 2 OBy construction each of these equivalence relations is a congruence.Theorem (congruence):e0 �=j e1 ) C[e0] �=j C[e1] for j 2 f1; 2; 3g4.3 Partial CollapseNote that may-equivalence (�=3) is determined by computation trees (that is byquanti�cation over �nite sequences rather than paths), since all events are ob-served after some �nite amount of time. Consequently this relation is independentof whether or not fairness is required. Since fairness sometimes makes proving equiv-alences more di�cult, it is useful that may-equivalence can always be proved ignor-ing the fairness assumption. The other two equivalences are sensitive to choice ofpaths admitted as computations. In particular when fairness is required, as in ourmodel, �=2 is in fact the same as �=1. In models without the fairness requirement,they are distinct. In either case, �=3 is distinct from �=1 and �=2.Theorem (partial collapse):(1 = 2) e0 �=2 e1 i� e0 �=1 e1(1 ) 3) e0 �=1 e1 implies e0 �=3 e1(3 6) 1) e0 �=3 e1 does not imply e0 �=1 e1To demonstrate (1 = 2) we consider a �xed pair of expressions e0; e1 and cat-egorize their closing con�guration contexts O according to what observations aremade by O [e0] and O [e1]. We say O is labelled o : o0 for o; o0 2 fs; sf; fg just ifObs(O [e0]) = o and Obs(O [e1]) = o0. This partitions the observing con�gurationcontexts of e0 and e1 into nine sets labeled o : o0 for o; o0 2 fs; sf; fg.Lemma (sets) characterizes the various possibilities for equivalence in terms ofwhich sets must be empty.Lemma (sets):� e0 �=1 e1 i� at most the sets labeled s : s, sf : sf , and f : f are non-empty.� e0 �=2 e1 i� the sets labeled s : sf , sf : s, s : f , f : s are all empty.� e0 �=3 e1 i� the sets labeled s : f , f : s, sf : f , f : sf are all empty.This characterization is summarized in the picture below. Here � indicates thatthe set must be empty, and p indicates that the set might be non-empty. The two�'d cases in �=2 are cases in which sets are allowed in theory to be non-empty, butlemma (f.sf) below shows they in fact never arise.�=1e1s sf fs p � �e0 sf � p �f � � p �=2e1s sf fs p � �e0 sf � p �f � � p �=3e1s sf fs p p �e0 sf p p �f � � pThe key to collapsing �=2 into �=1 is the observation that if Obs(O [e0]) = f and



Actor Computation 23Obs(O [e1]) = sf it is always possible to construct a O� such that Obs(O�[e0]) = s,and Obs(O�[e1]) = sf .Lemma (f.sf): For some e0; e1, if the set labeled f : sf is non-empty then theset labeled s : sf is non-empty. Symmetrically, if the set labeled sf : f is non-emptythen the set labeled sf : s is non-empty.Proof (f.sf): Let O 2 f : sf . Form O 0 by replacing all occurrences of event() inO by send(a; nil) for some fresh variable a. Let O� be obtained by adding to O 0 amessage <a ( t> and an actor a where a has the following behavior: If a receivesthe message t, it executes event() and becomes a sink, and if a receives the messagenil, it just becomes a sink. Recall that a sink is an actor that ignores its messageand becomes a sink. We claim O� 2 s : sf . If O [e0] never executes event(), thenin any fair complete computation, the t message will be received by a, so O�[e0]will always execute event(). If O [e1] executes event() in some computation, thenin the corresponding computations for O�[e1], sometimes nil will be received by abefore t is received and sometimes it won't, hence O�[e1] will execute event() insome computations, but not in all.Proof (partial collapse):1 = 2 Assume e0 �=2 e1. Then by (sets) the sets labeled s : sf , sf : s, s : f , f : sare all empty. By (f.sf) f : sf and sf : f must also be empty. Hence by (sets),e0 �=1 e1. 1 = 21 ) 3 By (sets) 1 ) 33 6 ) 1 We construct expressions e0; e1 such that e0 �=3 e1, but :(e0 �=2 e1).Let e0 create an actor that sends a message (say nil) to an external actor a andbecomes a sink, and let e1 create an actor that may or may not send a messagenil to a depending on a coin 
ip (there are numerous methods of constructing coin
ipping actors), and also then becomes a sink. Let O be an observing con�gurationcontext that with an actor a that executes event just if nil is received. ThenObs(O [e0]) = s but Obs(O [e1]) = sf , so :(e0 �=2 e1). To show that e0 �=3 e1, showfor arbitrary O that some path in the computation of O [e0] contains an event i�some path in the computation of O [e1] contains an event. This is easy, becausewhen e1's coin 
ip indicates nil is sent, the computation proceeds identically toe0's computation. 3 6 ) 1Hereafter, �= (observational equivalence) will be used as shorthand for either �=1or �=2.The fairness requirement is critical in the proof of (1 = 2). For example in CCS,where fairness is not assumed, no such collapse of �=2 to �=1 occurs. If we omitted thefairness requirement we could make more �=-distinctions between actors. For exam-ple, let a0 be a sink. Let a1 be an actor that also ignores its messages and becomesthe same behavior, but it continues executing an in�nite loop. The in�nite loopingactor could prevent the rest of the con�guration's computation from progressing.In the presence of fairness this could not happen, so the two are equivalent. Thusfairness allows modular reasoning about liveness properties: one can reason aboutthe behavior of individual actors without worrying about whether composition withanother would cause such failures.



24 G. Agha and others4.4 Equivalence of Con�gurationsNow we extend the notion of observational equivalence to con�gurations.De�nition (Observing Con�gurations): For an actor con�guration � = DD��EE�� the observing con�gurations are con�gurations over the extended language ofthe form �0 = DD�0 �0 EE�� such that �0 is composable (in the sense of x2.3) with �.We are interested in observing internal event transitions rather than interac-tions with the environment. Thus we de�ne an operation Hide(�) hiding all thereceptionists of a con�guration.De�nition (Hide(�)): Hide(DD� �EE��) = DD� �EE;�De�nition (�0 �= �1): For �0 = DD�0 �0 EE�� and �1 = DD�1 �1 EE��, �0 �= �1i� Obs(Hide(�0 k �0)) = Obs(Hide(�1 k �0)) for all observing con�gurations �0 for�j, j < 2.Note the following. Firstly, Hide(� k �0) is a closed con�guration for observer �0for �. Secondly, no two closed con�gurations can be distinguished by an externalobserver.Using observational equivalence con�gurations we can extend the property ofcongruence with respect to expression construction to congruence with respect tocon�guration construction. Namely, replacing an expression occurring in a con�g-uration by an observationally equivalent one yields an equivalent con�guration.Theorem (exp-c�g): If e0 �= e1 then(i) �0 = DD�; [C[e0]]a �EE�� �= DD�; [C[e1]]a �EE�� = �1(ii) �00 = DD�; (�x:C[e0])a �EE�� �= DD�; (�x:C[e1])a �EE�� = �01Proof : (i) We need to show that Obs(Hide(�0 k �0)) = Obs(Hide(�1 k �0)) forany observing �0. Note however that Hide(�0 k �0) = O [e0] and Hide(�1 k �0) =O [e1]) for some O 2 O, so the result follows directly from the de�nition of �=.(ii) We need to show that Obs(Hide(�00 k �0)) = Obs(Hide(�01 k �0)) for any observ-ing �0. Pick any �0 2 F(Hide(�00 k �0)), then we must �nd �1 2 F(Hide(�01 k �0))such that obs(�0) = obs(�1). There are two cases to consider. Either actor a neverbecomes active, or it becomes active �rst after k steps of computation. In the �rstcase, the ei are never touched, so both computations proceed uniformly, thus theirobservation and fairness behavior both correspond. In the second case, consider thestep where a receives its �rst message:DD�0; (�x:C[e0])a �; <a ( cv>EE<rcv : a; cv>�! DD�0; [app(�x:C[e0]; cv)]a �EE = O [e0]Factor �0 = �[e0] � �00, where �00 2 F(O [e0]) and �[] denotes a sequence whereeach con�guration in the sequence contains a hole that computes uniformly in thehole. Thus, Obs(O [e0]) = Obs(O [e1]) because e0 �= e1 and O is a con�guration



Actor Computation 25context. This means by the de�nition of Obs there is a path �01 2 F(O [e1]), suchthat obs(�00) = obs(�01). Let �1 = �[e1] � �01. Then, �1 2 F(Hide(�1 k �0)), since byconstruction it is a computation for (Hide(�1 k �0)), and because � fair implies � ��is fair for any � such that � �� is a computation path. Moreover, obs(�0) = obs(�1)because any event transitions in �[e0] also occur in �[e1], and obs(�00) = obs(�01)by hypothesis. 5 Laws of Expression EquivalenceWith a notion of equivalence on actor expressions de�ned, a library of useful equiv-alences can be established. The �rst part of this section contains a collection ofpurely functional laws that continue to hold in the actor setting. The second partcontains a collection of laws for manipulating expressions that involve actor primi-tives. These laws are established in x5.5.1 Functional LawsSince our reduction rules preserve the evaluation semantics of the embedded func-tional language, many of the equational laws for this language (cf. (Talcott, 1993b))continue to hold in the full actor language. A �rst simple observation is two commu-nicable values are observationally equivalent i� they are the same value expression.Lemma (cv): cv0 �= cv1 , cv0 = cv1Proof : The if direction is trivial. The only-if direction is proved by exhibitingan observing context that distinguishes expressions that are not equal. Clearly bothmust be atoms, or variables, or pairs, otherwise they can be distinguished using eqand ispr. For example,O = DD [if(eq(cv0; �); event; nil)]a EEdistinguishes the atom cv0 from any non-atom (and any other atom). Similarly,O = DD [letfx := 0gletfy := 1gif(eq(x; �); event; nil)]a EEdistinguishes the variables x, y. Similarly, if both are pairs, we can construct con-texts to distinguish di�erences in the components.The laws of the computational lambda calculus (Moggi, 1988), and the laws forconditional and pairing continue to hold in the actor setting.Theorem (functional laws):(beta-v) app(�x:e; v) �= e[x := v ](ift) if(v ; e1; e2) �= e1 if v 2 (A t � fnilg) [L[ pr(V;V)(ifn) if(nil; e1; e2) �= e2(ifelim) if(v ; e; e) �= e
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am) �x:if(v ; e1; e2) �= if(v ; �x:e1; �x:e2) x 62 FV(v)(isprt) ispr(pr(v0; v1)) �= t;(isprn) ispr(v) �= nil v 2 A t [L(fst) 1st(pr(v0; v1)) �= v0(snd) 2nd(pr(v0; v1)) �= v1Each of these laws (except for (i
am)) is a consequence of the following operationallaw.Theorem (red-exp):e0 �7! e1 ) e0 �= e1The theorem (rcx) is a special case of a theorem proved in (Talcott, 1989).Theorem (rcx): If R is a reduction context, then(letx) letfx := egR[x] �= R[e](let.dist) R[letfx := ege0] �= letfx := egR[e0](if.dist) R[if(e; e1; e2)] �= if(e;R[e1];R[e2])In fact these laws can be derived from (beta-v), the if laws and the followingspecial instances.(app) e0(e1) �= (�f:f(e1))(e0)(cmps) f(g(e)) �= (�x:f(g(x)))(e)(id) app(�x:x; e) �= eSome useful corollaries of (rcx) are the following.Corollary (uni-rcx):(let.arg) v(letfx := e0ge1) �= letfx := e0gv(e1)(if.if) if(if(e0; e1; e2); ea; eb) �= if(e0; if(e1; ea; eb); if(e2; ea; eb))The above laws are really about equivalence of reduction contexts. They are in-stances of the operational law (red-rcx). Two reduction contexts are consideredequivalent if placing an arbitrary expression in the redex hole results in equivalentexpressions. The law (red-rcx) says that if two reduction contexts have a common�-reduct when the redex hole is �lled with a fresh variable (standing for an arbitraryvalue expression), then they are equivalent.Theorem (red-rcx): If there is some e 0 such that R0[x] �7! e 0 and R1[x] �7! e 0where x is a fresh variable, then R0[e] �= R1[e] for any e.We also note that any expressions that hang (reduce in a �nite number of lambdasteps to a stuck state) or have in�nite lambda computations are observationallyequivalent. If the reductions could involve non-lambda steps the result clearly failssince they could have di�erent e�ects such as message sends that other actors inthe con�guration could observe. We let stuck 2 Hang be a prototypical stuck



Actor Computation 27expression, for example app(0; 0), and let bot 2 In�n be a prototypical expressionwith in�nite computation, for example app(�x:app(x; x); �x:app(x; x)).To make these ideas more precise we de�ne Hang and In�n as follows.De�nition (Hang): Let Hang be the set of non-value expressions such that(every closed instance) lambda reduces (i.e. �7! in possibly 0 steps) to a stuck state{ an expression e 0 that decomposes as R[r ] where r is a functional redex (i.e anynon-actor redex) that does not reduce.De�nition (In�n): Let In�n the the set of (non-value) expressions e such that(every closed instance) has an in�nite lambda reduction sequence. Thus e 2 In�njust if we can �nd ej for j 2 N such that e0 = e and ej �7! ej+1.Theorem (hang-in�n): If e0; e1 2 Hang [ In�n , then e0 �= e1.5.2 Basic Laws for Actor PrimitivesNow we consider the equational properties of the actor primitives, send, become,newadr, and initbeh. As is the case for a language with state operations, seq(e; e) �=e fails to hold because the computation e could have e�ects such as message sends.A stronger analogy exists between the actor primitives and the reference primitivesfmk; get; setg : newadr is an allocation primitive analogous to mk; initbeh andbecome update or alter state; while the e�ect of send depends on the state in away analogous to get. There are limits to this analogy, for example send does notreturn anything of interest. In fact send, become, and initbeh all return nil asvalues. Thus(triv) #(�x) �= seq(#(�x); nil) for # 2 fsend; become; initbehgThat newadr is an allocation primitive analogous to mk manifests itself in its prop-erties. However, because we have not allowed clones to initialize newly spawnedactors, one characteristic property of allocation fails to holds. Namely,(non-delay)letfy := e0gletfx := newadr()ge1 6�= letfx := newadr()gletfy := e0ge1where x is not free in e0. Since, if evaluation of e0 executes a become and e1 is ofthe form initbeh(x; v), then the left-hand side evaluation of e1 will succeed, whilethe right-hand side evaluation of e1 will suspend.Once allocated, an actor behavior is updated by either become or initbeh. Inanalogy with set both become and initbeh satisfy certain, slightly di�erent, can-cellation laws:(can-b) seq(become(v0); become(v1)) �= seq(become(v0); nil) �= become(v0)(can-i) seq(initbeh(v ; v0); initbeh(v ; v1))�= seq(initbeh(v ; v0); stuck)�= seq(initbeh(v ; v0); bot)Note the di�erence between these two principles. In the case of become the secondcall is equivalent to nil, while in the case of initbeh it is stuck (which is equivalentto diverging).



28 G. Agha and others5.2.1 Commuting OperationsHow the e�ects of the actor primitives interact with one another is of paramountimportance. We have seen some aspects of this interaction above. We now studythe interactions more systematically.De�nition (commutes): We say two operations #0 and #1 commute ifletfx0 := #0(�y)gletfx1 := #1(�z)ge �= letfx1 := #1(�z)gletfx0 := #0(�y)gefor all e 2 E, x0 62 �z, x1 62 �y and x0 distinct from x1. Similarly we say two expresionse0 and e1 commute i�letfx0 := e0gletfx1 := e1ge �= letfx1 := e1gletfx0 := e0geif the obvious hygiene conditions hold.newadr commutes with every operation except become. For example the expres-sionse0 = letfy := newadr()gletfz := become(b)ginitbeh(y; b 0)e1 = letfz := become(b)gletfy := newadr()ginitbeh(y; b 0)are not equivalent, since the �rst will always fail to execute the initialization andthe second will always succeed. A distinguishing context isDD (�x:event())a0; [seq(�; send(a0; 0))]a ;EEIf we allowed clones to initialize, then newadr would also commute with become. Onthe other hand, by (can-b) and (can-1) neither become nor initbeh commute withthemselves, since this amounts to equivalence of two becomes (or initializations)with di�erent behaviors. The remaining operation send, like newadr, does commutewith itself:(com-ss) seq(send(v0; v1); send(v2; v3)) �= seq(send(v2; v3); send(v0; v1))send also commutes with become(com-sb) seq(send(a0; v0); become(v1)) �= seq(become(v1); send(a0; v0))The question of whether or not two distinct operations commute is simpli�ed bythe observation, captured in (partial), that a computation may have observablee�ects even if a subcomputation diverges. This is in contrast to the sequentialcase, where an e�ect of a subcomputation is only observable if the computationcompletes.Lemma (partial): If # is not a total operation, then # does not commute withsend, become or initbeh.Proof (partial): If #(�y) diverges, thenletfx := #(�y)gletfx1 := send(a; v)gewill not execute the send, whereasletfx1 := send(a; v)gletfx := #(�y)ge



Actor Computation 29will execute the send. Consequently the two expressions are easily distinguished.Similarly with the two operations become and initbeh.Since initbeh is partial, it does not commute with either send or become. Forexamplee0 = seq(initbeh(a0; b0); send(a1; 0))e1 = seq(send(a1; 0); initbeh(a0; b0))are distinguished byO0 = DD (�x:event())a1 ; (?a1)a0; [�]a �EEfor a 6= a1, or byO1 = DD (�x:event())a1 ; (b)a0 ; [�]a �EEAlso,e0 = seq(initbeh(a0; b0); become(�x:send(a1; 0)))e1 = seq(become(�x:send(a1; 0)); initbeh(a0; b0))are distinguished by O0;O1 if � contains <a ( 0>.(partial) emphasizes that the valid equations for actor primitives are sensitive tothe details of when we check for ill-formed redexes. For example if we restricted thesend redex to avoid ill-formed messages (com-ss,com-sb) would no longer hold.We summarize these results in the following:Lemma (commutes): n s i bn + + + -s + + - +i + - - -b - + - -(n) newadr commutes with send, newadr, and initbeh, but not with become.(s) send commutes with send, become, and newadr, but not with initbeh.(i) initbeh commutes with newadr, but not with send, become, and initbeh.(b) become commutes with send, but not with initbeh, newadr, or become.Note that the remaining operations in F (i.e. the arithmetic operations, branchingbr, and the pairing ispr; pr; 1st; 2nd) are all context insensitive, and thus thosethat are total commute with all other operations. In the case if this is perhapsworth pointing out:Lemma (commutes-if): If # commutes with e0 and e1, then it also commuteswith if(z; e0; e1)Proof : This follows from (if-lam,if-dist).Using these basic principles we can prove more complex properties, the followingtheorem being the most obvious.



30 G. Agha and othersTheorem (commutes): Suppose that e0 and e1 are built up fromVusing onlythe operations, if and let. Furthermore suppose every operation occurring in e0commutes with every operation occurring in e1. Thenletfx0 := e0gletfx1 := e1ge �= letfx1 := e1gletfx0 := e0geprovided xj is not free in e1�j for j < 2,Proof (commutes): The proof is by induction on the complexity of e0. Wesketch the induction step. We may assume, without loss of generality, that e0 de-composes into R[#(�y)] with R being non-trivial. Thenletfx0 := e0gletfx1 := e1ge �=�= letfx0 := R[#(�y)]gletfx1 := e1geby hypothesis�= letfx0 := letfz := #(�y)gR[z]gletfx1 := e1geby (cong) and (letx)�= letfz := #(�y)gletfx0 := R[z]gletfx1 := e1geby (let.dis)�= letfz := #(�y)gletfx1 := e1gletfx0 := R[z]geby the induction hypothesis and (cong)�= letfx1 := e1gletfz := #(�y)gletfx0 := R[z]geby the induction hypothesis and (cong)�= letfx1 := e1gletfx0 := letfz := #(�y)gR[z]geby (let.dis)�= letfx1 := e1gletfx0 := e0geby (cong) and (letx)Note that the theorem fails in the case when the expressions contain app and �due to the possibility of divergence.6 Proving Expression EquivalenceIn this section we develop methods for proving expressions observationally equiva-lent. The methods are a variation on the techniques used to prove the (ciu) theorem(a form of context lemma) in (Mason and Talcott, 1991).Before outlining the methods we motivate the di�culty of establishing equiva-lences. A relatively simple case is succ(0) �= 1. It is simple for two reasons: thereare no free variables occuring, and only one step of computation separates succ(0)



Actor Computation 31and 1. By the de�nition of �=, we need to establishObs(O [succ(0)]) = Obs(O [1])for all observing contexts O . To establish this, we construct, for each computationpath �0 2 F(O [succ(0)]), a �1 2 F(O [1]) such that obs(�0) = obs(�1) and con-versely. We call such a construction a path correspondence. Informally, the pathcorrespondence is constructed as follows. First consider how from a path �0 inF(O [succ(0)]) we obtain a path in F(O [1]). At each point in �0 where the succ(0)is reduced to 1, we remove this step, giving path �1. Describing this operation indetail requires care, for there could be other independent occurrences of the com-putation of subterm succ(0) in O which are not to be removed. We then can showthat �1 is a computation for O [1], with the same observable outcome and same fair-ness property as �0. The converse construction is similar, except steps computingsucc(0) are inserted into �0 each time the 1 �rst appears in a reduction context.These two expressions di�er by only one step of computation; in general theycould di�er by more than one step, and could both reduce to a common reductrather than one reducing to the other, e.g. pred(succ(1)) �= succ(0). The com-plication arising from this case is the two-step execution of pred(succ(1)) may beinterleaved with computations of other actors and a local replacement thus not pos-sible. To solve this problem the computation path is put in an equivalent canonicalform with both steps adjacent. In general we place as many steps of an individualactor adjacent as possible.A complication also arises in proving equations that may contain free vari-ables, for instance 1st(pr(x; 0)) �= x. Such expressions may be self-substituted:if 1st(pr(x; 0)) occurs in the local context app(�y:app(y; y); �x:�), upon comput-ing the free x in 1st(pr(x; 0))) will be replaced with �x:1st(pr(x; 0))). This meansthe necessary replacements are not 
at but may be nested. A notion of generalizedhole is introduced to account for this nesting.In general we give methods for establishing three di�erent varieties of expressionequivalence; the above informal description describes only the �rst variant. Thethree variants are as follows.(1) The �rst variant treats equivalence of expressions that have a common reduct{ i.e. expressions that step in 0 or more steps to the same expression havingthe same e�ects (sends, becomes, creation of new actors, initializing new actors).This is called the common reduct case.(2) The second variant is an elaboration of the �rst, treating expressions that re-duce to lambda abstractions that are application equivalent { i.e. have a commonreduct when applied to any value. This is called the two-stage reduction case.(3) The third variant treats equivalence of reduction contexts. This is called theequivalence of reduction contexts case.We provide examples of the use of these techniques by using them to establish theequational laws stated in x4.



32 G. Agha and others6.1 The General MethodEach of these three methods is based on the idea of using con�guration templatesto establish a correspondence between the fair computations of con�gurations con-taining the entities to be proved equivalent. A con�guration template is simply acon�guration with holes, i.e. schematic variables, that may be instantiated by var-ious sorts of syntactic entities. Observing contexts correspond to a special case ofcon�guration templates.The �rst step then is to choose a class of con�guration templates CT such thate0 �= e1 if Obs(ct[e0]) = Obs(ct[e1]) for all templates ct 2 CT . To establish theequality of observations, it is su�cient to construct, for each �0 2 F(ct[e0]), a �1 2F(ct[e1]) such that obs(�0) = obs(�1) and conversely. We call such a construction apath correspondence. The crucial fact concerning con�guration templates is that onecan compute symbolically with them in the sense that computation is parametricin the holes. We call this form of computation is uniform computation or uniformreduction.A suitable class of con�guration templates is obtained by extending each syntacticclass to allow holes and de�ning appropriate notions of hole �lling. Decompositiontheorems and schematic reduction rules are then developed. In each of the threemethods the only essential di�erence is the type and number of holes needed:(1) For the common reduct case we de�ne templates by adding a single hole, �,for expressions. We call this hole an expression hole.(2) For the two stage reduction case we need not only a hole for expressions,but also a countable family of holes for lambda abstractions. We call these holesabstraction holes and they are denoted by .j for j 2 N. Note that these holes are�lled by values, speci�cally by lambda abstractions, not simply by expressions.(3) For the equivalence of reduction contexts we need an entirely new kind ofhole, �, for reduction contexts. We call it a reduction context hole. Note thatoccurrences of holes will be �lled by reduction contexts and are not to be confusedwith redex holes. As far as we are aware the introduction of holes that are �lledby contexts is completely novel.For each variant, syntactic classes X are annotated with the signs of the sorts ofholes they contain: �X for expression holes; �.X for expression and lambda abstrac-tion holes; and �X for reduction context holes. We pre�x the names of these classesby E-, LE-, or R- respectively. Thus E-expressions are expression templates withholes for expressions, �E is the set of E-expressions, and we let �e range over �E . Asimilar convention holds for the other syntactic classes and hole types.The idea underlying the construction of a path correspondence to establish equiv-alence is the same for each of the three cases. It relies on the ability to localize dif-ferences in computations as multi-steps (x2.2.3), and to use holes to formalize theaspects of computation that are independent of the local di�erences. Consider thecase of proving expressions equivalent using templates with expression holes. Weconsider fair computation paths starting from an E-con�guration with holes �lledby one of the expressions, say e0. For each such path, �0, we show how to obtain asequence of E-con�gurations satisfying two conditions. The �rst is that �lling the



Actor Computation 33holes in the sequence of E-con�gurations with e0 (and �lling in transition labels)yields �0. The second is that �lling the holes in the sequence of E-con�gurationswith e1 (and �lling in transition labels) yields a fair computation path with thesame observation. The other two cases are simple variations on this idea.One of the keys ideas in uniform computation is to insure that transitions com-mute with hole �lling; except of course when the hole is touched, i.e. informationabout the contents of the hole is required to carry out the step. Consider theschematic redex app(�x:�; v). We need a notation that allows us to carry out thisreduction in such a way that �lling the hole and then reducing gives the same resultas reducing and then �lling the hole. For this purpose we associate with each holea substitution to be applied when the hole is �lled. The domain of the substitutionalso determines the variables of an expression that are trapped at the hole. Thislocalizes trapping and allows renaming of lambda-variables even in the presence ofholes (which is not the case for traditional notions of expression context). A detaileddevelopment of this notation can be found in (Talcott, 1991; Talcott, 1993a). Weuse �[��] to denote an expression hole with associated substitution �� (which mayin turn have expressions holes in its range), a similar notation holds for the otherclasses of holes: .j[�.�] for abstraction holes, and �[��] for reduction context holes.To simplify de�nitions of syntactic classes we treat app on a par with elements ofF2. We use �n for syntactic operations of arity n, and �en to indicate the operationsof the extended language (i.e. �0 extended to include event). Thus:De�nition (�n �en):�2 = F2 [ fappg �n = Fn for n 6= 2�e0 = �0 [ feventg �en = �n for n 6= 0As the last technical detail, we make precise the sense in which we are able tolocalize di�erences in computations as multi-steps. We �rst de�ne the notion ofthread fragment, and then show that any family of disjoint thread fragments in acomputation path can be regroup as multi-step without e�ecting the observationmade of the path.A thread fragment, I, at a in � is a �nite subsequence of exec transitions of �with focus actor a or a clone of a created by a become such that any gaps in thesequence are transitions with some other focus, or at a after a new message receipt.De�nition (thread fragment): LetF(�) = [�i li�! �i+1 i < ./], and � 2 F(�),I = [ij j < n] such that j < j0 < n ) ij < ij0 ,L(I; �) = [lij j < n], the transition sequence corresponding to I in �.Then I is a thread fragment at a in � if(1) li0 = rcv(a; cv) for some cv ,(2) L(I; �) contains no rcv, in or out, and(3) L(I; �) is a computation for DD�i0cfag ;EE.Condition (3) makes explicit that a thread fragment is essentially running thefocus actor in a con�guration with only itself. With no receives only that actor orits become clones can execute.



34 G. Agha and othersTheorem (in�nite-macro-steps): Let � = [�i li�! �i+1 i < ./] 2 F(�). LetIj = [ij;0; : : : ij;nj ] for j < J � ./ be a family (possibly in�nite) of thread fragmentsin � such that(a) if j < j0 then ij;0 < ij0;0, and(b) if j 6= j0 the Ij and Ij0 have empty intersection.Then there is a bijection, �, on ./ such that letting �0 = C�g(�0; [�(li) i < ./])(recall the de�nition of C�g from x2.2.3)(1) �0 2 F(�0)(2) �(ij;k+1) = �(ij;k) + 1 for j 2 J , and 0 � k < nj .Part (2) says that in �0 the thread fragments of � marked by Ij for j 2 J occuras multi-steps, that is, with no interleaved computation steps. Note that obs(�0) =obs(�).Proof : � is computed by induction on the index set, permuting the exec steps ofeach successive fragment across interleaved steps the obvious way. By the de�nitionof thread fragment and the disjointness requirment, we see that permutations onlyinvolve moving exec steps before steps with distinct focus. Hence the resultingsequence of labels de�nes a computation. Also the enabledness is not e�ected bysuch permutations (except possibly enabling a transition earlier). All transitionsthat occur in � also occur in �0 this means that fairness is also preserved.6.2 Common Reduct CaseWe now treat the common reduct case in depth. The other two cases follow in thesame manner and we allow ourselves to be a little more terse.6.2.1 E-SyntaxAs mentioned above, syntactic classes, X, with expression holes are indicated bythe mark �X. Metavariables ranging over these classes are indicated by the samemark, and we pre�x the names of these classes by E-. Thus we have E-expressionswhere �e ranges over �E , E-con�gurations where �� ranges over �K, etc. We �rstde�ne the E- analogs of expression, value expression, and value substitution.De�nition (�E �V �S):�V= A t [X[ �X:�E [ pr(�V; �V)�E = �V[�en(�En) [ �[�S]�S=X f! �VAs before, � is the only binding operator, and free variables of E-expressions arede�ned as follows:De�nition (FV(�e) FV(��)):FV(�e) = 8>><>>:FV(��) if �e = �[��]f�eg if �e 2XFV(�e0)� fzg if �e = �z:�e0FV(�e1) [ : : :[ FV(�en) if �e = �(�e1; : : : ; �en) and � 2 �en



Actor Computation 35FV(��) = [x2Dom(��)FV(��(x))The variables in the domain of occurrences of �� are neither free or bound. Inparticular, renaming of bound variables only applies to the range of a substitutionassociated with a hole, not to its domain.De�nition (�e[��] ��1���2): Substitution is extended to E-expressions as follows:�e [��] = 8>>>><>>>>: �[�� � ��0] if �e = �[��0]�e if �e 2X� Dom(��)��(�e) if �e 2 Dom(��)�z:�e0[��c(Dom(��)� fzg)] if �e = �z:�e0 and z 62 FV(��)�(�e0[��]; : : : ; �en[��]) if �e = �(�e1; : : : ; �en) and � 2 �en��1 � ��2 = �x 2 Dom(��2):��2(x)[��1]As de�ned here substitution is a partial operation. Using renaming substitutionswe can de�ne � renaming in the usual way. We consider E-expressions (and entitiescontaining them) to be equivalent if they di�er only by � renaming. Thus, for anysubstitution we can always choose an � variant so that substitution is de�ned. Notethat such renaming is not possible in the case of traditional contexts where holeshave no associated substitution (c.f. (Talcott, 1993a)).Expression hole �lling is de�ned by induction on the structure of �e . We let�e[� := e] be the result of �lling expression holes in �e with e. Like substitution, weavoid capture of free variables in e by lambda binding. All capture is done at holeoccurrences by the associated substitution.De�nition (�e[� := e]):�e [� := e] = 8>><>>: e[��[� := e]] if �e = �[��]�(�e1[� := e]; : : : ; �en[� := e]) if �e = �(�e1; : : : ; �en) and � 2 �en�v if �e = �v 2 A t [X�x:�e 0[� := e] if �e = �x:�e 0 and x not free in e��[� := e] = �x 2 Dom(��):��(x)[� := e]The following example illustrates hole �lling and variable scoping. Let�v = �x:if(x; �[fy := 0g]; z)�� = fy := �vg�e = �z: � [��]e = �(x; y)then�v [� := e] = �w:if(w; �[fy := 0g][� := e]; z) note the change in bound variable= �w:if(w; e[fy := 0g]; z)= �w:if(w; �(x; 0); z) = v��[� := e] = fy := �v [� := e]g= fy := �w:if(w; �(x; 0); z)g



36 G. Agha and others�e [� := e] = �z:(�[��][� := e])= �z:(e[��[� := e]])= �z:�(x; �w:if(w; �(x; 0); z))The following lemma is the key to developing a notion of uniform computation.Lemma (�l-subst): Hole �lling and substitution commute.�e [��][� := e 0] = �e[� := e 0][��[� := e 0]]if Dom(��) \ FV(e 0) = ;.Proof : By induction on the structure of �e. We assume the names of boundvariables in �e have been chosen not to con
ict with any free variables in e 0, or therange of ��, or the domain of ��. As examples, we consider the cases where �e is alambda abstraction or a hole. If �e = �z:�e0 then�e [��][� := e 0]= (�z:�e0[��])[� := e 0]= �z:(�e0[��][� := e 0]) by hygiene assumptions= �z:(�e0[� := e 0][��[� := e 0]]) by the Induction Hypothesis= (�z:�e0[� := e 0])[��[� := e 0]] by hygiene assumptions= �e[� := e 0][��[� := e 0]]If �e = �[��0] then�e [��][� := e 0]= �[��0][��][� := e 0]= (�[�z 2 Dom(��0):��0(z)[��]])[� := e 0]= e 0[�z 2 Dom(��0):��0(z)[��][� := e 0]]= e 0[�z 2 Dom(��0):��0(z)[� := e 0][��[� := e 0]]] by the Induction Hypothesis= e 0[��0[� := e 0]� ��[� := e 0]]= �[��0][� := e 0][��[� := e 0]] by hygiene assumptions= �e[� := e 0][��[� := e 0]]Next we de�ne analogs of redex and reduction context.De�nition (�R �E rdx):�R= f g [�m+n+1(�Vm; �R; �En)�E rdx = �en(�Vn)Note that E-reduction contexts possess two types of holes, consequently we mustdisambiguate the process of hole �lling. Note that the unique occurrence of a redexhole is not adorned with a substitution, consequently the process of �lling the



Actor Computation 37redex hole, , with the E-expression, �e , remains unchanged, and we denote it by�R[ := �e].In the case of multiple hole �lling we write �R[� := e0][ := e] for the result of�lling the expression holes with e0, and the redex hole with e.Lemma (E-properties):(1) �R[� := e0][ := e] = �R[ := e][� := e0](2) Filling an E-expression, E-reduction context, or E-redex with an expressionyields an expression, reduction context, or redex, respectively.6.2.2 E-Expression DecompositionWe now give a decomposition lemma for E-expressions: An E-expression �e is eitheran E-value (element of �V) or it can be decomposed uniquely into an E-reductioncontext �lled with either an E-redex or with an expression hole.Lemma (E-expression decomposition):(0) �e 2 �V; or(1) (9!�R; �r)(�e = �R[ := �r ]); or(2) (9!�R; ��)(�e = �R[ := �[��]])Proof : An easy induction on the structure of �e . We consider two example cases.First, suppose �e = �[��]. Then we have case (2) with �R = . Second, suppose�e = �(�e1; : : : ; �en). If �e i 2 �V for 1 � i � n, then we have case (1) with �R =(and �r = �e). If �e i 62 �V for some 1 � i � n, assume k to be the least such i.Then by the induction hypothesis, �ek decomposes either as (i) �R0[ := �r ], or as(ii) �R0[ := �[��]]. Taking �R = �(�e1; : : : ; �ek�1; �R0; �ek+1; : : : ; �en) we obtain thedesired decomposition of �e. 6.2.3 E-Con�gurationsAn E-con�guration, ��, is formed in the same manner as a simple con�guration,using E-expressions and E-values instead of simple expressions and values.De�nition (�K):�K = DD �A c �M EE��where�A c = A d f! �A s�A s = (�V) [ [�E] [ f(?Ad)g�M = <�V( �V>and the constraints speci�ed in the de�nition of actor con�gurations in x2 aresatis�ed.y We let �� range over �K, and �� range over �A c. Filling expression holesy The only condition whose meaning is altered in this general setting is (2), where the



38 G. Agha and othersof an E-con�guration, E-actor map, E-actor state, E-multiset of messages, and E-messages is de�ned in the obvious manner. Let �X stand generically for an elementof one of these E-syntactic classes, then we de�ne �X[� := e] as follows:De�nition (�X [� := e]):�X [� := e] = 8>>>>>>>>>><>>>>>>>>>>:DD ��[� := e] ��[� := e]EE�� if �X = DD �� ��EE���x 2 Dom(��):��(x)[� := e] if �X = ��((�x:�e)[� := e]) if �X = (�x:�e)[�e[� := e]] if �X = [�e](?a) if �X = (?a)f�m[� := e] �m 2 ��g if �X = ��<�v0[� := e]( �v1[� := e]> if �X = <�v0 ( �v1>An E-con�guration, ��, is closing for e if ��[� := e] is a closed con�guration.Dually an expression e is a valid �lling for an E-con�guration, ��, if ��[� := e] is acon�guration. As for atoms and variables, the notion of communicable value remainsunchanged and we do not introduce new notation for these. In particular, althoughmessages may have holes, a message with a hole can e�ectively be ignored. This isbecause holes in E-values must occur inside �'s and hence �lling these holes cannotyield communicable values or actor addresses. Thus a message with a hole can neverbe processed. The next lemma expresses the fact that closing E-con�gurations makejust the same observations as simple observing contexts.Lemma (ocx): e0 �= e1 i� Obs(��[� := e0]) = Obs(��[� := e1]) for all �� thatclose e0; e1.Proof : The backward implication is easy to see, since O is (with suitable trans-lation to account for trapping at holes rather than at lambdas) a subset of �K.The idea for the proof of the forward implication is to de�ne for each con�gura-tion context ��, an observing context O whose computations give rise to the sameset of observations. In fact O evolves to �� in a �nite number of steps. For anE-expression �e we de�ne �e? to be the result of recursively replacing decoratedholes �[��] by applications app(: : :app(�x1: : : :�xn:�; ��(x1)?); : : : ; ��(xn)?) wherefx1; : : : ; xng = Dom(��). Let �� = DD �� �EE, let A = [ai i < n] = Dom(��), andde�ne O = DD [e��]â ;EE where â 62 A, and e�� is constructed as follows. LetE = fi < n (9�ei)(��(ai) = [�ei])g, and let nE be the cardinality of E.I = fi < n (9�v i)(��(ai) = (�v i))g.Bi(a0; : : : ; an�1) = �v?i , if ��(ai) = (�v i).Bi(a0; : : : ; an�1) = �a:seq(send(a; 0); �e?i ), if ��(ai) = [�ei].� = f<zj ( �v 0j> j < mgDe�neW�� = rec(�b:�k:�m:if(eq(k; 0); seq(send(zj ; (�v 0j)?)j<m); become(b(k � 1))))free variables of any hole occurrences (namely the free variables in the range of theassociated substitution) must be taken into consideration.



Actor Computation 39e�� = letfai := newadr()gi<nseq(initbeh(ai; Bi(a0; : : : ; an�1))i2I[E ;send(ai; â)i2E ;become(W��(nE)))Now, we claim that any computation of ��[� := e] has a corresponding computation(with same observations) of O [e] obtained by accepting all the startup messages,sending and accepting the acks, and completing the computation of the initializingactor (which can then be ignored). Conversely any computation of O [e] has acorresponding computation of ��[� := e] obtained by ignoring the �nite amountof initializing activity. A more detailed proof can be given along the lines of theproof of the theorem (fun-red-eq) below.6.2.4 E-ReductionThe reduction relations �7! and 7! are extended to the generalized domains in theobvious fashion, simply by liberally annotating metavariables with �'s, modulo theextension of substitution to E-expressions. As examples, we give the (beta-v), (br),and (eq) clauses of �7! and the internal transitions for 7! on closed E-con�gurations.De�nition ( �7!):(beta-v) �R[ := app(�x:�e; �v )] �7! �R[ := �e [x := �v ]](br) �R[ := br(�v1; �v2; �v)] �7! � �R[ := �v1] if �v 2 �V� fnilg�R[ := �v2] if �v = nil(eq) �R[ := eq(�v0; �v1)] �7! � �R[ := t] if �v0 = �v1 2 A t�R[ := nil] if �v0; �v1 2 A t and �v0 6= �v1De�nition (7!):<fun : a> �e �7! �e 0 ) DD ��; [�e]a ��EE 7! DD ��; [�e 0]a ��EE<new : a; a 0> DD ��; [�R[ := newadr()]]a ��EE 7!DD ��; [�R[ := a 0]]a ; (?a)a 0 ��EE a 0 fresh<init : a; a 0> DD ��; [�R[ := initbeh(a 0; �v )]]a ; (?a)a 0 ��EE 7!DD ��; [�R[ := nil]]a ; (�v)a 0 ��EE<bec : a; a 0> DD ��; [�R[ := become(�v )]]a ��EE 7!DD ��; [�R[ := nil]]a 0; (�v)a ��EE a 0 fresh<send : a;m> DD ��; [�R[ := send(�v0; �v1)]]a ��EE 7!



40 G. Agha and othersDD ��; [�R[ := nil]]a ��; <�v0 ( �v1>EE<rcv : a; cv> DD ��; (�v)a <a ( cv>; ��EE 7! DD ��; [app(�v ; cv)]a ��EE6.2.5 E-Uniform ComputationThe notion of E-uniform computation is made precise in the following de�nitionsand lemmas. The basic idea is that given a decomposition of a con�guration asan E-con�guration with holes �lled by a given expression, then any transition stepleading from that con�guration is either independent of what appears in the holes,or it explicitly uses information about the contents of some hole occurrence.De�nition (E-hole touching): Let �� = DD �� ��EE. We say that �� touches ahole at a if ��(a) = [�R[ := �[��]]] for some �R, ��.We say that a transition � l�! �0 touches a hole relative to a decomposition� = ��[� := e] if l has focus a and �� touches a hole at a.Lemma (E-Uniform Computation):(1) If �� l�! ��0, then ��[� := e] l�! ��0[� := e] for any valid �lling expression e.(2) If �� has no transition with focus a (and a is an actor of ��), then either ��touches a hole at a or ��[� := e] has no transition with focus a for any valid�lling expression e.(3) If � l�! �0 and � = ��[� := e], then either the transition touches a hole or wecan �nd ��0 such that �0 = ��0[� := e] and �� l�! ��0.Proof (1): This is proved by considering cases on the transition rule applied.The only interesting case is (beta-v). This follows from (�l-subst) 1Proof (2): Assume �� = DD �� ��EE has no transition with focus a, and �� doesnot touch a hole at a. Then one of the following holds:(i) ��(a) = (?a 0)(ii) ��(a) = (�v) and �� contains no messages deliverable to a(iii) ��(a) = [�v](iv) ��(a) = [�R[ := initbeh(�v0; �v1)]] where �v0 is not the address of anuninitialized actor created by a(v) ��(a) = [�R[ := �r ]] where �r is a non-actor redex that is stuck.In each of these cases, it easy to see that there will be no transition with focus aenabled when the expressions holes are �lled. 2Proof (3): Assume � = DD� �EE l�! �0 = DD�0 �0 EE, � = ��[� := e], and thetransition does not touch the hole. Thus �� = DD �� ��EE where � = ��[� := e] and� = ��[� := e]. We want to �nd ��0, ��0 such that �� l�! ��0 = DD ��0 ��0 EE, �0 =��0[� := e], and �0 = ��0[� := e]. Since we are considering closed con�gurations thereare no i=o transitions. Thus, we need to consider only two cases rcv transitions andexec transitions. We split the exec transitions into functional and actor primitives.Receive: l = <rcv : a; cv>, <a ( cv> 2 �, and �(a) = (v). Thus ��(a) = (�v)



Actor Computation 41with v = �v [� := e]. Thus we let ��0 = ��fa := [app(�v ; cv)]g, and �� = ��0[f<a (cv>g.Execution-lambda: l = <fun : a>, �(a) = [R[ := r ]] and r �7! e 0. Thus��(a) = [�R[ := �r ]] with R = �R[� := e], and r = �r [� := e]. Thus we want to�nd �e0 such that �r �7! �e 0. Then ��0 = ��fa := [�R[ := �e0]]g and ��0 = ��. Ifr = app(�z:e0; v) (z chosen fresh), then e 0 = e0[z := v ], and �r = app(�z:�e0; �v )where e0 = �e0[� := e] and v = �v [� := e]. Take �e 0 = �e0[z := �v ] and use (�l-subst). If r = eq(v0; v1), then �r = eq(�v0; �v1) where vj = �v j[� := e] for j < 2. e 0is t or nil and we may take �e 0 = e 0. The remaining cases are similar.Execution-actor: If l = <send : a>, then �(a) = [R[ := send(v0; v1)]] �0(a) =[R[ := nil]], �0 = �[ f<v0 ( v1>g. Also ��(a) = [�R[ := send(�v0; �v1)]] whereR = �R[� := e], and vj = �vj [� := e] for j < 2. Take ��0 = ��fa := [�R[ := nil]]gand ��0 = �� [ f<�v0 ( �v1>g.If l = <become : a; a 0>, then a 0 is fresh, �(a) = [R[ := become(v)]] �0(a) = (v),�0(a 0) = [R[ := nil]], and �0 = �. Also ��(a) = [�R[ := become(�v)]] whereR = �R[� := e], and v = �v [� := e]. Take ��0 = ��fa := (�v); a 0 := [�R[ := nil]]gand ��0 = ��.If l = <new : a; a 0>, then a 0 is fresh, �(a) = [R[ := newadr()]] �0(a) = [R[ :=nil]], �0(a 0) = (?a), and �0 = �. Also ��(a) = [�R[ := newadr()]] where R =�R[� := e]. Take ��0 = ��fa := [�R[ := nil]]; a 0 := (?a)g and ��0 = ��.If l = <init : a; a 0>, then �(a) = [R[ := initbeh(a 0; v)]], �(a 0) = (?a),�0(a) = [R[ := nil]], �0(a 0) = (v), and �0 = �. Also ��(a) = [�R[ :=initbeh(a 0; �v )]], where R = �R[� := e], and v = �v [� := e], and ��(a 0) = (?a)..Take ��0 = ��fa := [�R[ := nil]]; a 0 := (�v)g and ��0 = ��.3 E�uniform6.2.6 The Common Expression Reduct TheoremNow we have enough notation and tools to describe the construction of path cor-respondences for expressions with uniform common reducts. We �rst consider thecase of expressions that reduce via purely functional reductions. Then we show howthis construction can be modi�ed to allow for reduction of actor primitives.Theorem (fun-red-eq): If for each �� with domain containing the free variablesof e0; e1, either ej [��] hangs for j < 2, or there is some �ec such that ej [��] reducesin 0 or more �7! steps to �ec uniformly, then e0 �= e1.Corollary (fun-red-eq): The following laws are instances of (fun-red-eq):(red-exp), (beta-v), (ift), (ifn), (ifelim), (isprt), (isprn), (fst), and (snd).Proof : Assume that for each closing �� there is �ec;j such that ej [��] �7! : : : �7!�ec;j j < 2, uniformly, and either �ec;j is (uniformly) stuck for j < 2, or �ec;0 = �ec;1.In either case we call �ec;j the common reduct. We want to show that e0 �= e1. By(ocx) it is su�cient to show that Obs(��[� := e0]) = Obs(��[� := e1]) for any ��that is a closing E-con�guration for e0 and e1. To do this, we show that for any�0 2 F(��[� := e0]) = [�i li�! �i+1 i 2 ./] we can �nd �1 2 F(��[� := e1]) suchthat obs(�0) = obs(�1). (The case with 0 and 1 interchanged is symmetric.)



42 G. Agha and othersInformally, by the uniformity property of computations, we see that replacingoccurrences of e0 by e1 has no e�ect on a computation except where a hole istouched. Using (in�nite macro-steps) we can localize non-uniform steps so thatwhen a hole is touched, reduction to a common reduct occurs in a single multi-step (which involves no event transitions). Thus we may obtain a computation for��[� := e1] by replacing occurrences of e0 by e1 and replacing multi-step transitionsreducing e0[��] to its common reduct by multi-step transitions reducing e1[��] toits common reduct. To insure completeness/fairness of the result, we need to takeaccount of the case where a hole �[��] is exposed, but the multi-step for e0[��]is trivial and hence does not appear as a transition. We do this by inserting thecorresponding multi-step for e1[��] at the point where the hole is �rst exposed. Suchholes then e�ectively disappear, since they are either �lled with a stuck expressionor with the same expression. Now we make this informal argument more rigorous,by the following steps:(1) We analyze the con�gurations occurring in �0 and record occurrences of e0in holes descending from ��. This gives us decompositions ��i[� := e0] of �i.In the cases where a hole is touched such that e0 is its common reduct, we �llthat hole with e0 giving a new E-con�guration ��0i with one less hole, such that��0i[� := e0] is �i. This process of �lling holes with common reducts continuesuntil the transition li is either uniform or touches a hole in which e0 is not itscommon reduct. We also record subsequences of transitions corresponding touniform reduction of such occurrences of e0 to its common reduct.(2) Using (in�nite-macro-steps) we may assume that the path is expressed interms of multi-step transitions such that the recorded subsequences of transitionscorresponding to non-trivial reduction to a common reduct are single multi-steps.We also insert copies of �i for each hole that is �lled with a common reduct,remembering the corresponding decomposition, and insert empty multi-steps be-tween these copies. We also insert a copy of �i and a connecting empty multi-stepfor each hole that occurs in a reduction context that is not touched { becausethe occurrence of e0 is stuck, or because it is a value and placing it in the redexhole produces either a value or a stuck state.(3) Form �1 by �lling the holes of ��i with e1 and replacing multi-steps for e0by corresponding multi-steps for e1. Note that empty multi-steps may expand tonon-trivial reductions of occurrences of e1 to its common reduct.It is easy to see that �1 is a computation path. The argument that it is completeand fair relies on the insertion of multi-steps, and uses the same case analysis thatwas used in the uniform computation lemma.Step (1) We analyze and decompose �0 to obtain(i) for each i < ./, an integer ni and a sequence of decompositions ��i;j for j �ni such that �i = ��i;j[� := e0] for j � ni and such that ��i;ni li�! ��i+1;0uniformly, or the transition touches a hole in which e0 has non-trivial reductionto its common reduct. (We call this entering the hole.) ni will be 0 except in thecase of a hole touched in which e0 is its own common reduct. Then we �ll thathole with the common reduct and redecompose.



Actor Computation 43(ii) The set I of indices of transitions that enter holes(iii) The map J from I to the sequence of indices of transitions corresponding tothe thread of computation that carries out the reduction to the common reduct.This is done incrementally by de�ning sequences In, Jn by induction on n andtaking I = Sn<./ In, and J = Sn<./ Jn. At stage (i; j) we have de�ned Ii, Ji, and��i;j. If j = ni, then the next stage is (i + 1; 0) otherwise it is (i; j + 1).Stage (0; 0) I0 = ;, and J0 is the empty map. ��0;0 = ��.At stage (i; j) There are four cases to consider:(1) li is execution in a hole;(2) li is uniform wrt ��i;j(3) li touches a hole and(3.1) enters the hole(3.2) does not enter the holeCase 1: This case occurs if i is an element of M = Ji(m) for some m 2 Ii. Thusni = j and li = <fun : a> for some a. We move to stage (i + 1; 0) with Ii+1 = Ii,Ji+1 = Ji, ��i+1;0 = ��i;j, and ��i+1;0 = ��i;jfa := [�R[ := �em;k+1]]g where �R,and �em;k+1 are obtained as follows. Let k be the index of i inM . The hole is enteredat stage (m;nm) with ��m;nm(a) = [�R[ := �[��]]]. Let �em;0 = e0[��], let n bethe length of M , and let [�em;k �7! �em;k+1 k < n] be the thread of computationreducing e0[��] to its common reduct �em;n. Note that ��i;j(a) = [�R[ := �em;k]].Case 2: ni = j and we move to stage (i+ 1; 0) with Ii+1 = Ii, Ji+1 = Ji, ��i+1;0such that ��i;j li�! ��i+1;0 uniformly according to the uniformity lemma.Case 3.1: In this case li = <fun : a> for some a. ni = j and we move to stage(i + 1; 0) with Ii+1 = Ii [ fig, Ji+1 = Jifi := Mg, ��i+1 = ��i, and ��i+1 =��ifa := [�R[ := �ei;1]]g where M , �R, and �ei;1 are obtained as follows. Let��i;j(a) = [�R[ := �[��]]], let �ei;0 = e0[��], and let [�ei;k[��] �7! �ei;k+1 k < n+1]be the thread of computation reducing e0[��] to its common reduct �ei;n+1. Byfairness, there is a sequence of indices M = [ik k < n+ 1] with i0 = i, ik < ik+1for k < n + 1 such than M is the macro step corresponding to the above lambdareduction.Case 3.2: We move to stage (i; j + 1) with Ii+1 = Ii, Ji+1 = Ji, ��i;j+1 = ��i;j,and ��i;j+1 = ��i;jfa := [�R[ := e0[��]]]g where a, �R, �� are obtained as follows.a is the focus of li, and ��i;j(a) = [�R[ := �[��]]], with e0[��] equal to its commonreduct.Step (2) The family J(i) for i 2 I satis�es the conditions of (in�nite-macro-step). Hence we may assume that �0 has the form�[��i;0[� := e0] [ ]�! : : : [ ]�! ��i;ni Li�! ��i+1;0[� := e0]] i < ./�where each Li is either a single (uniform) transition, or a multi-step reduction ofan occurrence of e0 to its common reduct, and the E-con�gurations obtained bythe above decomposition method. For each i, if ��i;0(a) = [�R[ := �[��]]], andand there are no transitions Lj for i � j with focus a, and i is the least suchindex, we insert before each transition leading from ��i;0 an an empty transition��i;0[� := e0] [ ]�! ��i;0[� := e0].



44 G. Agha and othersStep (3) We let �1 be the path�[��i;0[� := e1] Li;0�! : : : Li;ni�1�! ��i;ni[� := e1] L0i�! ��i+1;0[� := e1]] i < ./�where L0i is Li if Li is a single (uniform) transition; L0i is the corresponding macro-step reduction of the occurrence of e1 to its common reduct, if Li is a macro-stepor an empty transition.Clearly �1 is a complete computation path. Also the transitions are the sameexcept for points where holes are touched, but these di�erences are not observable.Thus obs(�0) = obs(�1).It remains to check that fairness has been preserved. Suppose some transition lis enabled at stage i in �1. We have three cases:Receive: Suppose l is receipt of <a ( cv>. Then ��i(a) = (�x:�e) and hence l isenabled in �0 at stage i. If l �res in �0 at stage i0 � i, then it also �res at this stagein �1. Suppose l never �res in �0. Then by fairness, there is some i0 > i such that��j(a) is an executing state for j � i0. By construction l is permanently disabledat i0 in �1 as well.UniformExecution: Suppose l is an execution step with focus a where ��i(a) =[�R[ := �r ]]. Then l is enabled in �0 at i, it can not be disabled, and must occurin �0 at some stage i0 � i and hence will occur in �1 at that stage.Hole Touching: Suppose l is an execution step by a with ��i(a) = [�e] where�e = �R[ := �[��]]. First assume e1[��] reduces. If �e[� := e0] does not reduce, thenby construction, the transition is taken in �1 as soon as it is enabled. If �e [� := e0]reduces, then a transition will eventually be taken at a in �0, and the l will betaken at the corresponding point in �1. Suppose e1[��] does not reduce. Then itmust be a value, hence the common reduct. Hence the reduction of e0 is enabledin �0 and will eventually be taken. �R has the form �R0[ := �(�vm; �[��]; �en)]. Ifall the E-expressions �en are E-values, then l must be reduction of the redex in �R0and this is also enabled now, in �0. Otherwise consider decomposition of the �rstnon-value element of �en and repeat this argument. Since we are now looking at asmaller E-expression, we eventually reach the point where the step enabled in �1corresponds to one in �0 and hence will occur eventually.6.2.7 The Proof of the Equivalence of Hanging and Lambda-DivergenceWe now prove (hang-in�n), which says that any two expressions that hang or havein�nite computations are observationally equivalent.Proof (hang-in�n): Assume e0; e1 2 Hang [ In�n . We want to show thate0 �= e1. Let �� = DD �� ��EE be a closing E-con�guration for e0 and e1. Assume�0 2 F(��[� := e0]) = [�i li�! �i+1 i 2 ./]. We want to �nd ��i, and Li, suchthat �i = ��i[� := e0] where ��i = DD ��i ��i EE and, letting �1 = [��i[� := e1] Li�!��i+1[� := e1] i 2 ./], we have �1 2 F(��[� := e1]) and obs(�0) = obs(�1).(Actually, we let holes in �j be �lled by any expression of the same class as ej .) Forthe base case we have ��0 = ��. Assume we have ��i. Suppose e0 2 Hang . Let a be



Actor Computation 45the focus of li. We �rst consider each a 0 other than a such that ��i(a 0) = �R[ :=�[��]]. If e1 2 Hang then we just insert any steps needed to reach the stuck state (weassume that they are already macroized for �0). If e1 2 In�n , then insert the stepto reach the next element of its in�nite sequence. Now we consider the transitionlabel li. If it does not touch a hole, then ��i+1 is given by the uniform transitionlemma. Suppose ��i(a) = �R[ := �[��]]. Then ��i+1 has the same decomposition,just possibly di�erent expressions (of the same class) �lling the holes. h�i6.2.8 The Proofs of the Actor Primitive LawsWe show how to modify the construction for the purely functional case to establishequivalence where reductions may involve actor primitives. The notion of commonreduct is a fragment of an E-con�guration which must be merged with the parentcon�guration. In the equivalences considered below, with one exception, no extrasteps need to be inserted since in every instance either both expressions step, orboth hang. Thus we only need to construct ��i+1 for the hole touching case. Fairnessfollows easily using the same argument as for the functional case. The exception isthe commuting of newadrwith initbeh, which will be treated in more detail below.Proof (triv): Suppose e0; e1 are taken from the pair #(�x); seq(#(�x); nil) where# 2 fsend; become; initbehg. Suppose li is an execution by a with ��i(a) =[�R[ := �[��]]]. We de�ne ��i+1 for each form #(�x).(send(x0; x1)) ��i+1 = ��ifa := [�R[ := nil]]g. Also, ��i+1 = ��i [ f<�v0 (�v1>g, where �v j = xj[��]. (Recall that any holes appearing in messages must beinside lambdas and hence the message is ill-formed and can be ignored.)(become(x0)) ��i+1 = ��ifa := (��(x0)); a 0 := [�R[ := nil]]g where a 0 is a new(anonymous) actor identi�er.(initbeh(x0; x1)) ��i+1 = ��ifa := [�R[ := nil]]; ��(x0) := (��(x1))g. Sincethe step occurs in �0, we may assume a 0 = ��(x0) 2 Dom(��i), and ��i(a 0) =(?a).trivProof (can-b): Suppose e0; e1 are taken from the pairseq(become(v0); become(v1)); seq(become(v0); nil):Assume li is an execution by a with ��i(a) = [�R[ := �[��]]]. De�ne��i+1 = ��ifa := (v0[��]); a 0 := [�R[ := nil]]gwhere a 0 is a new anonymous actor identi�er. We ignore the additional anony-mous actor with state (v1[��]) in the case of two becomes, since it is carried alongunchanged in the remainder of the computation.Proof (can-i): Suppose e0; e1 are taken from the pairseq(initbeh(v ; v0); initbeh(v ; v1)); seq(initbeh(v ; v0); stuck):(The equivalence with stuck replaced by bot follows from (hang-in�n).) Assumeli is an execution by a with ��i(a) = [�R[ := �[��]]]. De�ne��i+1 = ��ifa := [�R[ := bot]]; ��(v) := (��(v0))g



46 G. Agha and othersSince the step occurs in �0, we may assume a 0 = ��(v) 2 Dom(��i), and ��i(a 0) =(?a). O�cially, in �1 ��i+1(a) should be [�R[ := initbeh(v ; v1)[��]]]. But, as inthe proof of (hang-in�n) we treat stuck expressions as indistinguishable.Proof (commutes): Suppose e0; e1 are taken from one of the pairs in the com-mutes lemma, except (n-i). Assume li is an execution by a with ��i(a) = [�R[ :=�[��]]].(s-s)letfx0 := send(v0; v1)gletfx1 := send(v2; v3)geletfx1 := send(v2; v3)gletfx0 := send(v0; v1)geDe�ne��i+1 = ��ifa := [�R[ := efx0 := nil; x1 := nilg[��]]]g�v j = vj[��] for j < 4��i+1 = ��i [ f<�v0 ( �v1>; <�v2 ( �v3>gs�s(s-n)letfx0 := send(v0; v1)gletfx1 := newadr()geletfx1 := newadr()gletfx0 := send(v0; v1)geLet a1 be fresh and de�ne��i+1 = ��ifa := [�R[ := efx0 := nil; x1 := a1g[��]]]; a1 := (?a)g�v j = vj[��] for j < 2��i+1 = ��i [ f<�v0 ( �v1>gs�n(n-n)letfx0 := newadr()gletfx1 := newadr()geletfx1 := newadr()gletfx0 := newadr()geLet a0; a1 be fresh and de�ne��i+1 = ��ifa := [�R[ := efx0 := a0; x1 := a1g[��]]]a0 := (?a)a1 := (?a)gn�n(n-i) To complete the proof, we treat the case (n-i). Here e0; e1 are taken fromthe pairletfx0 := newadr()gletfx1 := initbeh(v ; v1)geletfx1 := initbeh(v ; v1)gletfx0 := newadr()ge:Again, we follow the construction of x5.2.6. In step 1. the only problematic situationis case 3 where a hole is touched but not entered. This can only happen if e0



Actor Computation 47attemps the initialization �rst. Suppose ��i;j(a) = [�R[ := �[��]]], such that wheninitbeh(v ; v1) is placed in the expression hole no transition is enabled. We insert aconditional multi-step which is the empty sequence of steps when �lling holes withe0 and the newadr transition when �lling holes with e1. ��i;j+1(a) is obtained by�lling the hole with the stuck initbeh. As before we do not distinguish betweendi�erent stuck expressions placed in the hole. Also, in �1 there will be an extrauninitialized actor carried along untouched for each such insertion. These extrauninitialized actors can also be ignored. The remainder of the construction is asbefore. n�icommutes 6.3 Equivalence by Two Stage ReductionThere is one remaining equivalence to establish using common reducts:(if.lam) �x:if(v ; e1; e2) �= if(v ; �x:e1; �x:e2) x 62 FV(v)The intuitive reasoning behind this equivalence is that for any closing substitution(allowing holes, and actor addresses in the range) the two expressions reduce toequivalent lambda expressions. In fact these lambda expressions have the propertythat when applied to any argument they reduce to a common expression.The method developed so far requires reduction to a common local con�gurationin one stage. Thus we must elaborate the notion of a template to provide for twostages. Speci�cally, we add a family of holes for lambda-abstractions, which wedenote by .j for j 2 J for some J 2 N[ f!g.6.3.1 LE-SyntaxSyntactic classes X with both expression and lambda holes are indicated by themark �.X, and we pre�x the names of these classes by LE-, thus we have LE-expressions, LE-con�gurations, etc. The de�ning clauses are as before with two ex-ceptions: lambda holes are added to the clause generating values; and app(.j [�.�]; �.v)is omitted from the class of LE-redexes. The latter exception is made in order topreserve the property that redexes reduce uniformly.De�nition (�.V, �.E , �.S, �.R, �.E rdx):�.V= A t [X[ �X:�.E [ pr(�.V; �.V) [ .N[�.S]�.E = �.V[�en(�.En) [ f�[�.S]g�.S=X f! �.V�.R= f g [�m+n+1(�.Vm; �.R; �.En)�.E rdx = �en(�.Vn)� app(.j[�.S]; �.V)Note that lambda holes can occur in the range of a value substitution, and as argu-ments in redices, except in the function position of an application. Using the doubleindex convention, we write �.e[.j := 'j ] to indicate the simultaneous �lling of theholes .j with the corresponding lambdas 'j from some previously speci�ed family



48 G. Agha and othersf'jgj2J of lambda abstractions. The de�nitions of substitution, free variables, andhole �lling are entirely analogous to the expression hole case and we omit them.The decomposition lemma is modi�ed as follows. An LE-expression �.e is eitheran LE-value expression (element of �.V), or it can be decomposed uniquely intoan LE-reduction context with redex hole �lled with either an LE-redex, an LE-expression hole, or an application of a lambda hole (to an LE-value).Lemma (LE-expression decomposition):(0) �.e 2 �.V; or(1) (9!�.R; �.r)(�.e = �.R[ := �.r ]); or(2) (9!�.R; �.�)(�.e = �.R[ := �[�.�]]); or(3) (9!�.R; �.�; �.v )(�.e = �.R[ := app(.j[�.�]; �.v )])6.3.2 LE-computationThe de�nition of LE-con�gurations and LE-reduction are the natural extensions ofE-con�gurations and E-reduction to the situation with lambda abstraction holesadded. The de�nition of hole touching and the uniform computation lemmas gen-earalize easily to this situation.De�nition (�.K):�.K = DD �.A c �.M EE��where�.A c = A d f! �.A s�.A s = (�.V) [ [�.E] [ f(?Ad)g�.M = <�.V( �.V>and the constraints speci�ed in the de�nition of actor con�gurations in x2. aresatis�ed. We let �.� range over �.K, and �.� range over �.A c. Filling expressionand abstraction holes of an LE-con�guration, LE-actor map, LE-actor state, LE-multiset of messages, and LE-messages is de�ned in the obvious manner.An LE-con�guration, ��, is closing for e and a family f'jgj2J of lambda abstrac-tions if (�.�[� := e])[.j := 'j ] is a closed con�guration.De�nition (LE-Reduction): The reduction relations �7! and 7! are extendedto the generalized domains in the obvious fashion, simply by liberally annotatingmetavariables with �.'s. We omit the details.De�nition (LE-hole touching): If �.� = DD �.� �.�EE, then �.� touches ahole at a if �.�(a) = [�.e] and either �.e = �.R[ := �[�.�]] or �.e = �.R[ :=app(.j[�.�]; �.v )]. A transition from �.�[� := e][.j := 'j ] touches a hole at a if thefocus actor of the transition is a and �.� touches a hole at a.Note that since an abstraction hole must be �lled with a value, they are nottouched in the same ways as arbitrary expression holes, in particular if the transition



Actor Computation 49is a <fun : a> execution step where ��(a) = [�e] and �e = �.R[ := app(�x:�e 0; .j[�.�])],then this is not considered touching the hole, .j.The (E-Uniform Computation) lemma generalizes to the situation with addedabstraction holes.Lemma (LE-Uniform Computation):(1) If �.� l�! �.�0, then �.�[� := e][.j := 'j ] l�! �.�0[� := e][.j := 'j ] for anyvalid �lling expression e and family of lambda abstractions 'j.(2) If �.� has no transition with focus a (and a is an actor of �.�), then either �.�touches a hole at a or �.�[� := e][.j := 'j] has no transition with focus a for anyvalid �lling expression e and family of lambda abstractions 'j.(3) If � l�! �0 and � = �.�[� := e][.j := 'j ], then either the transition touches ahole or we can �nd �.�0 such that �0 = �.�0[� := e][.j := 'j ] and �.� l�! �.�0.Proof : Similar to the proof of (E-uniform computation) Now there are twocases in which a hole is touched in the decomposition of �.e , namely cases (2) and(3) of the decomposition lemma.6.3.3 LE-Main TheoremNow we have developed su�cient notation and machinery to state and prove ageneral result giving equivalence via two-stage reduction.Theorem (eq-reduct): Let e0; e1, '0;j; '1;j for j < J be such that for each �.�we can �nd j 2 J such that ei[�.�] reduces uniformly via �7! steps to 'i;j[�.�] for i <2, and that for each �.�, �.v , and j 2 J we can �nd �.ec such that app('i;j[�.�]; �.v )reduces uniformly via �7! steps to �.ec for i < 2. Then e0 �= e1.Corollary (eq-reduct): (if.lam) is an example. Here we takee0 = �x:if(v ; ea; eb)e1 = if(v ; �x:ea; �x:eb) where x 62 FV(v)J = fa; bg'0;j = �x:if(v ; ea; eb)'1;j = �x:ej for j 2 JProof : Let �.� = DD �.� �.�EE be a closing LE-con�guration for e0; e1; '0;j; '1;jj 2 J . Assume �0 2 F(�.�[� := e0][.j := '0;j]) = [�i li�! �i+1 i 2 ./]. We want to�nd �.�i, and Li, such that �i = �.�i[� := e0] and, letting �1 = [�.�i[� := e1][.j :='1;j] Li�! �.�i+1[� := e1][.j := '1;j] i 2 ./], we have �1 2 F(�.�[� := e1])and obs(�0) = obs(�1). At each stage i we �rst consider dangling steps. Suppose�.�i(a) = [�.R[ := �[�.�]]] and the reduction of e0 is trivial, i.e. e0[�.�] = '0;j[�.�]for some j. Then we pre�x Li with the transitions for e1[�.�] �7! '1;j[�.�] and convertthe E-hole to .j. This is done for each a 2 Dom(��i) meeting the condition.Now we consider the decomposition of the con�guration at stage i+1 in the case litouches a hole. Suppose li is an execution by a with �.�i(a) = [�.R[ := �[�.�]]]. By



50 G. Agha and othersthe elimination of `dangling steps' we may assume that e0 is not a value expressionand hence the execution occurs at the hole. Suppose also that ei[�.�] �7! 'i;j[�.�].De�ne �.�i+1 = �.�ifa := [�.R[ := .j[�.�]]]g.Suppose li is an execution by a with �.�i(a) = [�.R[ := app(.j[�.�]; �.v )]].Suppose also that 'i;j [�.�] reduces to ec[�.�] by �7! steps. De�ne �.�i+1 = �.�ifa :=[�.R[ := ec[�.�]]]g.It is easy to check (as in the proof of (fun-red-eq)) that fairness is preserved.6.4 Equivalence of Reduction ContextsTo establish the equivalence of reduction contexts, we de�ne templates for syntacticentities | expressions, reduction context, redexes, con�gurations |with holes to be�lled by a reduction context. We then proceed as before, to show how con�gurationscan be suitably decomposed in order to de�ne the desired path correspondences.6.4.1 R-SyntaxWe use � for reduction context holes and signify the corresponding syntactic entitieswith a mark �. We pre�x names of templates for syntactic classes by R-, thusexpression templates are called R-expressions, etc.De�nition (�E �V):�V= A t [X[ �X:�E [ pr(�V; �V)�E = �V[�en(�En) [ ��S[ := �E ]�S=X f! �V�e[� := R] is the result of �lling R-holes in �e with R. We give only the clause forthe hole case in the recursive de�nition of �lling.De�nition (�e[� := R]):(���[ := �e])[� := R] = R[�][ := �e[� := R]]where � = ��[� := R] = �x 2 Dom(��):��(x)[� := R]De�nition (�R �E rdx):�R= f g [�m+n+1(�Vm; �R; �En) [ ��S[ := �R]�E rdx = �en(�Vn)The clauses directly involving holes in the de�nitions of hole �lling for R-reductioncontexts are:[� := R] =[ := �e] = �e(���[ := �R])[� := R] = R�[ := �R[� := R]]where � = ��[� := R] = �x 2 Dom(��):��(x)[� := R]



Actor Computation 51(���[ := �R])[ := �e] = ��� [ := �R[ := �e ]]Note that �lling R-holes in R-expressions, R-reduction contexts, or R-redexes witha reduction context yields an expression, a reduction context, or redex, respectively.An R-expression �e is either an R-value (element of �V) or it can be decomposeduniquely into an R-reduction context �lled with either an R-redex or an R-hole.Lemma (R-expression decomposition):(0) �e 2 �V; or(1) (9!�R; �r)(�e = �R[ := �r ]); or(2) (9!�R; ��; �v )(�e = �R[ := ���[ := �v ]])Proof : An easy induction on the structure of �e.6.4.2 R-Con�gurationsDe�nition (�K): An R-con�guration for reduction contexts �� is formed like acon�guration, but using R-expressions instead of simple expressions.�K = DD �A c �M EE���A c = A d f! �A s�A s = (�V) [ [�E] [ f(?Ad)g�M = <�V( �V>We let �� range over �K, and �� range over �A c. Filling holes of an R-con�gurationis analogous to �lling holes of an E-con�guration. An R-con�guration �� is closingfor R if ��[� := R] is a closed con�guration.6.4.3 R-ReductionDe�nition (touching R-holes): A transition l from ��[� := R] touches an R-hole at a if l is an execution transition with focus a and execution state of �� at adecomposes according to case (2) of the decomposition lemma.6.4.4 R-Uniform ComputationLemma (Uniform Computation): An R-redex reduces or hangs uniformly(for a given enabling occurrence in a con�guration). Hence transitions not touchingan R-hole are uniform. More precisely, if ��i[� := R] li�! �i+1, with focus a, thatdoes not touch an R-hole at a, then li is either a receive or an execution transitionin which the execution state of ��i at a decomposes according to case (1) of thedecomposition lemma. Let ��i = DD ��i ��i EE. Then the decomposition of �i+1 =DD ��i+1 ��i+1 EE is de�ned as follows.



52 G. Agha and othersReceive: In the receive case we must have that ��i(a) = (�x:�e). Thus ��i+1 =��ifa := [app(�x:�e ; cv)], and ��i = ��i+1 + <a ( cv>.Uniform execution: In the uniform execution case ��i(a) = [�e]. where �e hasthe form �R[ := �r ]. In this case the step is independent of what �lls the holes.Thus we can �nd ��i+1 such that ��i li�! ��i+1 uniformly.Now we show how to establish equivalence of expressions of the form Rj [ := e]for j < 2 where the Rj [ := v ] have a common reduct for any value expression.Theorem (eq-r): If for z fresh, there is some e such that Rj [ := z] reducesuniformly via 0 or more �7! steps to e for j < 2, then R0[ := e] �= R1[ := e] forany e.Corollary (eq-r): (app), (cmps), (id), (letx), (let.dist), (if.dist) are instancesof (eq-r).In fact we prove a slightly more general result, since we use a weaker assumptionon the reduction contexts: for each ��, �v , we can �nd �ec such that R��j [ := �v ]reduces uniformly via 0 or more �7! steps to �ec for j < 2.Proof (eq-r): Suppose R0, R1 are reduction contexts that we wish to establishthe observational equivalence of. That is, we want to show R0[ := e] �= R1[ := e]for all expressions e. Let �� = DD �� ��EE be a closing R-con�guration for R0;R1.Assume �0 2 F(��[� := R0]) = [�i li�! �i+1 i 2 ./]. We want to �nd ��i, andLi, such that �i = ��i[� := R0] and, letting �1 = [��i[� := R1] Li�! ��i+1[� :=R1] i 2 ./], we have �1 2 F(��[� := R1]) and obs(�0) = obs(�1). As in theexpression context case, we can focus our attention on the construction of the actorcon�guration part, since here also deliverable messages cannot have holes. Assumewe have ��i and consider cases on the transition label li. we have three cases toconsider. For the base case we have ��0 = ��. At stage i suppose ��i(a 0) = �R[ :=���[ := �v ]]. If R��0 [ := �v ] is the common form (i.e. the reduction is trivial), thenwe pre�x Li with steps for reduction of R��1 [ := �v ] to common form and removethis hole. This is carried out for each a 0 in the domain of ��i.Now, suppose li is an execution with focus a that touches a hole. Thus ��i(a) =[�e] where �e has the form �R[ := ���[ := �v ]]. Suppose also that R��j [ := �v ] �7!�ec for j < 2. Then we de�ne ��i+1 = ��ifa := [�R[ := �ec]].Let �1 = [��i[� := R1] Li�! ��i+1[� := R1] i < ./] be the constructed computa-tion path. Note that the transitions are the same except for the points where holesare touched, but these di�erences are not observable. Clearly, under the assump-tions on Rj, �1 is a computation path. It remains to show that the constructionpreserves fairness.Suppose some transition l is enabled at stage i in �1. If l is a receive or uniformexecution, then l is also enabled in �0 at stage i and will eventually occur, uniformly.Suppose l is an execution step by a with ��i(a) = [�R[ := ���[ := �v ]]]. EitherR��0 [ := �v ] is in common form and the transition occurs as soon as it is enabled in�1, or a transition is enabled at this hole in �0. This transition will eventually occur.If R��1 [ := �v ] is not in common form, l will happen in �1 at the same stage. IfR��1 [ := �v ] is in common form, then we must consider whether l occurs at the hole



Actor Computation 53{ i.e. whether or not the common form is an R-value expression. If l occurs at thehole, then the same transition is now enabled in �0 and will eventually occur in bothpaths. Otherwise consider the decomposition after the transition in �0. As shownbefore, this reduces to considering a proper subexpression of �R[ := ��� [ := �v ]]and the process will eventually terminate with a uniform execution.eq�r 7 DiscussionIn this paper we presented an operational semantics of actor computation. The ac-tor language is an extension of a call-by-value functional language by primitives forcreating and manipulating actors. Central to the theory is the concept of an actorcon�guration that makes explicit the notion of open system component. A composi-tion operation on actor con�gurations is de�ned. It is associative, commutative, hasa unit, and is thus a �rst step towards an algebra of con�gurations. The operationalsemantics is de�ned by a labelled transition relation on con�gurations. This notionof computation incorporates fairness is an essential way. This operational semanticsis used to de�ne a notion of observational equivalence of expressions based on tra-ditional operational and testing equivalence. An interesting consequence of fairnessis that the classic three testing equivalences collapse to two. Methods for establish-ing equivalence of expressions are developed and a plethora of laws of expressionequivalence that incorporates the equational theory of the embedded functionallanguage are presented. We expect that these methods will be useful in developingequational theories for other concurrent extensions of functional languages such asCML or FACILE. 7.1 Future DirectionsThe theory presented is perhaps best viewed as a starting point for further researchrather than a �nal product. In particular there at least four directions for furtherresearch. First, work is needed to develop an algebra of operations on con�gurations.Treating con�gurations as objects would allow us to abstract over speci�c linguisticconstructs. Second, a systematic study of notions of equivalence within the actortheory, including notions of con�guration equivalence . Third, developing a logic fromgul: what does thismean? Sounds likemore of the same.Should say whatthis would give us.for specifying components as actor con�gurations which would provide methods forverifying that programs implementing components meet their speci�cations as wellas methods for re�ning speci�cations into implementations. Finally, it would beuseful to determine whether or not there is a context lemma (similar to (ciu)) forobservational equivalence of expressions? . is ev-eryone supposed toknow ciu and whythey should care?In hindsight, the theory as presented here might bene�t from replacing thenewadr, initbeh choice of language primitives by a letactor primitive, and bymaking the operational semantics truly concurrent. Work is in progress to formalizethe semantics presented in this paper in the PVS proof development system (Owreet al., 1992) and to develop mechanically checked proofs of the main theorems.This is a �rst step towards building of a set of tools for computer aided speci�ca-
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Actor Computation 578 Index of Notations (Not including x5)Symbol Description xN The natural numbers, i; j; : : : ; n 2 N 1:3Y n Sequences from Y of length n, �y = [y1; : : : ; yn] 2 Y n 1:3Y � Finite sequences from Y 1:3[] The empty sequence 1:3Len(�y) The length of the sequence �y 1:3u � v The concatenation of the sequences u and v 1:3Last(u) The last element of the sequence u 1:3P![Y ] Finite subsets of Y 1:3M![Y ] Finite multi-sets with elements in Y 1:3Y0 f! Y1 Finite maps from Y0 to Y1 1:3Y0 ! Y1 Total functions from Y0 to Y1 1:3Dom(f) The domain of the function f 1:3Rng(f) The range of the function f 1:3ffy := y0g An extension to, or alteration of, the function f 1:3fcY The restriction of f to the set Y 1:3X A countably in�nite set of variables, x; y; z 2X 2:1A t Atoms 2:1t; nil Atoms playing the role of booleans 2:1Gn n-ary algebraic operations 2:1F Operations, � 2 F 2:1Fn n-ary operation symbols 2:1F0 Zero-ary operation symbols � fnewadrg 2:1F1 Unary operation symbols � fisatom; isnat; ispr; 1st; 2nd; becomeg 2:1F2 Binary operation symbols � fpr; initbeh; sendg 2:1F3 Ternary operation symbols � fbrg 2:1L �-abstractions, �x:e 2 L 2:1V Value expressions, v 2V 2:1E Expressions, e 2 E 2:1�x:e Abstractions 2:1app(e0; e1) Application 2:1�(�e) Application of operations 2:1if(e0; e1; e2) Conditional branching 2:1letfx := e0ge1 Lexical variable binding 2:1seq(e1; : : : ; en) Sequencing construct 2:1



58 G. Agha and othersSymbol Description xFV(e) The free variables of the expression e 2:1e[x := e0] The result of substituting e0 for x in e 2:1C Contexts, C 2 C 2:1� The hole in contexts 2:1C[e] The result of �lling the context with e 2:1A d Actor addresses, identi�ed with X 2:2A s Actor states, (?a); (b); [e] 2 A s 2:2(?a) An uninitialized actor created by a 2:2(b) An actor with behavior b ready to accept a message 2:2:1[e] A processing actor with current computation e 2:2:1M Messages, <V(V>2 M 2:2:1cV Communicable values, cv 2 cV 2:2:1DD� �EE�� An actor con�guration with:� { an actor map� { a multi-set of messages� { the receptionists� { the external actors 2:2:1K Actor con�gurations, � 2 K 2:2:2Erdx The set of redexes, r 2 Erdx 2:2:2R The set of reduction contexts, R 2 R 2:2:2The reduction context hole 2:2:2�7! The reduction relation for functional redexes, e0 �7! e1 2:2:27! The reduction relation for con�gurations, �0 7! �1 2:2:2�0 l�! �1 �0 7! �1 via the rule labelled by l 2:2:2Labels : Transition labels, l 2 Labels 2:2:2<fun : a> A functional transition 2:2:2<new : a; a 0> newadr redex transition with focus a 2:2:2<init : a; a 0> initbeh redex transition with focus a 2:2:2<bec : a; a 0> become redex transition with focus a 2:2:2<send : a;m> send redex transition with focus a 2:2:2<rcv : a; cv> The receipt of a message with focus a 2:2:2<out : m> A message exiting the con�guration 2:2:2<in : m> A message entering the con�guration 2:2:2



Actor Computation 59Symbol Description xT (�) All �nite sequences of labeled transitions from �, � 2 T (�) 2:2:3T 1(�) the set of all computation paths in T (�), � 2 T 1(K) 2:2:3./ 2 N[ f!g The length of a �nite or in�nite sequence 2:2:3C�g(�; L; i) The ith con�guration of the computation from � via L 2:2:3� L�! �0 A multi-step transition 2:2:3F(�) the fair subset of T 1(�) 2:2:4event A zero-ary primitive/observation 3:1<e : a> An observation transition 3:1DD�; [C]a �EE An observing con�guration 3:1O The set of observing con�gurations, O 2 O 3:1s Signi�es that an event transition occurs 3:1f Signi�es that an event transition does not occur 3:1obs(�) The s=f classi�cation of the path � 3:1Obs(�) The s=f classi�cation of the con�guration, �, 2 fs; f ; sfg 3:1e0 �=1 e1 Testing or Convex or Plotkin or Egli-Milner equivalence 3:2e0 �=2 e1 Must or Upper or Smyth equivalence 3:2e0 �=3 e1 May or Lower or Hoare equivalence 3:2e0 �= e1 Operational equivalence (either �=1 or equivalently �=2) 3:2Hang The set of all stuck expressions, stuck 2 Hang 4:1In�n The set of all diverging expressions, bot 2 In�n 4:1


