
Evaluating Environments for Functional ProgrammingJon Whittle�Recom Technologies, NASA Ames Research CenterMo�ett Field, CA 94035jonathw@ptolemy.arc.nasa.govAndrew CummingDept of Computer Studies, Napier University,219 Colinton Road,Edinburgh EH14 1DJ, Scotland.andrew@dcs.napier.ac.ukAbstractFunctional programming presents new challenges in the design of programmingenvironments. In a strongly typed functional language, such as ML, much conven-tional debugging of runtime errors is replaced by dealing with compile time errorreports. On the other hand, the cleanness of functional programming opens up newpossibilities for incorporating sophisticated correctness-checking techniques intosuch environments. CYNTHIA is a novel editor for ML that both addresses thechallenges and explores the possibilities. It uses an underlying proof system as aframework for automatically checking for semantic errors such as non-termination.In addition, CYNTHIA embodies the idea of programming by analogy | wherebyusers write programs by applying abstract transformations to existing programs.This paper investigates CYNTHIA's potential as a novice ML programming en-vironment. We report on two studies in which it was found that students usingCYNTHIA commit fewer errors and correct errors more quickly than when usinga compiler / text editor approach.1 IntroductionFunctional programming (FP) is now taught widely in universities as introductory com-puting. However, despite the emergence of some excellent beginners' texts [Ullman, 1994,Michaelson, 1995], only limited attention has been paid to the design of programmingenvironments that augment the learning process. This paper investigates what featuresof environments could most bene�t novice functional programmers, with particular ref-erence to the language ML [Paulson, 1991]. Note that we are concerned here withenvironments that support real programming, not Intelligent Tutoring Systems thatare limited to a small number of pre-de�ned examples.�Formerly University of Edinburgh 1

Most students of FP write programs at a command-line interface or in a text editorthe contents of which are then compiled. Current compilers for ML (e.g. SML of NewJersey (SML-NJ) and CamlLight) give only crude error information and can only com-pile complete de�nitions. The primitiveness of this approach can result in an arduousedit-compile-edit loop in which users incorrectly patch their programs because of thelack of clear feedback [Whittle, 1999]. Note that FP presents new di�culties becauselanguages like ML, with polymorphic static type checking, replace much conventionalruntime debugging with debugging of the type conicts which inevitably arise duringcompilation. The design of FP environments, therefore, must be undertaken with anew set of considerations in mind.CYNTHIA is a novel editor for a functional subset of ML which overcomes some ofthese di�culties. It incorporates an incremental approach to programming whereby theusers' programs are checked for errors as they are written and errors are agged to theuser immediately (although they need not necessarily be corrected straight away). Thismeans both that incomplete programs can be checked for errors and that many errorscan be trapped early on, thus avoiding sometimes dire consequences later. These ideasare captured in the notion of programming by analogy | whereby the user transformsexisting function de�nitions using a sequence of abstract editing commands. Thesecommands are mostly correctness-preserving and in the case that errors are introduced,the errors can be highlighted easily to the user rather than providing cryptic systemmessages.Traditional syntax-directed editors (e.g. [Teitelman & Reps, 1984, Hansen, 1971,Teitelman, 1975]) prevent the user from writing syntactically incorrect programs byforcing the user to build programs from pre-de�ned templates. We extend this ap-proach in two ways | by de�ning a set of editing commands or transformations thatgeneralise the template approach and are oriented towards FP, and by providing sophis-ticated semantic guarantees such as termination checking. It is an interesting questionto decide which semantic guarantees are potentially the most useful to programmers.There are many techniques available for carrying out automated analysis of programsbut they all require a high level of expertise to be used e�ectively. We consider a fewparticular ideas from Formal Methods and restrict them in such a way that the analysiscan be done completely automatically and hence can be used as part of an everyday,programming environment. 2

2 Novice Functional Programming2.1 A Brief Introduction to MLBefore going on to describe CYNTHIA, we will acquaint the reader with ML. Thereare a number of di�erent dialects of ML. Throughout the rest of the paper, we con�neattention to the recognised dialect Standard ML [Milner et al., 1990] which is the mostwidely used. We do not attempt to describe functional programming here but refer theunfamiliar reader to [Bird & Wadler, 1988]. The syntax of ML is best illustrated byexample:fun map f nil = nil| map f (h::t) = (f h) :: map f t;where nil denotes the empty list and :: is the cons operator for constructing lists.This example illustrates many features of ML:� ML is functional. Each program in ML consists of a set of de�nitions. Eachde�nition is a set of equations that de�ne a particular function. map is a functionwhose inputs are another function, f , and a list, and whose output is the listformed by applying f to each element of the list. For example, if we evaluatedmap (op +) [(1,2),(3,2)], the result returned would be [3,5]1.� ML uses recursion and pattern matching. Recursion is used extensivelywhere procedural languages would use a loop. Functions are often de�ned bypattern matching| inmap, nil and h::t are patterns used to de�ne the function,where h::t represents a non-empty list with head h and tail t. Pattern matchinggives us a way of performing a case analysis on a datatype.� ML is strongly typed. Every object in the language belongs to a type such aslist, integer or tree. ML employs type inference to automatically infer types atcompile time. This frees the user from declaring types in most cases. For example,an ML compiler would deduce that map has type ('a -> 'b) -> 'a list ->'b list. 'a and 'b are polymorphic types. 'a list is a polymorphic list type| i.e. the type of elements of the list is unspeci�ed but the elements must allhave the same type. Polymorphism allows code to be shared between di�erentdata structures while retaining the security associated with strong typing.1[x,y] is ML shorthand for x::y::nil 3

� Higher order programming. This means that ML functions can take otherfunctions as arguments, results can be functions, and data structures can containfunctions.� ML is impure. It contains a small number of imperative features included forpractical reasons, mainly for input/output.CYNTHIA is concerned only with a purely functional subset of Core2 ML . This is onthe grounds that purely functional de�nitions are easier to analyse and also that theimpure features are less likely to be used by novices than by expert programmers.2.2 Requirements for a Functional Programming EditorNumerous studies (see IEEE Standard 1044, for example) examine what kinds of errorsprogrammers make. However, there have been very few studies in the context of FP.[Bental, 1995] reports on experiences with the Ceilidh system at Heriot-Watt University,Scotland. 60 students used Ceilidh as part of a course on ML programming. Thestudents sent email to human tutors when problems were encountered and these emailqueries were classi�ed. Some of the major problems noted were recursion (recursionis widely accepted to be di�cult to learn [Anderson et al., 1988]), pattern matchingand type errors. Our own study at Napier University [Whittle, 1999] backs up theseclaims. Over a two hour period, 14 novice ML students, in the fourth week of acourse on ML, were monitored during a normal tutorial session. Their interactionswith the SML-NJ compiler were logged and any errors were noted. 193 type errorswere found in total, compared with 114 other semantic errors and 70 syntax errors. Thedominance of type errors suggests that improved type feedback facilities would be useful.[Jun & Michaelson, 1998] also found that students have di�culties understanding typesand suggests a graphical representation of type errors to overcome this.In our study, errors were classi�ed according to the compiler's error message. Be-cause error classi�cation was done automatically, some errors may have been classi�edincorrectly. One problem with ML is that an error that is essentially a syntax error canhave an alternative parse and will therefore only show up as a type error. Such incorrectclassi�cations can be tolerated, however, as these situations are especially confusing tothe user and so we are essentially weighting particular kinds of errors.Note that the problem with type errors cannot be solved by merely rephrasingthe error messages. The underlying problem is that the type inference algorithm is a2ML has a module system for structuring large programs. Core ML excludes the module system.4

complex one and there are subtle interactions between polymorphic variables occur-ring in distant parts of the program. As a simple example, consider the code from[Duggan & Bent, 1996]3:... F y ...;... y=(3,x) ...;... F(z,4.5)The kind of reasoning needed to determine why x has type real is highly non-trivial, es-pecially if the three expressions occur far apart in the input �le. To provide non-crypticmessages would require an explanation of the interactions, [Duggan & Bent, 1996], butthese explanations tend to be lengthy and complex. CYNTHIA addresses such prob-lems in the following way. Programming by analogy raises the level at which programsare written. Rather than writing low-level code, programs are constructed in pieces. Inaddition, since the editing commands are correctness-preserving, the user is preventedfrom making many errors (for instance, syntax errors can never be introduced intoCYNTHIA programs). The kinds of correctness that CYNTHIA checks for are asfollows.2.2.1 Syntactic CorrectnessAll programs must be syntactically correct. Expressions are checked for syntax errorsas they are entered (rather than waiting until compilation). Hence, incorrect syntax isnever introduced into a program.2.2.2 Type correctnessType declarations usually need not be given in ML because type inference can auto-matically infer them at compile time. However, as noted above, subtle interactionsmean that type inference leads to confusing error messages. CYNTHIA insists thatusers give a type declaration which helps to clarify these interactions because the useris forced to make his/her intentions explicit. By removing type inference, we removeone of the key advantages of ML | that the user need not write type declarations.However, because functions are only ever written by making modi�cations to existingfunctions, the user never writes down a full type declaration for a function, but merelyadds to it in piece-meal fashion. Hence, the extra burden is not unacceptable. And theadvantage is that type feedback can be much more focussed.Syntax errors are never allowed in a CYNTHIA de�nition. In contrast, type errorscan be introduced. This is because it is generally impossible to transform one well-typed3; is the ML notation for connecting sequences of expressions, which should be evaluated in left toright order. 5

program into another without passing through intermediate, ill-typed states. Any typeerrors that do occur are highlighted to the user in a di�erent colour. In general, itis very di�cult to highlight the actual source of a type error [Duggan & Bent, 1996].This is because the type inference algorithm breaks down when a type is derived thatis inconsistent with a previously derived type. However, expressions far apart in theinput �le may have inconsistent types. Hence, type errors may be reported at locationsdistant from their actual source. CYNTHIA is less susceptible to this problem becauseeach de�nition is given a type declaration. The highlighting is then made with respectto this de�nition. The other reason why CYNTHIA can do better is because largefragments of code are guaranteed well-typed a priori because they are introduced byediting commands. Hence, there are fewer type inconsistencies that need to be reported.2.2.3 Static Semantic correctnessUser entry is accepted only if devoid of static semantic errors (e.g. undeclared variables,undeclared functions)4. Such errors can be introduced by editing commands, however.This usually happens if a command removes an object from the de�nition | for in-stance, suppose the program contains the de�nition of a local variable. If the constructthat introduced this variable is removed, the remaining program fragment may stillcontain references to that variable. Such static semantic errors are highlighted to theuser (in a colour di�erent than type errors).2.2.4 Well-de�nednessA well-de�ned function de�nition is one that is neither over- nor under-de�ned. Interms of ML, this means that all patterns must exhaustively cover the datatype thatthey are de�ned over and must contain no overlapping patterns. The following functionis under-de�ned:fun addlist (x::xs) (y::ys) = (x:int) + y :: addlist xs ys;Note that there is no pattern for when either of the input lists is empty. Under-de�nedfunctions are allowed in ML (they are agged as warnings at compile-time) but theycan lead to run-time errors. In this example, a call to addlist will always produce anerror. The following function is over-de�ned5:4Type errors are strictly static semantic errors but we make a distinction for purposes of presenta-tion.5tl returns the tail of a polymorphic list. 6

fun length x = 1 + length (tl x)| length nil = 0;If tl is de�ned such that tl nil gives an exception, then length nil will also producean exception. Swapping the order of the two clauses would work as expected because MLimposes a top-to-bottom ordering on the clauses (essentially ignoring the ambiguity). Ingeneral, ML's top-bottom ordering could lead to errors. The user may be unaware thatfor a certain input the function is de�ned twice and ML may not pick up the expectedvalue. For this reason, CYNTHIA restricts the user to well-de�ned functions. In lengthabove, x would have to be replaced by (h::t).Students tend to understand the most commonly occurring patterns fairly well, asthey are stressed in courses, but patterns can become arbitrarily complex and must bede�ned over other datatypes. It is at this point that novices become confused. To de�nea function via pattern matching, each expression of the relevant datatype must matchexactly one pattern. Otherwise, run-time errors can occur. Observations of studentsshowed that they had a good deal of di�culty in formulating well-de�ned patterns. Al-though non-exhaustive functions can occasionally be useful (and are therefore signalledonly as warnings, not errors, by compilers), it is generally considered a good idea towrite total functions wherever possible, especially when learning the language.It is impossible to create ill-de�ned patterns in CYNTHIA as all patterns are builtup incrementally using the editing command make pattern which is guaranteed cor-rect.2.2.5 TerminationStudents' lack of understanding of recursion can lead to the writing of programs con-taining in�nite loops. In our observations of students [Whittle, 1999], we found thatthis kind of error is particularly di�cult for students to uncover. CYNTHIA ex-plicitly checks for termination. If the user attempts to write a non-terminating pro-gram, they will be told immediately and banned from making this edit. Termina-tion checking is an undecidable problem so CYNTHIA restricts the user to a decid-able subset of terminating programs. This is the set of Walther Recursive programs[McAllester & Arkoudas, 1996], which contains a wide variety of recursive programssu�cient for use in real programming situations, such as multiple recursions, nestedrecursions, recursion with accumulators etc. The only other programming environ-ment of which the authors are aware that checks for termination is the recursion ed-7

itor [Bundy et al., 1991]. However, this editor is severely restricted in the functionswhich can be accepted. Rather than having a general termination checker to hand,the recursion editor relies on the syntactic nature of the programs and hence realisticprogramming is not possible.2.3 Other EditorsOne of the most common attempts to support students learning recursion is the template-based approach [Bhuiyan et al., 1994, Gegg-Harrison, 1991, Kirschenbaum et al., 1989,Bowles & Brna, 1993]. Rather than writing recursive (or indeed non-recursive) algo-rithms from scratch, users call up templates. These may be schematic representationsthat need to be �lled in, concrete programs that are transformed using special com-mands, or a combination of both. These tools are generally inadequate, however. Toomany templates are needed to cover the whole of the target language. This leads totwo extremes. Either a very large number of (often very speci�c) templates are pro-vided that cover a wide subset of the language but which makes remembering whichtemplate to use di�cult, or a small number of less-speci�c templates are provided inwhich case the subset of the language supported is overly restricted. The recursioneditor [Bundy et al., 1991] is one of the better examples of these systems. However,the problem here is that, although a set of transformational commands is provided,the order of application of these commands is crucial, leading to a situation where theuser has written a partial program but cannot complete it without undoing a largenumber of previous steps (or not be able to complete it at all). CYNTHIA was in-spired by the recursion editor and looks to overcome some of the di�culties associatedwith template-based systems. We claim that CYNTHIA provides a small, compactset of commands supporting a su�ciently large subset of the ML language whilst notbeing sensitive to the order of application of commands. This has been possible toachieve partly because of the careful design of the commands and partly because of theuniformity of the functional style.It has already been stated that most functional programmers use a text editor fol-lowed by compilation of the text �le. Recently, two editors have become available whichattempt to provide advanced programming support. MLWorks [Har1996] provides anintegrated environment for Standard ML that incorporates debugging facilities, pro�lingand o�ers a graphical view of structured SML items. CtCaml [Rideau & Th�ery, 1997] isa structure editor for CamlLight [Leroy, 1995] designed using the Centaur [Aikins, 1980]8

framework. As well as structure editing facilities, CtCaml provides more advanced fea-tures such as the highlighting of type errors and type explanations. However, theseenvironments have somewhat di�erent objectives to CYNTHIA. MLWorks is aimed atproviding a fully integrated programming environment in the same way as has been pro-vided for languages like C. Hence, it does not contain sophisticated correctness-checkingor programming by analogy. CtCaml is an attempt to apply the Centaur technology tofunctional programming but its structure editing is based on syntax rather than seman-tics. CtCaml incorporates the type explanation algorithms of [Duggan & Bent, 1996].These provide an alternative way of improving type error feedback but the explana-tions produced tend to be lengthy and di�cult and their worth is yet to be realized |cf. [Rideau & Th�ery, 1997], \On the one hand it [type explanation] appears to be toocomplex a tool for being used by a ML newcomer. (...) On the other hand, expertsusually �nd the explanation too detailed to be of real help."2.4 ScopeCYNTHIA supports a functional subset of Core ML. The main exclusions are mu-tually recursive programs and type inference. The former are disallowed because ourtermination checking technique, Walther Recursion, does not cover it. We also excludethe imperative features of ML which are used mainly for input/ouput. [Whittle, 1999]addresses how these omissions could be incorporated.3 Overview of CYNTHIA3.1 Writing Programs in CYNTHIACYNTHIA is implemented in SICStus Prolog v.3 and Tcl/Tk. Upon startup, theuser selects a program from an initial library. which may then be edited and savedto the library. In this way, a user-customised library can be built up. Figure 1 showsCYNTHIA's display. The user may highlight any part of the program by positioningthe mouse over it. Clicking on the left mouse button brings up a menu of editingcommands that could be applied at this point. Only those commands that are currentlyapplicable are given as an option. After selecting a command, the user is presented witha dialog box to enter any necessary parameters for the command. The lower part ofthe display lists all valid recursive calls that are currently available for insertion intothe program. Valid recursive calls are ones that would not introduce in�nite loops ifused in the de�nition. This list gives the user a ready reminder of which calls may be9

used at a given time, and the list may be added to using the command add recursivecall.

Figure 1: Graphical user interface to CYNTHIAThe following example is a typical task which might be given to students in the �rsthalf of a course on functional programming. The student is asked to write a numberof table-accessing functions. Each of these functions has a very similar structure. It isnatural, therefore, to use CYNTHIA as a way of transforming one function de�nitioninto another. We give a textual representation of the interface here. The task isdescribed as follows:A \table" can be thought of as a store of data-items (the \values") where each entryis indexed by some data-item (the \keys"). The idea is that a value can be retrievedfrom the table by using the appropriate key, and that there is at most one entry for eachkey. The assumption is that tables will not be very large, i.e. there is no serious problemconcerning the e�ciency of search through a table. Choose a suitable representation forsuch tables and implement the following functions in a consistent manner:newtable: a new table containing no entries.addentry k v d: returns a new table which is the same as table d except that the10

value entered for the key k is v; this value replaces any entry that might be there for k.�ndentry k d: given a table d and key k, returns the value entered in d against k.Raises an exception if there is no such entry.hasentry k d: checks if the table d contains an entry for key k.Let us assume that the student decides to implement the table as a polymorphic listwhere the odd elements are the keys and the even elements are the values6. Let us alsoassume that the student has already de�ned newtable and now wishes to de�ne hasentry.The �rst thing that the student must do is to decide upon a starting de�nition. Sincethe tables will be represented by lists, the student chooses length:'a list -> intfun length nil = 0| length (h::t) = 1 + length t;The rename command can be used to carry out a global rename of this function.Selecting this command at the indicated point7, gives:'a list -> intfun hasentry nil = 0| hasentry (h::t) = 1 + hasentry t;Next, the student changes the output type of the de�nition using the command changetype: 'a list -> boolfun hasentry nil = 0| hasentry (h:: t) = 1 + hasentry t;The de�nition is now ill-typed (the underlined expressions are ill-typed with respectto the type declaration and are highlighted in CYNTHIA). CYNTHIA highlights alltype inconsistencies in this way. The highlighting serves as a warning to the user butthe errors need not be corrected immediately.To access the keys, the program will need to recurse in two steps. To achieve this,the student invokes make pattern at the boxed point. This command will replace twith two cases { when t is empty and non-empty:6This assumes that the keys and values are of the same type but one could imagine a novice makingthis sort of assumption. Later, we give an alternative representation that would overcome this problem.7Throughout this paper, program code enclosed in boxes denotes the point at which the user hasapplied an editing command. 11

'a list -> boolfun hasentry nil = 0| hasentry (h::nil) = 1 + hasentry nil| hasentry (h::h1::t) = 1 + hasentry t;In the third clause, a new variable, h1, has been introduced. In addition, a recursivecall using this new variable | namely, hasentry (h1::t), has been added to the listof valid calls. It can now be introduced into the program if required. The system knowsthat any de�nition involving this new recursive call will terminate. The de�nition isstill missing a parameter for the key to search for. This can be introduced using thecommand add curried argument, which adds a parameter throughout the de�nition:'a -> 'a list -> boolfun hasentry k nil = 0| hasentry k (h::nil) = 1 + hasentry k nil| hasentry k (h::h1::t) = 1 + hasentry k t;The user gives a name and type for the new argument and the type declaration isupdated automatically. Finally, the user needs to change the output in each case. Thiscan be done using the commands change term and add construct(if then else),giving8: 'a -> 'a list -> boolfun hasentry k nil = false| hasentry k (h::nil) = raise excep| hasentry k (h::h1::t) = if k=h then true else hasentry k t;excep is a previously de�ned exception. The above constitutes a reasonable de�nitionof hasentry. The student now proceeds to de�ne �ndentry and notices the similaritybetween the two de�nitions. To correctly de�ne �ndentry, the user need only invokerename, change type and change term twice, to give:'a -> 'a list -> 'afun findentry k nil = raise excep| findentry k (h::nil) = raise excep8Strictly, the second argument should now have type ''a list. ''a is a polymorphic type overwhich equality may be de�ned. CYNTHIA does not yet make any distinction between 'a and ''a.This is a minor oversight that should be corrected soon.12

| findentry k (h::h1::t) = if k=h then h1 else findentry k t;To construct addentry is almost as easy. The user needs to invoke add curriedargument, change type and change term:'a -> 'a -> 'a list -> 'a listfun addentry k v nil = k::v::nil| addentry k v (h::nil) = raise excep| addentry k v (h::h1::t) = if k=h then k::v::telse h::h1::addentry k v t;At this point, the student may decide that a better representation for tables would havebeen a list of pairs. CYNTHIA can be used to transform the de�nitions to suit thisnew representation. For example, applying remove pattern to hasentry gives:'a -> 'a list -> boolfun hasentry k nil = false| hasentry k (h::t) = if k=h then true else hasentry k t;Applying change type at the indicated point gives:'a -> ('a * 'b) list -> boolfun hasentry k nil = false| hasentry k (h ::t) = if k=h then true else hasentry k t;Applying make pattern at the point indicated gives a correct solution:'a -> ('a * 'b) list -> boolfun hasentry k nil = false| hasentry k ((h,h1)::t) = if k=h then true else hasentry k t;To evaluate any of these de�nitions, the user must load them into a compiler.The editing commands were designed with the intention that any de�nition may betransformed to any other de�nition (within the subset of ML supported). Of course,it makes sense to choose as a starting function a de�nition that is close to the target.However, the user will not be overly disadvantaged by making a sub-optimal choice.The commands �t together in such a way that it is easy to recover from an incorrectapplication of an editing command, even if other edits have been applied since. Theintention also was to keep the set of commands as small as possible. This means thatthe commands are easy to learn and that very little experience of CYNTHIA is needed13

before one can start editing programs. A wider range of commands could have beenincluded, but it is thought that these would have added confusion to the system whilstonly providing limited increases in functionality.The other main advantage of the editing commands is that some programming taskscan be completed in a single step. The change type command is a good example.Consider the length function again:'a list -> intfun length nil = 0| length (h::t) = 1 + length t;Suppose the user wishes to write a similar function but which counts the leaf nodes ofa labelled, binary tree. Usually, this would mean changing the input patterns to reectthe constructors for trees. All of this can be achieved in one step by applying changetype and specifying a new tree type. The application of this command would resultin: 'a tree -> intfun length (leaf n) = 0| length (node(h,t,t2)) = 1 + length t;This de�nition can then be easily completed. Note that many editing commands makean arbitrary decision about which variable to use in an expression | e.g. to use lengtht rather than length t2 in this example. It is impossible to second guess the users'intentions and so it is necessary to make such an arbitrary choice, but these choices canbe changed easily. The count function could be completed by changing the results andname of the function appropriately. change type is one of CYNTHIA's most powerfulcommands. It can make a transformation between patterns of a wide variety of types9in such a way that the target patterns are well-de�ned. It also provides a list of newrecursive calls which the user may introduce, and these recursive calls are guaranteednot to violate termination. change type works by �nding a mapping between theold and new datatype de�nitions in such a way that (non-)recursive constructors aremapped to (non-)recursive constructors. Full details are beyond the scope of this paperand can be found in [Whittle, 1999].9de�ned explicitly in [Whittle, 1999] 14

3.2 The Design of CYNTHIAFrom a technical point of view, the novel aspect of CYNTHIA is that all programs arerepresented as proofs of a (weak) speci�cation which correspond to programs in a wayde�ned by the proofs-as-programs notion [Howard, 1980]. A description lies beyond thescope of this paper but can be found in [Whittle et al., 1999]. Basically, the type of eachfunction, along with lemmas needed for termination analysis, forms the speci�cationof a so-called synthesis proof. This speci�cation is a theorem, proved by the systemand the user (by means of the editing commands). Each proof step corresponds to aprogram construct or correctness check. Hence, programs may be extracted from theirproofs. This framework gives a exible, sound way of representing functional programsand reasoning about their correctness. Note that CYNTHIA's interface means that theuser requires no knowledge of the underlying proof technology and indeed is unawareof its existence.4 Evaluation of CYNTHIAThis section reports on empirical studies undertaken with two groups of students(SG1 and SG2) at Napier University, Scotland. The aim of the studies was to assessCYNTHIA's usefulness as a novice programming environment for ML. \Usefulness"is in the sense de�ned by the research questions below. As a point of comparison,CYNTHIA was judged against the way in which students on previous courses hadprogrammed | using the text editor TextEdit and compiling programs using the Stan-dard ML of New Jersey compiler (henceforth, this approach will be called the TEAapproach). The main research questions being asked by this study are:1. How useful was CYNTHIA as an editor for ML that guarantees correctness?(a) How does the quantity of errors made using CYNTHIA compare to TEA?(b) How does CYNTHIA's error feedback compare to TEA?(c) How does the user's productivity rate using CYNTHIA compare to TEA?2. How does programming by analogy compare to writing a program from scratch?(a) Are the editing commands well-designed?(b) How easy is it to choose a starting (source) example?15

These are summarised in Table 1. The criteria expand upon what is being asked.The measures describe which data were used to answer each question. The followingmethods of data collection were employed:I (SG1 and SG2). The students' sessions with CYNTHIA were logged as theyworked. For SG1, interactions with the compiler | New Jersey of SML (SML-NJ)| were also recorded. Interactions were logged during normal tutorial sessionsin which students worked through a series of examples on a Web-based course[GIML, 1998]. These examples typically involved the student writing a functionconsisting of a few lines using pattern matching and recursions.II (SG1) Students were asked to take two tests, A and B, each consisting of threequestions requiring the writing of a simple list recursive function (see AppendixB). Both A and B contained tasks of similar di�culty and were each allotted halfan hour. SG1 was split into two groups, X and Y. X attempted part A of the testusing CYNTHIA and part B using TEA. Y attempted part A using TEA andpart B using CYNTHIA. The experiment allows a comparison of errors made bythose using CYNTHIA and those using TEA (see Table 2).III (SG1) A group of 4 students were videoed attempting four short exercises (seeAppendix A). They were asked to attempt some questions with CYNTHIA andsome without and were given a time limit of 45 minutes. In this way, individualstudents' performance could be compared. The students were asked to verbalisewhat they did at each stage and were instructed that they could ask questions ifthey got really stuck.IV (SG1 and SG2) Informal observations were taken by both authors. Students wereobserved during their tutorial sessions interacting with and without CYNTHIA.4.1 The Experimental SubjectsBoth subject groups studied ML as part of a Formal Methods course at Napier Uni-versity. The course lasted 14 weeks of which approximately 9 weeks was on ML. Thestudents were given lectures each week and were then expected (although not forced) toattend a two hour, supervised tutorial session during which they would work throughexamples from a Web-based course [GIML, 1998] and could ask questions of the tu-tors. The ML course is divided into eight short tutorials consisting of the introduction16

Question Criteria Measures1a) What kind of errors can be made? I, II, IVHow many errors are made?1b) Are errors located easily? I, III, IVAre they corrected quickly?1c) Did students get through more examples? III, IV2a) Were the commands easy to understand? I, IVWere they at the right level of abstraction?Were they consistent?2b) How were examples chosen? III, IVIs a library-indexing system necessary?Table 1: Research Questions | Criteria and Measures.of new concepts and then exercises that the students could work through | Figure2. In previous years, students had used the New Jersey SML compiler (version 0.93)[NJS1996] to compile their programs. In the early stages of the course, students tendto write programs directly into the New Jersey interpreter or cut and paste programfragments from the course notes. Later on, they would write programs in a text editorand then compile the program. Assessment on the course was by examination andalso practical coursework. All experiments involving a compiler were done using theSML-NJ compiler.Lesson 1: Expressions and simple functions.Lesson 2: Types, bindings, pattern matching and lists.Lesson 3: Simple recursion on integers.Lesson 4: List processing including recursion.Lesson 5: Partial functions, overlapping patterns, anonymous functions,more complex recursion.Lesson 6: Higher-order programming.Lesson 7: User-de�ned types.Lesson 8: Accumulators in recursion, mutual recursion, nested de�nitions.Figure 2: A Gentle Introduction to ML (course structure).The subjects in the �rst evaluation were 40 postgraduates following a one-yearSoftware Technology course. CYNTHIA was introduced in the second week of thecourse. The students were told that CYNTHIA was the result of a research projectand that they could use it as much or as little as they wished. CYNTHIA was onlymentioned in passing in lectures.The subjects in the second evaluation were 29 students in year 4 or 5 of an under-17

graduate course in Computer Science. CYNTHIA was introduced as one of the mainteaching tools in this course. The students were not told that CYNTHIA was partof a research project. CYNTHIA was introduced more fully in the lectures, althoughdetails of editing commands and functionality were only taught in the tutorials.4.2 Informal versus Formal EvaluationMost of the evaluation of CYNTHIA was informal. The formal approach of split-ting the subject group into a control and an experimental group was unwise given theexperimental conditions. The reasons for this are as follows:� Ethical considerations. The students in the subject group in both evaluations werefollowing courses which would directly contribute to their degree mark. Therefore,giving CYNTHIA to only one half of the students would have been unethical.Even if CYNTHIA had no overall e�ect, psychological factors could a�ect per-formance. For example, the control group could feel that they had been unfairlytreated since they were denied access to the tool.� Controlling the experimental setup. Dividing the students fairly into a controland experimental group was impossible. Randomization would mean that in agiven tutorial some students would be using CYNTHIA and some would not.This could lead to the psychological factors mentioned above. The �rst coursehad two separate tutorial groups but we could not simply use one of these asthe control as timetabling factors meant that the abilities of the two groups werevastly di�erent.� Controlling the running of the experiment. Even given two groups of equal ability,leakage between these groups would be a major complication. Since students areall following the same course, they would communicate with each other betweentutorial sessions, and there was no way to stop the control group using CYNTHIAoutside the tutorials.� Interdependency of CYNTHIA's features. The di�erent aspects of CYNTHIAtend to interact with each other. Therefore, it would have been di�cult to isolateany e�ects of an experiment, even given perfect conditions.For these reasons, the following results do not include any detailed statistical analysis.We do include comparisons of error counts but the results of these should be inter-preted with care. Note that the crossover experiment (measure II) is some kind of18

control/experimental group design but the design was used so that individual studentscould be compared both using and not using CYNTHIA. The intention was not tomake a statistical comparison.4.3 Answering the Research QuestionsQ1. How useful was CYNTHIA as an editor for ML that guaran-tees correctness?CYNTHIA was designed as an editor that includes sophisticated correctness-checkingtechniques. This question asks whether it is useful to have a such an editing environ-ment.Q1.(a) How does the quantity of errors made using CYNTHIAcompare to text editors?It was found that the number of errors made by CYNTHIA-users is less than that ofTEA-users.One way to compare the number of errors made is to look at logs of CYNTHIA,TEA-interaction and make a count of the errors. For SG1, a count was made of errorsmade during the crossover experiment (measure II). Recall that the crossover experi-ment involved students using both the CYNTHIA and the TEA approach, and tookplace over one hour of intense programming. SG2 errors were counted over 8 weeks dur-ing which CYNTHIA was used regularly by a large number of students for two hourseach week (although less intensely). A classi�cation of all errors made was developed,inspiration being drawn from [Aitken, 1996]. Figure 3 gives this classi�cation.I briey explain the motivation behind this classi�cation. A full list of each error ineach class is given in [Whittle, 1999].� Algorithmic errors suggest a major algorithmic aw in the program, such asgiving the wrong condition in a conditional statement. These errors arise when theuser has misunderstood the problem or is unable to design a solution. CYNTHIAwas not primarily designed to help with this kind of error (although analogy mayprovide some help), so I do not include a count of these (they were roughly thesame).� Semantic errors are split into four categories. Local semantic errors arise in re-sponse to a misunderstanding of part of ML's semantics such as trying to de�nethe type int string or overloading a variable. Global semantic errors are where19

SYNTAX

USABILITY

SEMANTIC

Major algorithmic error
(e.g. wrong number arguments,

General syntax error

Clerical Error (e.g. mistyping)

Inability to use the system as
intended

to an error message)
Judgement errors (e.g. responded incorrectly

wrong patterns, wrong recursion)

ALGORITHMIC

Correct but non-exhaustive
or redundant patterns

Local semantic

Global semantic

Type errors

Figure 3: Classi�cation of Programming Errors.the error is dependent on some other part of the de�nition | for example, the useof an unbound variable or unde�ned function. Although type errors could be seenas global semantic errors, they are given a separate category for emphasis. Thesame is true of pattern errors (i.e. patterns are overlapping or non-exhaustive).Although a program with pattern errors will successfully compile, they are in-cluded because they can be a source of run-time errors and because CYNTHIAwas designed to forbid them.� Syntax errors include clerical errors where, for example, the student clearlymistyped a name or missed o� a bracket. General Syntax errors are slightlymore serious and suggest a cause more than mere carelessness : examples areusing a syntax that ML does not support such as return 0, or using the wrongsyntax for a conditional statement.� Usability errors are when the student could not work the system properly. Imake no comment whether it is the student's or the system's fault. An exampleis not being able to �nd the right editing command in CYNTHIA or enteringthe wrong parameters in a dialog box. Usability errors also include judgementerrors: where the system feedback was misunderstood by the student causing himto make an incorrect change to the program. In CYNTHIA, this could happenif, for instance, a syntax error is given in a dialog box and the student changes20

the wrong part of the entry. In TEA, the user might change a clause in thede�nition which was perfectly correct because he did not realise which clause theerror appeared in.A brief note is needed on how the errors were counted. The errors were counted manu-ally from the logs obtained during the experiment. It has to be decided at which pointin the logs errors will be counted. In SML-NJ, each time the student typed a semicolonto evaluate a program attempt, any errors present were noted. In CYNTHIA, theprogram was checked after each editing command was applied, and any errors in theprogram were counted. In some cases, multiple commands may be required to get theprogram into a \consistent" state. For instance, if the user wishes to change a basecase output to nil rather than 0, he must do two things: make the actual change,which results in a type error, and then change the result type in the declaration whichwill eliminate the type error. \Intermediate" errors like this were not counted. Somecommands require text to be entered into a dialog box. Any errors present in suchtextual input were also counted.The results of each evaluation are presented separately.Evaluation 1Table 2 gives the error count for the SG1 crossover experiment for both CYNTHIA andTEA users. The total number of edits row represents the number of editing commandsapplied. This �gure cannot be applied to TEA users. The di�erence in the total errorCYNTHIA TEALocal Semantic 20 33Global Semantic 14 21Patterns 0 6Type Errors 20 36General Syntax 0 8Clerical 9 40Incorrect Usage 53 0Judgement 50 53Total 166 197Total no. Edits 473 n/aTable 2: SG1 Errors.count is not as high as expected. However, the kinds of errors committed are di�erentfor CYNTHIA and TEA users. 21

Syntax errors were almost eliminated when using CYNTHIA. In particular, thenumber of clerical errors has reduced by 78% for SG1.The number of semantic errors was also less for CYNTHIA-users. Note particu-larly that the number of type errors made using CYNTHIA was just over half that fornon-CYNTHIA users. This is as expected. The raw �gures do not tell us how easy itwas to correct type errors under each system. However, anecdotal evidence suggests itwas much easier using CYNTHIA { see question 1.(b).Both the number of local and global semantic errors are fewer with CYNTHIA thanwithout. Again, this is as expected. Editing commands introduce semantically validexpressions so there is less scope for making errors. We would also expect these errorsto be located more quickly (although the �gures cannot tell us this). Local semanticerrors can only occur in freely typed text | and CYNTHIA traps these as soon asthey are made. Global semantic errors may make it through to the main program textbut CYNTHIA will highlight them making them easier to correct.For SG1, CYNTHIA seems to score pretty badly on usability errors. In partic-ular, 53 Incorrect Usage errors were introduced that obviously could not occur whenusing TEA (because they are CYNTHIA-speci�c errors). This is a disappointinglylarge �gure. It suggests �rst that CYNTHIA's interface is di�cult to use and secondthat students do not read documentation { for most of the errors they committed couldhave been avoided if they had read the documentation.Surprisingly, there is no real di�erence in the numbers of judgement errors. Anecdo-tal evidence suggests that students using TEA spend much more time trying to locateerrors than CYNTHIA users. The judgement errors were meant to measure this sortof thing, but the results do not back up the informal observations. Table 3 gives a more�ne-grained analysis of the judgement errors. See Appendix C for de�nitions of J1-J5.J1 J2 J3 J4 J5 TotalCYNTHIA 8 0 35 4 3 50TEA 0 53 0 0 0 53Table 3: Judgement Errors made during Crossover Test.All of the SML-NJ judgement errors fall into the same category { J2. J2 states thatthe student has misunderstood an error message and has changed the wrong part ofthe program in response to this message. J2 errors are fairly serious. The fact that allSML-NJ judgement errors are of type J2 shows that the SML-NJ error messages arecryptic. These kinds of errors do not occur with CYNTHIA because the nature of the22

editor tells you much more clearly where the error is. However, there are a large numberof J3 errors for CYNTHIA users. J3 errors occur when the user types in a parameter toan editing command in a dialog box but the parameter given was of an incorrect form.Detailed inspection of the logs showed that 95% of the J3 errors occurred when addinga conditional statement. CYNTHIA expects the user to type in the condition butoften students typed in the entire expression | i.e. if h=x then delete x t elseh::delete x t instead of just h=x. The real problem here is that the functionality ofthe command has not been adequately explained. Given that it is stated precisely inthe documentation, our expectation was that by integrating CYNTHIA more closelyinto the teaching course, these kinds of errors could be eradicated easily.Evaluation 2Evaluation 1 showed that there were generally fewer errors when using CYNTHIA butthat there were problems with the usability of the system. We expected that most of thejudgement errors and many of the incorrect usage errors could be eradicated by makingchanges to the system and by encouraging students to read documentation. To testout this claim, some changes were made to CYNTHIA before the second evaluation.These were:� Documentation. The documentation of CYNTHIA was more closely integratedinto the course notes | each time a new concept was introduced, the correspond-ing editing command was introduced also and the student was taken through acouple of examples which speci�cally used CYNTHIA.� Dialog Boxes. The main change to the actual interface was to give keywords inthe dialog boxes that provided strong hints as to what input was required. Hence,when adding a conditional statement, the dialog box would prompt the user withif then elserather than just a box.A further change in Evaluation 2 is that CYNTHIA was introduced as one of themain teaching tools. This was meant to give us an opportunity to assess CYNTHIA'susefulness in a teaching environment. This did mean, however, that for SG2 there wasno control group. 23

Table 4 gives a tentative comparison of SG1 and SG2 errors. SG1 errors were countedduring a timed session, whereas SG2 errors were counted throughout the course. Hence,the number of edits / errors in SG2 is much larger. However, all things being equal,we would expect the relative frequency of each error kind to be the same. The secondcolumn of Table 4 tells us whether this is the case. We would like to see by howmuch the quantity of each kind of error has increased from SG1 to SG2 and compareit to the increase expected. Since there is a roughly seven-fold increase in the totalnumber of edits (from 473 to 3266), we would expect a seven-fold increase in each kindof error. This will not be true, in general, though as students will make fewer errorsthe more experienced they become. We therefore use the increase in Clerical Errorsas a basepoint comparison. This is based on the assumption that the changes in theexperimental setup from SG1 to SG2 had no e�ect on the number of Clerical Errors.The second column expresses how the other kinds of errors have increased comparedwith the Clerical Errors, or, put in another way, it shows the percentage of the expectederrors that actually occurred. No. errors % increase relative to ClericalLocal Semantic 39 55Global Semantic 41 82Patterns 0 0Type Errors 59 83General Syntax 0 0Clerical 32 100Incorrect Usage 74 39Judgement 27 15Total 323Total no. Edits 3266Table 4: SG2 Errors.Most error categories increased by much less than expected. This is probably duein part to the improved documentation / integration. Note particularly that Judge-ment Errors actually reduced in absolute terms. This backs up our hypothesis thatCYNTHIA's poor showing regarding Judgement Errors in Evaluation 1 was due to thelack of reading of documentation, not due to any inherent major fault with CYNTHIA.Hence, the saving in other kinds of errors when using CYNTHIA is not o�set by a gainin usability errors.
24

Q1.(b) How does CYNTHIA's error feedback compare to the com-piler's?The previous question showed that the quantity of errors made using CYNTHIA isgenerally less than without CYNTHIA. This question concerns not the amount oferrors made, but given that an error has occurred, how easily could the students identifyit and correct it? It was found that errors are generally easier to correct in CYNTHIAthan TEA.The evidence for this is at the qualitative level. Evidence from videoing, observationand communication with students seems to suggest very positively that CYNTHIAdoes better than TEA. First, the kinds of errors that students make are di�erent whenusing CYNTHIA. Trival errors (e.g. clerical errors) have generally been �ltered outso students are less infuriated and so try to work out the problem rather than hackingat their code. In stark contrast to users of the SML-NJ compiler, we noticed studentspaying attention to error feedback and trying to work through the problem. Theydid not always succeed, of course, but undoubtedly learnt something along the way.Another point is that it is much easier in CYNTHIA to distinguish what kind of erroris occurring. This is because the error feedback is di�erent for di�erent categories oferrors. One of the problems with ML syntax is that its succinctness means that syntaxerrors can often have knock-on e�ects meaning that they show up as type errors duringcompilation. This happens less in CYNTHIA. The divide between errors is moreclear-cut. Type errors are always shown by pink highlighting. Global semantic errorsare shown by green highlighting, and syntax errors can only occur in dialog boxes.Second, students are editing smaller chunks of program at a single time and hencethe range over which the error could have occurred is far less. With TEA, students writean entire function before attempting compilation. With CYNTHIA, however, as eachsub-expression is entered into a dialog box, the text is checked for errors immediately.This means that the student need only look over very small chunks at a time and needworry less about dependencies with other code fragments. In addition, the user knowsthat some parts of the program are guaranteed correct | for example, any patternswill have been built up using make pattern and therefore the patterns must be well-de�ned. Since some code is generated automatically, there is no reason for the user tosuspect an error there. Hence, CYNTHIA allows the user to narrow his �eld of visionwhen looking for errors.Although, in general, CYNTHIA users seem to �nd it much easier to locate the25

source of type errors, there are a few situations where CYNTHIA can be misleading.This happens when type inference would succeed on a de�nition but type checking inCYNTHIA fails because of extra restrictions placed (unwittingly) on the de�nition bythe type declaration. An example is where the compiler would automatically unify twopolymorphic variables but CYNTHIA does not. Consider the example:'a -> 'b -> 'afun f x y = if g x then x else y ;The user gets a type error in CYNTHIA at the indicated point until he changes 'b to'a. It may be possible for CYNTHIA to automatically update such type declarations(or at least suggest updates).Q1.(c) How does the user's productivity rate using CYNTHIAcompare to text editors?We answer this question with speci�c reference to the video experiment (measure III).The four subjects that took part in the videoing each worked through a maximum ofthree examples (see Appendix A) of increasing di�culty. Some of these were attemptedusing CYNTHIA and some without CYNTHIA. Table 5 gives the number of examplesand timings (in minutes and seconds) for each student. C denotes that the examplewas attempted using CYNTHIA. S denotes that the student did not use CYNTHIA.Students were given help if they asked for it. This was comparable and minimal exceptfor student 3 who was given a substantial amount. Student 4 failed to �nish addlist.Students 2 and 3 did not have time to attempt it.Student leading0s maxlist addlist1 11:31 (C) 20:39 (S) 17:70 (C)2 27:00 (S) 20:10 (C) {3 16:30 (C) 12:20 (S) {4 16:10 (S) 10:30 (C) 18:46 (S)Table 5: Student Performance on Three Examples.The general level of ability of the students seemed to be in the order: student1 (best), student 4, student 2, student 3. maxlist is slightly harder than leading0s.addlist is more di�cult again because it involves multiple recursion. Students 1, 2and 4 seem to have performed better with CYNTHIA. On the �rst two tasks, all ofthese students took less time when using CYNTHIA { on average, 35% less. Note alsothat student 1 actually took less time on addlist than on the easier problem maxlist.26

One reason for this could be that the student used CYNTHIA for addlist (note, forinstance, that student 4 did not use CYNTHIA for addlist). The same phenomenonoccurs when comparing student 2 and 4's performances on maxlist and leading0s.A 35% gain would seem to agree with informal observations. For this level of taskdi�culty, the student often starts with a good idea of the required program behaviourand can describe this behaviour fairly accurately. Most time is taken up trying toimplement this algorithm { for example, correcting syntax and type errors and perhapsadjusting their algorithm slightly. Hence, 35% represents the gain in implementationtime achieved by CYNTHIA. Student 3 was unable to describe the algorithm inabstract terms and hence took more time in non-implementational work. This explainswhy the 35% decrease is not experienced in this case.Clearly, the number of students involved in the video experiment is small. Furtherinvestigation is needed to back up these results.Q2. How does programming by analogy compare to writing aprogram from scratch?Q2.(a) Are the editing commands well-designed?This question concerns the transformation of a source program using CYNTHIA'scollection of editing commands. Speci�cally, was the structure of the commands well-understood, was their function clear, etc.? Green et al [Green & Petre, 1996] introducethe notion of `cognitive dimension', a broad-brush evaluation technique for interactivedevices and non-interactive notations. Green describes thirteen high-level criteria fordiscussing the design of a system. The idea is that they will form a common point ofdiscourse for evaluating interactive systems. Although we will not mention all of thedimensions here, they serve as a useful framework for discussing the design of the edit-ing commands and for evaluating how easily the editing commands can be learnt andapplied. The following considers the most relevant of these dimensions and evaluatesthe set of editing commands on each. More dimensions can be found in [Whittle, 1999].Abstraction GradientEach editing command is essentially an abstraction, grouping together common se-quences of editing operations. But are they at the right level of abstraction? As Greensays, \learning to think in abstract terms is a high educational achievement". The27

natural question to ask therefore is if the students using CYNTHIA could understandthe editing commands. Does the abstract nature of the editing commands bene�t themin the long run?The main result we found was that CYNTHIA's editing commands tend to cor-respond to functional programming concepts. For example, add recursive callemphasises the role of termination checking and change type emphasises the use oftypes. In particular, CYNTHIA discourages a procedural style of coding.The original aim when designing the editing commands was to make the set assmall as possible whilst keeping the meaning of the commands transparent to a newuser. As far as the former goes, the goal was certainly achieved | with as few as 11commands (appendix D), a wide variety of programs can be produced (much widerthan comparable systems such as [Brna & Good, 1996, Bundy et al., 1991]). However,the high number of Incorrect Usage errors in Tables 2 and 4 show that the commandscaused some confusion. In some cases, the abstractness of the editing commands seemeddi�cult to learn precisely because they correspond to FP concepts. There is a chickenand egg situation here | learning the commands is easier if functional programming isunderstood, but use of the commands can help the understanding of functional concepts.make pattern is an example. Consider the following code:fun combine x nil = nil| combine x (h::t) = ...To pattern match on the indicated x, students would try to rename x to nil. Thiswould be disallowed by CYNTHIA. The problem here is that students do not thinkin terms of making a pattern or such like, but in terms of adding another line of code.One way to overcome this would be to recast the commands in terms of very obviouscode-writing operations, such as add line of code. However, make pattern doesmore than just adding a line of code. There is a speci�c reason why the code is beingadded and make pattern cannot be used to add just any line of code. It is unclearwhether it is better to design the commands in terms of functional programming con-cepts or not. The ideal solution is probably to incorporate the editing commands intothe teaching material.Consistency 28

This dimension asks: when some of the language has been learnt, how much of the restcan be inferred. In this context, the question concerns the consistency of the operationof the editing commands. It is instructive to look more closely at the Incorrect Usageerrors committed by SG2: see Table 6 for a breakdown (the categories are explained inAppendix C).U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11Errors 0 4 3 0 1 1 11 3 2 2 4U12 U13 U14 U15 U16 U17 U18 U19Errors 12 1 11 4 11 1 2 1Table 6: Incorrect Usage Errors.Four errors, U12, U14, U16 and U7, contribute over 60% of the total count. U12states that the user tried to apply make pattern to an integer variable. This isdisallowed in CYNTHIA because make pattern can only be applied to types with a�nite number of constructors. Since each integer can be viewed as a constructor, the�niteness restriction does not hold. U14 is when an application of change type wouldrequire that a polymorphic variable be split into patterns. Clearly, this cannot be done.U16 is where the user attempted to use change term instead of add recursive callto add a new recursive call. U7 concerns the use of rename rather than change termto make a local change.Three of these errors, U12, U14 and U16, are in response to events that the user hasevery right to assume should be possible. This shows a slight lack of consistency in theset of editing commands. Students have attempted operations that should be possiblebased on their knowledge so far of the commands. This should not be frowned upontoo much, however, for each of the errors could be �xed relatively easily in a futureversion of CYNTHIA. Hence, the evaluation has pinpointed areas where CYNTHIAcould be improved.Hidden DependenciesA hidden dependency is a relationship between two components such that one is de-pendent on the other but that dependency is not fully visible. An example would bea spreadsheet | a formula in a cell tells which other cells it takes its value from, butdoes not tell which other cells take their value from it.Generally, there are very few hidden dependencies in CYNTHIA compared to TEA.29

For instance, type inference introduces a very signi�cant hidden dependency | typeerror messages often point to a point of the program far removed from the actual sourceof the error. In contrast, in CYNTHIA, the pink highlighting of type errors tends tobe much closer to the source of the problem. In fact, [Whittle, 1999] pages 250-251,makes a brief comparison of type highlighting in CYNTHIA and MLWorks and �ndsthat CYNTHIA's highlighting is closer to the source.Sometimes a compiler will accept a function which is not accepted by CYNTHIA.Consider the atten function:fun flatten nil = nil| flatten (h::t) = h @ flatten t;This is accepted by ML compilers and 'a list list -> 'a list is inferred as thetype for atten. Unfortunately, certain interactions with CYNTHIA can lead to theabove de�nition but with an incorrect type displayed. Students would edit an old func-tion, such as doublist which has type int list -> int list. They would correctlyedit doublist into the atten de�nition above. However, they would not edit the typedeclaration and so CYNTHIA would give a type error because the type declarationmeans that h is an integer and so cannot be appended onto flatten t.This kind of situation was a cause of great confusion for students who encounteredit. The students had an implicit assumption that the type declaration was correct andhence would scrutinise the program itself for errors. This implicit assumption is whatmakes type errors easier to locate in CYNTHIA. The situation given here, however, isan example where CYNTHIA introduces an error that ordinarily would not occur.Premature commitmentThis dimension concerns the extent to which the user is forced to make a decision beforethe information is available. Hence, premature commitment is generally a bad thing.Type inference reduces the need for premature commitment since decisions about thetyping of an expression can be delayed. At �rst glance, it seems that the same cannotbe said of CYNTHIA since a type declaration must be given. However, it is extremelyeasy to change the type declaration using change type so premature commitment isnot really needed.Another context in which premature commitment manifests itself is the degree to30

which the order of application of the editing commands matters. One of the maincriticisms of the recursion editor [Bundy et al., 1991], which is also a transformation-based editor, is that the order of commands is critical to success and so the user mustthink about the order before delving into the programming task.This is not true of CYNTHIA. Design decisions taken in the early stages can easilybe corrected later using a short sequence of editing commands. Suppose the user iswriting a function, app, to append two lists together and begins by splitting the secondargument:fun app l nil = l| app l (x::xs) = x :: app l xs;It is at this point that the user realises the �rst argument should have been split instead.In CYNTHIA, it is easy to revise this decision. The user applies remove pattern togive: fun app l l2 = l;and then make pattern on l, giving:fun app nil l2 = nil| app (x::xs) l2 = x::xs;Note that the user must also apply change term in the second clause to re-introducethe program fragment that was lost during the application of remove pattern10.Hence, although no premature commitment is required, the �x is non-optimal. A bet-ter solution might be to provide a specialised command for transferring the patternde�nition to the �rst argument.Progressive evaluationProgressive evaluation means that programs can be evaluated by the user at frequentintervals during their development, not just once the program is completely �nished.CYNTHIA improves on TEA in a signi�cant way here. Although any program mustbe �nished before it is executed (for it still must be accepted by the compiler), the user10One variation would be to allow the user to specify which clause is kept so that x::app l xs neednot be re-typed. 31

gets constant feedback about semantic errors during the programming process. Thisis achieved by the use of the highlighting mechanism for pointing out type errors etc.The key point is that CYNTHIA's feedback merely noti�es the user of a problem, itdoes not enforce them to change it immediately. Hence, the user retains the freedomto experiment but the existence of any errors is always in the back of his mind.ViscosityViscosity means resistance to local change. CYNTHIA is sometimes less viscousthan TEA and sometimes more viscous. Operations can be carried out in CYNTHIAthat would have to be done laboriously by hand in TEA. An example is changing thetype of a function and seeing the e�ects of this propagated throughout the program(having the pattern de�nition changed automatically). In this case, productivity isincreased in CYNTHIA because a \conceptual" change can be achieved in one edit.Such conceptual changes require many more keystrokes in a text editor, though. On theother hand, it can sometimes be easier to use a standard text editor to a�ect a change.Recall the app example above. Without a specialised editing command to transfer thepattern de�nition from the second to the �rst argument, we lose some program textwhich has to be re-entered.Q2.(b) How easy is it to choose a starting (source) example?Programming by analogy introduces an additional overhead for the user, namely, thedecision about which source example should be chosen. Some work has been donein the area of software re-use to provide sophisticated library systems that allow theuser to quickly select the best example [Weber, 1996, Runciman & Toyn, 1991]. InCYNTHIA's case, however, no library search functions are provided. This is for tworeasons. First, since CYNTHIA is currently being used in a novice environment it wasconsidered unnecessary. The students would be dealing with relatively easy examplesand probably not building up too large a database of source functions. Second, thechoice of a source is not as critical as in other systems because the editing commandsare very exible and so it is easy to recover from a sub-optimal choice. The evaluationphase gave an opportunity to test out these decisions.One way of answering the question is to consider how students decided upon a sourceexample. There seems to be three main ways | recency, familiarity and closeness.32

Most students pick the function they have used most recently11. In many cases, thisis a perfectly reasonable approach. For instance, when working on the on-line tutorial,examples within a tutorial tend to be similar (and get increasingly more complex) sothat such an ordering is very natural. It is not quite so natural in a real situation.For example, in the crossover experiment (measure II), a student wrote combine (seeAppendix B), which involves a complex recursion scheme, then used combine as thestarting point for a primitive list recursion example. Most students do modify theirstrategy in this sort of situation, however.Another very common way of choosing a source is to choose a familiar example. Inthe version of CYNTHIA that students were given, 6 examples were pre-de�ned. Twoof these were primitive list recursion examples, sum and doublist. These were familiarexamples as they were used in the tutorial material on list recursion. Students werequick to pick one of these as a starting point rather than something they had de�nedthemselves, even if their de�nitions were closer to what they needed. This is becausethe students are more familiar with the built-in functions and so need not waste timeunderstanding them. It should be said, however, that because the nature of functionalprogramming means that most functions are relatively small, understanding the sourceexample is rarely a time-consuming task. Also, students don't start to think about thetask in hand until they have something on the canvas. Only once they have a functionin the edit area do they start to think about the current task. By bringing somethingup in the edit area straight away, they feel as though they are part way to their goal.The more able students do think more deeply about which source example to choose.This was brought out during the videoing. Student 1 said: \I'm looking for a functionwith two lines in it." when trying leading0s. Student 4 said, whilst looking at thede�nitions available: \So, I want to get something closest to maxlist. I don't knowwhat half of these are unfortunately." He then selected a couple and decided they werenot close enough until he eventually chose sum. The two main measures of similarityused in these circumstances were: the type of the variable being recursed upon, and howmany patterns (or lines of code) were in the function. They did not seem concerned withthe result type of the function or with the type of non-recursive input types. Student1 looked for a function with 2 lines of code as source for leading1s. He chose doublisteven though this has a result type of int list not the required int.11This backs up the claim made in [Weber, 1996].33

5 ConclusionIt is our belief that the design of editors for novice functional programmers requiresspecial attention. Novice students generally �nd functional concepts like recursion andhigher-order functions di�cult to learn. Debugging is in some sense more tricky ina functional language because much runtime debugging is replaced by compile timeresolution of type conicts. These conicts must be resolved before the program can beexecuted and so program traces cannot be used as a debugging guide. In addition, thecomplex nature of type inference over polymorphic types means that type errors canbe awkward to locate.As an antidote to these e�ects, this paper has presented CYNTHIA. In CYNTHIA,the program is checked for errors incrementally as it is written. Due to its underlyingproof framework and the insistence on a type declaration, CYNTHIA can highlightthe source of type errors more accurately than compilers. On a presentation level, thehighlighting of errors (in the form of a change of colour of a program expression) is anon-intrusive form of feedback which the user must at all times be aware of but maychoose to ignore temporarily. On the other hand, compilers can �ll entire screens withcryptic type error messages which both must be dealt with immediately and also havea negative impact on the morale of the student.At a deeper level, CYNTHIA's abstract editing commands reduce the number oferrors which students make. Students construct programs by modifying existing, un-derstood code fragments. The majority of commands are correct-by-construction in thesense that they cannot introduce errors. Some commands will allow the user to intro-duce errors but these are agged once again in a non-intrusive manner. Unlike previousapproaches to transformation-based programming, the emphasis in CYNTHIA is onsemantic rather than syntactic transformations. The commands also tend to encap-sulate key functional programming concepts, such as the addition of a recursive callor the change of a set of patterns resulting from a change of type, and as such, theyencourage the student to program functionally rather than procedurally. Occasionally,the functionality of a command can be misunderstood precisely because the studentdoes not understand the underlying concept fully. Whilst this can hamper usability ofthe system, it forces the student to get help to understand �rst the concept and thenthe command.CYNTHIA's commands form a small set that allow a wide variety of programs to beconstructed in an order-independent fashion. This is in contrast to traditional template34

and schema methods of programming where either there are far too many schemasso that choosing the appropriate one is an arduous task, or only a very restrictedsubset of the language can be used. We believe that the modular nature of functionalprogramming is what allows the balance to be achieved in CYNTHIA.There are two main results of this paper. First, the use of transformation-basedprogramming as embodied in CYNTHIA can reduce the number of errors that noviceprogrammers make. It was shown that syntax errors can be reduced the most dra-matically but the real gain is in the reduction of type errors as these errors are mostdi�cult to locate and correct. In�nite loops are also eradicated in CYNTHIA. Fur-ther study is needed to investigate how much of a gain it is to outlaw non-terminatingprograms. Students tend to introduce fewer termination errors than, say, type errorsbut termination errors can be more serious.The second main result is that the transformation approach can increase the pro-ductivity of novice programmers. Commands like change type propagate the e�ectsof small changes throughout a program, which may result in signi�cant changes thatwould otherwise have to be laboriously typed in by hand. The video experiment showedthat students took less time to complete harder problems in CYNTHIA than they didto complete easier problems with the traditional approach. Admittedly, the video ex-periment involved only four students, but the results were observed more generallyduring tutorial sessions with the other students.One question that has not been fully addressed in this paper is the worth of program-ming by analogy as a learning aid. Analogy is a powerful technique in learning conceptssuch as recursion [Pirolli & Anderson, 1985] but can also lead to problems if studentsmake incorrect analogies, resulting in incorrect solutions [Escott & McCalla, 1988]. Wehave shown that the use of an existing program as an analogy to a desired one is oneimportant way of overcoming the \blank page" problem. We believe also that analo-gies between functional programs are much easier to make than between proceduralprograms and hence the issue of incorrect analogies is less likely to arise.We see that CYNTHIA-like transformations could be useful in a much wider func-tional programming context, for example, in maintaining existing programs. Softwareoften needs to be updated by making very small changes. A tool like CYNTHIAcould make these changes but guarantee that no errors are introduced as a by-product.Clearly, this would require extending CYNTHIA to the full ML language. The twomajor problems with doing this would be to extend termination checking and to deal35

with imperative features of ML. As for the former, we envisage integrating a collectionof specialised termination checkers into CYNTHIA | for example, a checker basedon recursive path orderings [Dershowitz, 1985] could deal with mutual recursion | butultimately, the user may wish to deliberately write a non-terminating program and sothe facility would be provided to switch o� termination-checking. The underlying proofframework of CYNTHIA could be adapted to deal with imperative features. In fact,work is underway to produce a CYNTHIA-like editor for the procedural language Java[Blewitt, 1998]. A further requirement of a fully blown CYNTHIA system would bethe inclusion of type inference. We show in [Whittle, 1999] how this could be incorpo-rated without losing anything (and indeed there are gains to be made, as CYNTHIAprovides a nice framework for partial type inference, whereby a type can be inferredbased only on the information given so far).Another interesting avenue would be to extend the correctness guarantees thatCYNTHIA o�ers. Although a challenging task, we believe that CYNTHIA's under-lying framework could allow the user to make assertions about the behaviour of theirfunctions and then to have these assertions proved. Clearly, the greater the correctnessguarantees, the more di�cult the theorem proving required. We expect that a seriesof specialised theorem proving tactics could be formed that would enable much of thetheorem proving to be automated, given that the assertions are in a suitably restrictedform.Acknowledgments The �rst author was supported by an EPSRC studentship andcomputing facilities were provided by EPSRC grant GR/L/11724. The authors wouldlike to thank Alan Bundy, Helen Lowe and Richard Boulton for discussions throughoutthe duration of this research.References[Aikins, 1980] Aikins, J. (1980). Prototypes and production rules: a knowl-edge representation for computer consultations. UnpublishedPh.D. thesis, Stanford University, Available as computer sci-ence report number STAN-CSD-80-814.[Aitken, 1996] Aitken, S. (June 1996). An analysis of errors in interactiveproof attempts. Technical report, Dept. of Computer Science,Glasgow University.[Anderson et al., 1988] Anderson, J. R., Pirolli, P. and Farrel, R. (1988). Learning toprogram recursive functions. In Chi, M.T.H, Glaser, R. and36

Farr, M.J., (eds.), The Nature of Expertise, pages 153{183,Hillsdale, NJ. L. Erlbaum.[Bental, 1995] Bental, D. (1995). Why doesn't my program work? : re-quirements for automated analysis of novices' computer pro-grams. In Proceedings of the Workshop on Automated Un-derstanding of Novice Programs, World Conference on AIand Education (AIED), Washington DC, USA. Availableat http://www.cs.mdx.ac.uk /sta�pages /DBental /aiedpa-per.html.[Bhuiyan et al., 1994] Bhuiyan, S., Greer, J. and McCalla, G. I. (1994). Supportingthe learning of recursive problem solving. Interactive LearningEnvironments, 4(2):115{139.[Bird & Wadler, 1988] Bird, Richard S. and Wadler, Philip. (1988). Introduction toFunctional Programming. Prentice-Hall.[Blewitt, 1998] Blewitt, A. (September 1998). A Java editor based on proofs-as-programs. Unpublished M.Sc. thesis, Department of Arti-�cial Intelligence, Edinburgh, Scotland.[Bowles & Brna, 1993] Bowles, A. and Brna, P. (August 1993). Programming plansand techniques. In Brna, P., Ohlsson, S. and Pain, H., (eds.),Proceedings of the World Conference on Arti�cial Intelligencein Education, pages 378{385. AIED.[Brna & Good, 1996] Brna, P. and Good, J. (1996). Searching for examples: Anevaluation of an intermediate description language for a tech-niques editor. In Vanneste, P., Bertels, K., de Decker, B. andJaques, J-M., (eds.), Proceedings of the 8th Annual Workshopof the Psychology of Programming Interest Group, pages 139{152.[Bundy et al., 1991] Bundy, A., Grosse, G. and Brna, P. (1991). A recursive tech-niques editor for Prolog. Instructional Science, 20:135{172.[Dershowitz, 1985] Dershowitz, N. (1985). Synthetic programming. Arti�cialIntelligence, 25:323{373.[Duggan & Bent, 1996] Duggan, D. and Bent, F. (1996). Explaining type inference.Science of Computer Programming, 27:37{83.[Escott & McCalla, 1988] Escott, J. A. and McCalla, G. I. (1988). Problem solv-ing by analogy: A source of errors in novice LISP program-ming. In Intelligent Tutoring Systems, pages 312{319, Mon-treal, Canada.[Gegg-Harrison, 1991] Gegg-Harrison, T.S. (1991). Learning Prolog in a schema-based environment. Instructional Science, 20:173{192.[GIML, 1998] Department of Computing Studies, Napier Uni-versity, Craiglockhart campus, 219 Colinton Road,EH14 1DJ. (1998). A Gentle Introduction to ML,http://www.dcs.napier.ac.uk/course-notes/sml/manual.html.[Green & Petre, 1996] Green, T.R.G. and Petre, M. (1996). Usability analysis ofvisual programming environments: a `cognitive dimensions'framework. Journal of Visual Languages and Computing,7:131{174.[Hansen, 1971] Hansen, W.J. (1971). Graphic editing of structured text. InParslow, R.D. and Green, R.E., (eds.), Advanced ComputerGraphics. Plenum Press.[Har1996] (r1996). MLWorks. Harlequin, Inc.37

[Howard, 1980] Howard, W. A. (1980). The formulae-as-types notion of con-struction. In Seldin, J. P. and Hindley, J. R., (eds.), To H. B.Curry; Essays on Combinatory Logic, Lambda Calculus andFormalism, pages 479{490. Academic Press.[Jun & Michaelson, 1998] Jun, Y. and Michaelson, G. (March 1998). A visualisation ofpolymorphic type checking. Technical report, Department ofComputing and Electrical Engineering, Heriot-Watt Univer-sity.[Kirschenbaum et al., 1989] Kirschenbaum, M., Lakhotia, A. and Sterling, L.S. (1989).Skeletons and techniques for Prolog programming. TechnicalReport Tr-89-170, Case Western Reserve University.[Leroy, 1995] Leroy, X. (1995). The CAML Light system (release 0.7).Projet cristal, INRIA Sophia Antipolis.[McAllester & Arkoudas, 1996] McAllester, David and Arkoudas, Kostas. (July 1996).Walther recursion. In McRobbie, M. A. and Slaney, J. K.,(eds.), 13th International Conference on Automated Deduc-tion (CADE13), pages 643{657. Springer Verlag LNAI 1104.[Michaelson, 1995] Michaelson, G. (November 1995). Elementary Standard ML.UCL Press.[Milner et al., 1990] Milner, R., Tofte, M. and Harper, R. (1990). The De�nitionof Standard ML. MIT Press.[NJS1996] (S1996). Standard ML of New Jersey, version 0.93.Tech.rep, AT&T Bell Laboratories, Available athttp://www.dcs.napier.ac.uk/course-notes/sml/BASE.ps.[Paulson, 1991] Paulson, L.C. (1991). ML for the Working Programmer. Cam-bridge University Press.[Pirolli & Anderson, 1985] Pirolli, P. L. and Anderson, J. R. (1985). The role of learningfrom examples in the acquisition of recursive programming.Canadian Journal of Psychology, 39:240{272.[Rideau & Th�ery, 1997] Rideau, L. and Th�ery, L. (March 1997). An interactive pro-gramming environment for ML. Rapport de Recherche 3139,INRIA Sophia Antipolis.[Runciman & Toyn, 1991] Runciman, C. and Toyn, I. (April 1991). Retrieving reusablesoftware components by polymorphic type. Journal of Func-tional Programming, 1(2):191{211.[Teitelman & Reps, 1984] Teitelman, T. and Reps, T. (1984). The Cornell programsynthesizer: a syntax-directed programming environment. InBarstow, D.R., Shrobe, H.E. and Sandewall, E., (eds.), Inter-active Programming Environments, pages 97{116. McGraw-Hill.[Teitelman, 1975] Teitelman, W. (1975). INTERLISP Reference Manual. XE-ROX.[Ullman, 1994] Ullman, J. D. (1994). Elements of ML programming. Prentice-Hall International, Englewood Cli�s, N.J.[Weber, 1996] Weber, G. (1996). Individual selection of examples in anintelligent learning environment. Journal of AI in Education,7(1):3{31.[Whittle, 1999] Whittle, J.N.D. (1999). The Use of Proofs-as-Programs toBuild an Analogy-Based Functional Program Editor. Unpub-lished Ph.D. thesis, Division of Informatics, University of Ed-inburgh. 38

[Whittle et al., 1999] Whittle, J., Bundy, A., Boulton, R. and Lowe, H. (1999).An ML editor based on proofs-as-programs. In Proceedingsof the 14th Conference on Automated Software Engineering(ASE99), Cocoa Beach, Florida.Appendix A1) Write a function that takes a list of zeros and ones and returnsthe number of consecutive zeros (if any) at the front of the list.Examples: leading0s [0,0,0,1,0] = 3leading0s [1,0,0,0] = 02) Write a function that takes a list of non-negative integers andreturns the maximum integer in the list.Example: maxlist [1,3,2,5,3] = 53) Write a function which takes two lists of integers and addstogether corresponding elements of the lists.Examples: addlist [1,2,3] [4,5,6] = [5,7,9]addlist [1,2,3] [] = [1,2,3]Appendix BTest X1) Write a function addl which takes 2 arguments: an integer, n, and a list ofintegers. The function returns a list of pairs. The first component of thepair is the original element. The second component is the elementadded to n.e.g. addl 5 [1,2,3] = [(1,6), (2,7), (3,8)]2) Write a function alessnum which tests element by element whether a listof integers is numerically less than another list. alessnum shouldreturn true if and only if every element in the first list is lessthan the corresponding element in the second list.e.g. alessnum [1,2,3] [2,3,4] = truealessnum [1,2,3] [2,3,2] = false3) Write a function that takes a list of integers and produces anew list. The nth element in the new list is the sum of the elementsof the old list up to position n.e.g. ilist [1,2,3,4] = [1,3,6,10]Test Y1) Write a function delete which deletes alloccurrences of an element from a list. 39

e.g. delete 3 [1,2,3,3] = [1,2]2) Write a function combine which takes two lists and returns a new list withcorresponding elements combined into a pair.combine [1,2,3] [4,5,6] = [(1,4), (2,5), (3,6)]3) Write a function pairlist which takes a list of pairs of integers andreturns a list of the alternate components of these pairs.e.g. pairlist [(1,2),(3,4),(5,6)] = [1,4,5]Appendix CJ1 Wrong sequence of editing commands because could not get the right command to workJ2 Misunderstood error messages so changed wrong part of programJ3 Error message caused user to incorrectly change part of input in dialog box in CYNTHIAJ4 Wrong structure in de�nition caused by bad source example choiceJ5 Misunderstood pink highlighting so changed expression to another ill-typed oneTable 7: Judgement ErrorsU1 Omitted entry in dialog boxU2 Gives pattern, not variable name, to add argumentU3 Typed entire conditional statement in if then else boxU4 Gave function name for new variable name in add argumentU5 Used change term instead of if then elseU6 Used change type to add an argumentU7 Used rename instead of change termU8 Tried to remove an argument that had been split into patternsU9 Gave top-level type in dialog box for add argumentU10 Used rename instead of make patternU11 Used add argument with nil instead of make patternU12 Tried to apply make pattern to integersU13 Tried to add a variable not in use but used internallyU14 Applied change type to introduce a split of an integer or polymorphic variableU15 remove construct instead of remove patternU16 change term instead of add recursive callU17 Use of case instead of if then elseU18 Only gave arguments, not entire recursive call, as parameter to add recursive callU19 Wrong parameter given to renameTable 8: Incorrect Usage Errors
40

Appendix D Make pattern Remove patternAdd argument Remove argumentAdd curried argument Remove curried argumentAdd recursive call Remove recursive callChange term Change typeRename

41

