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Abstra
tWe survey the literature on methods for inferen
e and learning in Bayesian Networks 
omposed ofdis
rete and 
ontinuous nodes, in whi
h the 
ontinuous nodes have a multivariate Gaussian distribution,whose mean and varian
e depends on the values of the dis
rete nodes. We also brie
y 
onsider hybridDynami
 Bayesian Networks, an extension of swit
hing Kalman �lters. This report is meant to summarizewhat is known at a suÆ
ient level of detail to enable someone to implement the algorithms, but withoutdwelling on formalities.11 UpdateThe algorithm des
ribed in this report, due to [Lau92℄ (see also [CDLS99, 
h. 7℄), has been implemented aspart of my Bayes Net Toolbox2. However, it 
an be numeri
ally unstable. A di�erent algorithm, whi
h �xesthis problem, is des
ribed in [LJ99℄. Other referen
es to more re
ent material have also been added whereappropriate.2 Introdu
tionWe dis
uss Bayesian networks (BNs [Jen96℄) in whi
h ea
h node is either dis
rete or 
ontinuous, s
alar orve
tor-valued, and in whi
h the joint distribution over all the nodes is Conditional Gaussian (CG) [LW89,Lau92℄ i.e., for ea
h instantiation i of the dis
rete nodes Y, the distribution over the 
ontinuous nodes X hasthe form f(xjY = i) = N(x; ~�(i);�(i)), where N() represents a multivariate Gaussian (MVG) or Normaldensity. (Note that dis
rete nodes 
annot have 
ontinuous parents in this model.) This is the most generalkind of BN for whi
h exa
t inferen
e algorithms are known. A related review arti
le is [RG99℄.We start by dis
ussing how to represent the 
onditional probability distribution of ea
h node, and the jointdistribution this en
odes. We then give an example of a hybrid BN before dis
ussing inferen
e and learningte
hniques.3 Representing the lo
al 
onditional probability distributions3.1 Dis
rete nodesThe 
onditional distribution of a dis
rete node Xi given its parents Pa(Xi) 
an be spe
i�ed by means of atable (
alled a Conditional Probability Table or CPT), whose entries are �ijk = Pr(Xi = kjPa(Xi) = j).Here, j denotes the j'th possible value (instantiation) that Pa(Xi) 
an have. Clearly we requirePk �ijk = 1for all i and j. Note that there are many ways of spe
ifying the 
onditional distribution of a dis
rete nodethat require fewer parameters than a full table, e.g., noisy-OR [Pea88℄, 
ausal intera
tion models [MH97℄,de
ision trees [BFGK96℄, default tables [FG96℄, et
.1Updated 18 August 2000. This work was supported by grant number 442427-21957 awarded to Prof. Russell2www.
s.berkeley.edu/ �murphyk/Bayes/bnt.html
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3.2 Continuous nodesThe 
onditional distribution of a 
ontinuous node Xi given its parents Pa(Xi) 
an be spe
i�ed by a Gaussianfun
tion, whose mean is a linear fun
tion of the parents, and whose 
ovarian
e is �xed. This is the standardlinear regression model. We shall start by assuming that Xi and its parents are real valued s
alars; then weshall 
onsider the ve
tor 
ase, and �nally the 
ase where some of the parents are dis
rete.3.2.1 S
alar 
aseLet node Xi have parents Xk1 ; : : : ; Xkp . Then its 
onditional distribution isf(xijxk1 ; : : : ; xkp) = (2��2)� 12 exp �� 12�2 (xi � ui)2� (1)where ui = �i +Pk2Pa(Xi) bki(xk � �k), and the bki are the \weights" or regression 
oeÆ
ients on the ar
s
oming into node i from its parents. Equivalently, we may writeXi = �i + Xk2Pa(Xi) bki(Xk � �k) + �iWi (2)where Wi � N(0; 1) is a white noise random variable.Alternatively, we might 
onsider the following model in whi
h we don't subtra
t o� the parents' means:Xi = Xk2Pa(Xi) bki Xk + Ci (3)where Ci � N(�i; �i) is a 
olored noise term.3.2.2 Ve
tor 
aseWe 
an imagine a simple extension to the above s
heme in whi
h ea
h node 
an be a ve
tor. In this 
ase,the 
onditional distribution be
omesf(xijxk1 ; : : : ;xkp) = N(xi;ui;�i) = (2�)�n2 j�ij� 12 exp �� 12 (xi � ui)T ��1i (xi � ui)� (4)where ui = ~�i +Pk Bki(xk � ~�k). We 
an view this as multivariate or generalized linear regression:EXi = ui = ~�i +Xk Bki(Xk � ~�k)or EXi = ui = ~�i +Xk BkiXk 2
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Figure 1: (a) A BN with ve
tor-valued nodes. G and H are matri
es. (b) The s
alar BN 
orresponding to(a) in the 
ase where Xi 2 R2. The solid ar
s to Z31 have 
oeÆ
ients whi
h 
orrespond to the �rst rows ofG and H . That is, bX31 = (G11; G12; H11; H12). Similarly, the dotted ar
s to X32 have 
oeÆ
ients whi
h
orrespond to the se
ond rows of G and H .For example, in Figure 1(a), we haveX3 = GX1 +HX2 +Cwhere C � N(~�i;�i) and we write G = B13 and H = B23 to avoid a profusion of subs
ripts.Note that we 
an expand ea
h ve
tor into its 
omponents, yielding the equivalent s
alar network shown inFigure 1(b). However, the ve
tor notation is more 
ompa
t.3.2.3 Dis
rete parent 
aseIf node X has dis
rete parents Y and 
ontinuous parents Z, it has a di�erent mean, 
ovarian
e and weightmatrix for every value of Y . That is,f(xjy = i; z) = N(x; ~�i +Biz;�i):Note that in this 
ase it does not make sense to subtra
t o� the parents' means, sin
e they may depend ontheir dis
rete parents.3.2.4 Continuous parent/ dis
rete 
hild 
aseIf a dis
rete node has 
ontinuous parents (e.g., a threshold unit), we 
an use the probit or logisti
 distribution.Unfortunately, exa
t inferen
e in this 
ase is intra
table (unless all the 
ontinuous nodes are observed). Forone possible approximation, see [Mur99℄.4 Chara
terizing the 
orresponding joint distributionIn the introdu
tion we stated that, if X represents all the 
ontinuous nodes and Y represents all the dis
retenodes, then the joint distribution on X given a spe
i�
 Y = i is a multivariate Gaussian with parameters,3



~�(i) and �(i). We now show how to to 
ompute these parameters as a fun
tion of the the lo
al parametersof ea
h node.4.1 S
alar 
aseWe start by 
onsidering the s
alar 
ase, as in [SK89℄. First we 
ompute � and then ~�.Constru
t a diagonal matrix 
ontaining the varian
es of ea
h node, D = diag(�2i ), and another 
ontainingthe standard deviations, S = diag(�i). Also, 
onstru
t a matrix B in whi
h the i'th 
olumn 
ontains theweight ve
tor for node i. We assume the nodes are numbered topologi
ally, so B is upper triangular. Nowrewrite Equation 2 in ve
tor form as follows:X� ~� = BT (X� ~�) + SWwhere W = (W1; : : : ;Wn) is a ve
tor of all the noise terms. Let E be the innovations or residuals, i.e., thedi�eren
es (due to noise) between the values of X a
tually realized and those predi
ted by the linear model:E def= SW = (I �BT )(X � ~�):Sin
e B is stri
tly upper triangular, (I �BT ) is invertible, so we may writeX� ~� = (I �BT )�1E = UTE = UTSTWwhere we have de�ned UT def= (I �BT )�1, so U = (I �B)�1. Finally, we have� = Var[X℄ = Var[X� ~�℄ = Var[UTSTW℄ = UTSTVar[W℄SU = (UTST )(SU) = UTDU:(This result also holds if we use Equation 3 instead.)Now we 
ompute the global mean, ~�. If we use Equation 2 (i.e., subtra
t o� the parents' means), ~� is justthe lo
al means sta
ked together. To see this, 
onsider the following example, where X1 is the parent of X2.E [X2℄ = E [E [X2jX1℄℄ = E [�2 + b(X1 � �1)℄ = �2If instead we use Equation 3, we need to traverse the graph in topologi
al order to 
ompute ~�. In our simpleexample we haveE [X2℄ = E [E [X2jX1℄℄ = E [�2 + b12X1℄ = b12�1 + �2
4



4.2 Ve
tor 
aseIn this 
ase, D and S will be blo
k diagonal, and B will be blo
k upper triangular. For example, in Figure 1,we haveD = 0��X1 0 00 �X2 00 0 �X3 1A = 0BBBBB��X11X11 �X11X12 0 0 0 0�X12X11 �X12X12 0 0 0 00 0 �X21X21 �X21X22 0 00 0 �X22X21 �X22X22 0 00 0 0 0 �X31X31 �X31X320 0 0 0 �X32X31 �X32X32
1CCCCCAwhere we have ordered the nodes as X11; X12; X21; X22; X31; X32. The global matrix of weights isB = 0� 0 � GT0 HT0 1A = 0BBBBB� 0 0 � � G11 G210 0 � � G12 G220 0 0 0 H11 H210 0 0 0 H12 H220 0 0 0 0 00 0 0 0 0 0

1CCCCCAwhere � represents a value that happens to be 0 (be
ause X does not 
onne
t to Y), whereas 0 represents avalue that must be 0 (be
ause of the topologi
al ordering).4.3 Conditional independen
e properties of Gaussian graphi
al modelsIn this se
tion we will show thatXi ? Xj j (the rest) () Kij = 0 (5)where K = ��1 is the inverse 
ovarian
e matrix (also 
alled the pre
ision matrix) of the joint distribution,and \the rest" means all the other nodes [Whi90, Edw95℄.We 
an represent the joint distribution over all the nodes as�(x; p; ~�;�) = p� exp� 12 (x� ~�)T��1(x � ~�) (6)wherep = (2�)�jxj=2j�j� 12is a normalizing 
onstant to ensure Rx �(x; p; ~�;�) = 1. p, ~� and � are 
alled the moment 
hara
teristi
s ofthe distribution.Expanding out the quadrati
 form and 
olle
ting terms, we 
an rewrite this as follows.�(x) = exp �g + xTh� 12xTKx� ; 5
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(a)Figure 2: (a) The Kalman Filter represented as a Dynami
 Bayesian Network (DBN). The hidden statevariables are Qt and the observation variables are Yt. The noise terms in the state evolution and sensormodels are impli
it in the fa
t that the distributions of QtjQt�1 and YtjQt are Gaussian. That is, we do nothave nodes for the noise variables. If the state variables are dis
rete, this model is 
alled a Hidden MarkovModel (HMM). (b) A dis
rete node Dt has been added to model a swit
hing Kalman �lter.In exponential family terminology, g, h and K are 
alled the 
anoni
al 
hara
teristi
s, and are related tothe moment 
hara
teristi
s as follows:K = ��1h = ��1~�g = log p� 12~�T��1~�where jxj = n. Finally, we 
an write the above equation in s
alar form:�(x) = exp0�g + nXi=1 hixi � 12Xi Xj Kijxixj1AUsing Dawid's theorem, whi
h states that X ? Y jZ if the joint density 
an be fa
tored asfX;Y;Z(x; y; z) = g(x; z)h(y; z)we prove Equation 5.5 Example of hybrid DBNs: swit
hing Kalman �ltersA Dynami
 Bayesian Network [DW91, Kja92℄ is a BN used to model a temporal sto
hasti
 pro
ess. It 
an bebe 
reated by spe
ifying the network (stru
ture and parameters) for two 
onse
utive \time sli
es", and then\unrolling" it into a stati
 network of the required size. For example, in Figure 2 we show how to representa linear dynami
al system subje
t to Gaussian noise.6



Qt represents the hidden state of the system at time t, whi
h is assumed to evolve a

ording to the followinglinear equation:Qt = FtQt�1 +GtWtwhere Wt � N(0; I) is a white noise random ve
tor whose distribution is stationary. Thus we set theparameters of Qt to be ~� = 0, � = GtGTt and B = Ft. Yt represents the observation ve
tor at time t, whi
his assumed to be a linear fun
tion of the hidden state:Yt = HtQt + JtVtwhere Vt � N(0; I) (and is un
orrelated with fWtg). So we set the parameters of Yt to be ~� = 0,� = HtHTt , and B = Ht.The task of 
omputing the probability of the hidden state given all the past observations, Pr(Qtjyt; : : : ;y0),is 
alled �ltering, and the 
lassi
al algorithm for it was invented by Kalman. The task of 
omputing theprobability of the hidden state given all the observations, Pr(Qtjy0; : : : ;yn), is 
alled smoothing, and the
lassi
al algorithm for it was invented by Rau
h. See [BSF88, BSL93℄ for details.The Kalman �lter was developed for tra
king point-like obje
ts, su
h as planes and missiles. It is reasonableto represent the state (e.g., position and velo
ity) of a missile with a single node, Qt. However, if we wantto tra
k more 
ompli
ated obje
ts, su
h as people, we would like to represent the 
omplex internal spatialstru
ture of the obje
t with an entire network (e.g., with one node per limb). Sin
e Qt is a jointly Gaussianrv, it 
an be repla
ed by an entire subnetwork, whi
h also en
odes a jointly Gaussian rv. The resultingnetwork is equivalent to the one in Figure 2(a), ex
ept that the various matri
es are now sparse. However,we 
laim that it is easier to exploit the 
onditional independen
e assumptions (for learning and possibly forspeeding up inferen
e) if they are en
oded graphi
ally as a Bayes net, rather than en
oded impli
itely in asparse matrix.We 
an imagine that the dynami
al system has di�erent \modes", whi
h we 
an represent by means of adis
rete variable, as shown in Figure 2(b). For example, we might have one set of parameters for when aplane is taking o�, another for when it is 
ruising, et
. This is sometimes 
alled a jump-linear system, andthe 
orresponding inferen
e algorithm is the swit
hing Kalman �lter. The state evolution equation isQt = F [Dt℄Qt�1 +G[Dt℄Wtand the sensor model equation isYt = H [Dt℄Qt + J [Dt℄VtWe brie
y dis
uss the 
omputational issues involved in performing inferen
e in hybrid DBNs in Se
tion 6.3.6 Inferen
eWe shall dis
uss how to perform inferen
e in hybrid networks using the join tree algorithm [LS88, Jen96℄,whi
h works on undire
ted Markov trees. (Similar results have been derived for dire
ted trees [Pea88, PS91,AA96, DM95℄.) We start by reviewing the dis
rete 
ase, and then show how to generalize this to handleGaussian networks, and �nally hybrid networks [LS88, LW89, Lau92, Ole93, Lau96℄.7
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Figure 3: (a) The original DAG. (b) and (
) show two di�erent moralized, triangulated graphs. Dottedar
s denote ar
s introdu
ed during moralization. Dashed ar
s denote ar
s introdu
ed during triangulation.(d) The join tree produ
ed from (b). Squares denote separators, ellipses denote 
liques. The di�erenttriangulations 
orrespond to the elimination orders f; e; d; 
; b; a and f; e; 
; b; d; a respe
tively. For example,in the �rst ordering, when we eliminate e, we ensure that all its neighbors (
; d; f) whi
h are lower than itin the ordering (
; d) are mutually 
onne
ted by adding the 
� d edge. Similarly, eliminating d will 
onne
tb and 
.6.1 Pure dis
rete 
aseWe will asso
iate a \potential" fun
tion with ea
h 
lique, whi
h is the joint probability of its variables andthe eviden
e. (In the dis
rete 
ase, potential fun
tions 
an be represented as multidimensional tables; wedis
uss the 
ontinuous 
ase later.) If we also asso
iate a potential with ea
h separator (a separator is theinterse
tion of the two 
liques on the ends of the ar
 to whi
h the separator is atta
hed), we 
an write the
omplete joint probability distribution asPrU = QV 2C PrVQS2S PrSwhere C is the set of 
liques, S is the set of separators, and PrU is the joint on the whole \universe",U = (X1; : : : ; Xn). For example, referring to Figure 3(d), and assuming we have no eviden
e, we havePr(A;B;C) Pr(B;C;D) Pr(C;D;E) Pr(D;E; F )Pr(B;C) Pr(C;D) Pr(D;E) = Pr(AjB;C) Pr(BjC;D) Pr(CjD;E) Pr(D;E; F )This follows from the \separation implies independen
e" property of undire
ted graphi
al models, e.g., sin
eD and E separate C from F in the moralized, triangulated graph, Pr(CjD;E) Pr(D;E; F ) = Pr(C;D;E; F );
ontinuing in this way we have Pr(BjC;D) Pr(C;D;E; F ) = Pr(B;C;D;E; F ) and �nally Pr(AjB;C) Pr(B;C;D;E; F ) =Pr(A;B;C;D;E; F ).Now suppose some eviden
e arrives on node D e.g., we observe its value to be d. We need to update all thepotentials to re
e
t this fa
t. For ea
h variable X , we �nd a 
lique C whi
h 
ontains X and its parents; 
allthis 
lique the representative for X (we say that X is assigned to C). For example, the representative of Dmust be C2. We update PrC2 by assigning zero probability to all 
ombinations whi
h are in
onsistent with8



D = d. (In the dis
rete 
ase, we just set the table entries to 0; we dis
uss the 
ontinuous 
ase later.) Thisgives us Pr(B;C;D; e) = Pr�(B;C;D), where e is the eviden
e (namely the event D = d). We now needto propogate this 
hange to all the other potentials. The idea is that ea
h 
lique sends a \message" to itsneighbors, whi
h they \absorb" (i.e., they update their potential to re
e
t the new pie
e of information ina way whi
h we shall explain shortly). When a 
lique node has re
eived messages from all its neighbors barone, it may send send a message to that one. In this way, every 
lique eventually gets updated, and global
onsisten
y is restored.A 
entralized version of the message passing proto
ol as as follows: pi
k a root or pivot node R, therebyindu
ing dire
tionality on the tree. In the �rst pass, all nodes send messages to R after re
eiving from their
hildren (i.e., in postorder); in the se
ond pass, the root sends messages down to the leaves (i.e., in preorder).The �rst pass is sometimes 
alled the \
olle
t eviden
e" phase, and the se
ond pass is 
alled the \distributeeviden
e" phase. If we let e�i denote all the eviden
e in the subtree rooted at Ci, and e+i denote all the restof the eviden
e (\above" Ci), then after the �rst pass ea
h 
lique potential 
ontains Pr(Ci; e�i ), and afterthe se
ond pass, ea
h 
lique potential 
ontains Pr(Ci; e�i ; e+i ) = Pr(Ci; e). Hen
e after two passes we 
anre
over the posterior marginal of a family by �nding any 
lique that 
ontains it, and marginalizing out allthe other variables in that 
lique. (To 
ompute the marginal on a set of variables whi
h is not 
ontainedwithin a 
lique, see [Xu95℄.) If the tree has a 
aterpillar-like 
hain stru
ture (e.g., Figure 2), this algorithmbe
omes identi
al to the forwards-ba
kwards algorithm for HMMs [SHJ96℄.The only things that remain to be spe
i�ed are how we initialize and update the 
lique potentials. Weinitialize the potential for 
lique C by multiplying together all the CPTs for all the variables whi
h areassigned to C. For example, if we assign A, B and C to C1, we get Pr(C1) = Pr(A) Pr(BjA) Pr(CjA) =Pr(A;B;C). Similarly, if we assign D to C2, we get Pr(C2) = Pr(DjB). Separators are initialized to 1. Wethen do one forward pass and one ba
kward pass, and the result will be that ea
h 
lique potential 
ontainsthe joint probability over its member variables.The absorption/update pro
ess is best illustrated by example. Referring to Figure 3, suppose we ob-serve that D = d and 
ompute Pr(B;C;D; e). To update the potential on C3, Pr(C;D;E), we writePr(C;D;E; e) = Pr(EjC;D) Pr(C;D; e), whi
h follows sin
e the 
onditional probability Pr(EjC;D) is a�xed 
onstant independent of the eviden
e e. Pr(C;D; e) is the potential on the separator S2 and 
an be
omputed by marginalization: Pr(C;D; e) = PB Pr(B;C;D; e). The 
onditional probability 
an be 
om-puted as Pr(EjC;D) = Pr(E;C;D)Pr(C;D) . In summary, if W and V are neighbors with separator S, and W absorbsfrom V , we must perform the following steps:� Cal
ulate Pr�S =PV nS PrV .� Give S the new potential Pr�S .� Give W the new potential Pr�W = PrW Pr�SPrS .We require that if PrS(x) = 0 for some value x, then PrW (x) = 0 also, so we 
an set Pr�W (x) = 0=0 = 0. (Atree whi
h satis�es this requirement is 
alled supportive.)6.2 Pure Gaussian 
aseIn the dis
rete 
ase, the potential over a 
lique 
an be represented as a table. In the Gaussian 
ase, thepotential 
an be represented as a Gaussian fun
tion in either moment or 
anoni
al form. It turns out thatsome operations are easier to express in terms of 
anoni
al 
hara
teristi
s and others are easier to expressin terms of moment 
hara
teristi
s. 9



6.2.1 InitializationIn the Lauritzen and Spiegelhalter algorithm, ea
h 
lique potential is initialized to be the produ
t of the
onditional distributions of all the nodes that have been assigned to that 
lique. (Ea
h node is assigned toexa
tly one 
lique, whi
h must 
ontain its family.) After one forwards and one ba
kwards pass over the tree,ea
h 
lique potential will be the joint distribution over all its member variables. (Let us 
all these \virginpotentials".) We are then ready to in
orporate eviden
e.Unfortunately, we may not be able to represent the initial potential (before the initial forwards and ba
kwardspass over the tree) in moment form. The reason is that the mean may depend on the values of some variableswhi
h have not been assigned to the 
lique, e.g., if only one node has been assigned to a 
lique, the initialpotential will be of the form f(X jY ); here, the mean depends on Y .Hen
e we represent the initial potentials using 
anoni
al 
hara
teristi
s, and only 
onvert to moment formwhere ne
essary (as des
ibed in Se
tion 6.3).For a ve
tor node, the 
onditional distribution has the formf(xjz) = 
 exp �� 12 �(x� ~��BT z)T��1(x� ~��BT z)��= exp �� 12 (x z )� ��1 ���1BT�B��1T B��1BT ��xz�+ (x z )� ��1~��B��1~��� 12~�T��1~�+ log 
�where 
 = (2�)�n=2j�j� 12 . Hen
e we set the 
anoni
al 
hara
teristi
s tog = � 12~�T��1~�� n2 log(2�)� 12 log j�jh = � ��1~��B��1~��K = � ��1 ���1BT�B��T B��1BT �This generalizes the result in [Lau92℄ to the ve
tor 
ase. In the s
alar 
ase, ��1 = 1=�, ~� = �, B = b andn = 1, so the above be
omesg = ��22� � 12 log(2��)h = �� � 1�b�K = 1� � 1 �bT�b bbT � :On
e we have the 
anoni
al 
hara
teristi
s, we 
an 
ompute the initial potentials for ea
h 
lique by multi-plying together the potentials asso
iated with ea
h variable whi
h is assigned to this 
lique. Unfortunately,we 
annot 
onvert these 
anoni
al 
hara
teristi
s to moment 
hara
teristi
s be
ause K is not of full rank,and hen
e is not invertible. (This is easy to see in the s
alar 
ase, sin
e K 
ontains an outer produ
t andhen
e is of rank 1.) 10



6.2.2 Entering eviden
eIf we observe that a 
ontinuous variable Y takes on a spe
i�
 value y, we must modify the potentials of allthe 
liques/separators that 
ontain Y, sin
e their dimensionality will be redu
ed. Let the 
lique 
ontain Xand Y. The new potential is��(x) = exp[g + (xT yT )�hXhY �� 12 (xT yT )�KXX KXYKY X KY Y �� xy�= exp[�g + hTY y � 12yTKY Y y�+ xT (hX �KXY y)� 12xTKXXx℄This generalizes the equation in [Lau92℄ to the ve
tor 
ase.We 
an 
ompute the analogous result for moment 
hara
teristi
s as follows. We will start by just 
onsideringthe quadrati
 formQ = (x0 � ~�0x y0 � ~�0y )�KXX KXYKY X KY Y ��x� ~�xy � ~�y �Expanding out,Q = (x� ~�x)0KXX(x� ~�x) + 2(x� ~�x)0KXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y)= x0KXXx� 2x0KXX~�x + ~�0xKXX~�x + 2x0KXY (y � ~�y)� 2~�0xKXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y)= x0KXXx� 2x0 (KXX~�x �KXY (y � ~�y)) + (~�0xKXX~�x � 2~�0xKXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y))def= x0Ax� 2x0b+ 
Now we use the following rule, 
alled 
ompleting the square:xTAx� 2xTb+ 
 = (x�A�1b)TA(x�A�1b) + 
� bTA�1b (7)to yield ��(x) = p� �Q(x; ~�;�) where� = A�1~� = A�1blog p� = log p� 12 �
� b0A�1b�6.2.3 Multipli
ation and divisionIn the dis
rete 
ase, we use multipli
ation and division to update potentials when new eviden
e arrives:Pr�W = PrW Pr�SPrS , where S is a separator and W is a 
lique. Noti
e that PrWPrS = Pr(W jS), so we are really
omputing a 
onditonal distribution \on the 
y" and multiplying in new information.We 
an de�ne multipli
ation and division in the Gaussian 
ase in terms of 
anoni
al 
hara
teristi
s, asfollows. To multiply �1(x1; : : : ; xk; g1;h1;K1) by �2(xk+1; : : : ; xn; g2;h2;K2), we extend them both to thesame domain x1; : : : ; xn by adding zeros to the appropriate dimensions, and 
ompute(g1;h1;K1) � (g2;h2;K2) = (g1 + g2;h1 + h2;K1 +K2)11



The support of the new fun
tion is the interse
tion of the previous supports. Division is similar, ex
ept thatwe de�ne (�1=�2)(x) = 0 if �1(x) = 0.6.2.4 MarginalizationLet �W be a potential over a set W of variables. We 
an 
ompute the potential over a subset V � W ofvariables by marginalizing, denoted �V =PWnV �W . Lety = � y1y2 �; h = � h1h2 �; K = �K11 K12K21 K22�with y1 having dimension p and y2 having dimension q. It 
an be shown (by 
ompleting the square andusing ni
e properties of multidimensional Gaussians) thatZ �[ � yT1 yT2 �T ℄dy1 = �[y2; ĝ; ĥ; K̂℄where ĝ = g + 12 �p log(2�)� log jK11j+ hT1K�111 h1� = g + 12 �p log(2�) + log jK�111 j+ hT1K�111 h1�ĥ = h2 �K21K�111 h1K̂ = K22 �K21K�111 K12In the moment 
ase, things are mu
h simpler. We simply extra
t out the 
omponents of ~� and � whi
hrelate to y2, and 
hange the 
onstant so that it normalizes the new distribution.6.3 Hybrid 
aseThe only 
hange in the hybrid 
ase is that the potential fun
tions will now be over both 
ontinuous anddis
rete nodes. Essentially we have one set of 
anoni
al or moment 
hara
teristi
s for ea
h value of thedis
rete nodes. All the operations go through as before, ex
ept for marginalization. If we marginalize outover some 
ontinuous nodes, we 
an pro
eed as in Se
tion 6.2.4, on
e for ea
h value of the dis
rete nodes.If we marginalize out over some dis
rete nodes d, but the mean/varian
e do not depend on j, we just sumthe appropriate 
onstants (g or p) for ea
h value of d: this is 
alled strong marginalization. However, if themean and varian
e depend on j, we will get a mixture of Gaussians:Xj �(x; j; i) =Xj p�Q(x; ~�(j; i);�(j; i))This 
annot be simpli�ed any further, and must be kept as a list of terms. We would therefore like to arrangethings so that we integrate out all 
ontinuous nodes before the dis
rete nodes on whi
h they depend, e.g., wewritePi Rx f(x; ~�(i);�(i)) rather than RxPi f(x; ~�(i);�(i)). This 
an be a
hieved by ensuring that all the
ontinuous nodes are eliminated before their dis
rete an
estors. Su
h a node elimination ordering is 
alleda strong triangulation, 
.f.[JJD94℄. 12



Unfortunately, in the 
ase of hybrid DBNs, the need to eliminate all the 
ontinuos nodes before their dis
retean
estors 
lashes with our desire to eliminate all the nodes in sli
e t before we eliminate any in sli
e t+1. Ifwe don't do strong triangulation, the number of mixture 
omponents be
omes exponential in the length ofthe sequen
e. The standard approa
h (see e.g., [TSM85, BSL93, Kim94, WH97℄) is to \
ollapse" the mixtureinto k 
omponents. If k = 1, this 
orresponds to 
omputing the \weak" moments:p̂(i) = Xj p(i; j)^~�(i) = Xj ~�(i; j)p(i; j)=p̂(i)�̂(i) = Xj �(i; j)p(i; j)=p̂(i) +Xj �~�(i; j)� ~̂�(i)��(~�(i; j)� ~̂�(i)�T p(i; j)=p̂(i)These will give the \
orre
t" mean and varian
e:Pr(I = i) = p̂(i)E [YjI = i℄ = E Pr(J=jjI=i) [E [YjI;J℄ji = i℄= Xj ~�(i; j) Pr(J = jjI = i)Var[YjI = i℄ = E [Var[YjI;J℄ji = i℄ + Var [E [YjI;J℄ji = i℄= E �(i; j) +E h(~�(i; j)�E ~�(i; j)) (~�(i; j)�E ~�(i; j))T iLauritzen [Lau96℄ shows that this is the best approximation (in the KL sense) if k = 1.7 LearningIn this se
tion, we dis
uss how to �nd the Maximum Likelihood Estimates (MLEs) of the parameters asso-
iated with ea
h node. We assume that we have a set of N training examples, where ea
h example assigns avalue to every node in the network (this is 
alled the fully observable 
ase). In Se
tion 7.2, we address theissue of what to do when the values of some variables are unknown.If we assume the parameters of node Xi, �i, are independent of those of all other nodes, we 
an maximizethe �i's separately. Further, the only terms in the joint distribution that depend on �i involve Xi and itsparents, so we just need to 
ompute the suÆ
ient statisti
s for ea
h family.Dis
rete, linear Gaussian and mixtures of linear Gaussian distributions are all in the exponential family[DeG70, Bun94, Lau96℄; hen
e the size of the suÆ
ient statisti
s we need to keep is equal to the size of theparameter ve
tor (and independent of N).7.1 Fully observable 
ase7.1.1 Dis
rete 
aseIf Xi is a dis
rete variable, the parameter ve
tor is �i = (�ijk) = (Pr(Xi = kjPa(Xi) = j)), whi
h is justa table of numbers. The suÆ
ient statisti
s are Nijk, the number of times the event (Xi = k;Pa(Xi) = j)13



o

urs in the training set. Sin
e�ijk = Pr(Xi = k;Pa(Xi) = j)Pr(Pa(Xi) = j) � 1NNijk1NNijwhere Nij =PkNijk , the MLE is d�ijk = Nijk=Nij .7.1.2 Gaussian 
aseThe approa
h we will adopt is to model the joint distribution over a node and its parents (forming familyX) as a MVG, 
ompute its suÆ
ient statisti
s and then �nd its MLE parameters. We dis
uss the simplest
ase below; for more general results, see [Mur98℄.The suÆ
ient statisti
s for an MVG after seeing N examples are sN def= PNl=1 xl and QN def= PNl=1 xlxTl ,sin
e 
~�N = 1N sN = 1N NXl=1 xl (8)and d�N = 1N NXl=1(xl � 
~�N )(xl � 
~�N )T= 1N " NXl=1 xlxTl !� NXl=1 xl! 
~�NT � 
~�N  NXl=1 xTl !+N
~�N 
~�NT#= 1NQN � 
~�N 
~�NT :It is simple to update the suÆ
ient statisti
s when we see the next example, xN+1.To 
ompute the parameters of a node given the suÆ
ient statisti
s of its family, we use linear regression asfollows. Let X1 represent the 
hild and X2 the parents, i.e.,X = �X1X2 � ; �X = ��X1�X2 � ; �X = ��11 �12�21 �22�Then the 
onditional density of X1 given X2 is a MVG with�X1jX2 = E[X1jX2 = x2℄ = �X1 +�12��122 (x2 � �x2) (9)and �X1jX2 = �11 ��12��122 �21: (10)14



Hen
e the lo
al parameters for the node are given byB = �Y Z��1ZZ (11)~� = ~�Y �B~�Z� = �Y Y �B�ZYB 
an then be broken up into its individual blo
ks, one for ea
h parent.7.1.3 Hybrid 
aseThe exa
t posterior distribution of a hybrid potential will be a mixture of Gaussians. It 
an be approxi-mated by a single Gaussian by performing weak marginalization. In general, this 
an be an arbitrarily badapproximation, sin
e we may be repla
ing a multimodal distribution with a unimodal one. However, letus suppose that the error introdu
ed by this step is at most �. Then the results in [BK98b, BK98a℄ showthat for a hybrid DBN, the total error will be a fun
tion of � and 
, the mixing rate of the Markov 
hain,but independent of t. An alternative approa
h to learning hybrid DBNs, taken in [GH96℄, is to maximizean exa
t lower bound on the likelihood, produ
ed by 
onsidering a tra
table approximation to the originalstru
ture.7.2 Partially observable 
aseIf we do not observe the value of every node in ea
h training 
ase, there is no longer a 
losed form expressionfor the MLE. In this se
tion, we investigate two methods for learning under these 
ir
umstan
es. Bothmethods make many passes over the training data, and update the parameters at the end of ea
h pass,until they rea
h a lo
al maximum in likelihood spa
e; hen
e they are bat
h methods. However, it is easyto 
onvert them to in
remental (online) versions, whi
h update the parameters after seeing a subset of thetraining set (see e.g., [NH98℄ for in
remental EM and [BC94℄ for in
remental gradient des
ent).7.2.1 EMThe basi
 idea of the Expe
tation Maximization (EM) algorithm is to \�ll in" the missing values withtheir expe
ted values (expe
tation w.r.t. the 
urrent set of parameters), and to use these Expe
ted SuÆ
ientStatisti
s (ESS) when 
omputing the MLE. The parameters are then set to their MLE values, and the pro
essrepeats until the likelihood stops in
reasing (it 
an be proved that EM will 
onverge to a lo
al maximum).In the dis
rete 
ase, the ESS areE [Nijk ℄ =Xl Pr(Xi = k;Pa(Xi) = jjel) =Xl Pr(Xi = k;Pa(Xi) = j; el)Pr(el) :In the Gaussian 
ase, the ESS aresN =Xl E[Xljel℄ and QN =Xl E[XlX0ljel℄ 15



sin
e Var[X ℄ = E[XX 0℄�E[X ℄E[X ℄0For the hybrid 
ase, we just 
ompute bot kinds of ESS for ea
h dis
rete parent value.We now present the EM algorithm in detail.1. Choose (random) starting values for the parameters B; ~�;� for ea
h node. A broad 
ovarian
e is agood idea, so that samples far from the mean are not assigned unduly low likelihood.2. Repeat(a) Reset the ESS for ea
h node.(b) Reset the log-likelihood: L = 0.(
) For ea
h training 
ase ei. Update the log-likelihood: L + = logPr(e).ii. Compute the posterior marginal over ea
h family given the eviden
e.iii. Update the ESS for ea
h family.(d) Compute the MLE of the parameters for ea
h family given the ESS.3. Until L 
onverges.Steps 2(
)i and 2(
)ii 
an be 
omputed using the inferen
e algorithms we dis
ussed earlier.7.2.2 Gradient des
entIt is possible to 
ompute an expression for the gradient of the log-likelihood [XJ96, BKRK97℄ and hen
eto use gradient-based learning methods. However, we must maintain 
onstraints on the parameters. Inparti
ular, for 
ontinuous nodes, � must remain symmetri
 and positive de�nite, and for dis
rete nodes, �ijkmust lie inside the unit 
ube and on the surfa
ePk �ijk = 1. The best way to maintain the 
onstraints is toreparamaterize the problem, solve the problem in the un
onstrained spa
e, and 
onvert ba
k. For the CPTentries, we 
an learn the parameters of a softmax fun
tion [BC94℄. For �, we 
an learn the parameters of� 12 , whi
h is un
onstrained, and at the end set � = � 12� 12 .EM, while te
hni
ally a �rst order method, often does better than nominally faster gradient-based methods,su
h as 
onjugate gradient or quasi-Newton [XJ96℄. This is primarily be
ause EM avoids a line-sear
h atea
h iteration, whi
h is expensive sin
e it requires 
omputing the log-likelihood at many points along theline, ea
h su
h evaluation requiring a 
all to the inferen
e engine. We have yet to see how te
hniques su
has Levenberg-Marquardt (whi
h approximate the Hessian yet don't require a line sear
h) perform.7.3 Using priors to 
ompute the MAP estimateTo avoid over�tting when we have too little training data, we 
an use priors, and 
ompute the MAP estimatesinstead of the ML estimates. A suitable prior for dis
rete nodes is the Diri
hlet prior, whi
h has a simpleintuitive interpretation in terms of pseudo 
ounts: we just imagine that we have seen a 
ertain number N 0ijkof 
ases of the event (Xi = k;Pa(Xi) = k), and add these to our real 
ounts. For the ve
tor Gaussian 
ase,16



things are a little more 
ompli
ated. It is simpler to asso
iate a prior with the MVG distribution N(~�F ;�F )on the family F , rather than with the parameters (~�X ;�X ; BX) of the node itself. A suitable prior is theNormal-Wishart [GH94, DeG70℄. This 
an be important sin
e it takes a lot of data to ensure b� is positivede�nite.Referen
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