Evaluating Environments for Functional Programming

Jon Whittle*
Recom Technologies, NASA Ames Research Center
Moffett Field, CA 94035

jonathw@ptolemy.arc.nasa.gov

Andrew Cumming
Dept of Computer Studies, Napier University,
219 Colinton Road,

Edinburgh EH14 1DJ, Scotland.
andrew@dcs.napier.ac.uk

Abstract

Functional programming presents new challenges in the design of programming
environments. In a strongly typed functional language, such as ML, much conven-
tional debugging of runtime errors is replaced by dealing with compile time error
reports. On the other hand, the cleanness of functional programming opens up new
possibilities for incorporating sophisticated correctness-checking techniques into
such environments. CYNTHIA is a novel editor for ML that both addresses the
challenges and explores the possibilities. It uses an underlying proof system as a
framework for automatically checking for semantic errors such as non-termination.
In addition, CYNT HI A embodies the idea of programming by analogy ~ whereby
users write programs by applying abstract transformations to existing programs.
This paper investigates CYNTHIA’s potential as a novice ML programming en-
vironment. We report on two studies in which it was found that students using
CYNTHIA commit fewer errors and correct errors more quickly than when using
a compiler / text editor approach.

1 Introduction

Functional programming (FP) is now taught widely in universities as introductory com-
puting. However, despite the emergence of some excellent beginners’ texts [Ullman, 1994,
Michaelson, 1995], only limited attention has been paid to the design of programming
environments that augment the learning process. This paper investigates what features
of environments could most benefit novice functional programmers, with particular ref-
erence to the language ML [Paulson, 1991]. Note that we are concerned here with
environments that support real programming, not Intelligent Tutoring Systems that

are limited to a small number of pre-defined examples.

*Formerly University of Edinburgh

Most students of FP write programs at a command-line interface or in a text editor
the contents of which are then compiled. Current compilers for ML (e.g. SML of New
Jersey (SML-NJ) and CamlLight) give only crude error information and can only com-
pile complete definitions. The primitiveness of this approach can result in an arduous
edit-compile-edit loop in which users incorrectly patch their programs because of the
lack of clear feedback [Whittle, 1999]. Note that FP presents new difficulties because
languages like ML, with polymorphic static type checking, replace much conventional
runtime debugging with debugging of the type conflicts which inevitably arise during
compilation. The design of FP environments, therefore, must be undertaken with a
new set of considerations in mind.

CYNTHIA is a novel editor for a functional subset of ML which overcomes some of
these difficulties. It incorporates an incremental approach to programming whereby the
users’ programs are checked for errors as they are written and errors are flagged to the
user immediately (although they need not necessarily be corrected straight away). This
means both that incomplete programs can be checked for errors and that many errors
can be trapped early on, thus avoiding sometimes dire consequences later. These ideas
are captured in the notion of programming by analogy — whereby the user transforms
existing function definitions using a sequence of abstract editing commands. These
commands are mostly correctness-preserving and in the case that errors are introduced,
the errors can be highlighted easily to the user rather than providing cryptic system
messages.

Traditional syntax-directed editors (e.g. [Teitelman & Reps, 1984, Hansen, 1971,
Teitelman, 1975]) prevent the user from writing syntactically incorrect programs by
forcing the user to build programs from pre-defined templates. We extend this ap-
proach in two ways by defining a set of editing commands or transformations that
generalise the template approach and are oriented towards FP, and by providing sophis-
ticated semantic guarantees such as termination checking. It is an interesting question
to decide which semantic guarantees are potentially the most useful to programmers.
There are many techniques available for carrying out automated analysis of programs
but they all require a high level of expertise to be used effectively. We consider a few
particular ideas from Formal Methods and restrict them in such a way that the analysis
can be done completely automatically and hence can be used as part of an everyday,

programming environment.

2 Novice Functional Programming
2.1 A Brief Introduction to ML

Before going on to describe CYNTHIA, we will acquaint the reader with ML. There
are a number of different dialects of ML. Throughout the rest of the paper, we confine
attention to the recognised dialect Standard ML [Milner et al., 1990] which is the most
widely used. We do not attempt to describe functional programming here but refer the
unfamiliar reader to [Bird & Wadler, 1988]. The syntax of ML is best illustrated by

example:

fun map f nil = nil

| map £ (h::t) = (£ h) :: map f t;

where nil denotes the empty list and :: is the cons operator for constructing lists.

This example illustrates many features of ML:

e ML is functional. Each program in ML consists of a set of definitions. Each
definition is a set of equations that define a particular function. map is a function
whose inputs are another function, f, and a list, and whose output is the list
formed by applying f to each element of the list. For example, if we evaluated

map (op +) [(1,2),(3,2)], the result returned would be [3,5]!.

e ML uses recursion and pattern matching. Recursion is used extensively
where procedural languages would use a loop. Functions are often defined by
pattern matching in map, nil and h: : t are patterns used to define the function,
where h: : t represents a non-empty list with head h and tail t. Pattern matching

gives us a way of performing a case analysis on a datatype.

e ML is strongly typed. Every object in the language belongs to a type such as
list, integer or tree. ML employs type inference to automatically infer types at
compile time. This frees the user from declaring types in most cases. For example,
an ML compiler would deduce that map has type (’a -> ’b) -> ’a list ->
’b list. ’a and ’b are polymorphic types. ’a list is a polymorphic list type

i.e. the type of elements of the list is unspecified but the elements must all
have the same type. Polymorphism allows code to be shared between different

data structures while retaining the security associated with strong typing.

L [x,y] is ML shorthand for x::y::nil

e Higher order programming. This means that ML functions can take other
functions as arguments, results can be functions, and data structures can contain

functions.

e ML is impure. It contains a small number of imperative features included for

practical reasons, mainly for input/output.

CYNTHIA is concerned only with a purely functional subset of Core? ML . This is on
the grounds that purely functional definitions are easier to analyse and also that the

impure features are less likely to be used by novices than by expert programmers.

2.2 Requirements for a Functional Programming Editor

Numerous studies (see IEEE Standard 1044, for example) examine what kinds of errors
programmers make. However, there have been very few studies in the context of FP.
[Bental, 1995] reports on experiences with the Ceilidh system at Heriot-Watt University,
Scotland. 60 students used Ceilidh as part of a course on ML programming. The
students sent email to human tutors when problems were encountered and these email
queries were classified. Some of the major problems noted were recursion (recursion
is widely accepted to be difficult to learn [Anderson et al., 1988]), pattern matching
and type errors. Our own study at Napier University [Whittle, 1999] backs up these
claims. Over a two hour period, 14 novice ML students, in the fourth week of a
course on ML, were monitored during a normal tutorial session. Their interactions
with the SML-NJ compiler were logged and any errors were noted. 193 type errors
were found in total, compared with 114 other semantic errors and 70 syntax errors. The
dominance of type errors suggests that improved type feedback facilities would be useful.
[Jun & Michaelson, 1998] also found that students have difficulties understanding types
and suggests a graphical representation of type errors to overcome this.

In our study, errors were classified according to the compiler’s error message. Be-
cause error classification was done automatically, some errors may have been classified
incorrectly. One problem with ML is that an error that is essentially a syntax error can
have an alternative parse and will therefore only show up as a type error. Such incorrect
classifications can be tolerated, however, as these situations are especially confusing to
the user and so we are essentially weighting particular kinds of errors.

Note that the problem with type errors cannot be solved by merely rephrasing

the error messages. The underlying problem is that the type inference algorithm is a

2MT has a module system for structuring large programs. Core ML excludes the module system.

complex one and there are subtle interactions between polymorphic variables occur-
ring in distant parts of the program. As a simple example, consider the code from

[Duggan & Bent, 1996]3:

.Fy ...;... y=(8,x) ...;... F(z,4.5)
The kind of reasoning needed to determine why x has type real is highly non-trivial, es-
pecially if the three expressions occur far apart in the input file. To provide non-cryptic
messages would require an explanation of the interactions, [Duggan & Bent, 1996], but
these explanations tend to be lengthy and complex. CYNT HIA addresses such prob-
lems in the following way. Programming by analogy raises the level at which programs
are written. Rather than writing low-level code, programs are constructed in pieces. In
addition, since the editing commands are correctness-preserving, the user is prevented
from making many errors (for instance, syntax errors can never be introduced into
CYNTHIA programs). The kinds of correctness that CYNTHIA checks for are as

follows.
2.2.1 Syntactic Correctness

All programs must be syntactically correct. Expressions are checked for syntax errors
as they are entered (rather than waiting until compilation). Hence, incorrect syntax is

never introduced into a program.
2.2.2 Type correctness

Type declarations usually need not be given in ML because type inference can auto-
matically infer them at compile time. However, as noted above, subtle interactions
mean that type inference leads to confusing error messages. CYNT HIA insists that
users give a type declaration which helps to clarify these interactions because the user
is forced to make his/her intentions explicit. By removing type inference, we remove
one of the key advantages of ML — that the user need not write type declarations.
However, because functions are only ever written by making modifications to existing
functions, the user never writes down a full type declaration for a function, but merely
adds to it in piece-meal fashion. Hence, the extra burden is not unacceptable. And the
advantage is that type feedback can be much more focussed.

Syntax errors are never allowed in a CYNT HIA definition. In contrast, type errors

can be introduced. This is because it is generally impossible to transform one well-typed

3 is the ML notation for connecting sequences of expressions, which should be evaluated in left to

right order.

program into another without passing through intermediate, ill-typed states. Any type
errors that do occur are highlighted to the user in a different colour. In general, it
is very difficult to highlight the actual source of a type error [Duggan & Bent, 1996].
This is because the type inference algorithm breaks down when a type is derived that
is inconsistent with a previously derived type. However, expressions far apart in the
input file may have inconsistent types. Hence, type errors may be reported at locations
distant from their actual source. CYNT H I A is less susceptible to this problem because
each definition is given a type declaration. The highlighting is then made with respect
to this definition. The other reason why CYNTHIA can do better is because large
fragments of code are guaranteed well-typed a priori because they are introduced by

editing commands. Hence, there are fewer type inconsistencies that need to be reported.
2.2.3 Static Semantic correctness

User entry is accepted only if devoid of static semantic errors (e.g. undeclared variables,
undeclared functions)?. Such errors can be introduced by editing commands, however.
This usually happens if a command removes an object from the definition for in-
stance, suppose the program contains the definition of a local variable. If the construct
that introduced this variable is removed, the remaining program fragment may still
contain references to that variable. Such static semantic errors are highlighted to the

user (in a colour different than type errors).

2.2.4 Well-definedness

A well-defined function definition is one that is neither over- nor under-defined. In
terms of ML, this means that all patterns must exhaustively cover the datatype that
they are defined over and must contain no overlapping patterns. The following function

is under-defined:

fun addlist (x::xs) (y::ys) = (x:int) + y :: addlist xs ys;
Note that there is no pattern for when either of the input lists is empty. Under-defined
functions are allowed in ML (they are flagged as warnings at compile-time) but they
can lead to run-time errors. In this example, a call to addlist will always produce an

error. The following function is over-defined®:

4Type errors are strictly static semantic errors but we make a distinction for purposes of presenta-
tion.
5l returns the tail of a polymorphic list.

fun length x = 1 + length (t1 x)

| length nil = 0;
If ¢l is defined such that t1 nil gives an exception, then length nil will also produce
an exception. Swapping the order of the two clauses would work as expected because ML
imposes a top-to-bottom ordering on the clauses (essentially ignoring the ambiguity). In
general, ML’s top-bottom ordering could lead to errors. The user may be unaware that
for a certain input the function is defined twice and ML may not pick up the expected
value. For this reason, CYNT H I A restricts the user to well-defined functions. In length
above, x would have to be replaced by (h::t).

Students tend to understand the most commonly occurring patterns fairly well, as
they are stressed in courses, but patterns can become arbitrarily complex and must be
defined over other datatypes. It is at this point that novices become confused. To define
a function via pattern matching, each expression of the relevant datatype must match
exactly one pattern. Otherwise, run-time errors can occur. Observations of students
showed that they had a good deal of difficulty in formulating well-defined patterns. Al-
though non-exhaustive functions can occasionally be useful (and are therefore signalled
only as warnings, not errors, by compilers), it is generally considered a good idea to
write total functions wherever possible, especially when learning the language.

It is impossible to create ill-defined patterns in CYNT HIA as all patterns are built
up incrementally using the editing command MAKE PATTERN which is guaranteed cor-

rect.

2.2.5 Termination

Students’ lack of understanding of recursion can lead to the writing of programs con-
taining infinite loops. In our observations of students [Whittle, 1999], we found that
this kind of error is particularly difficult for students to uncover. CYNTHIA ex-
plicitly checks for termination. If the user attempts to write a non-terminating pro-
gram, they will be told immediately and banned from making this edit. Termina-
tion checking is an undecidable problem so CYNT HIA restricts the user to a decid-
able subset of terminating programs. This is the set of Walther Recursive programs
[McAllester & Arkoudas, 1996], which contains a wide variety of recursive programs
sufficient for use in real programming situations, such as multiple recursions, nested
recursions, recursion with accumulators etc. The only other programming environ-

ment of which the authors are aware that checks for termination is the recursion ed-

itor [Bundy et al., 1991]. However, this editor is severely restricted in the functions
which can be accepted. Rather than having a general termination checker to hand,
the recursion editor relies on the syntactic nature of the programs and hence realistic

programiming is not possible.

2.3 Other Editors

One of the most common attempts to support students learning recursion is the template-
based approach [Bhuiyan et al., 1994, Gegg-Harrison, 1991, Kirschenbaum et al., 1989,
Bowles & Brna, 1993]. Rather than writing recursive (or indeed non-recursive) algo-
rithms from scratch, users call up templates. These may be schematic representations
that need to be filled in, concrete programs that are transformed using special com-
mands, or a combination of both. These tools are generally inadequate, however. Too
many templates are needed to cover the whole of the target language. This leads to
two extremes. Either a very large number of (often very specific) templates are pro-
vided that cover a wide subset of the language but which makes remembering which
template to use difficult, or a small number of less-specific templates are provided in
which case the subset of the language supported is overly restricted. The recursion
editor [Bundy et al., 1991] is one of the better examples of these systems. However,
the problem here is that, although a set of transformational commands is provided,
the order of application of these commands is crucial, leading to a situation where the
user has written a partial program but cannot complete it without undoing a large
number of previous steps (or not be able to complete it at all). CYNTHIA was in-
spired by the recursion editor and looks to overcome some of the difficulties associated
with template-based systems. We claim that CYNTHIA provides a small, compact
set of commands supporting a sufficiently large subset of the ML language whilst not
being sensitive to the order of application of commands. This has been possible to
achieve partly because of the careful design of the commands and partly because of the
uniformity of the functional style.

It has already been stated that most functional programmers use a text editor fol-
lowed by compilation of the text file. Recently, two editors have become available which
attempt to provide advanced programming support. MLWorks [Har1996] provides an
integrated environment for Standard ML that incorporates debugging facilities, profiling
and offers a graphical view of structured SML items. CtCaml [Rideau & Théry, 1997] is
a structure editor for CamlLight [Leroy, 1995] designed using the Centaur [Aikins, 1980]

framework. As well as structure editing facilities, CtCaml provides more advanced fea-
tures such as the highlighting of type errors and type explanations. However, these
environments have somewhat different objectives to CYNT HIA. MLWorks is aimed at
providing a fully integrated programming environment in the same way as has been pro-
vided for languages like C. Hence, it does not contain sophisticated correctness-checking
or programming by analogy. CtCaml is an attempt to apply the Centaur technology to
functional programming but its structure editing is based on syntax rather than seman-
tics. CtCaml incorporates the type explanation algorithms of [Duggan & Bent, 1996].
These provide an alternative way of improving type error feedback but the explana-
tions produced tend to be lengthy and difficult and their worth is yet to be realized —
cf. [Rideau & Théry, 1997], “On the one hand it [type explanation] appears to be too
complex a tool for being used by a ML newcomer. (...) On the other hand, experts

usually find the explanation too detailed to be of real help.”

2.4 Scope

CYNTHIA supports a functional subset of Core ML. The main exclusions are mu-
tually recursive programs and type inference. The former are disallowed because our
termination checking technique, Walther Recursion, does not cover it. We also exclude
the imperative features of ML which are used mainly for input/ouput. [Whittle, 1999]

addresses how these omissions could be incorporated.

3 Overview of CYNTHIA
3.1 Writing Programs in CYNTHIA

CYNTHIA is implemented in SICStus Prolog v.3 and Tcl/Tk. Upon startup, the
user selects a program from an initial library. which may then be edited and saved
to the library. In this way, a user-customised library can be built up. Figure 1 shows
CYNTHIA’s display. The user may highlight any part of the program by positioning
the mouse over it. Clicking on the left mouse button brings up a menu of editing
commands that could be applied at this point. Only those commands that are currently
applicable are given as an option. After selecting a command, the user is presented with
a dialog box to enter any necessary parameters for the command. The lower part of
the display lists all walid recursive calls that are currently available for insertion into
the program. Valid recursive calls are ones that would not introduce infinite loops if

used in the definition. This list gives the user a ready reminder of which calls may be

used at a given time, and the list may be added to using the command ADD RECURSIVE

CALL.

= CYNTHIA [

| FILE | EDIT | HELP Questionnaire
green = syntax error

“alist—> int
fun length nil = 0
Ilength (h = t) = 1 +lengthff

<hange term
add construct

remove construct
IE LT

B

O
=

N I

Figure 1: Graphical user interface to CYNT HIA

The following example is a typical task which might be given to students in the first
half of a course on functional programming. The student is asked to write a number
of table-accessing functions. Each of these functions has a very similar structure. It is
natural, therefore, to use CYNTHIA as a way of transforming one function definition
into another. We give a textual representation of the interface here. The task is
described as follows:

A “table” can be thought of as a store of data-items (the “values”) where each entry
is indexed by some data-item (the “keys”). The idea is that a value can be retrieved
from the table by using the appropriate key, and that there is at most one entry for each
key. The assumption is that tables will not be very large, i.e. there is no serious problem
concerning the efficiency of search through a table. Choose a suitable representation for
such tables and implement the following functions in a consistent manner:

newtable: a new table containing no entries.

addentry k v d: returns a new table which is the same as table d except that the

10

value entered for the key k is v; this value replaces any entry that might be there for k.

findentry k d: given a table d and key k, returns the value entered in d against k.
Raises an exception if there is no such entry.

hasentry k d: checks if the table d contains an entry for key k.

Let us assume that the student decides to implement the table as a polymorphic list
where the odd elements are the keys and the even elements are the values®. Let us also
assume that the student has already defined newtable and now wishes to define hasentry.
The first thing that the student must do is to decide upon a starting definition. Since

the tables will be represented by lists, the student chooses length:

’a list -> int

fun | length| nil = 0

| length (h::t) = 1 + length t;
The RENAME command can be used to carry out a global rename of this function.

Selecting this command at the indicated point?, gives:

’a list -> int

fun hasentry nil = 0
| hasentry (h::t) = 1 + hasentry t;
Next, the student changes the output type of the definition using the command CHANGE

TYPE:

’a list -> bool

fun hasentry nil =

| hasentry (h: .) = 1 + hasentry t;

The definition is now ill-typed (the underlined expressions are ill-typed with respect
to the type declaration and are highlighted in CYNTHIA). CYNT HIA highlights all
type inconsistencies in this way. The highlighting serves as a warning to the user but
the errors need not be corrected immediately.

To access the keys, the program will need to recurse in two steps. To achieve this,
the student invokes MAKE PATTERN at the boxed point. This command will replace t

with two cases — when t is empty and non-empty:

6This assumes that the keys and values are of the same type but one could imagine a novice making
this sort of assumption. Later, we give an alternative representation that would overcome this problem.

"Throughout this paper, program code enclosed in boxes denotes the point at which the user has
applied an editing command.

11

’a list -> bool

fun | hasentry| nil = 0

| hasentry (h::nil) = 1 + hasentry nil

| hasentry (h::hl::t) = 1 + hasentry t;

In the third clause, a new variable, h1, has been introduced. In addition, a recursive
call using this new variable — namely, hasentry (hl::t), has been added to the list
of valid calls. It can now be introduced into the program if required. The system knows
that any definition involving this new recursive call will terminate. The definition is
still missing a parameter for the key to search for. This can be introduced using the

command ADD CURRIED ARGUMENT, which adds a parameter throughout the definition:

’a -> ’a list -> bool
fun hasentry k nil = 0

| hasentry k (h::nil) = 1 + hasentry k nil

| hasentry k (h::hl::t) = 1 + hasentry k t;

The user gives a name and type for the new argument and the type declaration is
updated automatically. Finally, the user needs to change the output in each case. This
can be done using the commands CHANGE TERM and ADD CONSTRUCT(IF THEN ELSE),

giving®:

’a -> ’a list -> bool

fun hasentry k nil = false

| hasentry k (h::nil) = raise excep

| hasentry k (h::hl::t) = if k=h then true else hasentry k t;
excep is a previously defined exception. The above constitutes a reasonable definition
of hasentry. The student now proceeds to define findentry and notices the similarity
between the two definitions. To correctly define findentry, the user need only invoke

RENAME, CHANGE TYPE and CHANGE TERM twice, to give:

’a -> ’a list -> ’a
fun findentry k nil = raise excep

| findentry k (h::nil) = raise excep

8Strictly, the second argument should now have type ’’a list. ’’a is a polymorphic type over
which equality may be defined. CYNT HIA does not yet make any distinction between ’a and ’’a.
This is a minor oversight that should be corrected soon.

12

| findentry k (h::hl::t) = if k=h then hl else findentry k t;
To construct addentry is almost as easy. The user needs to invoke ADD CURRIED

ARGUMENT, CHANGE TYPE and CHANGE TERM:

’a => ’a -> ’a list -> ’a list
fun addentry k v nil = k::v::nil
| addentry k v (h::nil) = raise excep
| addentry k v (h::hl::t) = if k=h then k::v::t
else h::hl::addentry k v t;
At this point, the student may decide that a better representation for tables would have
been a list of pairs. CYNT HIA can be used to transform the definitions to suit this

new representation. For example, applying REMOVE PATTERN to hasentry gives:

fun hasentry k nil = false

| hasentry k (h::t) = if k=h then true else hasentry k t;

Applying CHANGE TYPE at the indicated point gives:

’a -> (’a * ’b) list -> bool
fun hasentry k nil = false
| hasentry k (: :t) = if k=h then true else hasentry k t;

Applying MAKE PATTERN at the point indicated gives a correct solution:

’a => (’a * ’b) list -> bool
fun hasentry k nil = false
| hasentry k ((h,h1)::t) = if k=h then true else hasentry k t;

To evaluate any of these definitions, the user must load them into a compiler.

The editing commands were designed with the intention that any definition may be
transformed to any other definition (within the subset of ML supported). Of course,
it makes sense to choose as a starting function a definition that is close to the target.
However, the user will not be overly disadvantaged by making a sub-optimal choice.
The commands fit together in such a way that it is easy to recover from an incorrect
application of an editing command, even if other edits have been applied since. The
intention also was to keep the set of commands as small as possible. This means that

the commands are easy to learn and that very little experience of CYNT HI A is needed

13

before one can start editing programs. A wider range of commands could have been
included, but it is thought that these would have added confusion to the system whilst
only providing limited increases in functionality.

The other main advantage of the editing commands is that some programming tasks
can be completed in a single step. The CHANGE TYPE command is a good example.

Consider the length function again:

’a list -> int

fun length nil = 0

| length (h::t) = 1 + length t;
Suppose the user wishes to write a similar function but which counts the leaf nodes of
a labelled, binary tree. Usually, this would mean changing the input patterns to reflect
the constructors for trees. All of this can be achieved in one step by applying CHANGE
TYPE and specifying a new tree type. The application of this command would result

in:

’a tree -> int
fun length (leaf n) = 0

| length (node(h,t,t2)) = 1 + length t;

This definition can then be easily completed. Note that many editing commands make
an arbitrary decision about which variable to use in an expression e.g. to use length
t rather than length t2 in this example. It is impossible to second guess the users’
intentions and so it is necessary to make such an arbitrary choice, but these choices can
be changed easily. The count function could be completed by changing the results and
name of the function appropriately. CHANGE TYPE is one of CYNT H I A’s most powerful
commands. It can make a transformation between patterns of a wide variety of types®
in such a way that the target patterns are well-defined. It also provides a list of new
recursive calls which the user may introduce, and these recursive calls are guaranteed
not to violate termination. CHANGE TYPE works by finding a mapping between the
old and new datatype definitions in such a way that (non-)recursive constructors are
mapped to (non-)recursive constructors. Full details are beyond the scope of this paper

and can be found in [Whittle, 1999].

9defined explicitly in [Whittle, 1999]

14

3.2 The Design of CYNTHIA

From a technical point of view, the novel aspect of CYNT HIA is that all programs are
represented as proofs of a (weak) specification which correspond to programs in a way
defined by the proofs-as-programs notion [Howard, 1980]. A description lies beyond the
scope of this paper but can be found in [Whittle et al., 1999]. Basically, the type of each
function, along with lemmas needed for termination analysis, forms the specification
of a so-called synthesis proof. This specification is a theorem, proved by the system
and the user (by means of the editing commands). Each proof step corresponds to a
program construct or correctness check. Hence, programs may be extracted from their
proofs. This framework gives a flexible, sound way of representing functional programs
and reasoning about their correctness. Note that CYNT H I A’s interface means that the
user requires no knowledge of the underlying proof technology and indeed is unaware

of its existence.

4 FEvaluation of CYNTHIA

This section reports on empirical studies undertaken with two groups of students
(SG1 and SG2) at Napier University, Scotland. The aim of the studies was to assess
CYNTHIA’s usefulness as a novice programming environment for ML. “Usefulness”
is in the sense defined by the research questions below. As a point of comparison,
CYNTHIA was judged against the way in which students on previous courses had
programmed using the text editor TextEdit and compiling programs using the Stan-
dard ML of New Jersey compiler (henceforth, this approach will be called the TEA

approach). The main research questions being asked by this study are:

1. How useful was CYNTHIA as an editor for ML that guarantees correctness?

(a) How does the quantity of errors made using CYNTHIA compare to TEA?
(b) How does CYNTHIA’s error feedback compare to TEA?

(c) How does the user’s productivity rate using CYNT HIA compare to TEA?
2. How does programming by analogy compare to writing a program from scratch?

(a) Are the editing commands well-designed?

(b) How easy is it to choose a starting (source) example?

15

These are summarised in Table 1. The criteria expand upon what is being asked.

The measures describe which data were used to answer each question. The following

methods of data collection were employed:

1

11

111

v

4.1

(SG1 and SG2). The students’ sessions with CYNTHIA were logged as they
worked. For SG1, interactions with the compiler =~ New Jersey of SML (SML-NJ)
— were also recorded. Interactions were logged during normal tutorial sessions
in which students worked through a series of examples on a Web-based course
[GIML, 1998]. These examples typically involved the student writing a function

consisting of a few lines using pattern matching and recursions.

(SG1) Students were asked to take two tests, A and B, each consisting of three
questions requiring the writing of a simple list recursive function (see Appendix
B). Both A and B contained tasks of similar difficulty and were each allotted half
an hour. SG1 was split into two groups, X and Y. X attempted part A of the test
using CYNTHIA and part B using TEA. Y attempted part A using TEA and
part B using CYNTHIA. The experiment allows a comparison of errors made by

those using CYNT HIA and those using TEA (see Table 2).

(SG1) A group of 4 students were videoed attempting four short exercises (see
Appendix A). They were asked to attempt some questions with CYNTHIA and
some without and were given a time limit of 45 minutes. In this way, individual
students’ performance could be compared. The students were asked to verbalise
what they did at each stage and were instructed that they could ask questions if

they got really stuck.

(SG1 and SG2) Informal observations were taken by both authors. Students were

observed during their tutorial sessions interacting with and without CYNT HIA.

The Experimental Subjects

Both subject groups studied ML as part of a Formal Methods course at Napier Uni-

versity. The course lasted 14 weeks of which approximately 9 weeks was on ML. The

students were given lectures each week and were then expected (although not forced) to

attend a two hour, supervised tutorial session during which they would work through

examples from a Web-based course [GIML, 1998] and could ask questions of the tu-

tors. The ML course is divided into eight short tutorials consisting of the introduction

16

Question | Criteria Measures

1a) What kind of errors can be made? III, IV
How many errors are made?
1b) Are errors located easily? I, 11, TV

Are they corrected quickly?

1c) Did students get through more examples? 11, IV

2a) Were the commands easy to understand? I IV
Were they at the right level of abstraction?
Were they consistent?

2b) How were examples chosen? I, 1V
Is a library-indexing system necessary?

Table 1: Research Questions Criteria and Measures.

of new concepts and then exercises that the students could work through — Figure
2. In previous years, students had used the New Jersey SML compiler (version 0.93)
[NJS1996] to compile their programs. In the early stages of the course, students tend
to write programs directly into the New Jersey interpreter or cut and paste program
fragments from the course notes. Later on, they would write programs in a text editor
and then compile the program. Assessment on the course was by examination and
also practical coursework. All experiments involving a compiler were done using the

SML-NJ compiler.

Lesson 1: Expressions and simple functions.

Lesson 2: Types, bindings, pattern matching and lists.
Lesson 3: Simple recursion on integers.

Lesson 4: List processing including recursion.

Lesson 5: Partial functions, overlapping patterns, anonymous functions,
more complex recursion.

Lesson 6: Higher-order programming.
Lesson 7: User-defined types.

Lesson 8: Accumulators in recursion, mutual recursion, nested definitions.

Figure 2: A Gentle Introduction to ML (course structure).

The subjects in the first evaluation were 40 postgraduates following a one-year
Software Technology course. CYNTHIA was introduced in the second week of the
course. The students were told that CYNTHIA was the result of a research project
and that they could use it as much or as little as they wished. CYNTHIA was only
mentioned in passing in lectures.

The subjects in the second evaluation were 29 students in year 4 or 5 of an under-

17

graduate course in Computer Science. CYNT HIA was introduced as one of the main
teaching tools in this course. The students were not told that CYNTHIA was part
of a research project. CYNTHIA was introduced more fully in the lectures, although

details of editing commands and functionality were only taught in the tutorials.

4.2 Informal versus Formal Evaluation

Most of the evaluation of CYNTHIA was informal. The formal approach of split-
ting the subject group into a control and an experimental group was unwise given the

experimental conditions. The reasons for this are as follows:

e FEthical considerations. The students in the subject group in both evaluations were
following courses which would directly contribute to their degree mark. Therefore,
giving CYNTHIA to only one half of the students would have been unethical.
Even if CYNTHIA had no overall effect, psychological factors could affect per-
formance. For example, the control group could feel that they had been unfairly

treated since they were denied access to the tool.

e Controlling the experimental setup. Dividing the students fairly into a control
and experimental group was impossible. Randomization would mean that in a
given tutorial some students would be using CYNTHIA and some would not.
This could lead to the psychological factors mentioned above. The first course
had two separate tutorial groups but we could not simply use one of these as
the control as timetabling factors meant that the abilities of the two groups were

vastly different.

e Controlling the running of the experiment. Even given two groups of equal ability,
leakage between these groups would be a major complication. Since students are
all following the same course, they would communicate with each other between
tutorial sessions, and there was no way to stop the control group using CYNTHITA

outside the tutorials.

o Interdependency of CYNTHIA’s features. The different aspects of CYNTHIA
tend to interact with each other. Therefore, it would have been difficult to isolate

any effects of an experiment, even given perfect conditions.

For these reasons, the following results do not include any detailed statistical analysis.
We do include comparisons of error counts but the results of these should be inter-

preted with care. Note that the crossover experiment (measure II) is some kind of

18

control/experimental group design but the design was used so that individual students
could be compared both using and not using CYNTHIA. The intention was not to

make a statistical comparison.

4.3 Answering the Research Questions

Q1. How useful was CYNTHIA as an editor for ML that guaran-
tees correctness?

CYNTHIA was designed as an editor that includes sophisticated correctness-checking
techniques. This question asks whether it is useful to have a such an editing environ-

ment.

Q1.(a) How does the quantity of errors made using CYNTHIA
compare to text editors?

It was found that the number of errors made by CYNT HI A-users is less than that of
TEA-users.

One way to compare the number of errors made is to look at logs of CYNTHIA,
TEA-interaction and make a count of the errors. For SG1, a count was made of errors
made during the crossover experiment (measure II). Recall that the crossover experi-
ment involved students using both the CYNT HIA and the TEA approach, and took
place over one hour of intense programming. SG2 errors were counted over 8 weeks dur-
ing which CYNTHIA was used regularly by a large number of students for two hours
each week (although less intensely). A classification of all errors made was developed,
inspiration being drawn from [Aitken, 1996]. Figure 3 gives this classification.

I briefly explain the motivation behind this classification. A full list of each error in

each class is given in [Whittle, 1999].

e Algorithmic errors suggest a major algorithmic flaw in the program, such as
giving the wrong condition in a conditional statement. These errors arise when the
user has misunderstood the problem or is unable to design a solution. CYNTHITA
was not primarily designed to help with this kind of error (although analogy may
provide some help), so I do not include a count of these (they were roughly the

same).

e Semantic errors are split into four categories. Local semantic errors arise in re-
sponse to a misunderstanding of part of ML’s semantics such as trying to define

the type int string or overloading a variable. Global semantic errors are where

19

Major algorithmic error
ALGORITHMIC (e.g. wrong number arguments,

wrong patterns, wrong recursion)

Local semantic

Global semantic
SEMANTIC
Correct but non-exhaustive
or redundant patterns

Type errors

General syntax error

SYNTAX

Clerical Error (e.g. mistyping)

Inability to use the system as
intended

\ A

USABILITY

Judgement errors (e.g. responded incorrectly
to an error message)

Figure 3: Classification of Programming Errors.

the error is dependent on some other part of the definition — for example, the use
of an unbound variable or undefined function. Although type errors could be seen
as global semantic errors, they are given a separate category for emphasis. The
same is true of pattern errors (i.e. patterns are overlapping or non-exhaustive).
Although a program with pattern errors will successfully compile, they are in-
cluded because they can be a source of run-time errors and because CYNTHIA

was designed to forbid them.

Syntax errors include clerical errors where, for example, the student clearly
mistyped a name or missed off a bracket. General Syntax errors are slightly
more serious and suggest a cause more than mere carelessness : examples are
using a syntax that ML does not support such as return 0, or using the wrong

syntax for a conditional statement.

Usability errors are when the student could not work the system properly. I
make no comment whether it is the student’s or the system’s fault. An example
is not being able to find the right editing command in CYNTHIA or entering
the wrong parameters in a dialog box. Usability errors also include judgement
errors: where the system feedback was misunderstood by the student causing him
to make an incorrect change to the program. In CYNTHIA, this could happen

if, for instance, a syntax error is given in a dialog box and the student changes

20

the wrong part of the entry. In TEA, the user might change a clause in the
definition which was perfectly correct because he did not realise which clause the

error appeared in.

A brief note is needed on how the errors were counted. The errors were counted manu-
ally from the logs obtained during the experiment. It has to be decided at which point
in the logs errors will be counted. In SML-NJ, each time the student typed a semicolon
to evaluate a program attempt, any errors present were noted. In CYNTHIA, the
program was checked after each editing command was applied, and any errors in the
program were counted. In some cases, multiple commands may be required to get the
program into a “consistent” state. For instance, if the user wishes to change a base
case output to nil rather than 0, he must do two things: make the actual change,
which results in a type error, and then change the result type in the declaration which
will eliminate the type error. “Intermediate” errors like this were not counted. Some
commands require text to be entered into a dialog box. Any errors present in such
textual input were also counted.

The results of each evaluation are presented separately.

Evaluation 1

Table 2 gives the error count for the SG1 crossover experiment for both CYNTHI A and
TEA users. The total number of edits row represents the number of editing commands

applied. This figure cannot be applied to TEA users. The difference in the total error

CYNTHIA | TEA

Local Semantic 20 33
Global Semantic | 14 21
Patterns 0 6
Type Errors 20 36
General Syntax | 0 8
Clerical 9 40
Incorrect Usage | 53 0
Judgement 50 53
Total 166 197
Total no. Edits | 473 n/a

Table 2: SG1 Errors.

count is not as high as expected. However, the kinds of errors committed are different

for CYNTHIA and TEA users.

21

Syntax errors were almost eliminated when using CYNTHIA. In particular, the
number of clerical errors has reduced by 78% for SG1.

The number of semantic errors was also less for CYNT HI A-users. Note particu-
larly that the number of type errors made using CYNT H I A was just over half that for
non-CYNT HITA users. This is as expected. The raw figures do not tell us how easy it
was to correct type errors under each system. However, anecdotal evidence suggests it
was much easier using CYNTHIA see question 1.(b).

Both the number of local and global semantic errors are fewer with CYNT HI A than
without. Again, this is as expected. Editing commands introduce semantically valid
expressions so there is less scope for making errors. We would also expect these errors
to be located more quickly (although the figures cannot tell us this). Local semantic
errors can only occur in freely typed text and CYNTHIA traps these as soon as
they are made. Global semantic errors may make it through to the main program text
but CYNT HIA will highlight them making them easier to correct.

For SG1, CYNT HIA seems to score pretty badly on usability errors. In partic-
ular, 53 Incorrect Usage errors were introduced that obviously could not occur when
using TEA (because they are CYNT HI A-specific errors). This is a disappointingly
large figure. It suggests first that CYNT HIA’s interface is difficult to use and second
that students do not read documentation for most of the errors they committed could
have been avoided if they had read the documentation.

Surprisingly, there is no real difference in the numbers of judgement errors. Anecdo-
tal evidence suggests that students using TEA spend much more time trying to locate
errors than CYNT HITA users. The judgement errors were meant to measure this sort
of thing, but the results do not back up the informal observations. Table 3 gives a more

fine-grained analysis of the judgement errors. See Appendix C for definitions of J1-J5.

J1|J2|J3 | J4 | J5 | Total
CYNTHIA |8 |0 |34 |3 |50
TEA 0 |53|10 |0 |0 |53

Table 3: Judgement Errors made during Crossover Test.

All of the SML-NJ judgement errors fall into the same category — J2. J2 states that
the student has misunderstood an error message and has changed the wrong part of
the program in response to this message. J2 errors are fairly serious. The fact that all
SML-NJ judgement errors are of type J2 shows that the SML-NJ error messages are
cryptic. These kinds of errors do not occur with CYNT HI A because the nature of the

22

editor tells you much more clearly where the error is. However, there are a large number
of J3 errors for CYNT HI A users. J3 errors occur when the user types in a parameter to
an editing command in a dialog box but the parameter given was of an incorrect form.
Detailed inspection of the logs showed that 95% of the J3 errors occurred when adding
a conditional statement. CYNTHIA expects the user to type in the condition but
often students typed in the entire expression — i.e. if h=x then delete x t else
h::delete x t instead of just h=x. The real problem here is that the functionality of
the command has not been adequately explained. Given that it is stated precisely in
the documentation, our expectation was that by integrating CYNT HIA more closely

into the teaching course, these kinds of errors could be eradicated easily.

Evaluation 2

Evaluation 1 showed that there were generally fewer errors when using CYNT HIA but
that there were problems with the usability of the system. We expected that most of the
judgement errors and many of the incorrect usage errors could be eradicated by making
changes to the system and by encouraging students to read documentation. To test
out this claim, some changes were made to CYNT HIA before the second evaluation.

These were:

¢ Documentation. The documentation of CYNT HI A was more closely integrated
into the course notes — each time a new concept was introduced, the correspond-
ing editing command was introduced also and the student was taken through a

couple of examples which specifically used CYNTHIA.

¢ Dialog Boxes. The main change to the actual interface was to give keywords in
the dialog boxes that provided strong hints as to what input was required. Hence,

when adding a conditional statement, the dialog box would prompt the user with

if then else

rather than just a box.

A further change in Evaluation 2 is that CYNT HIA was introduced as one of the
main teaching tools. This was meant to give us an opportunity to assess CYNTHIA’s
usefulness in a teaching environment. This did mean, however, that for SG2 there was

no control group.

23

Table 4 gives a tentative comparison of SG1 and SG2 errors. SG1 errors were counted
during a timed session, whereas SG2 errors were counted throughout the course. Hence,
the number of edits / errors in SG2 is much larger. However, all things being equal,
we would expect the relative frequency of each error kind to be the same. The second
column of Table 4 tells us whether this is the case. We would like to see by how
much the quantity of each kind of error has increased from SG1 to SG2 and compare
it to the increase expected. Since there is a roughly seven-fold increase in the total
number of edits (from 473 to 3266), we would expect a seven-fold increase in each kind
of error. This will not be true, in general, though as students will make fewer errors
the more experienced they become. We therefore use the increase in Clerical Errors
as a basepoint comparison. This is based on the assumption that the changes in the
experimental setup from SG1 to SG2 had no effect on the number of Clerical Errors.
The second column expresses how the other kinds of errors have increased compared
with the Clerical Errors, or, put in another way, it shows the percentage of the expected

errors that actually occurred.

No. errors | % increase relative to Clerical
Local Semantic 39 59
Global Semantic | 41 82
Patterns 0 0
Type Errors 99 83
General Syntax | 0 0
Clerical 32 100
Incorrect Usage | 74 39
Judgement 27 15
Total 323
Total no. Edits 3266

Table 4: SG2 Errors.

Most, error categories increased by much less than expected. This is probably due
in part to the improved documentation / integration. Note particularly that Judge-
ment, Errors actually reduced in absolute terms. This backs up our hypothesis that
CYNTHIA’s poor showing regarding Judgement Errors in Evaluation 1 was due to the
lack of reading of documentation, not due to any inherent major fault with CYNT HIA.
Hence, the saving in other kinds of errors when using CYNT HI A is not offset by a gain

in usability errors.

24

Q1.(b) How does CYNT HA’s error feedback compare to the com-
piler’s?

The previous question showed that the quantity of errors made using CYNTHIA is
generally less than without CYNTHIA. This question concerns not the amount of
errors made, but given that an error has occurred, how easily could the students identify
it and correct it? It was found that errors are generally easier to correct in CYNTHIA
than TEA.

The evidence for this is at the qualitative level. Evidence from videoing, observation
and communication with students seems to suggest very positively that CYNTHIA
does better than TEA. First, the kinds of errors that students make are different when
using CYNTHIA. Trival errors (e.g. clerical errors) have generally been filtered out
so students are less infuriated and so try to work out the problem rather than hacking
at their code. In stark contrast to users of the SML-NJ compiler, we noticed students
paying attention to error feedback and trying to work through the problem. They
did not always succeed, of course, but undoubtedly learnt something along the way.
Another point is that it is much easier in CYNT HIA to distinguish what kind of error
is occurring. This is because the error feedback is different for different categories of
errors. One of the problems with ML syntax is that its succinctness means that syntax
errors can often have knock-on effects meaning that they show up as type errors during
compilation. This happens less in CYNTHIA. The divide between errors is more
clear-cut. Type errors are always shown by pink highlighting. Global semantic errors
are shown by green highlighting, and syntax errors can only occur in dialog boxes.

Second, students are editing smaller chunks of program at a single time and hence
the range over which the error could have occurred is far less. With TEA, students write
an entire function before attempting compilation. With CYNT HI A, however, as each
sub-expression is entered into a dialog box, the text is checked for errors immediately.
This means that the student need only look over very small chunks at a time and need
worry less about dependencies with other code fragments. In addition, the user knows
that some parts of the program are guaranteed correct for example, any patterns
will have been built up using MAKE PATTERN and therefore the patterns must be well-
defined. Since some code is generated automatically, there is no reason for the user to
suspect an error there. Hence, CYNT HI A allows the user to narrow his field of vision
when looking for errors.

Although, in general, CYNT HIA users seem to find it much easier to locate the

25

source of type errors, there are a few situations where CYNT HIA can be misleading.
This happens when type inference would succeed on a definition but type checking in
CYNT HI A fails because of extra restrictions placed (unwittingly) on the definition by
the type declaration. An example is where the compiler would automatically unify two

polymorphic variables but CYNT HIA does not. Consider the example:

’a => ’b -> ’a

funfxy=ifgxthenxe1se;
The user gets a type error in CYNT HIA at the indicated point until he changes ’b to
’a. It may be possible for CYNT HIA to automatically update such type declarations
(or at least suggest updates).

Q1.(c) How does the user’s productivity rate using CYNTHIA
compare to text editors?

We answer this question with specific reference to the video experiment (measure III).
The four subjects that took part in the videoing each worked through a maximum of
three examples (see Appendix A) of increasing difficulty. Some of these were attempted
using CYNT HIA and some without CYNT HIA. Table 5 gives the number of examples
and timings (in minutes and seconds) for each student. C denotes that the example
was attempted using CYNT HIA. S denotes that the student did not use CYNTHIA.
Students were given help if they asked for it. This was comparable and minimal except
for student 3 who was given a substantial amount. Student 4 failed to finish addlist.

Students 2 and 3 did not have time to attempt it.

Student | leadingOs | maxlist addlist

1 11:31 (C) | 20:39 (S) | 17:70 (C)
2 27:00 (S) | 20:10 (C)

3 16:30 (C) | 12:20 (S) | —

4 16:10 (S) | 10:30 (C) | 18:46 (S)

Table 5: Student Performance on Three Examples.

The general level of ability of the students seemed to be in the order: student
1 (best), student 4, student 2, student 3. mazlist is slightly harder than leading0s.
addlist is more difficult again because it involves multiple recursion. Students 1, 2
and 4 seem to have performed better with CYNTHIA. On the first two tasks, all of
these students took less time when using CYNT HIA - on average, 35% less. Note also

that student 1 actually took less time on addlist than on the easier problem mazlist.

26

One reason for this could be that the student used CYNTHIA for addlist (note, for
instance, that student 4 did not use CYNTHIA for addlist). The same phenomenon
occurs when comparing student 2 and 4’s performances on mazlist and leading0s.

A 35% gain would seem to agree with informal observations. For this level of task
difficulty, the student often starts with a good idea of the required program behaviour
and can describe this behaviour fairly accurately. Most time is taken up trying to
implement this algorithm for example, correcting syntax and type errors and perhaps
adjusting their algorithm slightly. Hence, 35% represents the gain in implementation
time achieved by CYNTHIA. Student 3 was unable to describe the algorithm in
abstract terms and hence took more time in non-implementational work. This explains
why the 35% decrease is not experienced in this case.

Clearly, the number of students involved in the video experiment is small. Further

investigation is needed to back up these results.

Q2. How does programming by analogy compare to writing a
program from scratch?

Q2.(a) Are the editing commands well-designed?

This question concerns the transformation of a source program using CYNTHIA’s
collection of editing commands. Specifically, was the structure of the commands well-
understood, was their function clear, etc.? Green et al [Green & Petre, 1996] introduce
the notion of ‘cognitive dimension’, a broad-brush evaluation technique for interactive
devices and non-interactive notations. Green describes thirteen high-level criteria for
discussing the design of a system. The idea is that they will form a common point of
discourse for evaluating interactive systems. Although we will not mention all of the
dimensions here, they serve as a useful framework for discussing the design of the edit-
ing commands and for evaluating how easily the editing commands can be learnt and
applied. The following considers the most relevant of these dimensions and evaluates

the set of editing commands on each. More dimensions can be found in [Whittle, 1999].
Abstraction Gradient
Each editing command is essentially an abstraction, grouping together common se-

quences of editing operations. But are they at the right level of abstraction? As Green

says, “learning to think in abstract terms is a high educational achievement”. The

27

natural question to ask therefore is if the students using CYNT HIA could understand
the editing commands. Does the abstract nature of the editing commands benefit them
in the long run?

The main result we found was that CYNT HIA’s editing commands tend to cor-
respond to functional programming concepts. For example, ADD RECURSIVE CALL
emphasises the role of termination checking and CHANGE TYPE emphasises the use of
types. In particular, CYNT HIA discourages a procedural style of coding.

The original aim when designing the editing commands was to make the set as
small as possible whilst keeping the meaning of the commands transparent to a new
user. As far as the former goes, the goal was certainly achieved — with as few as 11
commands (appendix D), a wide variety of programs can be produced (much wider
than comparable systems such as [Brna & Good, 1996, Bundy et al., 1991]). However,
the high number of Incorrect Usage errors in Tables 2 and 4 show that the commands
caused some confusion. In some cases, the abstractness of the editing commands seemed
difficult to learn precisely because they correspond to FP concepts. There is a chicken
and egg situation here — learning the commands is easier if functional programming is
understood, but use of the commands can help the understanding of functional concepts.

MAKE PATTERN is an example. Consider the following code:

fun combine x nil = nil

| combine (h::t) = ...

To pattern match on the indicated x, students would try to rename x to nil. This
would be disallowed by CYNTHIA. The problem here is that students do not think
in terms of making a pattern or such like, but in terms of adding another line of code.
One way to overcome this would be to recast the commands in terms of very obvious
code-writing operations, such as ADD LINE OF CODE. However, MAKE PATTERN does
more than just adding a line of code. There is a specific reason why the code is being
added and MAKE PATTERN cannot be used to add just any line of code. It is unclear
whether it is better to design the commands in terms of functional programming con-
cepts or not. The ideal solution is probably to incorporate the editing commands into

the teaching material.

Consistency

28

This dimension asks: when some of the language has been learnt, how much of the rest
can be inferred. In this context, the question concerns the consistency of the operation
of the editing commands. It is instructive to look more closely at the Incorrect Usage
errors committed by SG2: see Table 6 for a breakdown (the categories are explained in

Appendix C).

Uvr (U2 |U3 |U4 (U5 | U6 |U7 | U8 | U9 | U10| ULl
Errors | 0 4 3 0 1 1 11 3 2 2 4
U12 | U13 | U14 | U15 | U16 | U17 | U18 | U19
Errors | 12 1 11 4 11 1 2 1

Table 6: Incorrect Usage Errors.

Four errors, U12, Ul4, U16 and U7, contribute over 60% of the total count. U12
states that the user tried to apply MAKE PATTERN to an integer variable. This is
disallowed in CYNT HIA because MAKE PATTERN can only be applied to types with a
finite number of constructors. Since each integer can be viewed as a constructor, the
finiteness restriction does not hold. U14 is when an application of CHANGE TYPE would
require that a polymorphic variable be split into patterns. Clearly, this cannot be done.
U16 is where the user attempted to use CHANGE TERM instead of ADD RECURSIVE CALL
to add a new recursive call. U7 concerns the use of RENAME rather than CHANGE TERM
to make a local change.

Three of these errors, U12, U14 and U16, are in response to events that the user has
every right to assume should be possible. This shows a slight lack of consistency in the
set of editing commands. Students have attempted operations that should be possible
based on their knowledge so far of the commands. This should not be frowned upon
too much, however, for each of the errors could be fixed relatively easily in a future
version of CYNTHIA. Hence, the evaluation has pinpointed areas where CYNTHITA

could be improved.

Hidden Dependencies

A hidden dependency is a relationship between two components such that one is de-
pendent on the other but that dependency is not fully visible. An example would be
a spreadsheet — a formula in a cell tells which other cells it takes its value from, but
does not tell which other cells take their value from it.

Generally, there are very few hidden dependencies in CYNT HI A compared to TEA.

29

For instance, type inference introduces a very significant hidden dependency type
error messages often point to a point of the program far removed from the actual source
of the error. In contrast, in CYNTHIA, the pink highlighting of type errors tends to
be much closer to the source of the problem. In fact, [Whittle, 1999] pages 250-251,
makes a brief comparison of type highlighting in CYNTHIA and MLWorks and finds
that CYNT HIA’s highlighting is closer to the source.

Sometimes a compiler will accept a function which is not accepted by CYNTHIA.

Consider the flatten function:

fun flatten nil = nil

| flatten (h::t) = h @ flatten t;

This is accepted by ML compilers and ’a list list -> ’a list is inferred as the
type for flatten. Unfortunately, certain interactions with CYNTHIA can lead to the
above definition but with an incorrect type displayed. Students would edit an old func-
tion, such as doublist which has type int 1list -> int list. They would correctly
edit doublist into the flatten definition above. However, they would not edit the type
declaration and so CYNTHIA would give a type error because the type declaration
means that h is an integer and so cannot be appended onto flatten t.

This kind of situation was a cause of great confusion for students who encountered
it. The students had an implicit assumption that the type declaration was correct and
hence would scrutinise the program itself for errors. This implicit assumption is what
makes type errors easier to locate in CYNT HIA. The situation given here, however, is

an example where CYNT HI A introduces an error that ordinarily would not occur.

Premature commitment

This dimension concerns the extent to which the user is forced to make a decision before
the information is available. Hence, premature commitment is generally a bad thing.
Type inference reduces the need for premature commitment since decisions about the
typing of an expression can be delayed. At first glance, it seems that the same cannot
be said of CYNT HI A since a type declaration must be given. However, it is extremely
easy to change the type declaration using CHANGE TYPE so premature commitment is
not really needed.

Another context in which premature commitment manifests itself is the degree to

30

which the order of application of the editing commands matters. One of the main
criticisms of the recursion editor [Bundy et al., 1991], which is also a transformation-
based editor, is that the order of commands is critical to success and so the user must
think about the order before delving into the programming task.

This is not true of CYNT HIA. Design decisions taken in the early stages can easily
be corrected later using a short sequence of editing commands. Suppose the user is
writing a function, app, to append two lists together and begins by splitting the second

argument:

fun app 1 nil =1

| app 1 (x::xs) = x :: app 1 xs;

It is at this point that the user realises the first argument should have been split instead.
In CYNTHIA, it is easy to revise this decision. The user applies REMOVE PATTERN to

give:

fun app 1 12 = 1;

and then MAKE PATTERN on 1, giving:

fun app nil 12 = nil

| app (x::xs) 12 = x::xs;

Note that the user must also apply CHANGE TERM in the second clause to re-introduce
the program fragment that was lost during the application of REMOVE PATTERN'.
Hence, although no premature commitment is required, the fix is non-optimal. A bet-
ter solution might be to provide a specialised command for transferring the pattern

definition to the first argument.

Progressive evaluation

Progressive evaluation means that programs can be evaluated by the user at frequent
intervals during their development, not just once the program is completely finished.
CYNTHIA improves on TEA in a significant way here. Although any program must

be finished before it is executed (for it still must be accepted by the compiler), the user

100ne variation would be to allow the user to specify which clause is kept so that x::app 1 xs need
not be re-typed.

31

gets constant feedback about semantic errors during the programming process. This
is achieved by the use of the highlighting mechanism for pointing out type errors etc.
The key point is that CYNT HIA’s feedback merely notifies the user of a problem, it
does not enforce them to change it immediately. Hence, the user retains the freedom

to experiment but the existence of any errors is always in the back of his mind.
Viscosity

Viscosity means resistance to local change. CYNTHIA is sometimes less viscous
than TEA and sometimes more viscous. Operations can be carried out in CYNTHIA
that would have to be done laboriously by hand in TEA. An example is changing the
type of a function and seeing the effects of this propagated throughout the program
(having the pattern definition changed automatically). In this case, productivity is
increased in CYNT HIA because a “conceptual” change can be achieved in one edit.
Such conceptual changes require many more keystrokes in a text editor, though. On the
other hand, it can sometimes be easier to use a standard text editor to affect a change.
Recall the app example above. Without a specialised editing command to transfer the
pattern definition from the second to the first argument, we lose some program text

which has to be re-entered.

Q2.(b) How easy is it to choose a starting (source) example?

Programming by analogy introduces an additional overhead for the user, namely, the
decision about which source example should be chosen. Some work has been done
in the area of software re-use to provide sophisticated library systems that allow the
user to quickly select the best example [Weber, 1996, Runciman & Toyn, 1991]. In
CYNTHIA’s case, however, no library search functions are provided. This is for two
reasons. First, since CYNT HIA is currently being used in a novice environment it was
considered unnecessary. The students would be dealing with relatively easy examples
and probably not building up too large a database of source functions. Second, the
choice of a source is not as critical as in other systems because the editing commands
are very flexible and so it is easy to recover from a sub-optimal choice. The evaluation
phase gave an opportunity to test out these decisions.

One way of answering the question is to consider how students decided upon a source

example. There seems to be three main ways recency, familiarity and closeness.

32

Most students pick the function they have used most recently'!. In many cases, this
is a perfectly reasonable approach. For instance, when working on the on-line tutorial,
examples within a tutorial tend to be similar (and get increasingly more complex) so
that such an ordering is very natural. It is not quite so natural in a real situation.
For example, in the crossover experiment (measure II), a student wrote combine (see
Appendix B), which involves a complex recursion scheme, then used combine as the
starting point for a primitive list recursion example. Most students do modify their
strategy in this sort of situation, however.

Another very common way of choosing a source is to choose a familiar example. In
the version of CYNT HI A that students were given, 6 examples were pre-defined. Two
of these were primitive list recursion examples, sum and doublist. These were familiar
examples as they were used in the tutorial material on list recursion. Students were
quick to pick one of these as a starting point rather than something they had defined
themselves, even if their definitions were closer to what they needed. This is because
the students are more familiar with the built-in functions and so need not waste time
understanding them. It should be said, however, that because the nature of functional
programming means that most functions are relatively small, understanding the source
example is rarely a time-consuming task. Also, students don’t start to think about the
task in hand until they have something on the canvas. Only once they have a function
in the edit area do they start to think about the current task. By bringing something
up in the edit area straight away, they feel as though they are part way to their goal.

The more able students do think more deeply about which source example to choose.
This was brought out during the videoing. Student 1 said: “I’'m looking for a function
with two lines in it.” when trying leading0s. Student 4 said, whilst looking at the
definitions available: “So, I want to get something closest to mazlist. 1 don’t know
what half of these are unfortunately.” He then selected a couple and decided they were
not close enough until he eventually chose sum. The two main measures of similarity
used in these circumstances were: the type of the variable being recursed upon, and how
many patterns (or lines of code) were in the function. They did not seem concerned with
the result type of the function or with the type of non-recursive input types. Student
1 looked for a function with 2 lines of code as source for leadingls. He chose doublist

even though this has a result type of int 1list not the required int.

' This backs up the claim made in [Weber, 1996].

33

5 Conclusion

It is our belief that the design of editors for novice functional programmers requires
special attention. Novice students generally find functional concepts like recursion and
higher-order functions difficult to learn. Debugging is in some sense more tricky in
a functional language because much runtime debugging is replaced by compile time
resolution of type conflicts. These conflicts must be resolved before the program can be
executed and so program traces cannot be used as a debugging guide. In addition, the
complex nature of type inference over polymorphic types means that type errors can
be awkward to locate.

As an antidote to these effects, this paper has presented CYNTHIA. In CYNTHIA,
the program is checked for errors incrementally as it is written. Due to its underlying
proof framework and the insistence on a type declaration, CYNT HIA can highlight
the source of type errors more accurately than compilers. On a presentation level, the
highlighting of errors (in the form of a change of colour of a program expression) is a
non-intrusive form of feedback which the user must at all times be aware of but may
choose to ignore temporarily. On the other hand, compilers can fill entire screens with
cryptic type error messages which both must be dealt with immediately and also have
a negative impact on the morale of the student.

At a deeper level, CYNT HIA’s abstract editing commands reduce the number of
errors which students make. Students construct programs by modifying existing, un-
derstood code fragments. The majority of commands are correct-by-construction in the
sense that they cannot introduce errors. Some commands will allow the user to intro-
duce errors but these are flagged once again in a non-intrusive manner. Unlike previous
approaches to transformation-based programming, the emphasis in CYNTHIA is on
semantic rather than syntactic transformations. The commands also tend to encap-
sulate key functional programming concepts, such as the addition of a recursive call
or the change of a set of patterns resulting from a change of type, and as such, they
encourage the student to program functionally rather than procedurally. Occasionally,
the functionality of a command can be misunderstood precisely because the student
does not understand the underlying concept fully. Whilst this can hamper usability of
the system, it forces the student to get help to understand first the concept and then
the command.

CYNTHIA’s commands form a small set that allow a wide variety of programs to be

constructed in an order-independent fashion. This is in contrast to traditional template

34

and schema methods of programming where either there are far too many schemas
so that choosing the appropriate one is an arduous task, or only a very restricted
subset of the language can be used. We believe that the modular nature of functional
programming is what allows the balance to be achieved in CYNTHIA.

There are two main results of this paper. First, the use of transformation-based
programming as embodied in CYNT HIA can reduce the number of errors that novice
programmers make. It was shown that syntax errors can be reduced the most dra-
matically but the real gain is in the reduction of type errors as these errors are most
difficult to locate and correct. Infinite loops are also eradicated in CYNTHIA. Fur-
ther study is needed to investigate how much of a gain it is to outlaw non-terminating
programs. Students tend to introduce fewer termination errors than, say, type errors
but termination errors can be more serious.

The second main result is that the transformation approach can increase the pro-
ductivity of novice programmers. Commands like CHANGE TYPE propagate the effects
of small changes throughout a program, which may result in significant changes that
would otherwise have to be laboriously typed in by hand. The video experiment showed
that students took less time to complete harder problems in CYNT HIA than they did
to complete easier problems with the traditional approach. Admittedly, the video ex-
periment involved only four students, but the results were observed more generally
during tutorial sessions with the other students.

One question that has not been fully addressed in this paper is the worth of program-
ming by analogy as a learning aid. Analogy is a powerful technique in learning concepts
such as recursion [Pirolli & Anderson, 1985] but can also lead to problems if students
make incorrect analogies, resulting in incorrect solutions [Escott & McCalla, 1988]. We
have shown that the use of an existing program as an analogy to a desired one is one
important way of overcoming the “blank page” problem. We believe also that analo-
gies between functional programs are much easier to make than between procedural
programs and hence the issue of incorrect analogies is less likely to arise.

We see that CYNT H I A-like transformations could be useful in a much wider func-
tional programming context, for example, in maintaining existing programs. Software
often needs to be updated by making very small changes. A tool like CYNTHIA
could make these changes but guarantee that no errors are introduced as a by-product.
Clearly, this would require extending CYNT HIA to the full ML language. The two

major problems with doing this would be to extend termination checking and to deal

35

with imperative features of ML. As for the former, we envisage integrating a collection
of specialised termination checkers into CYNTHIA — for example, a checker based
on recursive path orderings [Dershowitz, 1985] could deal with mutual recursion — but
ultimately, the user may wish to deliberately write a non-terminating program and so
the facility would be provided to switch off termination-checking. The underlying proof
framework of CYNTHIA could be adapted to deal with imperative features. In fact,
work is underway to produce a CYNT H I A-like editor for the procedural language Java
[Blewitt, 1998]. A further requirement of a fully blown CYNTHIA system would be
the inclusion of type inference. We show in [Whittle, 1999] how this could be incorpo-
rated without losing anything (and indeed there are gains to be made, as CYNTHIA
provides a nice framework for partial type inference, whereby a type can be inferred
based only on the information given so far).

Another interesting avenue would be to extend the correctness guarantees that
CYNTHIA offers. Although a challenging task, we believe that CYNT HIA’s under-
lying framework could allow the user to make assertions about the behaviour of their
functions and then to have these assertions proved. Clearly, the greater the correctness
guarantees, the more difficult the theorem proving required. We expect that a series
of specialised theorem proving tactics could be formed that would enable much of the
theorem proving to be automated, given that the assertions are in a suitably restricted

form.

Acknowledgments The first author was supported by an EPSRC studentship and
computing facilities were provided by EPSRC grant GR/L/11724. The authors would
like to thank Alan Bundy, Helen Lowe and Richard Boulton for discussions throughout

the duration of this research.

References

[Aikins, 1980] Aikins, J. (1980). Prototypes and production rules: a knowl-
edge representation for computer consultations. Unpublished
Ph.D. thesis, Stanford University, Available as computer sci-
ence report number STAN-CSD-80-814.

Aitken, 1996 Aitken, S. (June 1996). An analysis of errors in interactive
b b y
proof attempts. Technical report, Dept. of Computer Science,
Glasgow University.

[Anderson et al., 1988] Anderson, J. R., Pirolli, P. and Farrel, R. (1988). Learning to
program recursive functions. In Chi, M.T.H, Glaser, R. and

36

[Bental, 1995]

[Bhuiyan et al., 1994]

[Bird & Wadler, 1988]

[Blewitt, 1998]

[Bowles & Brna, 1993]

[Brna & Good, 1996]

[Bundy et al., 1991]

[Dershowitz, 1985]

[Duggan & Bent, 1996]

[Escott & McCalla, 1988]

[Gegg-Harrison, 1991]

[GIML, 1998]

[Green & Petre, 1996]

[Hansen, 1971]

[Har1996]

Farr, M.J., (eds.), The Nature of Ezpertise, pages 153 183,
Hillsdale, NJ. L. Erlbaum.

Bental, D. (1995). Why doesn’t my program work? : re-
quirements for automated analysis of novices’ computer pro-
grams. In Proceedings of the Workshop on Automated Un-
derstanding of Nowvice Programs, World Conference on Al
and Education (AIED), Washington DC, USA. Available
at http://www.cs.mdx.ac.uk /staffpages /DBental /aiedpa-
per.html.

Bhuiyan, S., Greer, J. and McCalla, G. I. (1994). Supporting
the learning of recursive problem solving. Interactive Learning
Environments, 4(2):115-139.

Bird, Richard S. and Wadler, Philip. (1988). Introduction to
Functional Programming. Prentice-Hall.

Blewitt, A. (September 1998). A Java editor based on proofs-
as-programs. Unpublished M.Sc. thesis, Department of Arti-
ficial Intelligence, Edinburgh, Scotland.

Bowles, A. and Brna, P. (August 1993). Programming plans
and techniques. In Brna, P., Ohlsson, S. and Pain, H., (eds.),
Proceedings of the World Conference on Artificial Intelligence
in Education, pages 378 385. AIED.

Brna, P. and Good, J. (1996). Searching for examples: An
evaluation of an intermediate description language for a tech-
niques editor. In Vanneste, P., Bertels, K., de Decker, B. and
Jaques, J-M., (eds.), Proceedings of the 8th Annual Workshop
of the Psychology of Programming Interest Group, pages 139—
152.

Bundy, A., Grosse, G. and Brna, P. (1991). A recursive tech-
niques editor for Prolog. Instructional Science, 20:135 172.

Dershowitz, N. (1985). Synthetic programming. Artificial
Intelligence, 25:323-373.

Duggan, D. and Bent, F. (1996). Explaining type inference.
Science of Computer Programming, 27:37 83.

Escott, J. A. and McCalla, G. I. (1988). Problem solv-
ing by analogy: A source of errors in novice LISP program-
ming. In Intelligent Tutoring Systems, pages 312 319, Mon-
treal, Canada.

Gegg-Harrison, T.S. (1991). Learning Prolog in a schema-
based environment. Instructional Science, 20:173-192.

Department of Computing Studies, Napier Uni-
versity, Craiglockhart campus, 219 Colinton Road,
EH14 1DJ. (1998). A Gentle Introduction to ML,
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html.

Green, T.R.G. and Petre, M. (1996). Usability analysis of
visual programming environments: a ‘cognitive dimensions’
framework. Journal of Visual Languages and Computing,
7:131 174.

Hansen, W.J. (1971). Graphic editing of structured text. In
Parslow, R.D. and Green, R.E., (eds.), Advanced Computer
Graphics. Plenum Press.

(r1996). MLWorks. Harlequin, Inc.

37

[Howard, 1980]

[Jun & Michaelson, 1998]

[Kirschenbaum et al., 1989]

[Leroy, 1995]

[McAllester & Arkoudas, 1996]

[Michaelson, 1995]
[Milner et al., 1990]

[NJS1996]

[Paulson, 1991]

[Pirolli & Anderson, 1985]

[Rideau & Théry, 1997]

[Runciman & Toyn, 1991]

[Teitelman & Reps, 1984]

[Teitelman, 1975]
[Ullman, 1994]

[Weber, 1996]

[Whittle, 1999]

Howard, W. A. (1980). The formulae-as-types notion of con-
struction. In Seldin, J. P. and Hindley, J. R., (eds.), To H. B.
Curry; Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479 490. Academic Press.

Jun, Y. and Michaelson, G. (March 1998). A visualisation of
polymorphic type checking. Technical report, Department of
Computing and Electrical Engineering, Heriot-Watt Univer-
sity.

Kirschenbaum, M., Lakhotia, A. and Sterling, L.S. (1989).
Skeletons and techniques for Prolog programming. Technical
Report Tr-89-170, Case Western Reserve University.

Leroy, X. (1995). The CAML Light system (release 0.7).
Projet cristal, INRIA Sophia Antipolis.

McAllester, David and Arkoudas, Kostas. (July 1996).
Walther recursion. In McRobbie, M. A. and Slaney, J. K.,
(eds.), 13th International Conference on Automated Deduc-
tion (CADE13), pages 643—657. Springer Verlag LNAT 1104.

Michaelson, G. (November 1995). Elementary Standard ML.
UCL Press.

Milner, R., Tofte, M. and Harper, R. (1990). The Definition
of Standard ML. MIT Press.

(S1996). Standard ML of New Jersey, version 0.93.
Tech.rep, AT&T Bell Laboratories, Available at
http://www.dcs.napier.ac.uk/course-notes/sml/BASE.ps.

Paulson, L.C. (1991). ML for the Working Programmer. Cam-
bridge University Press.

Pirolli, P. L. and Anderson, J. R. (1985). The role of learning
from examples in the acquisition of recursive programming.
Canadian Journal of Psychology, 39:240 272.

Rideau, L. and Théry, L. (March 1997). An interactive pro-
gramming environment for ML. Rapport de Recherche 3139,
INRIA Sophia Antipolis.

Runciman, C. and Toyn, I. (April 1991). Retrieving reusable
software components by polymorphic type. Journal of Func-
tional Programming, 1(2):191-211.

Teitelman, T. and Reps, T. (1984). The Cornell program
synthesizer: a syntax-directed programming environment. In
Barstow, D.R., Shrobe, H.E. and Sandewall, E., (eds.), Inter-
active Programming Environments, pages 97 116. McGraw-
Hill.

Teitelman, W. (1975). INTERLISP Reference Manual. XE-
ROX.

Ullman, J. D. (1994). Elements of ML programming. Prentice-
Hall International, Englewood Cliffs, N.J.

Weber, G. (1996). Individual selection of examples in an
intelligent learning environment. Journal of Al in Education,
7(1):3-31.

Whittle, J.N.D. (1999). The Use of Proofs-as-Programs to
Build an Analogy-Based Functional Program Editor. Unpub-
lished Ph.D. thesis, Division of Informatics, University of Ed-
inburgh.

38

[Whittle et al., 1999] Whittle, J., Bundy, A., Boulton, R. and Lowe, H. (1999).
An ML editor based on proofs-as-programs. In Proceedings
of the 14th Conference on Automated Software Engineering
(ASE99), Cocoa Beach, Florida.

Appendix A

1) Write a function that takes a list of zeros and ones and returns
the number of consecutive zeros (if any) at the front of the list.

Examples: leadingOs [0,0,0,1,0] = 3
leading0Os [1,0,0,0] = O

2) Write a function that takes a list of non-negative integers and
returns the maximum integer in the list.

Example: maxlist [1,3,2,5,3] =5

3) Write a function which takes two lists of integers and adds
together corresponding elements of the lists.
Examples: addlist [1,2,3] [4,5,6] = [5,7,9]

addlist [1,2,3] [1 = [1,2,3]

Appendix B

Test X

1) Write a function addl which takes 2 arguments: an integer, n, and a list of
integers. The function returns a list of pairs. The first component of the
pair is the original element. The second component is the element

added to n.

e.g. addl 5 [1,2,3] = [(1,6), (2,7), (3,8)]

2) Write a function alessnum which tests element by element whether a list
of integers is numerically less than another list. alessnum should
return true if and only if every element in the first list is less

than the corresponding element in the second list.

e.g. alessnum [1,2,3] [2,3,4]

true

alessnum [1,2,3] [2,3,2] false

3) Write a function that takes a list of integers and produces a
new list. The nth element in the new list is the sum of the elements
of the old list up to position n.

e.g. ilist [1,2,3,4] = [1,3,6,10]

Test Y

1) Write a function delete which deletes all
occurrences of an element from a list.

39

e.g. delete 3 [1,2,3,3] = [1,2]

2) Write a function combine which takes two lists and returns a new list with
corresponding elements combined into a pair.

combine [1,2,3] [4,5,6] = [(1,4), (2,5), (3,6)]

3) Write a function pairlist which takes a list of pairs of integers and
returns a list of the alternate components of these pairs.

e.g. pairlist [(1,2),(3,4),(5,6)] = [1,4,5]

Appendix C
J1 | Wrong sequence of editing commands because could not get the right command to work
J2 | Misunderstood error messages so changed wrong part of program
J3 | Error message caused user to incorrectly change part of input in dialog box in CYNTHIA
J4 | Wrong structure in definition caused by bad source example choice
J5 | Misunderstood pink highlighting so changed expression to another ill-typed one
Table 7: Judgement Errors
U1l Omitted entry in dialog box
U2 Gives pattern, not variable name, to ADD ARGUMENT
U3 Typed entire conditional statement in IF THEN ELSE box
U4 | Gave function name for new variable name in ADD ARGUMENT
U5 | Used CHANGE TERM instead of IF THEN ELSE
U6 | Used CHANGE TYPE to add an argument
U7 | Used RENAME instead of CHANGE TERM
U8 Tried to remove an argument that had been split into patterns
U9 | Gave top-level type in dialog box for ADD ARGUMENT
U10 | Used RENAME instead of MAKE PATTERN
U1l | Used ADD ARGUMENT with nil instead of MAKE PATTERN
U12 | Tried to apply MAKE PATTERN to integers
U13 | Tried to add a variable not in use but used internally
U14 | Applied CHANGE TYPE to introduce a split of an integer or polymorphic variable
U15 | REMOVE CONSTRUCT instead of REMOVE PATTERN
U1l6 | CHANGE TERM instead of ADD RECURSIVE CALL
U17 | Use of case instead of if then else
U18 | Only gave arguments, not entire recursive call, as parameter to ADD RECURSIVE CALL
U19 | Wrong parameter given to RENAME

Table 8: Incorrect Usage Errors

40

Appendix D

Make pattern

Add argument

Add curried argument
Add recursive call
Change term

Rename

Remove pattern

Remove argument
Remove curried argument
Remove recursive call
Change type

41

