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AbstratWe survey the literature on methods for inferene and learning in Bayesian Networks omposed ofdisrete and ontinuous nodes, in whih the ontinuous nodes have a multivariate Gaussian distribution,whose mean and variane depends on the values of the disrete nodes. We also briey onsider hybridDynami Bayesian Networks, an extension of swithing Kalman �lters. This report is meant to summarizewhat is known at a suÆient level of detail to enable someone to implement the algorithms, but withoutdwelling on formalities.11 UpdateThe algorithm desribed in this report, due to [Lau92℄ (see also [CDLS99, h. 7℄), has been implemented aspart of my Bayes Net Toolbox2. However, it an be numerially unstable. A di�erent algorithm, whih �xesthis problem, is desribed in [LJ99℄. Other referenes to more reent material have also been added whereappropriate.2 IntrodutionWe disuss Bayesian networks (BNs [Jen96℄) in whih eah node is either disrete or ontinuous, salar orvetor-valued, and in whih the joint distribution over all the nodes is Conditional Gaussian (CG) [LW89,Lau92℄ i.e., for eah instantiation i of the disrete nodes Y, the distribution over the ontinuous nodes X hasthe form f(xjY = i) = N(x; ~�(i);�(i)), where N() represents a multivariate Gaussian (MVG) or Normaldensity. (Note that disrete nodes annot have ontinuous parents in this model.) This is the most generalkind of BN for whih exat inferene algorithms are known. A related review artile is [RG99℄.We start by disussing how to represent the onditional probability distribution of eah node, and the jointdistribution this enodes. We then give an example of a hybrid BN before disussing inferene and learningtehniques.3 Representing the loal onditional probability distributions3.1 Disrete nodesThe onditional distribution of a disrete node Xi given its parents Pa(Xi) an be spei�ed by means of atable (alled a Conditional Probability Table or CPT), whose entries are �ijk = Pr(Xi = kjPa(Xi) = j).Here, j denotes the j'th possible value (instantiation) that Pa(Xi) an have. Clearly we requirePk �ijk = 1for all i and j. Note that there are many ways of speifying the onditional distribution of a disrete nodethat require fewer parameters than a full table, e.g., noisy-OR [Pea88℄, ausal interation models [MH97℄,deision trees [BFGK96℄, default tables [FG96℄, et.1Updated 18 August 2000. This work was supported by grant number 442427-21957 awarded to Prof. Russell2www.s.berkeley.edu/ �murphyk/Bayes/bnt.html
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3.2 Continuous nodesThe onditional distribution of a ontinuous node Xi given its parents Pa(Xi) an be spei�ed by a Gaussianfuntion, whose mean is a linear funtion of the parents, and whose ovariane is �xed. This is the standardlinear regression model. We shall start by assuming that Xi and its parents are real valued salars; then weshall onsider the vetor ase, and �nally the ase where some of the parents are disrete.3.2.1 Salar aseLet node Xi have parents Xk1 ; : : : ; Xkp . Then its onditional distribution isf(xijxk1 ; : : : ; xkp) = (2��2)� 12 exp �� 12�2 (xi � ui)2� (1)where ui = �i +Pk2Pa(Xi) bki(xk � �k), and the bki are the \weights" or regression oeÆients on the arsoming into node i from its parents. Equivalently, we may writeXi = �i + Xk2Pa(Xi) bki(Xk � �k) + �iWi (2)where Wi � N(0; 1) is a white noise random variable.Alternatively, we might onsider the following model in whih we don't subtrat o� the parents' means:Xi = Xk2Pa(Xi) bki Xk + Ci (3)where Ci � N(�i; �i) is a olored noise term.3.2.2 Vetor aseWe an imagine a simple extension to the above sheme in whih eah node an be a vetor. In this ase,the onditional distribution beomesf(xijxk1 ; : : : ;xkp) = N(xi;ui;�i) = (2�)�n2 j�ij� 12 exp �� 12 (xi � ui)T ��1i (xi � ui)� (4)where ui = ~�i +Pk Bki(xk � ~�k). We an view this as multivariate or generalized linear regression:EXi = ui = ~�i +Xk Bki(Xk � ~�k)or EXi = ui = ~�i +Xk BkiXk 2
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Figure 1: (a) A BN with vetor-valued nodes. G and H are matries. (b) The salar BN orresponding to(a) in the ase where Xi 2 R2. The solid ars to Z31 have oeÆients whih orrespond to the �rst rows ofG and H . That is, bX31 = (G11; G12; H11; H12). Similarly, the dotted ars to X32 have oeÆients whihorrespond to the seond rows of G and H .For example, in Figure 1(a), we haveX3 = GX1 +HX2 +Cwhere C � N(~�i;�i) and we write G = B13 and H = B23 to avoid a profusion of subsripts.Note that we an expand eah vetor into its omponents, yielding the equivalent salar network shown inFigure 1(b). However, the vetor notation is more ompat.3.2.3 Disrete parent aseIf node X has disrete parents Y and ontinuous parents Z, it has a di�erent mean, ovariane and weightmatrix for every value of Y . That is,f(xjy = i; z) = N(x; ~�i +Biz;�i):Note that in this ase it does not make sense to subtrat o� the parents' means, sine they may depend ontheir disrete parents.3.2.4 Continuous parent/ disrete hild aseIf a disrete node has ontinuous parents (e.g., a threshold unit), we an use the probit or logisti distribution.Unfortunately, exat inferene in this ase is intratable (unless all the ontinuous nodes are observed). Forone possible approximation, see [Mur99℄.4 Charaterizing the orresponding joint distributionIn the introdution we stated that, if X represents all the ontinuous nodes and Y represents all the disretenodes, then the joint distribution on X given a spei� Y = i is a multivariate Gaussian with parameters,3



~�(i) and �(i). We now show how to to ompute these parameters as a funtion of the the loal parametersof eah node.4.1 Salar aseWe start by onsidering the salar ase, as in [SK89℄. First we ompute � and then ~�.Construt a diagonal matrix ontaining the varianes of eah node, D = diag(�2i ), and another ontainingthe standard deviations, S = diag(�i). Also, onstrut a matrix B in whih the i'th olumn ontains theweight vetor for node i. We assume the nodes are numbered topologially, so B is upper triangular. Nowrewrite Equation 2 in vetor form as follows:X� ~� = BT (X� ~�) + SWwhere W = (W1; : : : ;Wn) is a vetor of all the noise terms. Let E be the innovations or residuals, i.e., thedi�erenes (due to noise) between the values of X atually realized and those predited by the linear model:E def= SW = (I �BT )(X � ~�):Sine B is stritly upper triangular, (I �BT ) is invertible, so we may writeX� ~� = (I �BT )�1E = UTE = UTSTWwhere we have de�ned UT def= (I �BT )�1, so U = (I �B)�1. Finally, we have� = Var[X℄ = Var[X� ~�℄ = Var[UTSTW℄ = UTSTVar[W℄SU = (UTST )(SU) = UTDU:(This result also holds if we use Equation 3 instead.)Now we ompute the global mean, ~�. If we use Equation 2 (i.e., subtrat o� the parents' means), ~� is justthe loal means staked together. To see this, onsider the following example, where X1 is the parent of X2.E [X2℄ = E [E [X2jX1℄℄ = E [�2 + b(X1 � �1)℄ = �2If instead we use Equation 3, we need to traverse the graph in topologial order to ompute ~�. In our simpleexample we haveE [X2℄ = E [E [X2jX1℄℄ = E [�2 + b12X1℄ = b12�1 + �2
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4.2 Vetor aseIn this ase, D and S will be blok diagonal, and B will be blok upper triangular. For example, in Figure 1,we haveD = 0��X1 0 00 �X2 00 0 �X3 1A = 0BBBBB��X11X11 �X11X12 0 0 0 0�X12X11 �X12X12 0 0 0 00 0 �X21X21 �X21X22 0 00 0 �X22X21 �X22X22 0 00 0 0 0 �X31X31 �X31X320 0 0 0 �X32X31 �X32X32
1CCCCCAwhere we have ordered the nodes as X11; X12; X21; X22; X31; X32. The global matrix of weights isB = 0� 0 � GT0 HT0 1A = 0BBBBB� 0 0 � � G11 G210 0 � � G12 G220 0 0 0 H11 H210 0 0 0 H12 H220 0 0 0 0 00 0 0 0 0 0

1CCCCCAwhere � represents a value that happens to be 0 (beause X does not onnet to Y), whereas 0 represents avalue that must be 0 (beause of the topologial ordering).4.3 Conditional independene properties of Gaussian graphial modelsIn this setion we will show thatXi ? Xj j (the rest) () Kij = 0 (5)where K = ��1 is the inverse ovariane matrix (also alled the preision matrix) of the joint distribution,and \the rest" means all the other nodes [Whi90, Edw95℄.We an represent the joint distribution over all the nodes as�(x; p; ~�;�) = p� exp� 12 (x� ~�)T��1(x � ~�) (6)wherep = (2�)�jxj=2j�j� 12is a normalizing onstant to ensure Rx �(x; p; ~�;�) = 1. p, ~� and � are alled the moment harateristis ofthe distribution.Expanding out the quadrati form and olleting terms, we an rewrite this as follows.�(x) = exp �g + xTh� 12xTKx� ; 5
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(a)Figure 2: (a) The Kalman Filter represented as a Dynami Bayesian Network (DBN). The hidden statevariables are Qt and the observation variables are Yt. The noise terms in the state evolution and sensormodels are impliit in the fat that the distributions of QtjQt�1 and YtjQt are Gaussian. That is, we do nothave nodes for the noise variables. If the state variables are disrete, this model is alled a Hidden MarkovModel (HMM). (b) A disrete node Dt has been added to model a swithing Kalman �lter.In exponential family terminology, g, h and K are alled the anonial harateristis, and are related tothe moment harateristis as follows:K = ��1h = ��1~�g = log p� 12~�T��1~�where jxj = n. Finally, we an write the above equation in salar form:�(x) = exp0�g + nXi=1 hixi � 12Xi Xj Kijxixj1AUsing Dawid's theorem, whih states that X ? Y jZ if the joint density an be fatored asfX;Y;Z(x; y; z) = g(x; z)h(y; z)we prove Equation 5.5 Example of hybrid DBNs: swithing Kalman �ltersA Dynami Bayesian Network [DW91, Kja92℄ is a BN used to model a temporal stohasti proess. It an bebe reated by speifying the network (struture and parameters) for two onseutive \time slies", and then\unrolling" it into a stati network of the required size. For example, in Figure 2 we show how to representa linear dynamial system subjet to Gaussian noise.6



Qt represents the hidden state of the system at time t, whih is assumed to evolve aording to the followinglinear equation:Qt = FtQt�1 +GtWtwhere Wt � N(0; I) is a white noise random vetor whose distribution is stationary. Thus we set theparameters of Qt to be ~� = 0, � = GtGTt and B = Ft. Yt represents the observation vetor at time t, whihis assumed to be a linear funtion of the hidden state:Yt = HtQt + JtVtwhere Vt � N(0; I) (and is unorrelated with fWtg). So we set the parameters of Yt to be ~� = 0,� = HtHTt , and B = Ht.The task of omputing the probability of the hidden state given all the past observations, Pr(Qtjyt; : : : ;y0),is alled �ltering, and the lassial algorithm for it was invented by Kalman. The task of omputing theprobability of the hidden state given all the observations, Pr(Qtjy0; : : : ;yn), is alled smoothing, and thelassial algorithm for it was invented by Rauh. See [BSF88, BSL93℄ for details.The Kalman �lter was developed for traking point-like objets, suh as planes and missiles. It is reasonableto represent the state (e.g., position and veloity) of a missile with a single node, Qt. However, if we wantto trak more ompliated objets, suh as people, we would like to represent the omplex internal spatialstruture of the objet with an entire network (e.g., with one node per limb). Sine Qt is a jointly Gaussianrv, it an be replaed by an entire subnetwork, whih also enodes a jointly Gaussian rv. The resultingnetwork is equivalent to the one in Figure 2(a), exept that the various matries are now sparse. However,we laim that it is easier to exploit the onditional independene assumptions (for learning and possibly forspeeding up inferene) if they are enoded graphially as a Bayes net, rather than enoded impliitely in asparse matrix.We an imagine that the dynamial system has di�erent \modes", whih we an represent by means of adisrete variable, as shown in Figure 2(b). For example, we might have one set of parameters for when aplane is taking o�, another for when it is ruising, et. This is sometimes alled a jump-linear system, andthe orresponding inferene algorithm is the swithing Kalman �lter. The state evolution equation isQt = F [Dt℄Qt�1 +G[Dt℄Wtand the sensor model equation isYt = H [Dt℄Qt + J [Dt℄VtWe briey disuss the omputational issues involved in performing inferene in hybrid DBNs in Setion 6.3.6 InfereneWe shall disuss how to perform inferene in hybrid networks using the join tree algorithm [LS88, Jen96℄,whih works on undireted Markov trees. (Similar results have been derived for direted trees [Pea88, PS91,AA96, DM95℄.) We start by reviewing the disrete ase, and then show how to generalize this to handleGaussian networks, and �nally hybrid networks [LS88, LW89, Lau92, Ole93, Lau96℄.7
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Figure 3: (a) The original DAG. (b) and () show two di�erent moralized, triangulated graphs. Dottedars denote ars introdued during moralization. Dashed ars denote ars introdued during triangulation.(d) The join tree produed from (b). Squares denote separators, ellipses denote liques. The di�erenttriangulations orrespond to the elimination orders f; e; d; ; b; a and f; e; ; b; d; a respetively. For example,in the �rst ordering, when we eliminate e, we ensure that all its neighbors (; d; f) whih are lower than itin the ordering (; d) are mutually onneted by adding the � d edge. Similarly, eliminating d will onnetb and .6.1 Pure disrete aseWe will assoiate a \potential" funtion with eah lique, whih is the joint probability of its variables andthe evidene. (In the disrete ase, potential funtions an be represented as multidimensional tables; wedisuss the ontinuous ase later.) If we also assoiate a potential with eah separator (a separator is theintersetion of the two liques on the ends of the ar to whih the separator is attahed), we an write theomplete joint probability distribution asPrU = QV 2C PrVQS2S PrSwhere C is the set of liques, S is the set of separators, and PrU is the joint on the whole \universe",U = (X1; : : : ; Xn). For example, referring to Figure 3(d), and assuming we have no evidene, we havePr(A;B;C) Pr(B;C;D) Pr(C;D;E) Pr(D;E; F )Pr(B;C) Pr(C;D) Pr(D;E) = Pr(AjB;C) Pr(BjC;D) Pr(CjD;E) Pr(D;E; F )This follows from the \separation implies independene" property of undireted graphial models, e.g., sineD and E separate C from F in the moralized, triangulated graph, Pr(CjD;E) Pr(D;E; F ) = Pr(C;D;E; F );ontinuing in this way we have Pr(BjC;D) Pr(C;D;E; F ) = Pr(B;C;D;E; F ) and �nally Pr(AjB;C) Pr(B;C;D;E; F ) =Pr(A;B;C;D;E; F ).Now suppose some evidene arrives on node D e.g., we observe its value to be d. We need to update all thepotentials to reet this fat. For eah variable X , we �nd a lique C whih ontains X and its parents; allthis lique the representative for X (we say that X is assigned to C). For example, the representative of Dmust be C2. We update PrC2 by assigning zero probability to all ombinations whih are inonsistent with8



D = d. (In the disrete ase, we just set the table entries to 0; we disuss the ontinuous ase later.) Thisgives us Pr(B;C;D; e) = Pr�(B;C;D), where e is the evidene (namely the event D = d). We now needto propogate this hange to all the other potentials. The idea is that eah lique sends a \message" to itsneighbors, whih they \absorb" (i.e., they update their potential to reet the new piee of information ina way whih we shall explain shortly). When a lique node has reeived messages from all its neighbors barone, it may send send a message to that one. In this way, every lique eventually gets updated, and globalonsisteny is restored.A entralized version of the message passing protool as as follows: pik a root or pivot node R, therebyinduing diretionality on the tree. In the �rst pass, all nodes send messages to R after reeiving from theirhildren (i.e., in postorder); in the seond pass, the root sends messages down to the leaves (i.e., in preorder).The �rst pass is sometimes alled the \ollet evidene" phase, and the seond pass is alled the \distributeevidene" phase. If we let e�i denote all the evidene in the subtree rooted at Ci, and e+i denote all the restof the evidene (\above" Ci), then after the �rst pass eah lique potential ontains Pr(Ci; e�i ), and afterthe seond pass, eah lique potential ontains Pr(Ci; e�i ; e+i ) = Pr(Ci; e). Hene after two passes we anreover the posterior marginal of a family by �nding any lique that ontains it, and marginalizing out allthe other variables in that lique. (To ompute the marginal on a set of variables whih is not ontainedwithin a lique, see [Xu95℄.) If the tree has a aterpillar-like hain struture (e.g., Figure 2), this algorithmbeomes idential to the forwards-bakwards algorithm for HMMs [SHJ96℄.The only things that remain to be spei�ed are how we initialize and update the lique potentials. Weinitialize the potential for lique C by multiplying together all the CPTs for all the variables whih areassigned to C. For example, if we assign A, B and C to C1, we get Pr(C1) = Pr(A) Pr(BjA) Pr(CjA) =Pr(A;B;C). Similarly, if we assign D to C2, we get Pr(C2) = Pr(DjB). Separators are initialized to 1. Wethen do one forward pass and one bakward pass, and the result will be that eah lique potential ontainsthe joint probability over its member variables.The absorption/update proess is best illustrated by example. Referring to Figure 3, suppose we ob-serve that D = d and ompute Pr(B;C;D; e). To update the potential on C3, Pr(C;D;E), we writePr(C;D;E; e) = Pr(EjC;D) Pr(C;D; e), whih follows sine the onditional probability Pr(EjC;D) is a�xed onstant independent of the evidene e. Pr(C;D; e) is the potential on the separator S2 and an beomputed by marginalization: Pr(C;D; e) = PB Pr(B;C;D; e). The onditional probability an be om-puted as Pr(EjC;D) = Pr(E;C;D)Pr(C;D) . In summary, if W and V are neighbors with separator S, and W absorbsfrom V , we must perform the following steps:� Calulate Pr�S =PV nS PrV .� Give S the new potential Pr�S .� Give W the new potential Pr�W = PrW Pr�SPrS .We require that if PrS(x) = 0 for some value x, then PrW (x) = 0 also, so we an set Pr�W (x) = 0=0 = 0. (Atree whih satis�es this requirement is alled supportive.)6.2 Pure Gaussian aseIn the disrete ase, the potential over a lique an be represented as a table. In the Gaussian ase, thepotential an be represented as a Gaussian funtion in either moment or anonial form. It turns out thatsome operations are easier to express in terms of anonial harateristis and others are easier to expressin terms of moment harateristis. 9



6.2.1 InitializationIn the Lauritzen and Spiegelhalter algorithm, eah lique potential is initialized to be the produt of theonditional distributions of all the nodes that have been assigned to that lique. (Eah node is assigned toexatly one lique, whih must ontain its family.) After one forwards and one bakwards pass over the tree,eah lique potential will be the joint distribution over all its member variables. (Let us all these \virginpotentials".) We are then ready to inorporate evidene.Unfortunately, we may not be able to represent the initial potential (before the initial forwards and bakwardspass over the tree) in moment form. The reason is that the mean may depend on the values of some variableswhih have not been assigned to the lique, e.g., if only one node has been assigned to a lique, the initialpotential will be of the form f(X jY ); here, the mean depends on Y .Hene we represent the initial potentials using anonial harateristis, and only onvert to moment formwhere neessary (as desibed in Setion 6.3).For a vetor node, the onditional distribution has the formf(xjz) =  exp �� 12 �(x� ~��BT z)T��1(x� ~��BT z)��= exp �� 12 (x z )� ��1 ���1BT�B��1T B��1BT ��xz�+ (x z )� ��1~��B��1~��� 12~�T��1~�+ log �where  = (2�)�n=2j�j� 12 . Hene we set the anonial harateristis tog = � 12~�T��1~�� n2 log(2�)� 12 log j�jh = � ��1~��B��1~��K = � ��1 ���1BT�B��T B��1BT �This generalizes the result in [Lau92℄ to the vetor ase. In the salar ase, ��1 = 1=�, ~� = �, B = b andn = 1, so the above beomesg = ��22� � 12 log(2��)h = �� � 1�b�K = 1� � 1 �bT�b bbT � :One we have the anonial harateristis, we an ompute the initial potentials for eah lique by multi-plying together the potentials assoiated with eah variable whih is assigned to this lique. Unfortunately,we annot onvert these anonial harateristis to moment harateristis beause K is not of full rank,and hene is not invertible. (This is easy to see in the salar ase, sine K ontains an outer produt andhene is of rank 1.) 10



6.2.2 Entering evideneIf we observe that a ontinuous variable Y takes on a spei� value y, we must modify the potentials of allthe liques/separators that ontain Y, sine their dimensionality will be redued. Let the lique ontain Xand Y. The new potential is��(x) = exp[g + (xT yT )�hXhY �� 12 (xT yT )�KXX KXYKY X KY Y �� xy�= exp[�g + hTY y � 12yTKY Y y�+ xT (hX �KXY y)� 12xTKXXx℄This generalizes the equation in [Lau92℄ to the vetor ase.We an ompute the analogous result for moment harateristis as follows. We will start by just onsideringthe quadrati formQ = (x0 � ~�0x y0 � ~�0y )�KXX KXYKY X KY Y ��x� ~�xy � ~�y �Expanding out,Q = (x� ~�x)0KXX(x� ~�x) + 2(x� ~�x)0KXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y)= x0KXXx� 2x0KXX~�x + ~�0xKXX~�x + 2x0KXY (y � ~�y)� 2~�0xKXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y)= x0KXXx� 2x0 (KXX~�x �KXY (y � ~�y)) + (~�0xKXX~�x � 2~�0xKXY (y � ~�y) + (y � ~�y)0KY Y (y � ~�y))def= x0Ax� 2x0b+ Now we use the following rule, alled ompleting the square:xTAx� 2xTb+  = (x�A�1b)TA(x�A�1b) + � bTA�1b (7)to yield ��(x) = p� �Q(x; ~�;�) where� = A�1~� = A�1blog p� = log p� 12 �� b0A�1b�6.2.3 Multipliation and divisionIn the disrete ase, we use multipliation and division to update potentials when new evidene arrives:Pr�W = PrW Pr�SPrS , where S is a separator and W is a lique. Notie that PrWPrS = Pr(W jS), so we are reallyomputing a onditonal distribution \on the y" and multiplying in new information.We an de�ne multipliation and division in the Gaussian ase in terms of anonial harateristis, asfollows. To multiply �1(x1; : : : ; xk; g1;h1;K1) by �2(xk+1; : : : ; xn; g2;h2;K2), we extend them both to thesame domain x1; : : : ; xn by adding zeros to the appropriate dimensions, and ompute(g1;h1;K1) � (g2;h2;K2) = (g1 + g2;h1 + h2;K1 +K2)11



The support of the new funtion is the intersetion of the previous supports. Division is similar, exept thatwe de�ne (�1=�2)(x) = 0 if �1(x) = 0.6.2.4 MarginalizationLet �W be a potential over a set W of variables. We an ompute the potential over a subset V � W ofvariables by marginalizing, denoted �V =PWnV �W . Lety = � y1y2 �; h = � h1h2 �; K = �K11 K12K21 K22�with y1 having dimension p and y2 having dimension q. It an be shown (by ompleting the square andusing nie properties of multidimensional Gaussians) thatZ �[ � yT1 yT2 �T ℄dy1 = �[y2; ĝ; ĥ; K̂℄where ĝ = g + 12 �p log(2�)� log jK11j+ hT1K�111 h1� = g + 12 �p log(2�) + log jK�111 j+ hT1K�111 h1�ĥ = h2 �K21K�111 h1K̂ = K22 �K21K�111 K12In the moment ase, things are muh simpler. We simply extrat out the omponents of ~� and � whihrelate to y2, and hange the onstant so that it normalizes the new distribution.6.3 Hybrid aseThe only hange in the hybrid ase is that the potential funtions will now be over both ontinuous anddisrete nodes. Essentially we have one set of anonial or moment harateristis for eah value of thedisrete nodes. All the operations go through as before, exept for marginalization. If we marginalize outover some ontinuous nodes, we an proeed as in Setion 6.2.4, one for eah value of the disrete nodes.If we marginalize out over some disrete nodes d, but the mean/variane do not depend on j, we just sumthe appropriate onstants (g or p) for eah value of d: this is alled strong marginalization. However, if themean and variane depend on j, we will get a mixture of Gaussians:Xj �(x; j; i) =Xj p�Q(x; ~�(j; i);�(j; i))This annot be simpli�ed any further, and must be kept as a list of terms. We would therefore like to arrangethings so that we integrate out all ontinuous nodes before the disrete nodes on whih they depend, e.g., wewritePi Rx f(x; ~�(i);�(i)) rather than RxPi f(x; ~�(i);�(i)). This an be ahieved by ensuring that all theontinuous nodes are eliminated before their disrete anestors. Suh a node elimination ordering is alleda strong triangulation, .f.[JJD94℄. 12



Unfortunately, in the ase of hybrid DBNs, the need to eliminate all the ontinuos nodes before their disreteanestors lashes with our desire to eliminate all the nodes in slie t before we eliminate any in slie t+1. Ifwe don't do strong triangulation, the number of mixture omponents beomes exponential in the length ofthe sequene. The standard approah (see e.g., [TSM85, BSL93, Kim94, WH97℄) is to \ollapse" the mixtureinto k omponents. If k = 1, this orresponds to omputing the \weak" moments:p̂(i) = Xj p(i; j)^~�(i) = Xj ~�(i; j)p(i; j)=p̂(i)�̂(i) = Xj �(i; j)p(i; j)=p̂(i) +Xj �~�(i; j)� ~̂�(i)��(~�(i; j)� ~̂�(i)�T p(i; j)=p̂(i)These will give the \orret" mean and variane:Pr(I = i) = p̂(i)E [YjI = i℄ = E Pr(J=jjI=i) [E [YjI;J℄ji = i℄= Xj ~�(i; j) Pr(J = jjI = i)Var[YjI = i℄ = E [Var[YjI;J℄ji = i℄ + Var [E [YjI;J℄ji = i℄= E �(i; j) +E h(~�(i; j)�E ~�(i; j)) (~�(i; j)�E ~�(i; j))T iLauritzen [Lau96℄ shows that this is the best approximation (in the KL sense) if k = 1.7 LearningIn this setion, we disuss how to �nd the Maximum Likelihood Estimates (MLEs) of the parameters asso-iated with eah node. We assume that we have a set of N training examples, where eah example assigns avalue to every node in the network (this is alled the fully observable ase). In Setion 7.2, we address theissue of what to do when the values of some variables are unknown.If we assume the parameters of node Xi, �i, are independent of those of all other nodes, we an maximizethe �i's separately. Further, the only terms in the joint distribution that depend on �i involve Xi and itsparents, so we just need to ompute the suÆient statistis for eah family.Disrete, linear Gaussian and mixtures of linear Gaussian distributions are all in the exponential family[DeG70, Bun94, Lau96℄; hene the size of the suÆient statistis we need to keep is equal to the size of theparameter vetor (and independent of N).7.1 Fully observable ase7.1.1 Disrete aseIf Xi is a disrete variable, the parameter vetor is �i = (�ijk) = (Pr(Xi = kjPa(Xi) = j)), whih is justa table of numbers. The suÆient statistis are Nijk, the number of times the event (Xi = k;Pa(Xi) = j)13



ours in the training set. Sine�ijk = Pr(Xi = k;Pa(Xi) = j)Pr(Pa(Xi) = j) � 1NNijk1NNijwhere Nij =PkNijk , the MLE is d�ijk = Nijk=Nij .7.1.2 Gaussian aseThe approah we will adopt is to model the joint distribution over a node and its parents (forming familyX) as a MVG, ompute its suÆient statistis and then �nd its MLE parameters. We disuss the simplestase below; for more general results, see [Mur98℄.The suÆient statistis for an MVG after seeing N examples are sN def= PNl=1 xl and QN def= PNl=1 xlxTl ,sine ~�N = 1N sN = 1N NXl=1 xl (8)and d�N = 1N NXl=1(xl � ~�N )(xl � ~�N )T= 1N " NXl=1 xlxTl !� NXl=1 xl! ~�NT � ~�N  NXl=1 xTl !+N~�N ~�NT#= 1NQN � ~�N ~�NT :It is simple to update the suÆient statistis when we see the next example, xN+1.To ompute the parameters of a node given the suÆient statistis of its family, we use linear regression asfollows. Let X1 represent the hild and X2 the parents, i.e.,X = �X1X2 � ; �X = ��X1�X2 � ; �X = ��11 �12�21 �22�Then the onditional density of X1 given X2 is a MVG with�X1jX2 = E[X1jX2 = x2℄ = �X1 +�12��122 (x2 � �x2) (9)and �X1jX2 = �11 ��12��122 �21: (10)14



Hene the loal parameters for the node are given byB = �Y Z��1ZZ (11)~� = ~�Y �B~�Z� = �Y Y �B�ZYB an then be broken up into its individual bloks, one for eah parent.7.1.3 Hybrid aseThe exat posterior distribution of a hybrid potential will be a mixture of Gaussians. It an be approxi-mated by a single Gaussian by performing weak marginalization. In general, this an be an arbitrarily badapproximation, sine we may be replaing a multimodal distribution with a unimodal one. However, letus suppose that the error introdued by this step is at most �. Then the results in [BK98b, BK98a℄ showthat for a hybrid DBN, the total error will be a funtion of � and , the mixing rate of the Markov hain,but independent of t. An alternative approah to learning hybrid DBNs, taken in [GH96℄, is to maximizean exat lower bound on the likelihood, produed by onsidering a tratable approximation to the originalstruture.7.2 Partially observable aseIf we do not observe the value of every node in eah training ase, there is no longer a losed form expressionfor the MLE. In this setion, we investigate two methods for learning under these irumstanes. Bothmethods make many passes over the training data, and update the parameters at the end of eah pass,until they reah a loal maximum in likelihood spae; hene they are bath methods. However, it is easyto onvert them to inremental (online) versions, whih update the parameters after seeing a subset of thetraining set (see e.g., [NH98℄ for inremental EM and [BC94℄ for inremental gradient desent).7.2.1 EMThe basi idea of the Expetation Maximization (EM) algorithm is to \�ll in" the missing values withtheir expeted values (expetation w.r.t. the urrent set of parameters), and to use these Expeted SuÆientStatistis (ESS) when omputing the MLE. The parameters are then set to their MLE values, and the proessrepeats until the likelihood stops inreasing (it an be proved that EM will onverge to a loal maximum).In the disrete ase, the ESS areE [Nijk ℄ =Xl Pr(Xi = k;Pa(Xi) = jjel) =Xl Pr(Xi = k;Pa(Xi) = j; el)Pr(el) :In the Gaussian ase, the ESS aresN =Xl E[Xljel℄ and QN =Xl E[XlX0ljel℄ 15



sine Var[X ℄ = E[XX 0℄�E[X ℄E[X ℄0For the hybrid ase, we just ompute bot kinds of ESS for eah disrete parent value.We now present the EM algorithm in detail.1. Choose (random) starting values for the parameters B; ~�;� for eah node. A broad ovariane is agood idea, so that samples far from the mean are not assigned unduly low likelihood.2. Repeat(a) Reset the ESS for eah node.(b) Reset the log-likelihood: L = 0.() For eah training ase ei. Update the log-likelihood: L + = logPr(e).ii. Compute the posterior marginal over eah family given the evidene.iii. Update the ESS for eah family.(d) Compute the MLE of the parameters for eah family given the ESS.3. Until L onverges.Steps 2()i and 2()ii an be omputed using the inferene algorithms we disussed earlier.7.2.2 Gradient desentIt is possible to ompute an expression for the gradient of the log-likelihood [XJ96, BKRK97℄ and heneto use gradient-based learning methods. However, we must maintain onstraints on the parameters. Inpartiular, for ontinuous nodes, � must remain symmetri and positive de�nite, and for disrete nodes, �ijkmust lie inside the unit ube and on the surfaePk �ijk = 1. The best way to maintain the onstraints is toreparamaterize the problem, solve the problem in the unonstrained spae, and onvert bak. For the CPTentries, we an learn the parameters of a softmax funtion [BC94℄. For �, we an learn the parameters of� 12 , whih is unonstrained, and at the end set � = � 12� 12 .EM, while tehnially a �rst order method, often does better than nominally faster gradient-based methods,suh as onjugate gradient or quasi-Newton [XJ96℄. This is primarily beause EM avoids a line-searh ateah iteration, whih is expensive sine it requires omputing the log-likelihood at many points along theline, eah suh evaluation requiring a all to the inferene engine. We have yet to see how tehniques suhas Levenberg-Marquardt (whih approximate the Hessian yet don't require a line searh) perform.7.3 Using priors to ompute the MAP estimateTo avoid over�tting when we have too little training data, we an use priors, and ompute the MAP estimatesinstead of the ML estimates. A suitable prior for disrete nodes is the Dirihlet prior, whih has a simpleintuitive interpretation in terms of pseudo ounts: we just imagine that we have seen a ertain number N 0ijkof ases of the event (Xi = k;Pa(Xi) = k), and add these to our real ounts. For the vetor Gaussian ase,16
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