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A single mechanism is responsible for three pathologies of induction

algorithms: attribute selection errors, over�tting, and oversearching. In

each pathology, induction algorithms compare multiple items based on

scores from an evaluation function and select the item with the maximum

score. We call this a ( ). We analyze

the statistical properties of and show how failure to adjust for

these properties leads to the pathologies. We also discuss approaches

that can control pathological behavior, including Bonferroni adjustment,

randomization testing, and cross-validation.

Inductive learning, over�tting, oversearching, attribute selection,

hypothesis testing, parameter estimation
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This paper de�nes and analyzes ( ).

are ubiquitous in induction algorithms as well as other AI algorithms.

have important statistical properties, and failure to adjust for these properties

produces three pathologies of induction algorithms | attribute selection errors,

over�tting, and oversearching.

The contribution of this work is to identify a single statistical mechanism

underlying these pathologies. All induction algorithms implicitly or explicitly

make statistical inferences, but nearly all make them incorrectly. Understanding

why these inferences are incorrect explains the pathologies themselves, identi-

�es potential solutions, and explains why previously proposed solutions have

succeeded and failed.

Before discussing in induction algorithms, let's begin with an analogy:

Suppose you are deciding whether to hire an investment advisor. This per-

son's job will be to predict whether the stock market will close up or down on

any given day. You hope to avoid hiring a charlatan | someone whose predic-

tions are no better than chance. To evaluate a candidate, you devise a test: the

candidate will make predictions for the next 14 days, and if 11 or more predic-

tions are correct, you will conclude that the candidate is not a charlatan. The

threshold of 11 is chosen because, if there is a 0.50 probability of a charlatan

predicting correctly on any one day, there is only a 0 0287 probability that he

or she will predict correctly on 11 of the next 14 days. Therefore, you reason,

if a candidate passes the eleven-or-more test, he probably is not charlatan, and

the chances of making a mistake by hiring him are no more than 0 0287.

Applied to only a single candidate, your logic is impeccable. However, what

if you gather ten candidates, record each of their predictions for 14 days, select

the candidate with largest number of correct predictions, and then apply the

test to that candidate? A test on just one candidate has a 0 0287 chance of

producing an error, but the overall probability an error depends on the number

of candidates, , and is 0 0287 only if = 1. When 1, charlatan has a

0 0287 probability of passing the test and, in general, the probability of selecting

a charlatan is no greater than 1 (1 0287) . If = 10, the probability is

no greater than 0 253. By not adjusting for the number of candidates, you

underestimate by roughly an order of magnitude the probability that

(or alternatively, ) will pass the eleven-or-more test.

Given a su�ciently large pool of charlatans, you can practically guarantee that

at least one of them will achieve performance level, but this doesn't mean

the candidate in question is performing better than chance.
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3 Multiple Comparison Procedures and Statis-

tical Inferences

Generate items

Calculate a score for each item

Select the item with the maximum score

sampling distribution

all

Many induction algorithms make inferences that are directly analogous to de-

ciding whether to hire an investment advisor. We discuss three instances of

such inferences in section 4, but to understand the analogy, let's analyze the

investment advisor example in more detail.

The decision to hire an investment advisor can be divided into two parts:

selecting the top-scoring candidate and inferring whether that candidate is per-

forming better than chance. Selecting the top-scoring candidate uses a multiple

comparison procedure (MCP):

1. | Find candidates.

2. using an evaluation function and data

sample | Calculate a score for each candidate where is the number

of correct predictions and is the past fourteen days of stock market

activity. That is, = ( ).

3. | Select the candidate with

the largest number of correct predictions.

Any score is inherently statistical because it is based on a particular data

sample , and di�erent samples will produce di�erent scores. In statistical

terms, is a speci�c value of a random variable . is de�ned by the

evaluation function , the item being evaluated, the size of the sample, and

the population from which data samples are drawn. For a given and item,

the values for all possible samples of size from a given population de�ne

the of . Similarly, is a speci�c value of a random

variable, , but is de�ned by the items examined, not just a

single item. The sampling distribution of depends on , the number of

items examined.

This di�erence between and is critical to making two types of

inferences based on the score . The example illustrates the �rst type:

using to infer whether the top-scoring candidate is a charlatan. To make

this inference, we compare to a sampling distribution generated under

the assumption that a single candidate is performing at a chance level, that is,

we compare to the sampling distribution for . If is very unlikely

to have been drawn from that sampling distribution, we can conclude that

the advisor is probably not a charlatan. As indicated in the example, using

the sampling distribution of will generally underestimate the probability of

selecting a charlatan. The correct sampling distribution is for , and that

distribution depends on .
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4 Induction Algorithms and Pathologies

The second type of inference can be illustrated by supposing that you and a

friend are both selecting investment advisors. You evaluate the performance of

10 candidates, and your friend evaluates 30 candidates. Can you compare the

score of your best candidate with the score of your friend's best candidate?

Suppose that all the candidates are charlatans, and thus no advisor is better

than another. What is the probability that each top-scoring candidate will

predict correctly for 11 or more of the 14 days? In your case, the probability

is no greater than 0.253, but in your friend's case, the probability is more than

twice that: 1 (1 0287) = 0 583. Merely by examining more candidates,

your friend is more likely to �nd one with a given score for the past 14 days,

even though all the candidates perform at a chance level. In general, if the

number of candidates you evaluate ( ) di�ers from the number of candidates

your friend evaluates ( ), the performance of the top-scoring candidates (

and , respectively) are not directly comparable because they are drawn

from di�erent sampling distributions.

This problem particularly acute if we use as an estimate of the true,

long-run score for the candidate. This long-run score is called the

score, and is generally a poor estimate of it. Suppose, as is quite likely,

that your friend's top-scoring candidate passed our test and predicted correctly

on 11 of the 14 days. Based on this sample performance, we might infer that,

on the population, he will predict correctly more than three-quarters of the

time (11 14 = 0 786). We would be mistaken, however, because your friend's

top-scoring candidate is a charlatan, just like all the others, and his actual

probability of a correct prediction is only 0.50.

Both types of inferences are inherently statistical. The �rst is a problem

of statistical hypothesis testing. We wish to answer a yes-no question about

a candidate (\Are a candidate's predictions better than chance?") based on a

sample score. The second is a problem of parameter estimation. We wish to

estimate the value of a population (i.e., long-run) score based on a sample score

so we can accurately compare candidates (\What proportion of the time will a

candidate predict correctly?"). In both cases, the scores are calculated from a

data sample so they are inherently statistical, regardless of whether statistical

techniques are explicitly used. In both cases, using the score introduces

special problems of statistical inference.

The example of the investment advisor is directly relevant to induction algo-

rithms. Many algorithms use and then make implicit or explicit statis-

tical inferences based on the score . Rather than examining advisors and

their stock predictions for a given two-week period, induction algorithms exam-

ine models and their predictions for a given training set. In nearly all cases,

induction algorithms do not adjust for the number of items when making
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This problem is by no means limited to induction algorithms. Any algorithm that uses

an must consider when making statistical inferences given .

The term \over�tting" is used in several ways in the literature on induction algorithms.

In this paper, it refers to producing models with components that reduce population accuracy

. Other uses are more constraining, requiring that the added components

always harm accuracy.

inferences.

For example, induction algorithms use to decide which of several

variables to use in a model component (e.g., which variable to use at a node in

a decision tree), to decide whether to add a component to an existing model

(e.g., whether to add a term to a linear regression equation), and to select

among several di�erent models. In each of these contexts, empirical studies

have revealed an associated pathology | , ,

and , respectively. Each pathology occurs because of incorrect

statistical inferences given the score . In one case | over�tting | the

inferences can be viewed as statistical hypothesis tests. In the two other cases

| attribute selection errors and oversearching | the inferences can be viewed

as parameter estimates.

Below, we formally describe these pathologies and highlight their essential

similarities; over�tting �rst, then attribute selection errors and oversearching.

Formal proofs of the e�ects described in this section are provided in section 5

and in several appendices.

Errors in adding components to a model, usually called , are probably

the best known pathology of induction algorithms (Einhorn 1972; Quinlan 1987;

Quinlan & Rivest 1989; Mingers 1989a; Weiss & Kulikowski 1989; White &

Liu 1995; Oates & Jensen 1997). In empirical studies, induction algorithms

often add spurious components to models. These components do not improve

accuracy, and even reduce it, when models are tested on new data samples.

Over�tting is harmful for several reasons. First, over�tted models are in-

correct; they indicate that some variables are related when they are not. Some

applications use induced models to support additional reasoning (e.g., Brodley

& Rissland 1993), so correctness can be a central issue. Second, over�tted mod-

els require more space to store, and more computational resources to use, than

models that do not contain unnecessary components. Third, the presence of

irrelevant components in an over�tted model requires the collection of unnec-

essary data, increasing the cost and complexity of making predictions. Fourth,

over�tted models are more di�cult to understand. The unnecessary compo-

nents complicate attempts to integrate induced models with existing knowledge

derived from other sources. Over�tting avoidance has been justi�ed solely on

the grounds of producing comprehensible models (Quinlan 1987). Finally, over-

�tted models can have lower accuracy on new data than models that are not
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Some algorithms delay decisions about whether will appear in the �nal model until

a pruning phase, but they still make implicit or explicit hypothesis tests at that time.

Incorrect inferences can occur even when statistical hypotheses are tested correctly. How-

ever, the probability of such errors can be made arbitrarily small.

The term \attribute" in the pathology's name is derived from tree-building algorithms,

where variables are sometimes called attributes.

over�tted. This e�ect has been demonstrated with a variety of domains and

systems (e.g., Quinlan 1987; Jensen 1992).

Over�tting occurs when a multiple comparison procedure is applied to model

components. An algorithm generates a set of components = ,

calculates a score for each component, and selects the component with

the maximumscore . Algorithms decide whether adding to an existing

model would improve the model's predictive accuracy.

Induction algorithms vary widely in how they generate and evaluate com-

ponents, but all algorithms that decide whether to add to a model make

implicit or explicit statistical hypothesis tests. One common form of the test

asks: \Under the null hypothesis that a component will not improve the pre-

dictive power of the model , what is the probability of a score at least as large

as ?" When this probability is very small, algorithms reject the null hypothesis

and infer that adding will improve the predictive power of . This form of

the test is usually applied to the component and its associated

score .

The test is incorrect because it does not adjust for , the number of com-

ponents examined. The test should ask: \Under the null hypothesis that

of the components in will improve the predictive power of the model , what

is the probability of a maximum score at least as large as ?" Over�tting

occurs because the wrong form of the test is used. The algorithm makes an in-

correct inference and adds even though it does not improve the predictive

power of .

Some induction algorithms su�er from another pathology: a systematic, unwar-

ranted preference for certain types of variables. For example, some decision tree

algorithms are far more likely to construct models that use discrete variables

with many values (e.g., home town) rather than discrete variables with relatively

few values (e.g., gender). This behavior occurs even though models that use the

latter variables have consistently higher scores when tested on new data samples.

This pathology is sometimes called . Attribute selec-

tion errors, particularly in tree-building systems, have been reported for more

than a decade (Quinlan 1986; 1988; 1996; Mingers 1989b; Fayyad & Irani 1992;

Liu & White 1994). Such errors are harmful because the resulting models have
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Figure 1: Settings map between a variable's values and a component's output

consistently lower accuracy on new data than other models considered and re-

jected by an algorithm.

Attribute selection errors result from how induction algorithms construct

model components. Examples of model components include nodes in decision

trees, clauses in rules, nodes in connectionist networks, and terms in regression

equations. In general, a component consists of a variable and a setting . The

variable is either drawn directly from the data sample or constructed from a

combination of other variables. A setting de�nes a mapping from 's values

to a component's output.

In decision trees, a setting maps a variable's values to particular branches of

a subtree. For example, �gure 1a shows a node in a decision tree. The setting of

the node ( ) maps values of the variable to

either the left or right branches of the node. Similarly, a setting in a rule maps

a variable's values to a clause's truth value. Figure 1b shows a clause within a

rule. The setting ( ) of the clause in bold maps values of

to either or .

Many algorithms select the setting of a component by using an to �nd

the best setting for each variable in a sample. For simplicity, we will examine

the two-variable case, and later generalize to variables. For two variables in a

data sample , an algorithm generates settings = for the

�rst variable and settings = for the second variable. For

each variable, the algorithm then calculates a score for each setting, and selects

the setting with the maximum score . This produces two settings

and with scores and , respectively.

Ideally, we would like the two maximum scores and to be a good

estimates of their respective population scores and . We denote the pop-

ulation score of item selected by an as rather than because the
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Some early treatments of attribute selection error (e.g., Quinlan 1988) identify a secondary

cause of the pathology | an evaluation function inherently biased toward attributes with

larger numbers of possible values. This source of error has long been corrected in most

induction algorithms yet the pathology remains (Quinlan 1996).

latter implies = ( ), an incorrect interpretation. is

the population score of the item with the maximum sample score, not neces-

sarily the maximum population score. If and are good estimates

of the two population scores and , then we could determine which of

the two variables produces the best overall component. In the terms of classical

statistical inference, we wish to produce accurate estimates of two parameters

| the population scores and of the settings selected by the two .

Unfortunately, the most obvious estimates, and , are biased

and, if = , they are not directly comparable. To place the scores on an

equal footing, each score should be adjusted for its respective , the number

of settings. Otherwise, scores resulting from variables with large will be

incorrectly favored over scores resulting from variables with small . This

e�ect generalizes to variables, where in general = = = .

This is directly analogous to the second part of the investment advisor ex-

ample. Recall that you examined the performance of only 10 advisors while

your friend examined the performance of 30 advisors. All advisors perform at a

chance level, but your friend was far more likely to �nd a high-scoring advisor

merely because he examined more advisors. Similarly, an induction algorithm is

more likely to construct a high-scoring component when the number of settings

is large. Induction algorithms that directly compare

are making the same mistake as we would if we directly compared your top-

scoring advisor with your friend's top-scorer.

A third pathology was recently revealed by several studies (Murthy & Salzberg

1995; Quinlan & Cameron-Jones 1995) examining the behavior of induction

algorithms that e�ciently search extremely large spaces of models. Paradoxi-

cally, these algorithms produce models that are often less accurate on new data

than models produced by algorithms that search only a fraction of the same

space. This pathology, termed , is harmful because the resulting

models have lower accuracy, and because constructing such models uses more

computational resources.

Algorithms that su�er from oversearching examine progressively larger spaces

of models. Initially, an algorithm examines a small space of models =

and selects the model with the maximum score. Then, it ex-

pands the search to a larger space of models = ,

and selects the model with the maximum score. Expansion continues until a

�xed resource bound is reached or until some prede�ned class of models has

been searched exhaustively.
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5 Individual and Maximum Scores
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Searching progressively larger spaces of models involves several applications

of a multiple comparison procedure. As in attribute selection errors, the relevant

inference is which of produces the item with the best population score

given the sample scores . Because the

scores are not directly comparable. Each score should

be adjusted for the number of models examined by each . Otherwise,

scores resulting from with large will be incorrectly favored over scores

resulting from with small .

The validity of both types of statistical inferences made by induction algorithms

| hypothesis tests and parameter estimates | depend on using the correct sam-

pling distribution. The investment advisor example sketched why the sampling

distribution of depends on , the number of items examined by an .

In this section, we provide more general proofs of the e�ect of on the sam-

pling distribution of , and how that distribution compares to the sampling

distribution of an individual score .

Statistical hypothesis tests use sampling distributions directly. By comparing

a score to the sampling distribution of derived under the null hypothesis

, an algorithm can estimate ( ). Alternatively, an algorithm can

use the sampling distribution to derive a such that (

) , where is a given probability of incorrectly rejecting the null

hypothesis.

Even when induction algorithms do not explicitly test statistical hypotheses

(and most do not), they do so implicitly. Nearly all algorithms require that a

component's score exceed a given threshold before the algorithm will include

the component in the �nal model. A threshold serves the same function as a

critical value, and just like a critical value, the threshold should be set based on

a sampling distribution. If it is not, the probabilistic interpretation of exceeding

a threshold is unknown.

The sampling distribution of (or, alternatively, the correct threshold

value) depends on , the number of items examined by an . For simplicity

and concreteness, assume the scores and have speci�c values and

drawn from independent uniform distributions of integers (0 6). The distri-

bution of is shown in Table 1. Each entry in the table represents a joint

event with the resulting maximum score; for example, ( = 3 = 4) has

the result, ( ) = 4. Because and are independent and uniform,

every joint event has the same probability, 1 49, but the probability of a given

maximum score is generally higher; for example, ( ( ) = 6) = 13 49.
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Pr X < x q; Pr X < x q :

Pr X < = Pr X <

X X Pr max x ; x < = =

Pr X x p; Pr X x p :

X X ;X ; : : : ; X

X Pr X x Pr X x

x

X X

n

Pr X = :

Pr max x ; x ; x = : :

P r X Pr X

0 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 4 5 6

3 3 3 3 4 5 6

4 4 4 4 4 5 6

5 5 5 5 5 5 6

6 6 6 6 6 6 6

Table 1: The joint distribution of the maximum of two scores, each of which

takes integer values (0...6).

For independent and identically distributed (i.i.d.) scores , it

is easy to specify the relationship between cumulative probabilities of individual

scores and cumulative probabilities of maximum scores:

If ( ) = then ( ) = (1)

For example, in Table 1, ( 4) = 4 7 (and ( 4) is identical,

because and are i.i.d.), but ( ( ) 4) = (4 7) = 16 49. It

is also useful to look at the upper tail of the distribution of the maximum:

If ( ) = then ( ) = 1 (1 ) (2)

These expressions and the distribution in Table 1 make clear that the dis-

tribution of any individual score from i.i.d. scores underesti-

mates the distribution of . ( ) underestimates ( ) for

all values if the distributions are continuous. Said di�erently, the distribution

of has a heavier upper tail than the distribution of .

This disparity increases with , the number of scores. Consider three scores

distributed in the same way as the two in Table 1. Then,

( 4) = 3 7 = 0 43

( ( ) 4) = 1 (1 3 7) = 0 81

( 4) underestimates ( 4) by almost half its value.

This e�ect can be demonstrated empirically. We draw 30,000 data samples

of 250 instances from a population with a single binary classi�cation variable

and 30 binary attribute variables. All variables are independent and uniformly

distributed. For each attribute, we calculate a score indicating how well it

predicts the classi�cation, using a chi-square statistic as an evaluation function.
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5.2 The Maximum Score and Biased Estimators
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x

x

x

x

This produces values of the scores where each is distributed

as chi-square.

For each of the 30,000 samples, we �nd . The maximum score is found

for the �rst ten scores (e.g., = ( )) as well as all thirty.

The distributions of these 30,000 maximum scores approximate the sampling

distributions for when = 10 and = 30.

Figure 2 shows how the distribution of a single score ( = 1) compares to the

distributions of the maximum scores for = 10 and 30. For 1, the sampling

distribution of diverges from the sampling distribution of ( = 1).

The degree of divergence increases with . In practice, induction algorithms

regularly use for which 100 or even 1000. The number of items

considered by an MCP strongly a�ects the sampling distribution for .

Hypothesis tests will be inaccurate if they compare sample scores to the

sampling distribution for rather than .

Poor parameter estimates are responsible for the pathologies of attribute selec-

tion error and oversearching. Many induction algorithms use the sample score

to estimate , the population score of the item with the maximum sam-

ple score. One way to examine how well estimates is to compare the

expected value of , ( ), to . In statistical terms, an estimator

of a population parameter is said to be unbiased if ( ) = . Below, we

establish that ( ) ( ) for both discrete and continuous random vari-

ables. Then, we use this relationship to show that is a biased estimator

of .

For discrete random variables and = ( ),

( ) ( )

The expected value of the discrete random variable is usually de�ned

as the sum, over all possible values , of the value multiplied by its probability

( ):

( ) = ( )

For scores, each possible value is derived from one or more samples . Each

sample produces only a single value , although many samples may produce the

same value . Because of this many-to-one mapping from samples to values

, the expected value of a discrete random variable can equivalently be de�ned

over all possible samples
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Figure 2: Distributions of for = 1, 10, and 30
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E X < E X :

n

X

X  

( ) = ( ) ( )

where ( ) is the value of for a given sample .

Given that the function selects among the values , for

any score , ( ), where 1 . More succinctly,

. For a given population, and are summed across the same

samples, and those samples have identical probability distributions. Therefore,

( ) ( )

If for one or more samples, , then

( ) ( )

This can also be proven for continuous random variables:

For continuous random variables and =

( ),

( ) ( )

For all non-negative values and = ( )

( ) ( )

Integrating both sides

( ) ( ) (3)

A well-known theorem of probability states that ( ) = ( )

(Ross 1984). So,

( ) ( )

If, for one or more samples, , then

( ) ( )

As before, this e�ect can be demonstrated empirically. Based on the dis-

tributions shown in �gure 2, we can calculate the expected value for each set

of 30,000 scores. Table 2 shows how the expected value of the maximum score

varies with .

Given what we now know about the expected value of , we can prove

that is a biased estimator of .
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5.3 The E�ects of on Bias

Proposition

Proof

Proposition

max

max

max

i i

i i

i max i

i max

i max

i max

max i

max

max

max

max

max a b

max max a b

max

i max i

max

n

E X

 

 E X

X  

X  

 E X :

E X E X  

 E X :

x < x

 < E X :

X  

 

 < E X :

X  

X  

n X

X n n

E X < E X n < n :

X

X x Pr X x > Pr X x

X  

n

MCP

1 10 30

( ) 0.983 3.728 5.501

Table 2: Expected value of chi-square

Given , the population score of the item with the maximum

sample score,

( )

That is, is a biased estimator of the population score .

If every is an unbiased estimator of the population score , then

= ( )

As previously proven, ( ) ( ). Thus, for all

( )

If, for one or more samples, , then

( )

That is, is a positively biased estimator of any , including the population

score of the item with the maximum sample score, so

( )

In words, is a biased estimator of .

We have shown that is a biased estimator of . However, the descriptions

of attribute selection errors and oversearching in section 4 made an additional

claim: that the degree of bias increases with , making the scores and

incommensurable if = .

( ) ( ) for

Proofs for two di�erent cases are provided in appendix A.

To summarize this entire section, the sampling distribution of di�ers

from that of such that for all , ( ) ( ). In addition,

is a biased estimator of , the population score of the item with the

maximum sample score. The degree of bias increases with , the number of

items examined by an .
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6 In
uences on the Maximum Score
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Several factors in
uence the degree to which the sampling distribution of

diverges from the sampling distribution of . For convenience, we de�ne =

( ) ( ). Informally, indicates the probability of error if

one assumes the distributions of and are equal. Increasing increases

the probability of error. We have already shown that, if all other things are

equal, increases with . In this section, we examine three other factors.

increases as: 1) approach independence; 2) sample size

decreases; and 3) ( ) ( ) ( ) approach equality.

Two random variables, and , are independent if knowing the value of one

variable tells you nothing about the distribution of the other (Ross 1984). Dis-

crete random variables are independent if ( ) = ( ) ( ). Continuous

random variables are independent if ( ) = ( ) (

).

In practice, often examine items whose scores are not independent.

For example, decision tree algorithms examine multiple partitions of a contin-

uous variable (e.g., the partitions 1, 2, 3, and 4). These

partitions are certain to have dependent scores because they de�ne related par-

titions. In addition, model components can have dependent scores when they

use variables that are intrinsically dependent (e.g., height and weight).

We will prove that one form of dependence | positive correlation between

scores | decreases . To understand the e�ect informally, consider the e�ect

of positive correlation shown in �gure 3. The �gure shows three possible joint

distributions of and . Each point in a graph represents a joint event

( ). The score is marked on each variable's axis. The points in the

shaded region of each �gure indicate the events where .

In �gure 3a, and are independent. Because of the location of ,

( ) = 0 50. As indicated by the points in the shaded region, (

) = 0 75, making = 0 25. Figure 3b shows the e�ect of strong positive cor-

relation between and . ( ) is only slightly larger than 0.50,

and therefore is nearer to zero. In �gure 3c, the positive correlation of the

scores is perfect. The distribution of is identical to the distribution of ,

( ) = ( ) and thus = 0.

Appendix B contains a formal proof that, for continuous random variables

and ,

for all values where = ( ) ( ), = ( ),

= ( ), and are i.i.d., and are i.i.d., but

and are positively correlated.
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Figure 3: Positive Correlation A�ects ( )

The size of the sample is another determinant of . Decreasing sample size

increases the standard deviation of , increasing the probability of values far

from ( ), thus increasing ( ), and thus increasing . is a

sampling distribution of the score , and thus the standard deviation of

is known as the of the score , denoted . As the size of

approaches the size of the entire population, approaches zero.

In practice, induction algorithms often calculate scores based on small sam-

ples. For example, tree-building algorithms systematically decrease sample size

by repeatedly splitting the original data sample. Starting with a sample size of

1000, a tree with a branching factor of three produces leaves with fewer than

15 instances after only four levels. Lower levels of decision trees will thus have

much larger than higher levels.

We will show that increasing the increases , for all such that (

) = 0 50. This latter restriction on holds true for nearly all situations of

interest | we are nearly always interested in cases where ( ) is very

small, not where this probability is near 0.5.

Consider the graphical example in �gure 4. The standard errors and

are largest in �gure 4a where ( ) 0 50, ( ) 0 75, and

0 25. However, as the standard errors decrease (e.g., �gure 4) these values

all tend toward zero.

Appendix C gives a formal proof that:

where = ( ) ( ), = ( ), =

( ), = = , are otherwise identically and

independently distributed.
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6.3 Di�erence in Expected Value
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Figure 4: Standard Error A�ects ( )

Previous sections assumed that the expected values of individual scores

were equal, an assumption that is often incorrect. For example, if we were con-

structing model components in the domain of medical diagnosis, expected values

would be equal only if all diagnostic tests and symptoms were equally useful in

predicting disease. In reality, the utility of diagnostic signs varies greatly, and a

similar situation prevails in most induction problems | the scores for di�erent

models, components, and settings rarely have identical expected values.

For convenience, we de�ne = ( ) ( ) as the di�erence between

the expected values of two scores and . Below, we prove that varies

inversely with . Figure 5 shows this e�ect graphically. In Figure 5a, ( ) =

( ), ( ) = 0 50 and ( ) = 0 75 (the shaded portion of the

�gure), making = 0 25. In Figure 5c, ( ) ( ) making ( )

( ) 1 0 and 0.

In appendix D, we formally prove that:

where = ( ) ( ), = ( ), =

( ), ( ) = ( ) = ( ) ( ), are otherwise iden-

tically and independently distributed.

Several methods can compensate for the e�ects of and allow valid sta-

tistical inferences about the score . Four are covered below: 1) using a new

data sample to derive scores for the item with the maximum sample score; 2)

using cross-validation to derive scores; 3) constructing a reference distribution
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Figure 5: Expected Value A�ects

for by randomization; or 4) modifying the results of using a standard ref-

erence distribution by a Bonferroni adjustment. The �rst two methods calculate

a score that can be treated as an individual score rather than a maximum

score . The last two methods create a sampling distribution appropriate

to .

The most obvious method to adjust for the e�ects of an is to evaluate

items on a new data sample disjoint from the original sample . Suppose

an selects the component = using the data sample . Valid

statistical inferences about that use must adjust for . However, inferences

about that are based on a new data sample need not consider how

was selected using , as long as shares no instances with . In the

case of the investment advisor analogy, one could test the best candidate on 14

additional days | a new sample. If that candidate passes the eleven-or-more

test based on the new sample, then the probability of incorrectly rejecting the

hypothesis that he or she is a charlatan is not greater than 0.0287.

Several induction algorithms (e.g., Quinlan 1987; Jensen 1992) use new data

to compensate for the e�ects of . They partition the training sample into

two samples, use one sample for , and use the other for hypothesis tests

and parameter estimates for the resulting items.

Cross-validation is a more sophisticated method for obtaining scores based on

disjoint data samples (Kohavi 1995; Cohen 1995; Weiss & Kulikowski 1989).
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Cross-validation divides a sample , with instances, into disjoint sets,

, each of which contains instances. Then, for 1 , an

selects maximum-scoring items based on the sample and those items are

evaluated on the sample . This produces di�erent estimates of accuracy

that are combined to produce a single estimate (e.g., by averaging).

Cross-validation compensates for the e�ects of and partially avoids

the highly variable results obtained by using only a single partition of the data.

However, the method is computationally-intensive (typically, = 10) and its

results can still be highly variable (Kohavi 1995).

Randomization (Cohen 1995; Edgington 1995; Jensen 1992; Noreen 1989) can

be used to construct an empirical sampling distribution. Each iteration of ran-

domization creates a sample that is consistent with the null hypothesis. The

used to obtain the actual score is repeated on , producing a

value from the sampling distribution of under the null hypothesis. A

large number of iterations produces an approximation to the complete sampling

distribution of .

For example, consider the problem of �nding whether any of ten binary

variables is predictive of another binary variable . The most

predictive variable is the one most highly correlated with based on a sample

. Call its correlation . An hypothesis test requires the sampling distri-

bution of under the null hypothesis that is uncorrelated with any of

the ten variables. Randomization can produce an approximate sampling distri-

bution by generating 1000 randomized samples and �nding the correlation of

the most predictive variable in each. Each randomized sample reproduces the

values of but randomly reassigns the values of with respect

to the values of the other variables, thus enforcing the null hypothesis. If

exceeds a signi�cant fraction of the correlations from the randomized samples

(e.g., 95%), we infer it is predictive of .

Randomization tests have several desirable features. They produce refer-

ence distributions appropriate for rather than only . They do not

require that the individual scores examined by an be independent and

identically distributed (requirements of another technique, Bonferroni adjust-

ment, discussed below). Finally, randomization tests can create a reference

distribution for any evaluation function , not just those for which reference

distributions have been analytically derived.

Unfortunately, randomization tests are computationally expensive, requiring

evaluation of randomized samples. Values of are typically greater than 100,

and the resolution of a randomization test depends on . If 100, it is

certainly impossible to make distinctions among probability values that di�er

by less than 1%, and 100 would be necessary before such �ne distinctions

could be made reliably.
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Bonferroni adjustment converts probability values for a single score into

probability values for . One basic form of the Bonferroni adjustment was

given in equation 2. For scores that are i.i.d.:

If ( ) = then ( ) = 1 (1 ) (4)

If we set equal to an actual maximum score calculated for a particular

sample, and determine based on the sampling distribution for a single score

, then equation 4 can be used to determine ( ) under the null

hypothesis. Consider an algorithm that generates 50 models, evaluates each,

and selects the model with the maximum score. If the evaluation function is the

statistic and the maximum value is 7 88, then ( 7 88) = 0 005 using

a chi-square distribution with 1 degree of freedom. The algorithm can use the

Bonferroni adjustment to compensate for evaluating 50 models and conclude

that ( 7 88) = 1 (1 0 005) = 0 222.

Bonferroni adjustment imposes almost no additional computational burden

to adjust for the e�ects of , but equation 4 only holds if the scores

are mutually independent and identically distributed. Figure 6 illustrates how

dependence among scores a�ects Bonferroni adjustment, randomization, and

cross-validation. The experiment is similar to that which produced �gure 2. We

create random data samples, each with a binary classi�cation variable and 20

attribute variables and with varying levels of dependence among the attributes

(measured by median pairwise correlation). We conduct 500 trials for each

level of dependence among the attributes. Each trial uses four methods to infer

whether the correlation between the classi�cation and the best attribute is sig-

ni�cant at the 10% level | a signi�cance test using the distribution of the single

score , cross-validation, randomization, and a Bonferroni-adjusted test. The

y-axis indicates the percentage of trials in which a method inferred a signi�cant

relationship. Ideally, this empirical probability should be 0.10 across all values

of median pairwise correlation. Using the distribution of a single score clearly

fails except when the attributes exhibit complete dependence. Cross-validation

and randomization both accurately adjust for the number of comparisons

over the entire range of attribute dependence. The Bonferroni adjusted esti-

mate is correct for low values of attribute dependence, but not for high values.

Only cross-validation and randomization tests are accurate across all levels of

attribute dependence.

Several previous theories and empirical �ndings in machine learning and statis-

tics implicate the statistical properties of multiple comparison procedures as the

cause of pathologies in induction algorithms. Our work provides explicit proof
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8.1 Multiple Comparisons

Figure 6: How di�erent methods compensate for dependence among scores

of some prior qualitative explanations. For example, over�tting, oversearching,

and attribute selection errors have often been attributed to \
uke" relation-

ships. The statistical properties of explain the frequency of those 
ukes

and indicate e�ective solutions. In other cases, previous work lends support

to the notion that have an important in
uence on the credibility of in-

duced models. For example, the Vapnik-Chervonenkis dimension and minimum

description length principle point toward the number of comparisons as an im-

portant factor in over�tting. Finally, our explanation of the mechanism behind

over�tting, oversearching, and attribute selection errors is enhanced by look-

ing at two related concepts: over�tting avoidance as bias and the bias-variance

tradeo�. Each of these points is elaborated below.

A large statistical literature examines the e�ects of multiple comparisons (Miller

1981). Much of this literature is concerned with experimental design, rather

than the design of induction algorithms. Some work in machine learning (Gas-

cuel & Caraux 1992; Feelders & Verkooijen 1995; Salzberg 1997) also pursues

this former course, correctly noting the e�ect of multiple comparisons on em-

pirical evaluation of learning algorithms.

Only a few induction algorithms explicitly compensate for multiple compar-

isons. (Kass 1980) and (Jensen & Schmill 1997) use Bonferroni

adjustment to compensate for multiple comparisons during tree construction.

(Gaines 1989) uses a Bonferroni adjustment to compensate for com-

paring multiple rules. (Jensen 1991; 1992) uses randomization tests to
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8.2 Model Complexity and Credibility

compensate for comparing multiple classi�cation rules.

The e�ects of multiple comparisons has led some researchers to reject sta-

tistical hypothesis tests entirely. For example, some early tree-building algo-

rithms such as completely dispense with signi�cance tests. According to

the program's authors (Morgan & Andrews 1973; Sonquist, Baker, & Morgan

1971), 's multiple comparisons render statistical signi�cance tests useless.

Similarly, Quinlan (Quinlan 1987) rejects conventional signi�cance tests on em-

pirical grounds in favor of error-based pruning, the current approach used in

.

Despite this infrequent use of statistical tests and the lack of attention to

multiple comparisons, the qualitative explanations for pathologies of induction

algorithms often have statistical overtones. Explanations of over�tting (e.g.,

Mingers 1989a) frequently cite the problem of �tting models to \noise" or

random variation. As noted above, explanations of oversearching (Murthy &

Salzberg 1995; Quinlan & Cameron-Jones 1995) often cite \
uke" models that

are more likely to be discovered with extensive search. Many explanations of

attribute selection errors reference the increased likelihood of �nding spuriously

high scores when components use variables with many possible discrete values

(e.g., Mingers 1989b). Few of these explanations are more than qualitative, and

even fewer include theoretical proofs.

Some of the work that attempts to provide a theoretical basis for avoiding

pathologies, particular over�tting, focuses on tradeo�s between the complexity

and the accuracy of a model. For example, some algorithms explicitly con-

sider both complexity and accuracy when evaluating model components (Iba,

Wogulis, & Langley 1988). Cost-complexity pruning, a technique employed in

the algorithm (Breiman 1984), attempts to �nd a near-optimal

complexity for a given tree through cross-validation.

Several more formal treatments consider model complexity as a way to avoid

over�tting. One such treatment, the Minimum Description Length (MDL)

principle, formally balances accuracy and complexity (Quinlan & Rivest 1989).

MDL characterizes datasets and models by the number of bits required to en-

code them. The total information in a dataset is described as the sum of the

information necessary to encode a model and to encode any exceptions to the

model remaining in . The best model results in the smallest total \description

length" for the data, that is, the smallest sum of model description and descrip-

tion of the remaining data. MDL has been applied to avoid over�tting (Quinlan

& Rivest 1989) and attribute selection errors (Quinlan 1996) in decision trees.

The Vapnik-Chervonenkis (VC) dimension also links complexity and over-

�tting. It characterizes a relationship between an hypothesis space and an

instance space (Blumer 1989). If at least one member of can distin-

guish between any possible dichotomy of , then is said to be \shattered" by
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8.3 Over�tting Avoidance as Bias

H. The VC dimension of is equal to the largest number of instances in that

can be shattered by . Thus, if an induction algorithm can select any member

of as its �nal model, and the training sample is smaller than the VC di-

mension, then it is possible to achieve perfect classi�cation even if there is no

relationship between the (binary) classi�cation variable and the other variables.

In theory, at least, the VC dimension compensates for multiple comparisons, but

provides little guidance about how to construct realistic learning algorithms.

Despite this substantial body of research on complexity, there exists little

theory for why complexity and over�tting should be related. A notable excep-

tion is Pearl's 1978 paper \On the complexity and credibility of inferred models"

(Pearl 1978). Pearl explains why complexity should be related to accuracy |

the complexity of the �nal model is often related to the number of intermedi-

ate models (or components) that have been compared during its construction.

Comparing many models, in turn, makes over�tting more likely. Pearl's analysis

shows persuasively that complexity is merely a surrogate for multiple compar-

isons.

Like Pearl, it is probable that some researchers understand that complexity

is a mere surrogate for multiple comparisons, but it is easy to confuse the two.

Complexity is often a poor indicator of the number of comparisons. First, al-

gorithms can search di�erent proportions of the space of possible components.

Some algorithms might search exhaustively, while others employ strong

search biases. Both could construct models of the same complexity, but with

vast di�erences in the number of comparisons. Work in oversearching demon-

strates precisely this e�ect. In many cases, extensive search produces models

that are less accurate and equally complex as models produced by less extensive

search. Second, the relationship between complexity and number of compar-

isons depends on the number of variables in the dataset . If contains many

variables, an algorithm might evaluate thousands of components in order to

construct a relatively simple �nal model. If contains only a few variables,

the same algorithm would have to evaluate far fewer components to construct

a �nal model of the same complexity. The �nal models constructed in the two

cases would be of the same complexity, but would have resulted from radically

di�erent numbers of comparisons.

Intriguingly, while the VC dimension and MDL are usually cast as de�ning

model complexity, both are more closely related to the number of comparisons

made by an induction algorithm. Thus, Pearl's insights, the VC dimension, and

the MDL principle all point toward multiple comparisons as an important factor

in over�tting.

Scha�er (Scha�er 1993) characterizes over�tting avoidance as a learning bias |

that is, a method of preferring one model over another whose appropriateness is

domain speci�c. This view has been extended to more extreme forms, referred
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8.4 Bias-Variance Analysis

Bias errors

Variance errors

to as a \law of generalization performance" or a \no free lunch (NFL) theorem"

(Scha�er 1994; Wolpert 1992; 1994). This work holds that any gain in accuracy

obtained by avoiding over�tting (or by any other bias) in one domain will neces-

sarily be o�set by reduced accuracy in other domains. Thus, over the course of

many induction problems, no over�tting avoidance technique will produce a net

gain in accuracy. These theories are still highly controversial, and they rest on

two unrealistic assumptions: 1) that estimates of true accuracy should exclude

all instances in the sample ; and 2) that all possible assignments of class labels

are equally likely, e�ectively making generalization impossible (Rao, Gordon, &

Spears 1995).

Regardless of the larger claims about generalization accuracy, the work on

over�tting avoidance as bias (particularly Scha�er 1993) reveals an important

fact: avoiding over�tting will not universally improve accuracy. Attempts to

avoid over�tting will decrease accuracy on new data in some situations. How-

ever, the work of Scha�er and others does little to identify the conditions that

lead to such situations. In contrast, understanding the statistical properties of

identi�es when over�tting, attribute selection errors, and oversearching

will be most serious, complementing the work of Scha�er and others.

Several recent analyses of induction algorithms (Geman, Bienenstock, & Dour-

sat 1992; Kohavi & Wolpert 1996) have used a characterization of prediction

errors that appeared originally in the statistics literature. In the context of lin-

ear regression, total error is de�ned as the sum of intrinsic measurement error

and errors due to two other factors: bias and variance. stem from

systematic errors made by the model. In regression, these typically arise from

incorrectly speci�ed models | models that contain incorrect components or

that contain those components in an incorrect functional form.

stem from random errors made by the model. In regression, these typically arise

from errors in parameter estimation | incorrect estimates of the coe�cients for

variables in the regression equation.

can produce both bias and variance errors. Bias errors can increase

because of attribute selection errors and oversearching. For example, if some

components of a decision tree are systematically favored (e.g., because the at-

tributes used by the node has a very large number of discrete values), then

suboptimal components will be added to the model. Models with suboptimal

components are more likely to be incorrectly speci�ed, thus introducing bias

errors. Variance errors can also increase because of over�tting. For example,

decision trees that are overly complex can reduce the number of instances avail-

able at a leaf to estimate the correct label. This will increase the variance of

parameter estimates, thus introducing variance errors. Bias-variance analysis

complements our analysis of , by characterizing the errors introduced by

attribute selection errors, over�tting, and oversearching.
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9 Implications

10 Acknowledgments

The statistical properties of multiple comparison procedures depend strongly

on , the number of items compared. These statistical properties a�ect the

inferences of every induction algorithm that generates and tests models or model

components. Unless they adjust for , algorithms will add useless components

to models, and they will systematically prefer suboptimal models and model

components.

While the e�ects of multiple comparisons on statistical experiments are well

known, their e�ects on induction algorithms have not been well explored. We

have tried to address this gap through theoretical proofs and empirical demon-

strations that relate multiple comparisons to common procedures in inductive

learning. We have also surveyed three approaches to adjusting for multiple com-

parisons: Bonferroni adjustment, cross-validation, and randomization testing.

In addition to the practical implications, however, the properties of multi-

ple comparisons provide a single causal explanation for three phenomena that

have been widely observed in induction algorithms: over�tting, attribute selec-

tion errors, and oversearching. Prior research documents situations where these

pathologies occur, we provide a quantitative and causal explanation of why they

occur.
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considers a subset of the items considered by . In the

simplest case,
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For all scores ,

Because and are summed over the same samples,

( ) ( ) (5)

If, for one or more samples, , then

( ) ( )

and consider disjoint sets of items.

Consider two disjoint sets of random variables, such that

= ( )

= ( )

and a third set such that

= ( )

If all variables are i.i.d., they have the same domains and probability distribu-

tions. Therefore,

( ) = ( )

We know from equation 5 that
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Figure 7: Distributions
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Similarly, for all such that ( ) 0 5, we know that 0 (
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The same proposition can be proven for values of and greater than 0.5.
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