
Garbage Collection and Other Optimizations

David R. Chase

August, 1987; reformatted August 2000

Abstract

Existing techniques for garbage collection and machine code optimizations
can interfere with each other. The inability to fully optimize code in a
garbage-collected system is a hidden cost of garbage collection. One solu-
tion to this problem is proposed; an inexpensive protocol that permits most
optimizations and garbage collection to coexist.

A second approach to this problem and a separate problem in its own
right is to reduce the need for garbage collection. This requires analysis
of storage lifetime. Inferring storage lifetime is difficult in a language with
nested and recursive data structures, but it is precisely these languages in
which garbage collection is most useful. An improved analysis for “storage
containment” is described.

Containment information can be represented in a directed graph. The
derivation of this graph falls into a monotone data-flow analysis framework;
in addition, the derivation has the Church-Rosser property. The graphs pro-
duced in the analysis of a value-assignment language have the property that
they can be replaced with a single graph without losing any information.
These properties also assist in the generation of graphs for side-effect lan-
guages.

A different approach to avoiding obtaining memory from the garbage
collector is also proposed. Existing techniques are either not general or run
the risk of consuming all of a bounded memory. A general, low overhead
technique that does not consume excessive amounts of memory is described.

Contents

1 Introduction 1
1.1 Intended application . 2
1.2 Organization . 3

2 Background 4
2.1 Garbage collection . 4

2.1.1 Basic algorithms . 5
2.1.2 Important characteristics 9

2.2 Data-flow analysis . 11
2.2.1 Control flow . 11
2.2.2 Local analysis . 12
2.2.3 Global analysis . 12

2.3 Optimizations . 13
2.3.1 Register allocation . 13
2.3.2 Redundant expression elimination 14
2.3.3 Loop reduction in strength 14
2.3.4 Loop invariant code motion 15
2.3.5 Dead code elimination 15
2.3.6 Procedure linkage conventions and tailoring 15

3 Interference 17
3.1 Setting . 18
3.2 Interference . 18

3.2.1 Register allocation . 18
3.2.2 Redundant expression elimination, loop invariant code

motion, and reduction in strength 19
3.2.3 Dead code elimination 21

3.3 Coping with interference in the collector 24

i

3.3.1 Identifying pointers to objects 24
3.3.2 Discovering targets of offset pointers 26

3.4 Coping with interference in the compiler 27
3.5 Adapting existing algorithms 30

4 Allocation optimization and analysis 31
4.1 Non-heap allocation . 32

4.1.1 Activation records . 32
4.1.2 Numbers . 34
4.1.3 Variables . 36

4.2 Overwriting allocation . 36
4.3 Assisting the garbage collector 38
4.4 SETL . 40

4.4.1 Overwriting in SETL 41
4.4.2 Stack allocation in SETL 43
4.4.3 Area allocation in SETL 43
4.4.4 Later work . 44

4.5 Discussion . 46

5 Improved containment analysis 48
5.1 Storage containment relationships 48
5.2 Using the SCG . 49
5.3 Constructing an SCG for a language with value-assignment

semantics . 52
5.3.1 Detailed description 53
5.3.2 Uniqueness of resulting SCG 55
5.3.3 Correcting for overwriting update 56
5.3.4 Coping with incomplete information 57

5.4 What’s really happening . 57
5.4.1 Containment-preserving unions 61
5.4.2 Properties of storage containment graphs 65

5.5 Accounting for side-effects . 69
5.5.1 First approach . 69
5.5.2 Second approach . 70

5.6 Comparison with SETL and Lisp analyses 71
5.7 Complexity of constructing SCG for a value language 73

5.7.1 Update Graph . 74
5.7.2 Shrinking the update graph 76

ii

5.7.3 Processing the update graph 77
5.8 Dealing with procedure calls 79
5.9 Shortcomings . 81
5.10 Related work . 82

6 Improved allocation optimizations 84
6.1 Problems with interval-based stack allocation 84
6.2 An improved method . 88

6.2.1 Short allocations . 89
6.2.2 Long allocations . 94
6.2.3 Nested Loops . 95
6.2.4 Procedure calls . 97

7 Conclusions 100
7.1 Contributions . 100
7.2 Future Research . 102

iii

List of Figures

3.1 Opportunity for REE in Lisp 20
3.2 Kill a pointer before a call . 22
3.3 Clear a frame before returning a closure 23
3.4 Apply-to-all iota and its compilation 24
3.5 Generating an offset pointer out of an object 27

4.1 Various function uses . 33
4.2 Different implementations of lexical scope 34
4.3 Removing copying from within loops 45

5.1 Value containment graph . 58
5.2 Insertion in reversed list . 58
5.3 Comparison of SETL value-flow analysis and SCG 72
5.4 Program yielding pathological SCG 73
5.5 Introduction of copy edges . 77

6.1 Problems with interval-based stack allocation 85
6.2 Splitting Interval . 86
6.3 Hoisting allocation . 86
6.4 Initial G′ . 92
6.5 Effects of 〈vi, vj〉 on G′ . 93
6.6 Effects of 〈vi, vj〉 on Di . 93

iv

Chapter 1

Introduction

Garbage collection and optimizing compilers are both aids to programming
productivity. Garbage collection removes some of the need for programmers
to account for their use of memory resources. Even if the only measure is
lines of code [Bro75], garbage collection helps because the lines of code to
manually manage memory are no longer needed. An entire family of proofs
is avoided; the programmer need no longer prove that each item freed is not
useful to the rest of the program, and the programmer need not prove that
every item not freed is useful; the garbage collector automatically ensures
that this is true. Information-hiding [Par72] is improved, because a module’s
specification need not spell out the required allocation and deallocation of
parameters and results. Optimizing compilers aid productivity by automat-
ing low-level code improvement. This allows programmers to use fewer lines
of code and to prove fewer facts about their program. Optimizing compilers
make high-level languages more attractive by making their implementations
more efficient [Ken81]; use of a higher-level language reduces the lines of a
code needed for a given program, thus improving productivity.

Unfortunately, garbage collection and optimizing compilers can interfere
with each other. In the worst case, this interference causes code to run in-
correctly; in less disastrous cases either many optimizations must be avoided
or a less efficient garbage collector must be used. Generally, this interference
forces a choice between garbage collection and optimization; a programmer
cannot have the best of both worlds.

This dissertation is an investigation of compile-time optimizations ap-
plied in a garbage-collected system. I believe that better optimizing compil-
ers can be written for languages in garbage-collected systems. To support

1

this, I demonstrate ways that current optimization techniques interfere with
garbage collection, and describe ways to perform optimizations without dis-
rupting garbage collection. I also describe improvements to existing optimiza-
tions that avoid allocation of garbage collected storage and improvements to
the analysis needed to implement these optimizations in a compiler.

1.1 Intended application

This work is intended to help in the efficient implementation of languages
running in a garbage-collected system on stock hardware. The model for
compilation and optimization is based on compilers for procedural languages
described in Hecht, Aho et al, and Kennedy [Hec77, ASU86, Ken81].

This model for compilation, analysis and optimization was chosen because
of its widespread use and my familiarity with it. The collector is expected
to be of the copying-compacting variety because those appear to have the
potential for greatest efficiency. Stock hardware was chosen for several rea-
sons: in the “real world” it is both cheaper and faster; it represents a least
common denominator of available computing machines; and it removes the
temptation to appeal to a “hardware assist” whenever an especially hard
problem appears.

The languages for which this work seems most applicable are strict,
statically-typed, and support garbage-collection for some or all objects. Pro-
grams written in such languages are more easily analyzed than those written
in lazy, weakly-typed languages, and because there is no need for run-time
type-checking or scheduling, garbage collection can consume a significant
amount of time in compiled programs. Thus, optimizations to avoid the di-
rect and indirect costs of garbage collection are more likely to be profitable.

Unfortunately (for the sake of examples), few if any popular languages fall
into this class. Cedar Mesa [Rov85] and Modula-2+ [RLW85, Wir83] have
these properties, but they are not especially well-known and I am not that
familiar with them. Other features (concurrency and exception-handling)
in these languages complicate flow analysis, but are irrelevant to this work.
Given this, examples will be written in a mixture of FP [Bac78], Pascal
without free, and impure Lisp.

2

1.2 Organization

The dissertation is divided into 7 chapters. They contain:

1. This introduction.

2. Background material on garbage collection, data flow analysis, and
optimization.

3. A description of unfortunate interactions that might occur between
optimized code and a garbage collector, and ways to avoid these inter-
actions. This chapter motivates the phrase “the hidden cost of garbage
collection”. The hidden cost of garbage collection is the time and mem-
ory spent to maintain the run-time environment in a garbage-collectible
state. This section also describes ways that some of these interactions
can be avoided, though additional analysis in the compiler is required.

4. A review of optimizations designed to cut down on time spent garbage
collecting, either by helping the collector or by avoiding the allocation
of garbage-collected storage. These optimizations rely on value lifetime
analysis which is also described here.

5. A description of a new storage containment analysis, and an investiga-
tion of its properties. The new analysis constructs a graph describing
containment relationships holding between definitions and allocations
within a program. Interesting and useful properties of these graphs
appear for both value and side-effect languages.

6. A description of new optimizations that avoid the allocation of garbage-
collected storage. These optimizations are based on the principle that
optimization should not significantly increase the amount of storage
that a program uses. The optimizations are general, do not squander
memory, and have low run-time overhead.

7. Conclusions.

3

Chapter 2

Background

This chapter reviews algorithms, analyses, and terminology that will appear
later in the dissertation. Review and tutorial information on data-flow anal-
ysis and optimizations are widely available [AC72, Ken81, Hec77, ASU86].
The literature on garbage collection has been summarized by Cohen [Coh81]
and Nicolau [CN83], though there has been a great deal of recent work
[Ung84, BW88, LH83, Rov85, Bro85, Hug85, SCN84, Moo84].

2.1 Garbage collection

Garbage collection is an implementation technique for automatically recov-
ering unused memory and reusing it. Its principal advantage is that it is
automatic; the programmer does not need to write code to re-use memory.
In a local sense this simplifies programming because the code does not need
to be written or debugged; in a global sense this simplifies programming be-
cause it is no longer necessary to devise and follow cross-module protocols
and to account for memory use. The principal disadvantage of garbage col-
lection is that it adds time and space overheads, though for a good garbage
collector these can be smaller than the overhead of a bad manual implemen-
tation of storage reuse. It is also difficult or impossible to write a garbage
collector for some languages because of their cavalier treatment of pointers.

4

2.1.1 Basic algorithms

All garbage collection algorithms attempt to discover objects that are not
useful to the further execution of a program and reuse their storage. All
algorithms classify an object as garbage when it is no longer active, though
the algorithms may not reclaim all inactive objects1. A small set of objects
called root objects is active by definition, and other objects are active if they
can be reached via a path of pointers (containment by reference) or inclusions
(containment by value). Given an object, a garbage collector must be able
to find every pointer contained within it; given a pointer, a garbage collector
algorithm must be able to find the object which it identifies.

Good garbage collectors exploit certain expected properties of programs.
Typically, young objects are more likely to become inactive than old objects.
It also appears that young objects refer to old objects much more often
than old objects refer to young objects, and that most objects are referred
to by only one object. These properties have been observed experimentally
[Cla79, CG77] and inferred from the improved performance of collectors that
exploit them [LH83, Moo84, SCN84, DB76, Rov85]. It has also been observed
that the sizes of objects are not distributed uniformly [BB77, Nie77].

Reference counting

Reference counting garbage collection identifies reusable objects by counting
the number of pointers to an object [Col60]. When this count reaches zero,
the object is reusable. After an object has been identified as reusable the
collector must undo the effects of pointers contained within the object; that
is, for each pointer p in the object, the collector must decrement the reference
count of the object which p identifies. Every time a pointer variable’s value is
changed, one object’s count must be decreased and the other object’s count
must be increased.

The simple form of reference counting has several major disadvantages.

1. It cannot reclaim circular containment graphs. All objects in a cycle
will have a non-zero reference count, preventing reclamation by the
collector, but a cycle need not be reachable from a root object.

1I make a distinction between active and useful; if an object is active, it implements
part of a program’s state; if an object is useful it not only implements part of the state, but
a change (or series of changes) in its contents will affect some later step in the program’s
execution.

5

2. The reference counts must be stored somewhere, thus using more mem-
ory.

3. Reference counts can grow larger than the maximum value that their
field will hold. This requires code to check for overflowed reference
counts, and can be a source of other uncollectible objects.

4. The maintenance of correct reference counts at pointer manipulations
imposes a time overhead on the execution of ordinary code.

5. Many objects can become unreachable in a single operation; when this
happens it can take some time to update all of the reference counts.

These problems can be mitigated in several ways. Circular graphs can be
collected with the use of an additional reference count [Bro85] or restricting
the structure of the graphs produced [FW79]. The use of hash links [Bob75]
to store reference counts [DB76] makes possible the “trick” of not storing
any count for the common (reference count equal to one) case and can also
handle larger reference counts. References from activation records need not
be counted; this avoids much of the expense associated with pointer manip-
ulation, at the cost of less timely collection [DB76, Rov85]. It is possible
to defer reference count adjustments; this avoids the need to spend time
updating many reference counts when many objects suddenly become free.

Reference counting has its advantages:

1. It is not inherently necessary for a reference counting collector to pre-
empt other computation for an unbounded amount of time; memory
can be collected incrementally.

2. Memory is recycled quickly; soon after an object becomes unreachable
it can be made available for reuse. This means that a reference counting
collector can run well with a high percentage of memory active.

3. Deferred reference counting operations have small critical regions. This
can be useful in situations where garbage collection should not interrupt
other computation for long periods of time.

In spite of its problems, reference counting has been used to collect
garbage in large systems [DB76, Rov85]. These systems employ some of
the variations described above to get acceptable performance, though they
rely upon some assistance from programmers to break cycles so that they
may be collected.

6

Mark-and-sweep

The mark-and-sweep garbage collection algorithm is very straightforward. It
identifies unusable objects by applying the definition. The marking phase
starts from the root objects tracing paths to mark all reachable objects as
active. The sweep phase scans all objects, and all those not marked as active
are eligible for reuse. Because this process can be time-consuming, garbage
collection is typically run when no more memory is available.

This style of collection also has several disadvantages:

1. Collection preempts all other computation, and can take significant
amounts of time.

2. Collection can perform very poorly in a virtual memory environment
because the marking phase has poor locality of reference and low pre-
dictability. The sweep phase has poor locality of reference, but much
higher predictability. Overall locality of reference can be low because
objects are distributed throughout memory.

3. Mark bits are required to record whether or not an object is active.
This takes a small amount of additional memory.

4. The sweep phase, though rapid, takes time proportional to the total
amount of memory in the system. Increasing the amount of memory
in the system reduces the frequency of garbage collection, but it also
increases the cost of each individual collection.

5. Mark-and-sweep collection performs very poorly when the percentage
of active memory is high.

The major variation on mark-and-sweep collection is the occasional use of a
compacting phase to improve locality of reference. Because older objects are
expected to live longer, a single compaction tends to improve both overall
locality and marking locality through several garbage collections. Concurrent
mark-and-sweep collectors that avoid long preemption have been designed
[DLM+78] but they require fine-grained cooperation with the rest of the
program.

Mark-and-sweep collection has one major advantage; it can work without
much cooperation from the rest of the program [BW88]. It also collects cir-
cular graphs without any other restrictions or modifications to the algorithm.

7

Copy-and-compact

Copy-and-compact collection collects garbage by making a copy of active
storage in a free area and reusing all of the old storage [FY69, Che70]. A
collection starts by copying the root objects to the new area. When an
object in the old area is copied to the new area, it is overwritten with its
new address and a bit is set to indicate that it has been copied. Active
objects are discovered by examining pointers included in objects copied to
the new area; these pointers will be directed into the old area, identifying
candidates for copying. A candidate object is examined to see if has already
been copied; if it has, then the pointer to it is updated to reflect the new
address. Otherwise, the object is copied and overwritten as described above.

The problems associated with copying-compacting collectors are:

1. Garbage collection preempts other computation.

2. A large portion of memory is always wasted because there must be
sufficient memory to hold a copy of the active objects. There must
also be enough additional memory that collections do not occur very
frequently.

3. The collector must be able to locate exactly the set of active pointers
because they must be updated when objects are moved. This makes
compacting garbage collection difficult in an uncooperative environ-
ment.

4. The collector’s locality of reference is not especially good.

There have been a number of variations on copying-compacting collection
designed to avoid the need to preempt other computing. These variations
are usually incremental, not concurrent, with the collector gaining control at
certain events [Bak78, LH83]. This avoids the overhead of explicit synchro-
nization. Other variations attempt to compact and collect small portions of
memory at a time; this avoids the need to have large amounts of free memory
for the entire set of active objects [Ung84].

Copying-compacting collection has these advantages:

1. Circular structures are collected.

2. Memory is frequently compacted, so the program’s locality of reference
can be quite good.

8

3. Because free memory is maintained as one large contiguous area, allo-
cation of new memory can be very rapid.

4. The cost of a single collection is proportional to the number of active
objects, not the total size amount of memory. Increasing the amount of
memory available decreases collection frequency but does not increase
the cost of a collection.

Copying-compacting collectors have been used or proposed for use in sev-
eral recent systems [Moo84, BS83, Ung84]. All of these systems separate
younger objects from older objects, and collect the younger objects much
more frequently than the older objects.

2.1.2 Important characteristics

All garbage collection algorithms share a few important characteristics. These
may seem basic, but they help determine how practical a particular algorithm
will be in a given run time system.

Per-object information

In all garbage collection systems a certain amount of per-object information
must be maintained. This includes information about the size and structure
of the object as well as the reference counts and flag bits mentioned above.

This information can be stored in several ways. The most straightforward
technique is to include with each object storage to contain this information.
A second technique is the use of hash links [Bob75]; an object’s address
locates its information within a separate table. A third technique is the Big
Bag of Pages. Using this technique, a set of pages (a bag) is reserved for
each object size (or structure, or type). An object’s address identifies the
bag holding it, and thus identifies its size. The use of bags also permits the
implementation of bag-specific tables to contain other information; because
all objects in a bag are the same size it is possible to use indexing instead of
hashing to locate information. If pointers are tagged, then the structure of
an object can be discovered by scanning it for pointers contained within it.

Location of pointers

All garbage collection algorithms must be able to locate pointers.

9

In a reference counting system this is necessary (1) to decrement the refer-
ence counts of objects referenced by a reclaimed object and (2) to determine
when a reference count adjustment is required. Non-pointer assignments do
not cause any reference count adjustments, but pointer assignments do. In
a mark-and-sweep system this is necessary for the location of active objects.
In a copying-compacting collector this is necessary both for the location of
active objects and for the updating of pointers to moved objects.

Note the importance of exact pointer location in reference counting and
compacting garbage collectors. For a reference counting collector, treating
a pointer as a non-pointer leads to an incorrect reference count; either an
object will be recycled while it is still active, or it will never be recycled. If
a non-pointer is treated as a pointer, then the garbage collector may treat
as a reference count a piece of storage that has some other meaning. In a
compacting collector, an ignored pointer is not updated and will continue to
point into the old area. If a non-pointer is treated as a pointer, then it will
be updated to point to the new location of the “object” which it “identifies”.

Pointer location is not so important to mark-and-sweep collection. As
long as at least one pointer to an active object is found, the object will not
be incorrectly recycled. If a non-pointer is treated as a pointer, then the
garbage collector may attempt to set a non-existent mark bit, but there are
techniques to avoid this problem. Note especially that mark-and-sweep will
not incorrectly modify or re-use memory if a non-pointer that “points” to
an actual object is interpreted as a pointer; this may prevent reclamation of
the object in one collection, but if the non-pointer’s value is changed then
the object may be reclaimed in a later collection. Reference counting and
compacting collectors do not share this property.

Pointers can be located in several ways. If it is possible to determine at
run-time the type of any given object, then maps describing the structure
(location of included pointers) of each object type can be employed. In a
statically-typed system, a type map can even provide the types of referenced
objects, removing the need to store separate type information. In some Algol
68 systems the type map was implicit in code generated by the compiler to
trace through a given type [Wod71, Mar71]. A second approach to this
problem is the tagging of machine words to identify which ones are pointers.
Here, pointers are located by identifying those words within an object that
are pointers. The third approach is used in conservative collectors [BW88,
DB76, Rov85]; that is, collectors that fail to reclaim some inactive objects,
though they never reclaim an active object. This approach identifies words

10

that might be pointers by checking the referenced storage to see if it is in fact
an object. This check is usually accomplished through the use of a big bag
of pages; if the address is within a bag, and corresponds to the first address
of an object within the bag, then it is a pointer.

2.2 Data-flow analysis

Data-flow analysis is one technique for discovering properties of programs.
The information from this analysis is used when optimizing programs. The
terms introduced here will be used later in the paper when describing existing
optimizations and proposing new ones.

2.2.1 Control flow

A program comprises memory and instructions. Control-flow analysis de-
termines what paths through the instructions are possible. Instructions are
first divided into basic blocks. A basic block is a sequence of instructions
with the property that if one instruction is executed, then all instructions
are executed; that is, a basic block is single-entry straight-line code. Basic
blocks are the nodes in the program flow graph. A directed edge 〈b1, b2〉 in
the program flow graph represents a possible transfer of control from the end
of b1 to the beginning of b2. A program flow graph is one instance of a flow
graph. A flow graph is a directed graph (N, E) with a single entry or start
node n0 from which all other nodes are reachable.

Certain properties of flow graphs are useful in many flow analysis algo-
rithms. A node n is said to dominate another node m if all paths from the
root n0 to m pass through n. Within a graph a strongly connected region
(abbreviated SCR) is a subgraph S such that for every pair of nodes m and
n in S, there is a path from m to n. A strongly connected component (abbre-
viated SCC) is a strongly connected region that is not contained within any
other strongly connected region. If, given an SCR S, there is a node h such
that h is in S and all paths from n0 to nodes in S pass through h is called a
single entry strongly connected component with header node h (abbreviated
SESCR). A SESCR roughly corresponds to a “loop” in the source language.
Note that h dominates every node in a SESCR.

Many flow graphs have a property called reducibility. A reducible graph
G has the property that repeated interval reductions of G eventually yield

11

a single node. A single interval reduction partitions a graph into intervals.
Each interval I has a header node h and the properties that (1) h dominates
every node in the interval and (2) all cycles within the interval contain h.
Reduction into intervals was developed by Cocke and Allen [Coc70, All70].
More efficient algorithms for performing interval reduction and testing for
reducibility were later developed by Hecht and Ullman [HU72], Graham and
Wegman [GW76] and Tarjan [Tar74].

2.2.2 Local analysis

Local data-flow analysis determines the relationships holding between def-
initions (stores) and uses (fetches) occurring within a single basic block.
Value-numbering [CS70, Ken81] can be used to eliminate redundant expres-
sions and to reduce constant expressions within a block. Another approach
constructs an expression DAG representing the transmission of information
within the block [ASU86]. Both of these techniques also generate the set of
expressions in the block that are still available; that is, expressions that will
yield the same result if re-evaluated at the end of the block.

2.2.3 Global analysis

Global data-flow analysis determines the relationships between definitions
and uses of variables and results and occurrences of expressions throughout
a program.

Liveness and availability

An expression e occurring at an instruction i is said to be available if on
every path from the entry node n0 to i (1) e appears, and (2) no variable in e
is redefined between the last occurrence of e on the path and i. Availability
corresponds directly to redundancy; if e occurs at i and e is available at i,
then it is possible to avoid evaluating e at i.

A variable v is said to be live at an instruction p if there are two instruc-
tions o and i such that v is defined at o, used at i, and there is a path from
o to i which passes through p but not through any instruction redefining v.
If v is not live at p, then (at p) either v is never defined or v’s value will not
be used in any future evaluations. Liveness is also a property of definition
sites; a definition d (of a variable v) is live at p if there is a path from d to a

12

use i passing through p without passing through any instruction redefining
v. The set of instructions where a definition d is live is called the live range
of d.

Use-definition chains

Use-definition chains relate definitions of a variable to possible uses of that
variable and uses of a variable to possible definitions of that variable. Given
a use u of a variable v, the set of possible definitions for v at u is written
DEFS (u). Given a definition d for a variable v, the set of possible uses of v
from d is written USES (d).

2.3 Optimizations

“Optimizing” compilers apply a number of transformations to programs in
order to increase their expected efficiency. Described here are well-known
transformations that will appear again later in the dissertation. All of these
transformations will be shown to interfere with garbage collection in some
way. It is especially notable that important opportunities for performing
several of these optimizations arise in the compilation of addressing arith-
metic [ASU86]; this is precisely where these optimizations can interfere with
garbage collection.

2.3.1 Register allocation

The abstract operational semantics for languages often make use of address-
able memory. Addressable memory is a component of conventional comput-
ers, but these computers also contain a small amount of much faster memory
known as registers. The goal of register allocation is to associate objects with
registers in a way that makes the compiled program run as fast as possible.

One good method for allocating registers uses graph coloring [CAC+81].
This method treats each live range of a variable as a vertex in a graph G,
and creates an edge between two vertices vi and vj if the corresponding live
ranges intersect. If k is the number of registers available and G can be colored
with fewer k colors, then all of the variables may be stored in registers. If
G cannot be colored with k or fewer colors, then some variables must either
not be placed in registers (removing vertices and edges from G) or spilled. A

13

variable is spilled if it is moved from one register to another or if it is moved
from a register to memory. If a variable i is spilled, then vi in G may be split
into several vertices that share the edges originally incident to vi.

2.3.2 Redundant expression elimination

Redundant expression elimination seeks to avoid re-evaluating duplicated
expressions. To do this it identifies duplicated expressions, introduces a tem-
porary variable, saves the result of the first evaluation in the temporary and
uses the value stored in the temporary instead of evaluating the duplicate.
Availability is used to determine when an expression is redundant.

2.3.3 Loop reduction in strength

Loop reduction in strength converts multiplications involving a loop counter
into additions. To see that this is possible, suppose that P(x) is a degree n
polynomial in x with n > 0. Consider P (x + 1) − P (x). This is a degree
n− 1 polynomial in x, P ′(x). Reduction in strength converts the loop

for x = 1 to 100
. . . P (x) . . . to

t ← P (1)
for x = 1 to 100

. . . t . . .
t ← t + P ′(x)

Since P ′(x) is also a polynomial in x, this process can be repeated until no
multiplications remain, yielding this loop:

t ← P (1)
t′ ← P ′(1)
. . .
t(n) ← Pn(1)
for x = 1 to 100

. . . t . . .
t ← t + t′

t′ ← t′ + t′′

. . .
t(n−1) ← t(n−1) + t(n)

Allen, Cocke and Kennedy give an algorithm for performing reduction in
strength on a simple intermediate code that can reduce polynomials in this
way [ACK81].

14

2.3.4 Loop invariant code motion

Loop invariant code motion attempts to find expressions or code whose results
do not change during a given execution of the loop. This is an important
optimization because any improvements are multiplied by the number of
times the loop is executed.

The discovery of invariant expressions is fairly simple. A variable v (a
trivial expression) is loop-invariant if there is no definition for v within the
loop body. A non-trivial expression e1 op e2 is invariant if e1 and e2 are loop-
invariant. Provided that the code motion is safe [Ken72], a loop-invariant
expression may be evaluated before entering the loop. More ambitious algo-
rithms move invariant assignment statements and control structures out of
loop bodies [CLZ86].

2.3.5 Dead code elimination

Dead code elimination removes code when the compiler can determine that it
has no effect on the program’s output. This optimization is usually intended
to function as a cleanup phase after other transformations have been applied.

Dead code elimination uses use-definition chains to discover instructions
that have no effect on a program’s output. If an instruction i defines a
variable v, and USES (v) at i is empty, then executing i has no effect on the
program’s output. Therefore, i may safely be removed.

2.3.6 Procedure linkage conventions and tailoring

Language implementations define a standard procedure interface to allow
linking of separately compiled procedures. Such an interface is general and
often includes support for saving of registers, debugging, and exception han-
dling. Without knowledge of the behavior of a called procedure, a compiler
must also make worst-case assumptions about the effects of the procedure on
its parameters and global variables. This generality can be costly.

Linkage tailoring [AC72] reduces the cost of a procedure linkage by using
a special-purpose non-standard interface. Allen and Cocke describe four
classes of procedure linkage.

closed This is a standard procedure linkage. Registers are saved at proce-
dure entry and restored at procedure exit, and results must appear in
a standard register(s). Parameters are usually passed in memory.

15

open This is no linkage at all; the procedure is entirely incorporated into
the calling program. This can be very profitable because there is no
overhead at all, and the procedure body is exposed to optimizations
within the calling program.

semi-open The calling and called procedures are compiled at the same time,
but a procedure “boundary” is maintained. Properties of the actual
parameters (in the caller) can be used to optimize code in the called
procedure. Register saving may be reduced or omitted, and parameters
may be passed in special locations or registers, or omitted altogether.

semi-closed The called procedure is compiled first, and information from
that compilation is used when compiling the caller. The linkage may
pass parameters in registers or special locations, and information about
the called routine may allow less conservative assumptions and more
optimization when compiling the caller.

16

Chapter 3

Interference

The combination of garbage collection and optimization in the same system
may not work well. Garbage collectors locate pointers and objects, and a
good run-time environment for garbage collection makes these operations
reliable and inexpensive. Several useful optimizations, however, change the
run-time environment in ways that make pointer and object location unreli-
able or expensive.

Consider the following example (in which a is dynamically allocated).

x ← a[i]
a[i] ← new()

Here, the address of the ith element of a is calculated twice, once before
allocating memory and once after. Ordinarily it is safe to calculate the ad-
dress once and reuse it, but if the memory allocation triggers a (compacting)
garbage collection then a will be moved and the cached address will be in-
correct.

One solution to this problem is to not optimize address expressions, or at
least to not optimize address expressions across garbage collections. Modifi-
cations to the garbage collector can allow some optimizations, but an unco-
operative or careless optimizer will still cause problems. I propose a better
solution to this problem that allows garbage collection and optimization to
coexist.

17

3.1 Setting

The language compiled will be “safe” [Owi81], in the sense that garbage
collection always works correctly with unoptimized code; the interference is
with the compiler, not the programmer. The implementation of the language
will not use concurrency; this is a simplifying assumption. I also assume that
the language can be typed-checked at compile time. Languages whose im-
plementations might produce such an environment include typed functional
languages, Russell, ML, and free-free Pascal.

The garbage collector will be based on a copying-compacting collector;
it will be a “stop-the-world” collector, invoked only when an object is allo-
cated. In general, the collector is invoked rarely; this assumption is used in
deciding which compiler transformations are likely to be profitable. Ungar’s
generation scavenging collector [Ung84] is an example of an efficient collector
meeting these requirements. I use a copy-and-compact collector for several
reasons. It appears to be the best collector in a system with plenty of real
memory; the cost of a single collection is proportional to the amount of mem-
ory in use, not to the amount of memory available, and object allocation is
fast and simple. It also produces the most interesting interferences with op-
timizing compilers, because a compacting collector will change pointer values
(as opposed to a mark-and-sweep collector, which will not).

I also assume that is little or no hardware for garbage collection, and I
admit the possibility of machine registers.

3.2 Interference

3.2.1 Register allocation

Garbage collectors look for pointers in standard1 locations. Introducing
cross-statement register allocation introduces another set of locations where
pointers can be stored. If the collector is not designed to examine those
locations, then leaving values in registers will cause the garbage collector to
fail. This is a simple interference, but it cannot be ignored in a real system.

The garbage collector must know exactly which registers contain point-
ers. Methods for locating pointers in memory may not work with registers;

1What do I mean by “standard”? I guess I mean that the collector is designed with
one set of assumptions, and thus “standard” means “assumed”.

18

pointers in memory can be located because they are part of a larger object
whose structure is known, or pointers themselves may be tagged. Registers
are not part of any larger structure, so that approach will not work, and
maintaining tags without hardware assist is time-consuming.

At procedure calls values in registers are moved into a register save area.
This is another location for pointers that might not have been anticipated
by the author of the garbage collector. Introduction of special procedure
linkages may also leave active pointers in unusual places.

3.2.2 Redundant expression elimination, loop invari-
ant code motion, and reduction in strength

Garbage collection interferes with these three optimizations in similar ways.
A storage allocation represents a potential call to the garbage collector, which
in turn represents a redefinition of every active pointer value. Since the
compiler can only perform safe transformations, it must treat each allocation
as a potential redefinition of every active pointer value, and there will be fewer
opportunities to apply these optimizations to address expressions. On the
other hand, the compiler could proceed with the optimizations and leave the
problem of discovering encoded pointers to the garbage collector.

Reduction in strength of address expressions is a productive optimization
in languages that use arrays in their implementation. When this is not the
case (for example, in classical implementations of simple Lisp), reduction
in strength cannot be applied to address expressions because there is no
guarantee that the components of aggregates will be linearly addressable.

The usefulness of redundant expression elimination and loop invariant
code motion applied to addresses also depends upon a language’s semantics
and implementation. In many Lisp implementations, for example, all values
are represented with pointers to storage even when the storage for the value
is no larger than the pointer (containment by reference). This permits a uni-
form treatment of data in the implementation (this is necessary for efficiency
in the absence of type-checking). If there are no destructive operations (e.g.,
rplaca or rplacd) then these optimizations cannot be profitably applied to
addresses. Because all values are represented with pointers, taking the ad-
dress of a value yields a pointer to a pointer; subsequent accesses take two
indirections, not one. If, however, rplaca and rplacd are allowed, then there
are situations in which redundant expression elimination can profitably be

19

(cdr x)
...
(rplacd x y)

Figure 3.1: Opportunity for REE in Lisp

applied to an address expression. For example, in figure 3.1 the operation
(cdr x) is followed by (rplacd x y). In this case, the address of the cdr
field of x’s storage may be re-used when x’s cdr field is replaced2.

If a language’s implementation uses containment by value, then other
opportunities may arise. When a value contained in another is accessed sev-
eral times, its address (offset from the start of the storage for the containing
value) will be recomputed each time. If the contained value uses less stor-
age than a pointer and it will not be modified, then it saves time to cache
the value in a temporary and re-use it. If the value might be modified, or
if it uses (a great deal) more storage than a pointer, then it will be more
profitable to cache the pointer and re-use it3. A hindrance to the use of
a compacting garbage collector in Algol-like languages is the use of “VAR”
(reference) parameters. Record data structures in Pascal and Modula are
implemented with containment by value; passing an element of a record as
a VAR parameter to a subroutine creates a pointer into the middle of the
record4.

Without overwriting or containment by value, redundant address expres-
sions do not appear in a functional language because there is no need to
re-use the address of a value; there are no side-effects in a functional lan-
guage and a value (actually a pointer to storage) takes no more memory
than a pointer to a value. However, Hudak and Bloss describe overwriting
optimizations for a functional language that, given a naive translation from
Fortran to functional form, introduces the same overwriting behavior present
in the original Fortran program [HB85]. In doing this it also introduces the
redundant addressing expressions present in the original program. Thus, the
use of overwriting optimizations with a functional language can introduce
redundant address expressions.

2For the sake of example, pretend that the rplacd couldn’t be done more quickly in a
single machine instruction.

3If it might be modified, then it is more correct to cache the pointer.
4Thanks to John Ellis for pointing out this problem.

20

For an optimizing compiler, any storage allocation represents a potential
redefinition of every pointer value in the program. If a strongly connected
region of a flow graph contains a storage allocation, then there are no address-
valued region constants, and thus no expression containing an address will
be inductive or invariant. If there is a path between two otherwise equal
address expressions that contains a call to the storage allocator, then the
second expression is not redundant and cannot be eliminated.

3.2.3 Dead code elimination

Dead code elimination interacts with garbage collection in unusual ways. In
certain situations, apparently “dead” code helps the garbage collector; if it is
removed, then garbage collection is less efficient or effective. Code to initialize
newly allocated memory may appear to be dead, but these initializations can
be important to the operation of the garbage collector.

Aids to garbage collector

There are several situations in which a program’s performance is improved
by the addition of apparently useless assignment statements. This optimiza-
tion is currently done “by hand”, but there is no reason that an optimizing
compiler for a garbage collected system should not also attempt to perform
this optimization. In all cases, the optimization is the assignment of a null
pointer value to one part of an object, and in all cases that object remains
accessible, but only certain parts of it will be referenced in the future. In
most cases this object is an activation record. The program’s performance
is improved in two ways: by removing pointers, the cost of tracing through
the graph of active objects is reduced; by removing pointers, some active ob-
jects may be made inaccessible and will be reclaimed in a garbage collection.
By increasing the effectiveness of each garbage collection, the frequency of
collection is lowered and the total cost reduced. In certain situations, this
optimization can break cycles in the storage graph, thus allowing collection
by a reference-counting collector.

When this optimization is performed correctly, the pointer variable receiv-
ing the null value will not be used in any subsequent point in the program.
This can often be detected by an optimizing compiler through the use of data-
flow analysis, and it is usually inferred that such an assignment need not be
performed because it has no effect on the program’s execution (certainly it

21

has no effect on the meaning of the program). Unfortunately, removing this
“dead” assignment undoes the assistance to the garbage collector.

In the first example (figure 3.2) three objects a, b and c are created before
the call to g, but only b and c are used during or after the call to g. If it is
likely that g will cause a garbage collection and a’s value uses a large amount
of memory, then it may speed up the program to assign nil to a before the
call to g. This assignment removes any reference to a’s value that originates
in an activation record for this code, possibly making the storage for a’s value
available for reuse.

a ← . . .
b ← . . .
c ← f(a, b)
a ← nil remove the pointer to a’s value from this stack frame
d ← g(c, b)
. . .

Figure 3.2: Kill a pointer before a call

In the second example (figure 3.3) the function f returns a function g.
Depending upon the semantics of the language and the details of the im-
plementation, the representation of g’s value may include a pointer to an
activation record for f . If this is so, then the activation record will be placed
on the heap and all values reachable from that activation record will remain
live as long as g is live. However, g may not use all the values accessible
from f ’s activation record; to allow better reuse of storage, references that
are effectively dead are removed from the activation record. Note that the
need for this optimization depends upon the language implementation; it is
by no means universal.

Storage initialization

Several languages that require garbage collection also support the creation of
“array” or “tuple” objects; that is, objects containing many other objects, all
accessible in constant time. These objects are usually implemented as arrays
of storage; that is, as enough contiguous words of memory to contain the en-
tire object. When these objects are allocated, all of their components must
be given some initial value; they cannot contain “junk” values if a garbage

22

f(a) = {
b = . . .
c = . . .
. . .
g(x) = {

. . .
} end of g’s definition

. . .
a ← nil
b ← nil a and b are not referenced by g
return g
}

Figure 3.3: Clear a frame before returning a closure

collection occurs before everything has its intended (by the programmer)
value. This problem occurs even in languages that have no destructive op-
erations, and no way for the programmer to avoid supplying an initial value
for objects. In figure 3.4 is a simple FP [Bac78] function and a plausible
compilation demonstrating this problem. The function is “apply-to-all iota”.
It takes as input a tuple of integers and produces a tuple of tuples of integers.

The first allocation obtains storage for result. If result’s storage is not
initialized, then any garbage collection provoked by a subsequent allocation
may attempt to treat uninitialized portions of result’s storage as if they were
pointers. This is not necessarily a serious problem; if the collector checks
pointers to be sure that they are valid before tracing them, then it will at
worst result in some garbage being uncollected. However, if the collector
trusts all pointers (a possibility in a strongly-typed language), then it may
treat pieces of objects as if they were object headers (setting tag bits, for
instance).

If an optimizing compiler were to ignore the requirements of the garbage
collector, it might very well discover that the pre-initializations are dead
assignments and remove them. This is clearly unacceptable.

23

αι
ι : n = 〈1, 2, . . . , n〉
(αf) : 〈x1, . . . , xn〉 = 〈f : x1, . . . , f : xn〉
(αι) : 〈2, 3, 4〉 = 〈〈1, 2〉〈1, 2, 3〉〈1, 2, 3, 4〉〉

n ← length(input)
result ← allocate(n)
for i ← 1 to n {

result [i] ← allocate(input [i])
for j ← 1 to input [i] {

result [i][j] ← j
}

}

Figure 3.4: Apply-to-all iota and its compilation

3.3 Coping with interference in the collector

3.3.1 Identifying pointers to objects

The compiler can perform register allocation across storage allocations if the
garbage collector can determine which values in registers are in fact pointers.

One way to do this is to reserve (by convention, not by architecture) some
bits in each machine word for tags. This has the disadvantage of wasting
space and not taking advantage of machine arithmetic designed for the whole
word, but it does work correctly when pointers are stored in registers.

Another way to locate pointers in registers is to reserve some registers
exclusively for pointer values. This has the disadvantage of complicating
register allocation in the compiler, but it will allow some register allocation
in a garbage-collected system. Note that it is not safe for the author of the
garbage collector to assume that “address registers” specified in the machine’s
architecture will always and only hold pointers; the architectural restriction
is on the use of the registers, not their contents. A clever compiler writer
might use the other set of registers for spilling when they are available.

If the garbage collector does not relocate objects, then it is permissible for
it to treat non-pointer values as pointers. However, doing this requires that
a value pointing into the object space but not pointing at a particular object

24

be identified; otherwise the collector might treat data found within the object
as header information private to the collector and modify it. To identify non-
object addresses the collector can either use a big bag of pages (BIBOP) or
unforgeable object headers. With a BIBOP, each candidate pointer locates
a corresponding bag of pages with associated object size and start address.
The address of the beginning of the bag is subtracted from the pointer, and
that result is divided by the bag’s object size. If the remainder is zero, then
the pointer in fact addresses the beginning of an object. Unforgeable object
headers typically require a second table not accessible to the program; an
object header contains an index into the table which in turn identifies the
object. Doing this requires making an entry in the table at each allocation
and a separate garbage collection for the header table. Neither of these
solutions is entirely satisfactory.

The compiler can store information describing the register assignment
at various points within the program. Given this information, the garbage
collector can accurately locate pointers to objects stored in registers. This
solution seems best, because its time overhead occurs only during garbage
collection. There is some space overhead; there must be a map describing
the register assignment at each “point” in the program where a garbage
collection might occur; this includes storage allocations, and can include
calls to subroutines. The need for a map at each call site depends upon the
register saving conventions for subroutine calls. If the called routine saves
registers, then it will store them contiguously in uninterpreted storage. This
situation requires an assignment map for each call site, because in order to
trace pointers stored in registers the collector must (1) restore the registers
from uninterpreted storage according to the save mask and (2) interpret the
registers according to the assignment map in effect at the call site. Restoring
the registers for a given activation record also requires that all activation
records below (called by) the given one be scanned because a called procedure
need not save all registers.

If the calling routine saves registers, then it may either store them con-
tiguously in uninterpreted storage or (assuming that the registers shadow
cells in addressable memory) store them back to their locations in address-
able memory. The second choice requires no assignment maps for call sites
because all the values stored in registers have been copied out of the regis-
ters. There are several trade-offs that must be evaluated in a real (optimized)
system.

25

1. The use of a caller-saves convention simplifies and improves the im-
plementation of tail-call elimination, and also simplifies the implemen-
tation of continuations if the language supports these. If a language
supports exception-handling, then caller-saves allows a simpler, more
efficient processing of exceptions. In general, use of caller-saves makes
it possible to examine an activation record without referring to other
activation records. Steele and Sussman discuss this [Ste77a, SS76].

2. Storing registers into contiguous storage can be much faster than stor-
ing them into cells scattered in memory. Often there are special ma-
chine instructions to do this.

3. Hennessy and Chow found that their register allocator was not as ef-
fective with a caller-saves convention [CH84]. Their measure of effec-
tiveness, however, is static, not dynamic.

4. Caller-saves increases code size because the code to save registers must
be replicated at every call site. The code size is increased even more
if registers are stored back into their shadowed cells instead of in con-
tiguous storage, but this removes the need to have an assignment map
for each call site.

3.3.2 Discovering targets of offset pointers

The techniques above allow a garbage collector to find pointer values. How-
ever, if redundant expression elimination, loop invariant code motion or re-
duction in strength has been applied to address expressions, then some point-
ers may address the interior of an object instead of the head of an object.
To interpret the contents of an object the collector must find the head given
one of these offset pointers.

It seems that techniques used above to separate pointer values from non-
pointer values could be used to adapted to find the object containing a cell
addressed by a pointer. With a BIBOP this can be done with a little arith-
metic; the header can be found by subtracting from a pointer the remainder
after subtraction of the beginning address of the BIBOP and division by the
BIBOP’s object size. With a header table the collector can either scan back-
wards from the addressed cell until a header is discovered, or a search can be
performed in the header table itself.

26

Unfortunately, all of these methods depend upon the assumption that an
offset pointer will address memory contained within the object upon which
it is based. There is no reason that this should be true. Figure 3.5 shows a
piece of code for which the compiler might generate a constant address used
to access elements of the array A (with elements indexed from 0 to 100), but
not by itself addressing any part of A. One way to generate code for this
loop might create the region constant addr(A)+200; when combined with i,
the result lies within A, but the constant itself does not address any part of
i. It is possible to prevent the creation of pointers offset outside of objects
by not allowing the compiler to treat any addressing intermediate results as
inductive or redundant. When performing reduction in strength the compiler
must be also be careful not to increment inductive address variables past the
end of an object on the last loop iteration.

for i ← 100 to 200
A[200− i] ← i
. . .

Figure 3.5: Generating an offset pointer out of an object

3.4 Coping with interference in the compiler

As noted above, the compiler can produce maps for use by the collector and
debuggers describing the assignment of registers to variables. A variation of
this generalizes to handle the offset pointers produced by loop invariant code
motion, reduction in strength, and reduction expression elimination.

The previous section implies that the compiler produces register assign-
ment maps interpreted by the garbage collector. Suppose that a “map” is
stored as code and data that moves register and save area contents into the
variables’ “true” locations (that is, it places pointers in locations where the
collector will look for them). After the garbage collection, another piece of
code is run to restore values into registers and save areas so that code execut-
ing after the collection will see the updated data. The collector must still in-
terpret maps describing the contents of activation records and other objects,
but it does not need to reconstruct an activation record before examining it.
I will call these maps the cleanup and dirtyup maps. This implementation

27

of register assignment maps has the disadvantage of requiring more storage
for the maps, but has several advantages which should outweigh this.

First, executed maps should be faster than interpreted maps. Second,
this method helps define a flexible interface between the compiler and the
garbage collector. The collector does not need any special-case code to deal
with customized procedure linkages, and the compiler does not need to know
about the details of the garbage collection algorithm. This interface can also
be used to simplify the implementation of debuggers for optimized code; by
using it, a debugger does not need to consider register assignment.

Third, and most important, this encoding of maps as code and data
generalizes to allow treatment of offset pointers produced by redundant ex-
pression elimination, reduction in strength, and loop invariant code motion.
For REE and LIVCM, the cleanup map does nothing, though the compiler
is constrained to leave available the components of invariant and redundant
address expressions. After a garbage collection, the dirtyup map calculates
new values for the address expressions. Notice that this code in the dirtyup
map is a use of the expression components; if it is treated in the same way as
ordinary code during dead code elimination the constraint mentioned above
is automatically satisfied.

Reduction in strength requires a slightly different approach. After addi-
tion reduction in strength of A+ i into tA+i, where A is an array address and
i is an induction variable, one would like to do away with i and the code to
increment it. The method used for REE and LIVCM will not allow this. By
storing A (a component of the expression) and A′ (a copy of A), however, it
is possible to implement the maps without reference to i. The cleanup map
does nothing; during a collection, A′ and the temporary variable containing
tA+i are not traced or altered. After the collection, the new tA+i and A′ are
updated by

tA+i ← tA+i − A′ + A
A′ ← A

The compiler-generated maps also make it possible to avoid performing
some initializations of newly allocated storage. In some cases the initializa-
tion code is truly (and correctly) dead and will be removed anyway. In other
cases this is not so, but the initialization can still be omitted if the unde-
fined portions of the array are initialized before a garbage collection. This is
especially true in code where the iteration is generated by the compiler, as

28

it is in the “apply-to-all iota” example in figure 3.4. At the call to allocate
within the loop, it is clear that elements 1 through i−1 have been initialized
and that elements i through n have not. Notice that this situation demands
exact information; the garbage collector depends upon complete definition of
all objects, but it is (very) wrong to initialize an already defined element to
a null value.

For languages with reference parameters and containment by value (e.g.,
Pascal and Modula-2), compiler-generated maps can make it possible to use
a compacting garbage collector5. The cleanup maps do nothing. The dirtyup
maps must be run in order from the root procedure in the call chain to the
leaf procedure, passing information down the call chain. In a procedure A
at a site calling B, it is clear whether or not the reference parameters are
contained (by value) within some larger object in A’s scope. If they are,
then the compiler must pass the new location to B’s dirtyup map so it can
move the parameters in B’s scope. In B, it is clear to the compiler which
parameters are reference parameters, and thus it can generate code to handle
movement of the parameters. It is very important that Pascal and Modula-
2 do not allow generation of pointers except with calls to new. If it were
possible to take the address of a reference parameter and assign it into a
global, then the scheme described here would not be sufficient. However,
because this is not allowed it is guaranteed that all offset pointers can only
appear in activation records and temporaries generated by the optimizer.

This is similar in spirit to the work of Hennessy [Hen82] and Zellweger
[Zel83] on debugging optimized code. Like a debugger, a garbage collector
must recover information about a program’s execution. Unlike a debugger,
a garbage collector must always run and must obtain all of the information
it needs, but it is only run at certain points within a program. A debugger
might be used to examine a program’s state at any point in its execution.

Handling interference in the compiler is preferable to handling interference
in the collector because it hinders fewer optimizations and does not add run-
time overhead in the garbage collector or allocator. It has the disadvantage
of requiring more space.

5In the absence of the ADR system primitive.

29

3.5 Adapting existing algorithms

To cope with garbage collection in the compiler, existing optimization algo-
rithms must be adapted to generate the maps used by the garbage collector
and satisfy any other constraints imposed by the garbage collector. If the
problem of code space is ignored, it appears that these modified algorithms
will perform the same improvements as the original versions6.

In general, the existing algorithms are modified to

1. ignore the effects of garbage collection when discovering expressions
that are redundant, invariant, or reducible;

2. insert temporary variables as in the original algorithm, but for each
temporary record the generating expression and the reason for the tem-
porary (is the expression invariant, redundant, or reducible?);

3. compute the live ranges of the introduced temporaries;

4. for each garbage collection or call site, generate the before and after
maps to restore the values of temporaries live at the site. This takes
place before dead code elimination, so the values needed to (re)calculate
the values stored in the temporaries are still available. The temporaries
generated by reduction in strength present a special case because it is
desirable to avoid introducing uses of induction variables. Note that
this code is treated in the same way as the “ordinary” code for purposes
of program analysis and optimization.

5. add to the maps code to finish initializing incompletely initialized ob-
jects, and leave hints to the dead code eliminator so that it will discover
which allocation initializations may be removed.

6. perform dead code elimination.

It is difficult, in general, to tell which objects need not be initialized at
allocation. The compiler must be able to gather exact information describing
the definition of a value at every collection site reachable from the value’s
creation. The information at all sites need not be the same, but it must
always be exact.

6There will be fewer dead variables, but this does not directly affect execution speed.

30

Chapter 4

Allocation optimization and
analysis

Compilers for Lisp and other languages with garbage collection make use of
some optimizations designed to avoid allocation of garbage-collected storage.
These optimizations fall into three general categories: those that use other
allocation methods (static and stack) to obtain memory, those that directly
re-use previously allocated storage, and those that assist the garbage collector
in its operations. Re-use of storage is especially attractive because it avoids
the cost of initializing the object. The motivation for the Lisp optimizations
is to reduce the time and space costs of frequent operations that “ought” to
be cheap.

Though not a motivation for any of the work described here, the pre-
vious chapter provides two more reasons for avoiding allocation of garbage
collected memory. Addressing expressions can be optimized if the address is
known not to refer to garbage-collectible memory; thus, converting a heap
allocation to a stack or static allocation may permit more optimization. Ad-
dressing expressions can also be optimized if the live range of the temporaries
generated does not include a heap allocation site; converting a heap alloca-
tion to a stack allocation may remove a heap allocation site that hinders
optimization.

31

4.1 Non-heap allocation

Conversion of heap allocations to stack or static allocation is usually used
to improve the cost of procedure calls and speed up arithmetic. These are
common operations that are expected to be cheap.

4.1.1 Activation records

In languages with “first class functions” and lexical scope, it is possible to
write a function (call it f) which returns a lexically enclosed function (call it
g). With a classical implementation of lexical scope [ASU86, pages 416–422],
this creates a need for non-LIFO (non-stack) allocation of procedure activa-
tion records because each instance of g returned by f may contain references
to an activation record for f , even when f itself is not active. Allocating ac-
tivation records from the heap, however, adds a large cost to each procedure
call. Therefore, compilers for languages with this combination of features
usually include special-purpose analysis to determine when a function’s ac-
tivation record will not survive the activation of the function, and use stack
allocation when this is the case [KKR+86, BGS82, Ste78]. Methods to do
this are ad hoc, cheap, and usually effective.

In the Rabbit compiler [Ste78], the results of evaluating lambda (function-
producing) expressions are traced to determine their use. Uses are divided
into three categories: function as data, in which the value produced by the
lambda expression is assigned to a variable with a non-function (not applied
to arguments) use; functions referenced (applied) from data, in which the
value produced by the lambda expression is assigned to a variable with only
function use, but some of those uses occur within functions treated as data;
and functions as functions, in which the value of the lambda expression is
only applied to arguments, and only within functions that are neither used
as data nor referenced from data. In the first case, it is necessary to create a
“full closure” containing both a pointer to the code and the environment in
which the lambda was evaluated. In the second case, it is necessary to create
a “partial closure”; all possible uses of the function have been discovered, but
it is still necessary to retain the environment. Note that “referenced by data”
includes indirect references through other functions referenced as a data. In
the last case, no closure is necessary because the function is known and the
environment can be recovered from the environment active at the call site.
Examples of these three uses are shown in figure 4.1. Here, the enclosing

32

f = λx.{
g = λy.{. . .}
h = λz.{. . . g(z) . . .}
i = λw.{. . .}(x)
return cons(h, i)
}

Figure 4.1: Various function uses

function (with unspecified use) is f . Within f , the function h is treated as a
value and must be represented in the most general form. The function g is
referenced from h, and so needs a saved environment for possible execution
after leaving the current scope. It is not necessary to save a pointer to the
code for g in the closure because the only reference is from h, where the
address of g’s code will be known. The anonymous function applied to x to
produce i does not need any special treatment because it can only be called
when f is active. Any references to names declared in f can be made directly
through f ’s activation record.

It is worth noting that the access link and display implementations of
lexical scope are “by reference”; in true functional languages lexical scope
can be implemented “by value”. With an access link implementation, func-
tion values use pointers to their lexical ancestors’ activation records to obtain
bindings for lexically inherited variables; with scope “by value” it is possible
to copy the bindings into the function object when it is created. This slightly
increases the time to generate a function-valued object, but simplifies the rest
of the implementation. Notice also that scope-by-value preserves only those
variables that are actually used by the returned function; all others are col-
lectible. In a scope-by-reference implementation, values bound to variables
in a heap-allocated activation record cannot be collected until the activation
record is collected, even though only a few of the variables are actually ref-
erenced. Yet another implementation of lexical scope by reference treats a
variable binding as a pointer to an “assignable cell”, which contains the the
actual value. In this case, inheritance of a binding from a lexical ancestor is
performed by copying the binding (a pointer) into the inheriting frame. This
technique requires an additional indirection to reference lexically scoped vari-
ables and a heap allocation to obtain the assignable cell, but avoids extending
the lifetime of lexically enclosing activation records when a function-valued

33

display access assignable scope by
links cells value

h

g

f

B

A

3

7

�

�
�
�
�
�
��

�

6�

��

h

g

f

B

A

3

7

�

�� �

��

h

g

f

A

A

A

B

B -

-

3

7

�

�-

�

6�

�-

h

g

f

A

A

A

B

B

3

3

7

7

7

Figure 4.2: Different implementations of lexical scope

object is returned. In figure 4.2 shows the references resulting from these
four different ways of implementing lexical scope. The function h is nested
within g which is in turn nested within f . The variable A is defined in the
scope of f , and the variable B is defined in the scope of g.

4.1.2 Numbers

In the MacLisp [Ste77b] and S-1 Common Lisp [BGS82] compilers, efficient
execution of arithmetic operations is an important goal. This goal is hindered
by Lisp’s uniform treatment of objects and the resulting need for a consistent
data representation; all values are represented as pointers to storage, which
is in turn (generally) obtained from the garbage-collected heap. To speed up
arithmetic operations, the Common Lisp compiler1 searches for opportunities
to use a direct (non-pointer) representation for numbers, or failing that, to
allocate the numbers on a data stack rather than on the heap.

Several representation constraints are maintained by the compiler. The
1The analysis in the Common Lisp compiler is cleaner, more general and more correct

than the analysis in the MacLisp compiler, though they are similar.

34

cons operation always creates a heap-allocated object; all objects reachable
from heap-allocated objects must themselves be heap allocated; all arguments
to (used-defined) procedures must be represented as pointers, though not
necessarily to heap-allocated objects; and values returned by functions or
stored in global variables must be represented as pointers to heap-allocated
storage. Operations that require a heap-allocated object are called “unsafe”.

The first part of “representation analysis” discovers opportunities to avoid
representing numeric values with pointers. In a top-down pass it propagates
the most desirable representation (WANTREP) from value consumers to
value producers. For example, in “(if p x y)” the WANTREP for the en-
tire expression is propagated inward to the expressions x and y, and the
WANTREP for p is JUMP. In a bottom-up pass the actual representation
used (ISREP) is propagated from value producers to value consumers and
conversions are introduced where necessary. Conversions are necessary when-
ever ISREP and WANTREP differ. Returning to the if example, suppose
that the WANTREP for the entire expression is NUM and that the ISREPs
for x and y are NUM and PTR. In this case, a conversion is inserted to
convert the value produced by y from pointer representation to number rep-
resentation. Introduction of variables clutters the tree-walking nature of this
algorithm, and requires the solution of simultaneous equations to obtain the
best answer. In practice, heuristic solutions are good enough.

When a number must appear in pointer format (if it is used as an ar-
gument to a subroutine) allocating storage on a stack (or “push down list”,
or “PDL”) is faster than allocating storage from the heap. Opportunities to
perform stack allocation are detected with tree walks from top to bottom and
bottom to top. From the top down, expressions’ “PDLOKP” flags are set
if their consumers will accept a PDL number. If a PDL number is allowed,
then the value of PDLOKP is the expression “authorizing” the use of a PDL
number. For example, in (if p x y) the value of PDLOKP passed to the entire
expression is passed on to x and y, and the if authorizes the use of a PDL
number in p. The bottom-up phase identifies those expressions that are able
to produce a PDL number by setting the flag PDLNUMP. When PDLOKP
and PDLNUMP are both true, and the desired representation (WANTREP)
is a pointer, and the generated representation (ISREP) is a number, then the
allocation is performed on the stack. Note that a procedure must ensure (at
run time) that an argument is heap-allocated before it performs an unsafe
operation on the argument.

35

4.1.3 Variables

Jones and Muchnick [MJ76] discuss the use of flow analysis for automatic
choice of storage discipline for variables in Tempo. For each variable, their
analysis determines those points in the program where the variable requires
storage; that is, it determines the live range of the variable. Using this
information it is possible to determine where storage for a variable must be
allocated and where it may be freed.

Optimization of variable allocations is also performed in compilers for
Scheme, ML, and Russell. Some implementations for these languages provide
lexical scope by copying bindings into function objects, but introduce another
level of indirection to permit side-effects to variables. That is, the activation
record contains a pointer to an “assignable cell”. The assignable cell, in
turn, contains a pointer to the storage actually allocated for the object (for
example, a cons cell). Assignment to a variable changes the contents of the
assignable cell, not the stack frame. When a function object using a lexically
bound name is created, the pointer to the assignable cell is copied into the
function object. Assignments to the lexical variable within the new function
thus affect the value of the variable in the enclosing function. This extra level
of indirection requires another object allocated on the heap for the assignable
cell.

4.2 Overwriting allocation

Hudak and Bloss [HB85] describe methods for detecting opportunities to
overwrite array storage in a functional language implementation. Their ap-
proach assumes the existence of an operation upd(a, i, x) that takes as input
an array a, an index i and some value x and produces a “new” array whose
ith element has value x and whose other elements are identical to the cor-
responding elements of a. The language is functional; upd does not alter
a’s value. Implementing upd in a straightforward requires the allocation and
initialization of another array; this is often inefficient.

Their analysis is performed on a functional flow graph. Values “flow”
through edges of the graph from nodes (which produce values) to other nodes
(which also consume values). To describe a node u performing an upd on the
results from nodes a, i and x, they write u : upd(a, i, x). For each node a,
producers(a) is the set of nodes which might generate the object appearing at

36

a and consumers(a) is the set of nodes which might use the object produced
at a. Note that the definitions of these two functions depends upon the
implementation of the language; if the identity function id is implemented in
such a way that it copies (creates a new object) its input, then producers(a :
id(x)) will always contain a and only a. If the output of id is the input
object, then producers(a : id(x)) is producers(x). Hudak and Bloss give
recursive definitions for producers and consumers in their paper.

The sets after(u), needed -by(u), and leading-to(u) model the strictness
properties of the language. After(u) contains the nodes that might be eval-
uated after u’s evaluation. Needed -by(u) contains those nodes whose values
are (definitely) needed to evaluate u. After u has been evaluated, every node
in needed -by(u) has also been evaluated. Leading-to(u) contains those nodes
that must have been evaluated before “arriving at” u’s evaluation. Notice
again that these functions depend upon the language’s implementation, not
just its semantics. For example, for the node a : if (p, f, g), needed -by(a)
includes p because p’s value is definitely required before the if can be eval-
uated. If evaluation is not aggressive, leading-to(f) contains p because the
result of evaluating p is needed to decide whether f or g should be evaluated;
under an aggressive evaluation policy, f and g might be evaluated before or
concurrently with p’s evaluation, and thus it is not possible to say that p’s
evaluation must precede f ’s. After(p) contains f and g because one of those
might be evaluated after evaluating p.

Given these functions describing evaluation and data flow in the program,
define the set C for an update node u : upd(a, i, x) by

C =
⋃

{consumers(s)|s ∈ producers(a)}.

C contains other potential uses of the value a. For u, the conflict set
conflicts(u) is

(C ∩ after(u))− leading-to(u)− needed -by(u).

That is, conflicts(u) is {other potential uses of u} intersected with {those
nodes which might be evaluated after u}, minus {all the nodes that must be
evaluated before evaluating u}.

Given u : upd(a, i, x), conflicts(u), and arguments fini to the function f
containing u, if

conflicts(u) = ∅∧ 6 ∃fini ∈ producers(a)

37

then u may be computed by modifying a in place. Even when this condition
is not satisfied, it may be possible to evaluate u in-place. Fixing a partic-
ular evaluation order (consistent with the language’s semantics) may alter
after(u) and leading-to(u) in such a way that conflicts(u) becomes empty.
Interprocedural analysis may provide better information about arguments to
the enclosing function f (in the absence of other information, one must as-
sume that they are shared). Reference counts may be attached to the values
produced by nodes in producers(u) ∩ producers(z), where z ∈ conflicts(u).
This is called “optimized reference counting” because it is only used where
some benefit is possible; the overhead of reference-counting all objects is
avoided.

4.3 Assisting the garbage collector

Barth [Bar77] describes an optimization for use in reference-counting sys-
tems. Here, the aim is to assist (speed up) the garbage collector by removing
canceling pairs of reference count adjustments.

The setting for this optimization is Deutsch and Bobrow’s garbage col-
lector for the Interlisp system [DB76], a hybrid of reference counting and
marking garbage collection. References from heap objects to heap objects
are counted, but references from program variables (originating in activation
records) are not. The counts themselves are not stored in the objects; instead,
two tables are maintained. The Zero Count Table (ZCT) identifies objects
with a count of zero, and the Multiple Reference Table (MRT) identifies ob-
jects with a count larger than one. If an object is only referenced once, then
it appears in no table. Updates to the tables are modeled as transactions;
these are ALLOC, REF and DEREF. ALLOC enters a newly created object
into the ZCT. REF and DEREF perform the obvious adjustments to ZCT
and MRT to reflect changes in the reference counts. Collection of objects
is not immediate; periodically a collector sweeps the stack and collects all
objects that are in the ZCT but not referenced from the stack.

Pairs of transactions that cancel are ALLOC-REF, REF-DEREF, and
DEREF-REF. Barth describes the removal of ALLOC-REF transaction
pairs. To do this, he traces the flow of newly allocated objects through
variables in activation records.

For each allocation site, he computes a modified depth-first numbering of
the flow graph such that no node (except the first) is numbered until all of its

38

parents (predecessor nodes) have been numbered [Tar72]. (It is unclear how
Barth intends to treat irreducible graphs, or those in which the allocation
site does not dominate all of its descendants.) For each edge E in this graph
(of numbered nodes) he computes the bit vectors E.DS (Definitely Set) and
E.MS (Maybe Set) identifying those variables that may reference the new
object. For each node, the incoming DS sets are intersected to yield the
outgoing DS set and the incoming MS sets are unioned to yield the outgoing
MS set. If the node is an assignment to a variable, then the outgoing sets
are adjusted to reflect the change.

After computing DS and MS for each node in the graph, the algorithm
visits the nodes again. In this pass, it propagates “allocation transaction
owed” markers through the graph. Initially, edges leaving the allocation are
marked. For each node visited, do nothing if any incoming edge is unmarked.
Otherwise (all edges are marked), check for cancellation and changes to the
marking. Cancellation can occur in two situations. If the node is an as-
signment, the left-hand side is a heap reference, and the right-hand side is
a member of all the incoming DS sets, then an ALLOC-REF cancellation is
possible. All the incoming markers are erased and the outgoing edges are
unmarked. If the node is an assignment and the outgoing MS and DS sets
are empty, then the cell is no longer accessible. All the incoming markers are
erased, the outgoing edges are unmarked, and in-line code to free the cell is
generated (as opposed to entering the cell into the ZCT). If no cancellation
occurs, the markers can be propagated provided two conditions are satisfied.
The DS sets on the outgoing edges must be non-empty (there must exist
some reference to the object), and the assignment cannot be an assignment
whose left-hand side is a heap address and whose right-hand side variable is
in an MS set but not in a DS set (that is, there can be no possibility that the
assignment will create a heap reference). When this is the case, the incoming
markers are erased and the outgoing edges are marked.

After the second visit is complete, insert an ALLOC transaction on each
marked edge. This will settle any “unpaid debts” remaining, and take care of
edges out of the dominated subgraph (they will be marked). Barth describes
another possible optimization in which transactions are batched, but gives
no algorithm. Here, a series of REF or DEREF transactions is replaced with
one REFn or DEREFn transaction.

39

4.4 SETL

Storage optimizations of all three types listed above were proposed for the
SETL compiler [Sch75]. SETL [KS75] does not provide the ability to return
lexically scoped functions, so the compiler may safely allocate activation
records on the stack, but aggregate objects in general (tuples and sets) are
treated as values and reclaimed with a garbage collector, providing ample
opportunity for overwriting and stack allocation optimizations. In addition,
Schwartz proposes analysis to discover groups of objects that are linked to-
gether, and thus must be freed together. Such groups are allocated in one
batch to reduce the overhead to the allocator and the garbage collector.

SETL is superficially an Algol-like language. It has Algol-like control
structure, variables, assignment, functions and subroutines. SETL, however,
has a much richer variety of data types and operations on those types than is
usual for Algol-like languages. Non-primitive types and operations on those
types are based on sets and operations on sets. In addition, SETL is a value
language, not a pointer language, and uses a garbage collector to reclaim
unused storage.

In the language implementation non-atomic values are represented with
pointers to storage and values are assigned by copying pointers, thus sharing
the storage that is addressed by the pointer. Shared storage may not be
altered because that would violate SETL’s value semantics. One goal of the
compiler, then, is to detect situations in which an updating operation (set
insertion and deletion, altering tuple members) is applied to a value whose
storage is not shared, and to introduce an in-place update operation.

In the analysis of a SETL program, each occurrence of a variable x in
which its value is used is called an ivariable. Similarly, each occurrence of
a variable x in which it is (re)defined is called an ovariable. The program
itself is partitioned into basic blocks, which are the nodes in the program’s
control flow graph G. A (directed) edge from one block b1 to another block
b2 in G represents a flow of control from the end of block b1 to the beginning
of block b2. An ovariable o and ivariable i are said to be chained together if
both i and o are occurrences of the same variable x2 and if there exists a path
through G from o to i containing no assignments to x. If i and o are chained
together, then i ∈ du(o) and o ∈ ud(i). Ud and du are the use-to-definition
and definition-to-use maps of traditional data-flow analysis. An ovariable o

2Note that i and o are variable occurrences, not variables themselves.

40

is said to be dead when du(o) = ∅.

4.4.1 Overwriting in SETL

Given an ivariable i with value p used in an updating instruction op, it is
desirable to discover that p is not shared and that op may be performed
in-place. To do this, the compiler constructs l(i), the set of ovariables with
values possibly incorporating p3. If every ovariable o in l(i) is dead4 at op,
then destructive use of p is possible.

An approximation (upper bound) for l(i) is computed in two steps. In
the first step, the functions crthis(i) and crpart(o) are calculated. The set
crthis(i) is the set of all ovariables whose evaluation5 can produce an object
that becomes the value of i. This is similar to the set producers(x) used by
Hudak and Bloss in the paper described above. The set crpart(o) is the set
of all ovariables whose evaluation can produce an object that becomes a part
of the current value v of o; that is, the object becomes v, or becomes a part
of a member of v.

crthis(i) =
⋃

o∈ud(i)

crthis(o) (4.1)

crmemb(i) =
⋃

o∈ud(i)

crmemb(o) (4.2)

crpart(i) =
⋃

o∈ud(i)

crpart(o) (4.3)

crthis(o) =











crthis(i1) if o ← i1
⋃

j∈crmemb(i1) crthis(j) if o ←3 i1
{o} otherwise

(4.4)

3Schwartz uses the phrase “current value”. I believe this means “value, given that the
program is about to execute op”.

4By “dead at a point”, I assume that Schwartz means that if the instruction xo ← xi
were inserted (where x is the variable occurring as an ovariable elsewhere in the program),
then either du(xo) = ∅ or ud(xi) = ∅; that is, no ovariable occurrence of x can be chained
to this point, or any occurrence that does reach this point is unable to reach any ivariable
occurrence from this point.

5“Evaluation of an ovariable” means calculation of the value assigned to it.

41

crmemb(o) =



















































crmemb(i1) if o ← i1
⋃

j∈crmemb(i1) crmemb(j) if o ←3 i1
{i1} if o ← {i1}
crmemb(i1) ∪ crmemb(i2) if o ← i1 ∪ i2
crmemb(i1) if o ← i1 − i2
∅ if o ← data
∅ otherwise

(4.5)

crpart(o) =







































crpart(i1) if o ← i1
⋃

j∈crmemb(i1) crpart(j) if o ←3 i1
{o} ∪ crpart(i1) if o ← {i1}
{o} ∪ crpart(i1) ∪ crpart(i2) if o ← i1 ∪ i2
{o} ∪ crpart(i1) if o ← i1 − i2
{o} otherwise

(4.6)

In the second step, the set exsinthis(i) is calculated. This is the set of
all instructions that might have been executed between the creation of the
pointer p and the time it becomes the value of i. The calculations of crthis,
crpart and exsinthis are accomplished through the solution of a great number
of recursive equations. The equations are monotonic in their right-hand sides,
so they may be solved iteratively.

Given these functions, l(i) can be calculated. The operations that might
have been executed since p was created form the set Pi = exsinthis(i). The
operations that might have created p form the set crthis(i). Given a subpart
P of the program P , define a relativized crpart function crpartP (o) by solving
equations 4.1 through 4.6 with ud(i) replaced by ud(i) ∩ P . If

crpartPi (o) ∩ crthis(i) 6= ∅

then o is in l(i). The above formula is equivalent to

o ∈ crpartPi
−1(crthis(i))

giving the condition for destructive use (quoting Schwartz [Sch75, p.178]):

Let i be an ivariable of a SETL program P and let

Pi = exsinthis(i).

Then if every o belonging to the set

crpartPi
−1(crthis(i))

42

is dead immediately before i is used (where in describing an ovari-
able as dead we ignore its immediately following use in the oper-
ation containing i) then i may be used destructively.

4.4.2 Stack allocation in SETL

Schwartz describes an analysis that will detect (some) opportunities to al-
locate objects from the stack instead of from the heap. He proposes stack
allocation at an interval granularity; that is, any object whose lifetime is
contained within the interval should be stack-allocated and freed at edges
leaving the interval. Freeing such objects is very inexpensive, because the
stack pointer is just restored to its value on interval entry.

Given an interval I, build the set ∆ of ovariables of I having no uses
outside I. From ∆, form ∆′ by removing from ∆ variables belonging to
crpart(i) for some i not in I. That is, remove from ∆ ovariables that are
incorporated into values whose lifetimes are not contained within I. Finally,
notice that the introduction of destructive updates may extend the lifetimes
of objects (not values) outside of I. To account for this check the ovariable
o of each destructive operation in I. If o does not belong to ∆′, then let i be
the ivariable modified in the destructive operation and remove from ∆′ all
ovariables o in crpart(i). Repeat this process until ∆′ stops shrinking. The
variables remaining in ∆′ can be allocated on a stack that is popped at exits
from the interval I.

4.4.3 Area allocation in SETL

Another proposed transformation assists the garbage collector by grouping
several objects into a single storage object, or area. This helps the garbage
collector in several ways. Storage for all the grouped objects is obtained
in a single large request instead of many smaller requests. When searching
for reachable objects in a collection, references between objects within the
area are not traversed, and all of the objects are marked live when the area
is marked live. Finally, cyclic reference graphs among the objects in the
area can prevent collection by some techniques (reference counting) if the
objects are allocated individually, but will not if all members of the cycle
are contained in the area. This compiler optimization is similar to a hand-
optimization proposed by Bobrow [Bob80].

43

4.4.4 Later work

In later work on the SETL compiler, the stack and area allocation algorithms
are not mentioned. The copy (overwriting update) optimization, however,
reappears in several forms.

Schwartz [Sch76] describes a “shadow variable technique” that appears
to be very powerful. In this analysis, the “share bit” used in the implemen-
tation to detect overwriting opportunities at run-time is made explicit with
a “shadow variable”. For a variable y, the shadow variable yshare undergoes
the following assignments:

1. For a simple assignment x ← y, set yshare = 1 unless y is dead, and
set xshare = 1 (unless y is dead and yshare = 0?)

2. For an assignment of the form x ← 〈expr〉, set xshare = 1 if 〈expr〉 is
a value-retrieving expression, and set xshare = 0 if 〈expr〉 is a value-
creating expression.

3. When y is incorporated into a compound object set yshare = 1 unless
y is dead.

For the moment, we will ignore the possibility of procedure calls, although
Schwartz treats that case in his newsletter.

At compile time, possible destructive updates to y are treated as uses
of yshare, since this is in fact the case. Constant propagation algorithms
can detect cases in which overwriting is always possible, and places where
it is never possible (and thus the value of the share bit may be ignored).
Live/dead analysis on the share bits can also detect places where the share
bits are no longer needed, and thus the bits need not be updated.

Schwartz further proposes an algorithm that helps guide the movement
of testing and copy operations out of loops. In figure 4.3 the first assignment
to s establishes s as a shared value. In the following loop s is updated once
on each iteration, requiring code within the loop to test the share bit and
perform the copy6.

To remove these operations from the loop Schwartz uses an interval-based
technique that classifies the use of each share-bit variable into one of four
categories; definitely zero, definitely one, inherently indefinite, and indefinite

6Note that this copy operation will only be performed once.

44

s ← t sshare is 1 here
. . .
while . . .

. . . here sshare is indefinite
but would be zero if it
were zero at entry to the
loop

s ← s ∪ {x}
. . . here sshare is zero
endwhile

Figure 4.3: Removing copying from within loops

but would be zero if it were zero at entry to the interval containing the oc-
currence. For each occurrence in the fourth category find the largest interval
in the full-program graph derivation sequence such that that occurrence re-
mains in the fourth category. At the entrance to that interval make a copy
of the value corresponding to the occurrence, ensuring that the share bit is
zero and permitting the removal of share bit test and copy operations from
within the loop.

The SETL optimizer [Cou85] uses this technique in conjunction with an
improved value-flow analysis method [FSS83] to avoid copying objects. The
value-flow analysis phase performs copy-elimination analysis for each destruc-
tive use DU. For each DU, the optimizer calculates the set of all preceding
variable occurrences VO whose variable might contain a pointer to the value
modified at DU.

The first step of this analysis is a backward pass to find all variable
occurrences VO from which the value VAL at DU might have been obtained.
These occurrences include those whose values are the same as VAL, and those
that might contain VAL. The information propagated backwards consists of
pairs [VO ,R] where R is a value containment relationship that holds at VO. A
value containment relationship is any composition of elementary containment
operations, such as “is a set member”, “is a tuple member”, “is the nth tuple
member”. In the SETL compiler, n is less than 10, and any containment
relationships that require more than 10 elementary operations are converted
to the worst case “is any member”.

After finding all possible sources VO for the value VAL, the algorithm

45

propagates value-containment relationships forward from the VO to all other
occurrences that might contain VAL. After this step, all occurrences that
might contain VAL have been located. Next, the algorithm forms the set of
all variable definitions that can reach DU. If none of these definitions is live
at DU, then the update may be performed without copying VAL.

4.5 Discussion

Of the work described above, that done in the SETL optimizer is the most
extensive. Hudak and Bloss, Barth, and Muchnick and Jones do not ad-
dress the problems posed by nested objects. Hudak and Bloss analyze a
non-strict language without nested aggregates to detect opportunities for in-
place updates. Non-strictness makes the analysis harder; they get their best
results when that feature is removed. Muchnick and Jones only consider
the lifetimes of variables, and do not consider the lifetimes of values. Barth’s
analysis traces the lifetimes of values as long as they are only referenced from
variables. The S-1 Common Lisp compiler traces the lifetimes of numbers
and functions, and handles the case of “containment” within functions (i.e.,
the code for one function calls another function), but does not treat any other
form of containment.

As described by Schwartz [Sch75], the SETL optimizer was intended
to improve four aspects of storage allocation. The transformations pro-
posed were copy avoiding, avoiding garbage collection bookkeeping opera-
tions, stack allocation and area allocation. Of these, only the first appears
in the SETL optimizer [Cou85] as of 1985. However, the storage for many
temporary values is allocated on the stack, not the heap, and the analysis to
avoid share-bit bookkeeping is in place, though the transformation is not yet
performed7.

Several things limit the analysis performed by the SETL compiler. The
containment relationships used in value flow analysis are more general than
a bit-vector approach, but they are still limited by their ability to express
only one relationship at a time and by the bounds imposed to avoid infinite
containment relationships. These restrictions can be relaxed.

The interval-based stack allocation algorithm is also limited in that it
can only be applied to the first interval reduction of the graph G0 to G1.
The interval method relies on the fact that intervals are single-entry, and

7I think that the SETL project had bigger fish to fry, so to speak.

46

frees all stack storage allocated within the interval by restoring the stack
pointer to its value on entry to the interval. The difficulty in performing
stack allocation within the intervals of G1 is that no stack object in a G1

interval I1 may be allocated within a G0 interval I0; if it is, then it will be
deallocated on exit from I0. Such an object must be allocated before entering
I0. This is not always possible, because the object’s size may not be known
at that point. Stack allocation within intervals can also cause problems if the
interval contains a loop. This problem will be addressed in a later chapter.

In all of the work described above, a result allocated by a function (as
opposed to extracted from an object existing before the function call) is
always obtained from garbage-collected memory. This approach is clearly
necessary without interprocedural analysis; if the result is always placed in
static memory or on the stack, then the calling routine must copy it to
another location if it is not used immediately, and the called routine must
always copy its result to the standard location, even it if it is a part of an
existing value. Ruggieri addresses this problem in her thesis [Rug87].

47

Chapter 5

Improved containment analysis

The analysis described in the previous chapter can be improved. Here are
some improvements and elaborations to what has gone before. The previous
chapter described methods used in SETL and Lisp compilers to determine
when one value is contained within another. The SETL compiler uses this
analysis to help find opportunities for performing updates in place. This
information can also be used to avoid allocating memory from the garbage
collected heap. Unfortunately, this analysis is limited in two ways. For each
definition reaching a use, the SETL compiler can only maintain a single value
containment relationship. If more than one relationship is possible, then a
less specific relationship must be used. The containment relationships are
also finite; if a relationship is composed of more than 10 elementary con-
tainment relations, then it is replaced with an “any member” relation. This
hides any information about the internal structure of the contained object.
Lisp compilers only apply containment analysis to closures and floating point
numbers.

5.1 Storage containment relationships

My improvement to this is a storage containment graph, or SCG. The stor-
age containment graph is designed to approximate containment relationships
holding between storage allocated at various definition points. All storage
arising from a particular definition is treated in the same way; this places
a bound on the graph’s size. The nodes in an SCG correspond either to
variable definitions and modifications in the program or to the storage as-

48

sociated with those definitions. The two sets of nodes are called def nodes
and store nodes. The edges in an SCG correspond to selector operations and
to the relation between definitions and storage. These two sets of edges are
called selector edges and store edges. Selector edges are labeled with selector
operations.

In an SCG, two nodes d and e are joined by a selector edge s : 〈d, e〉
when an object created at e can be extracted from an object created at d by
applying an s selection operation to the object created at d. If there is no
such edge, then no object created at e can be extracted from a object created
at d by applying s to that object.

Store nodes have significance only in relation to other store nodes; they
are the same, or they are not. Each store node represents a distinguishable
unit of storage. Each store node is associated with an allocation node, which
is a def node corresponding to a definition (site) that places its result into
allocated storage.

Because allocation of new storage always generates an unshared unit of
storage, no two allocation nodes in the SCG have edges to the same store
node. If two def nodes d and e have edges to the same store node σ, then
objects resulting from d and e might both “use” the same storage. If there is
no store node σ such that d and e both have edges to σ, then objects created
at d and e will not use the same storage. The scheme presented here does not
distinguish between storage produced from different executions of the same
allocation node.

The distinction between store nodes and definition nodes reflects an as-
pect of implementation on a conventional machine; there is no one-to-one
correspondence between storage and values. For example, after an overwrit-
ing optimization the overwritten storage lives on, but (parts of) the old value
do not. This distinction also makes clear the differences between copy-by-
value and copy-by-reference.

5.2 Using the SCG

The SCG is designed to answer questions concerning storage containment
and sharing. Some of these questions are:

• Given a definition d, what storage might be contained within objects
resulting from d?

49

• Given a storage node σ (representing storage allocated at a particular
definition), what definitions might produce an object containing σ?

• Given a definition d, what store nodes might be overwritten by a de-
structive update to an object resulting from d? (This circumlocution
means: “If values are pointers, to what storage might values resulting
from d point?”)

“Contain” means “be implemented with”, or “access via a chain of pointer
references”; the essential notion is that if the abstract value associated with
an object a is changed when another object b is changed, then a contains b1.
Containment is determined by a particular implementation, not by language
semantics.

These questions translate into path questions on the SCG. The question
“what storage can the results of d contain?” translates into “what store nodes
are on paths from d?” By assumption, if there is a store edge from d to some
store node σ then d can contain σ. If there is an s1-edge from d1 to d2,
then there might be a pointer from an object o1 resulting from d1 to an
object o2 resulting from d2. Store nodes adjacent to d2 represent additional
storage that might be contained in o1, as do other store nodes contained
in o2 (reachable via paths through d3, d4, . . . , dn, connected with edges
s2, s3, . . . ,sn−1). To see that the abstract value associated with an object
can change if the storage adjacent to one of the di on the path changes,
consider the possible results of applying the selectors s1 through sn−1 to o1.
Application of s1 may (not must; we strive for the best approximation we can
afford) yield o2, and application of s2 to o2 may in turn yield o3, and so on
until on is produced. A change to the storage for on changes the associated
value, thus changing the (possible) result of sn−1 ◦ s2 ◦ . . . ◦ s1 applied to o1.
Thus, the value of o1 is changed and it contains the storage (represented by
the store node σ) reachable through the path (d1, . . . , dn, σ).

The second question “what definitions produce results that can contain
σ?” is just the converse of the first, and can be answered by searching for
nodes on paths to a given store node σ.

The last question “what storage might be affected by a destructive update
to an object resulting from a definition d?” translates into “what store nodes

1I am digressing, but I am also bothered that the notion of “containment” is so vague.
I am also bothered by the continuing confusion of “abstract value” and “implemented
value” (or “object”, as I try to say).

50

are adjacent to d in the SCG?” (I wish to defer the question of “what is a
destructive update?” for now.)

These questions are asked when analyzing storage lifetimes to convert
heap allocations to stack allocations and to introduce destructive update
operations. The first optimization is useful in both value-assignment and
side-effect languages; the second is useful in value-assignment languages2.

To convert a heap allocation into a stack allocation (and be able to reclaim
the storage at some future time) it is necessary to place a bound on the
lifetime of the storage resulting from the allocation. It is generally useful to
find the smallest set of nodes in the program flow graph at which the storage
might be accessed. The following three steps compute an approximation to
the lifetime of storage allocated at a definition node d:

1. There will be a single store node σd adjacent to d through a store edge.
This is so because d is an allocation node.

2. Find the set ∆ of all def nodes containing σd, i.e., all def nodes on paths
to σd.

3. Using simple use-definition chains, find all uses of these definitions.
The nodes and edges on paths from definitions in ∆ to their uses form
the live range of the storage allocated at d.

Replacing a copying update with a destructive update requires a grubbier
analysis. An updating operation d : x.s ← y can be converted to reuse
storage associated with x if certain conditions are met. The compiler must
guarantee that any storage associated with x is not used past this operation.
This can be determined by the following four steps:

1. Using simple use-definition chains, find all definitions for x.

2. Using the SCG, find all store nodes adjacent to these definitions.

3. Using the SCG, determine the lifetimes of all of these store nodes. This
is described above.

2I use value-assignment to mean those languages in which x ← y has the effect of
assigning y’s value to x as opposed to assigning a pointer to y’s value to x. A side-effect
language is one in which the pointer is assigned; thus, a change to y’s value has the (side-)
effect of changing x’s value. I use “value-assignment” instead of “functional” because the
implementation of lazy functional languages often involves storage side-effects.

51

4. If any of these definitions is live along an edge leaving d, then the
update cannot be performed destructively.

The introduction of an overwriting operation changes the SCG; this will be
explained below with the construction of the SCG.

It appears that paths through the SCG will be traced frequently in life-
time analysis. If the purpose of the lifetime analysis is to find places to
overwrite storage, then the form of the SCG cannot be changed because the
SCG may change. An overwriting optimization reuses storage, so the lifetime
of a containment of a store node can change. For stack allocation optimiza-
tions, however, the SCG will not change and it is possible to perform path
compression as paths are traced in the SCG.

5.3 Constructing an SCG for a language with
value-assignment semantics

This construction of an SCG assumes the existence of simple use-definition
chains, so that given a variable and a program point, it is possible to find the
possible definitions of that variable. A modification to an aggregate value is
treated as a definition in the construction of these use-def chains.

There are five cases (ignoring procedure calls) to consider in the construc-
tion of a storage containment graph. These are:

d : x ← new []
Here (definition d) x is assigned a newly allocated piece of storage that
is not initialized, or that is initialized without containing other storage.

d : x ← new [y1, . . . , yn]
Here x is assigned a newly allocated piece of storage that is initialized
using the variables y1 through yn.

d : x ← y
Here y’s value is assigned to x.

d : x ← y.s
Here the value obtained by applying the s selector to y is assigned to
x. No storage is allocated.

52

d : x.s ← y
Here the value accessible by applying the s selector to x is replaced with
y’s value. If the update is “in-place”, then no new storage is allocated
here; if the update is “copying”, then new storage is allocated. In-
place updates are allowed in a value language when it can be shown
that side-effects will not occur.

5.3.1 Detailed description

The operations described below must be applied to the SCG until no more
edges or nodes can be added. All of the operations on the SCG never decrease
the size of the SCG and are monotonic; if A ⊆ B, then op(A) ⊆ op(B), and
A ⊆ op(A). Since, for any given program, there is an upper bound on the
number of edges which can be added the construction will always terminate.
The effects of procedure calls will not be discussed in depth here.

At a definition d where a piece of storage is allocated, a new store node
σd is created and a store edge 〈d, σd〉 is added from d’s def node to the new
store node σd. Note that σd is distinct from any other store node in the SCG.

d : x ← new [] =⇒ md -σd

At a definition d where a piece of storage is allocated and initialized
to contain other storage, a new store node σd is created and a store edge
〈d, σd〉 is added from d’s def node to the new store node σd. Selector edges
leaving d are also added. Each initializer yi corresponds to a selector si,
and each initializer (variable) has a set of possible definitions that reach d.
For each initializer yi, add selector edges labeled si to the def nodes whose
corresponding definitions reach yi.

defs(y1) = {d1, d2}
defs(y2) = {d3}
d : x ← new [y1, y2]

=⇒ md
?

σd

-�
�

�>

Z
Z

Z~

s1

s1

s2

md1md2md3

At an assignment, all edges leaving definition nodes for the right-hand
side are copied to the assignment’s definition node. The original edges are
not shown in the result graph below for the sake of clarity; they have not

53

been removed from the SCG.

md1

md2

md3

md4md5
σ1

σ2

�
�

��

@
@

@R

s1

s2

?

-
Q

Q
Q

QQs

S
S

S
S

S
Sw

s1

s2 ,
defs(y) = {d1, d2}
d : x ← y =⇒ md

md1
md2

md3

md4md5
σ1

σ2

�
�

��

@
@

@R

s1

s2

?

-���������1

PPPPPPPPPq

s1
s2

-
AAU?

-sw

At a selection assignment statement (x ← y.s), we wish to make copies
of all edges from nodes adjacent to def nodes for y through s-labeled selector
edges. That is, there is a set of nodes corresponding to definitions for y.
There are (ought to be) selector edges labeled with s leaving those nodes.
From the nodes at the ends of those edges, copy all leaving edges to the def
node for the selection assignment statement.

md1
md2

md4

md3

σ2

-
@@R

?

�
�

�
��3

-
Q

Q
Q

QQs

s s2

s1

,
defs(y) = {d1}
d : x ← y.s =⇒ md1

md2
md4

md3

σ2

-
@@R

?

�-
R

s

md -
Q

Q
Q

QQs

S
S

S
S

S
Sw

s1

s2

The case of value modification is more interesting. In a value language a
“modification” usually allocates new storage for a copy of the original value,
but this is not always necessary. Some selectors are “imprecise” (for example,
array indices are imprecise selectors because their exact values are usually
unknown at compile time); the effects of imprecise selection are introduced
here.

Given an assignment d : x.s ← y, copies of all edges leaving def nodes
for x are copied to the def node d, except for those labeled with the selector
s. If s is an imprecise selector, then the edges labeled s are copied, because
assignment through an imprecise selector is not guaranteed to “kill” values
accessible through that selector. In either case, selector edges labeled s are
added from d to all def nodes for y.

If the modification is in-place, then any storage that might have been
used by definitions for x might also be used by d. That is, edges are added
from d to all store nodes adjacent to definitions for x. If the modification
is copying, then a new store node σd is introduced. This is the only store
node adjacent to d if the update is non-overwriting. Because the language

54

has value-assignment semantics, in-place modifications are guaranteed not
to have side-effects, and thus the SCG for a value language does not need
to account for them. Correct modeling of side-effects will be discussed in a
later section.

md1

md2

md3

md4

σ1

�
�

�
��3

-
Q

Q
Q

QQs

s2

s1

,
defs(x) = {d1}
defs(y) = {d2}
d : x.s1 ← y

=⇒ md1md
md2

md3

md4

σ1

3-
s

�
�

�
��3

Q
Q

Q
QQs

s2

s1

σd
?

The diagram above shows the case of a copying update with a precise selector.
The local results of the other three combinations are shown below.

in-place in-place, imprecise imprecise

md1md
md2

md3

md4

σ1

3-
s

�
�

�
��3

Q
Q

Q
QQs

-

s2

s1

md1md
md2

md3

md4

σ1

3-
s

�
�

�
��3

Q
Q

Q
QQs

�
�

�
�

�
�7

-

s2

s1

s1 md1md
md2

md3

md4

σ1

3-
s

�
�

�
��3

Q
Q

Q
QQs

s2

s1

σd
?

�
�

�
�

�
�7s1

5.3.2 Uniqueness of resulting SCG

Because the operations are monotonic and never decrease the graph3, there
is a unique storage containment graph regardless of the order in which the
transformations are applied to the graph.

To see that this is so, note that only a finite number of transformations
can be applied. These transformations are also locally confluent, and thus
it follows by Newman’s Lemma that they have the Church-Rosser property
[PB85, Hue80, New42]. The transformations are locally confluent because
they are monotonic, increasing, and finite.

Proof Suppose that there are two transformations p1 and p2 and a graph
G such that p1(G) 6= p2(G). Let G1 and G2 initially be p1(G) and p2(G), and

3In fact, a transformation is applicable only if the result will be larger than the input.

55

let l = 0; the goal is to show that there exists a sequence of l transformations
on G1 and G2 such that are eventually equal. Suppose that there is some
part x of G2 that is not in G1; then update G1, G2 and l by

l even l odd
G1

′ = p2(G1) G1
′ = p1(G1)

G2
′ = p1(G2) G2

′ = p2(G2)
l′ = l + 1 l′ = l + 1.

The idea is that G1 and G2 are updated by alternating applications of p1 and
p2; thus, it will always be true that there are f and g such that

G1
′ = f(p1(G)) and G2 = f(G)

G2
′ = g(p2(G)) and G1 = g(G).

Because the functions are monotonic and increasing, it is clear that G1
′ con-

tains G2 and that G2
′ contains G1. Thus, whenever G1 and G2 differ we have

an effective procedure to add the differing edges. Since we can only apply a
finite number of transformations, G1 and G2 must eventually be equal.

5.3.3 Correcting for overwriting update

If a copying update is converted to an overwriting update, this changes the
lifetime of a piece of storage. Since this optimization uses the SCG, it is useful
if the SCG can be modified to reflect the change, rather than re-calculated
from scratch. The change in lifetime must be reflected in the SCG so that
non-heap allocation optimizations and subsequent overwriting optimizations
will be performed correctly. For a def node d : x.s ← y where an overwriting
update is introduced, perform the following operations:

1. Form the set Σ of all store nodes adjacent to definitions for x that reach
d. None of these store nodes are live past d because otherwise d would
not be a candidate for an overwriting update.

2. For all definitions d′ adjacent to the storage allocated at d, remove the
store edge 〈d′, σd〉 and add a store edge from d′ to each store node in
Σ.

3. Remove σd.

56

After doing this, all definitions that previously were adjacent to the storage
allocated at d are now adjacent to the storage overwritten at d. Another way
to do this is to form edges from d to all store nodes in Σ, remove σd and all
edges to it, and iterate over the program definitions to repair the SCG. The
results are the same.

5.3.4 Coping with incomplete information

Inevitably, some value definitions will be incomplete. Incomplete information
is easily expressed in the SCG framework. In the worst case, nothing is
known about a variable, not even its type (i.e., not even what selectors may
be applied to it). This is expressed in the SCG as a single def node ⊥ and
a single store node σ⊥. For each selector s used in the program there is
a selector edge from ⊥ to ⊥ labeled with s. Thus, any selection applied
to ⊥ yields ⊥, and any assignment of ⊥ will reference the store σ⊥. Less
incomplete information can also be expressed. If, for example, the program
can be type-checked at compile time, then there can be a different ⊥t for
each type t. If a selector s applied to an object t always yields an object
of type u, then the only s edge leaving ⊥t will end at ⊥u. Note that the
bottom store nodes are distinct from store nodes allocated in the program
because any allocation in the program is guaranteed to produce a piece of
storage distinct from all existing storage. Differently typed bottom nodes
get different store because it is assumed that two variables of different types
will never simultaneously use the same piece of storage.

Figure 5.2 contains a sample pseudo-Lisp program to insert an object into
a reversed list. Figure 5.1 shows the storage containment graph resulting
from this program. The definition sites in the program are numbered, and
the definitions reaching the input(s) for each definition site are also shown.
The selectors are A and D4. The structure of the list l is unknown, so its A
and D edges are directed to ⊥, and its store is σ⊥.

5.4 What’s really happening

So far I have only described the construction of SCGs for value languages.
Also, so far I have implied the existence of a single SCG for the whole pro-
gram. It happens that for a value language the information provided by a

4For Address and Decrement.

57

D

A

D

A D D

D
A
D

D,A D,A D,A D,A D,A D,A

m2

m9
m7 m5

m3

m8 m4 m10 m6 m1 m⊥

σ⊥

@
@@R

�
���

�
���

?

?

? ?

�
�

���@
@

@@R

-

-

� -� -� -� -� �
? �

��
?

�
��

?

�
��

?

@
@

@
@

@
@

@
@@R

J
J

J
J

J
J

J
JĴ

C
C
C
C
C
C
C
CCW

�
�
�
�
�
�
�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

Figure 5.1: Value containment graph

Def Code Reaching definitions
1 l ← . . .
2 a ← . . .

. . .
3 l′ ← nil

while l 6= nil and a < car [l] {
4 t1 ← car [l] {1, 6}
5 l′ ← cons[t1, l′] {4}, {3, 5}
6 l ← cdr [l] {1, 6}

}
7 l′ ← cons[a, l′] {2}, {3, 5}

while l 6= nil {
8 t2 ← car [l] {1, 6, 10}
9 l′ ← cons[t2, l′] {8}, {7, 9}
10 l ← cdr [l] {1, 6, 10}

}
. . .

Figure 5.2: Insertion in reversed list

58

single SCG is as good as the information provided by having one SCG for
each definition site in the program. This is proved below.

Consider producing an SCG for each definition or use in the program. A
program provides a set of definitions ∆, store nodes Σ, and selectors S. Each
store node in Σ is associated with definition node d in ∆; this correspondence
is indicated by labeling the store node as σd. For a store node σd, d is
the definition allocating σd. In the event that more than one store node is
allocated at d, the nodes will be further subscripted to distinguish them;
for example, σd1. This naming of store nodes is done to simplify union and
intersection operations on pairs of SCGs.

The program also contains a number of instructions of the form

x ← new []
x ← new [y1, . . . , yn]
x ← y
x ← y.s
x.s ← y

along with “conventional” instructions for manipulating “atomic” values.
From these statements basic blocks and use-definition chains can be formed
in the conventional way. I will write “pi” to identify “program point i”.

Now consider construction of SCGi for each program point i. The SCG
“at a point” describes storage containment immediately after executing the
instruction at pi. The SCG at pi depends upon the instruction at pi and the
predecessors of pi. Let

pi(SCGj)

stand for the SCG produced by applying the transformations associated with
the instruction at pi to SCGj. Given a program point pi with predecessors
in preds(pi), SCGi is given by

SCGi =
⊔

pj∈preds(pi)

pi(SCGj).

(I will use t and u to indicate union and intersection of graphs.) These
transformations are similar to the ones described for the construction of a
single SCG:

pi : x ← new []
The new SCG has an additional definition node di and additional store
node σpi . There is a store edge directed from di to σdi .

59

pi : x ← new [y1, . . . , yn]
The new SCG has an additional definition node di and additional store
node σdi . There is a store edge directed from di to σdi . For each
sk, 1 ≤ k ≤ n, there are edges labeled sk directed from di to nodes
defining yk.

pi : x ← y
The new SCG has an additional definition node di. The additional
edges are the edges in the sets

{s : 〈di, d′〉|∃dy defining y and ∃s : 〈dy, d′〉}

and
{〈di, σ′〉|∃dy defining y and ∃〈dy, σ′〉}.

pi : x ← y.s
The new SCG has an additional definition node di and additional edges
from the sets

{t : 〈di, d′〉|∃dy defining y and ∃s : 〈dy, dy.s〉 and ∃t : 〈dy.s, d′〉}

and

{〈di, σ′〉|∃dy defining y and ∃s : 〈dy, dy.s〉 and ∃〈dy.s, σ′〉}.

pi : x.s ← y
The new SCG has an additional definition node di. It will also have
an additional store node σdi because the assignment is assumed to be
non-overwriting. The additional edges are the edges in the sets

{t : 〈di, d′〉|∃dx defining x and ∃t : 〈dx, d′〉 such that
either s 6= t or s is not a precise selector}

and
{s : 〈di, d′〉|d′ defines y}.

otherwise
The result SCG is identical to SCGi.

60

Each SCGi is the smallest set consistent with (1) the rules above relating
storage containment graphs and (2) the initial SCG. The initial SCG is an
approximation to the containment relationships holding between objects not
defined in the program. The vertices in the initial SCG are disjoint from
the vertices added by any pi. The SCGs can be obtained by iteratively
performing the transformations until all the SCGs stop growing. If an SCG
depends upon itself, then its initial value is the empty graph. Note that each
SCG is equal to a finite composition of pi’s and unions based on the initial
SCG and the empty set.

5.4.1 Containment-preserving unions

In an SCG, “information” is the containment relationships holding between
nodes. For each pair of nodes (i, j) it is important to know if i contains j,
and if so, via what paths. Note that lack of a path is also significant. I wish
to show that SCGs for all the points in a program can be collected into a
single SCG without changing the containment relationships of a definition at
any program point.

Here is a more precise definition of containment:

Given a graph G and vertices i and j in G, i’s containment of j
in G is the set of paths from i to j in G. This will be written
C(i, j, G).

The union of two directed graphs A and B preserves containment if and only
if

∀i, j ∈ VB, C(i, j, B) = C(i, j, A tB)
∀i, j ∈ VA, C(i, j, A) = C(i, j, A tB)
∀i ∈ VA, ∀j ∈ VB − VA, C(i, j, A tB) = ∅
∀i ∈ VB,∀j ∈ VA − VB, C(i, j, A tB) = ∅

(5.1)

The first two constraints prevent the change of any existing containment
in A and in B. The next two constraints guarantee that every node in
A or in B contains the same nodes that it contained before the union; if
the containment was previously undefined, then it is now empty. This may
seem slightly asymmetrical; given a node i, the set of nodes containing i
can increase, but the set which i contains cannot increase. This reflects a
bias in the construction of the graph. The operations constructing the graph
follow existing paths to some set of nodes and add edges to those nodes from

61

a (possibly) new node. By guaranteeing that no node contains more nodes
after the union than before, we guarantee that the union is also “stable” with
respect to the construction of the SCG(s). That is, I wish to guarantee that

∀i, pi(SCG) = SCG.

This is clearly true if the contents of nodes are not changed by the union.
The union of A and B will preserve containment if and only if the following

conditions are satisfied:

(EA − EB) ∩ (VA ∩ VB × VA ∩ VB) = ∅,
(EB − EA) ∩ (VA ∩ VB × VA ∩ VB) = ∅,
if 〈i, j〉 an edge in A tB and i ∈ VA ∩ VB, then j ∈ VA ∩ VB.

(5.2)

Lemma 1 Conditions (5.1) and (5.2) are equivalent.

Proof First, we prove that (5.2) implies (5.1). Suppose not; suppose that

∃i, j ∈ VA such that C(i, j, A) 6= C(i, j, A tB).

Clearly, C(i, j, A t B) is no smaller than C(i, j, A), so there must be a path
from i to j in A tB that is not in A.

Let p = (e1, . . . , en) be a shortest path in C(i, j, A t B) − C(i, j, A). At
least one edge in p must be in EB − EA since p is not a path in A. Let
ek = 〈vk, vk+1〉 be the first such edge.

Clearly, vk and vk+1 are both vertices in VB since ek is an edge in EB.
Because A and B have the same edges between common vertices and ek 6∈ EA,
at least one of vk and vk+1 is not in VA. Since ek is the first edge on the path
not in EA, vk must be in VA and thus vk+1 must not be in VA. This leads to
a contradiction, because if vk ∈ VA ∩ VB, then vk+1 must be in VA ∩ VB.

Suppose that

i ∈ VA, j ∈ VB − VA, and C(i, j, A tB) 6= ∅.

Then there is some path p = (e1, . . . , en) from i to j in A t B. Let p be
a shortest such path and let ek = 〈vk, vk+1〉 be the first edge such that
vk+1 ∈ VB − VA. There can be no edges leaving A u B, so vk must be in
VA − VB. But this implies the existence of an edge from a vertex in VA − VB

to a vertex in VB − VA. This is clearly not possible.

62

Next, we prove that (5.1) implies (5.2). Suppose that

∃〈i, j〉 ∈ EA − EB, i, j ∈ VA ∩ VB.

We have 〈i, j〉 ∈ C(i, j, A t B) and 〈i, j〉 6∈ C(i, j, B). This contradicts the
assumptions in (5.1).

Suppose that

∃〈i, j〉 ∈ A tB, i ∈ VA ∩ VB, j 6∈ VA ∩ VB.

Suppose (without loss of generality) that j ∈ VA. Then j ∈ VA − VB. But
〈i, j〉 ∈ C(i, j, A t B). This is a contradiction, because i is in B and thus
C(i, j, A tB) = ∅.

I will use the second description to prove additional properties about sets
whose union preserves containment. I will write “A �B” as an abbreviation
for “containment is preserved in the union of A and B”.

Lemma 2 If A �B, B � C, and A � C, then A tB � C.

Proof First, show that

(EAtB − EC) ∩ (VAtB ∩ VC × VAtB ∩ VC) = ∅.

Suppose not; then there is some e = 〈i, j〉 in the set. Since e is not in EC , e
must be in EA or in EB and thus i and j are both in A or both in B. Suppose
that e ∈ EA. Then we have 〈i, j〉 ∈ EA −EC and i, j ∈ VA ∩ VC . But A �C,
so this is a contradiction.

Next, show that

(EC − EA∪B) ∩ (VAtB ∩ VC × VAtB ∩ VC) = ∅.

Suppose not; then there is some e = 〈i, j〉 in the set. It is not possible for i
and j to both be in VA because i and j are already in VC ; if they are in VA

and in VC , we have

(EC − EA) ∩ (VA ∩ VC × VA ∩ VC) 6= ∅,

which cannot happen because A � C. Similarly, they cannot both be in VB.
Therefore, suppose i ∈ VA ∩ VC . Because A � C, this implies that j is in
VA ∩ VC , a contradiction.

63

Next, show that

if 〈i, j〉 is an edge in (A tB) t C and i ∈ VAtB ∩ VC , then j ∈ VAtB ∩ VC .

Suppose that i ∈ VAtB ∩ VC . If 〈i, j〉 ∈ A, then i ∈ VA ∩ VC and thus
j ∈ VA ∩ VC . If 〈i, j〉 ∈ B, then i ∈ VB ∩ VC and thus j ∈ VB ∩ VC . If
〈i, j〉 ∈ C, then either i ∈ VA ∩ VC or i ∈ VB ∩ VC . In either case, 〈i, j〉 is in
both A t C and B t C so j ∈ VAtB ∩ VC .

Lemma 3 If A �B, B � C, and C ⊆ B, then A � C.

Proof First, show that

(EA − EC) ∩ (VA ∩ VC × VA ∩ VC) = ∅.

Suppose there is an edge 〈i, j〉 in A that is not C, with i and j in VA ∩ VC .
Since i and j are in C and C ⊆ B, i and j are also in B. Since B �C, and i
and j are in VB ∩ VC , and 〈i, j〉 6∈ EC , it must be true that 〈i, j〉 6∈ EB. But
A �B, and i and j are in VA ∩ VB, so 〈i, j〉 cannot be in EA, a contradiction.

Next, show that

(EC − EA) ∩ (VA ∩ VC × VA ∩ VC) = ∅.

This is clearly true, since (EC−EA) ⊆ (EB−EA) and (VC ∩VA) ⊆ (VB ∩VA)
and

(EB − EA) ∩ (VA ∩ VB × VA ∩ VB) = ∅.

Next, show that

if 〈i, j〉 an edge in A t C and i ∈ VA ∩ VC , then j ∈ VA ∩ VC .

Suppose 〈i, j〉 ∈ A t C and i ∈ VA ∩ VC . Clearly, j ∈ VA ∩ VB because B
contains C. Since i and j are both in VA∩VB, if 〈i, j〉 ∈ EA then 〈i, j〉 ∈ EB.
If 〈i, j〉 6∈ EA, then 〈i, j〉 ∈ EC . However, B contains C, so in either case
〈i, j〉 ∈ EB. So, we have 〈i, j〉 ∈ EB ∪EC , i ∈ VB ∩VC , and B �C, so j ∈ VC .
We also have j ∈ VA, so j ∈ VA ∩ VC .

Lemma 4 If A u C = B, A �B and C �B, then A � C.

64

Proof First, note that VA ∩ VC = VB and EA − EC = EA − (EC ∩ EA) =
EA − EB. Therefore,

(EA − EC) ∩ (VA ∩ VC × VA ∩ VC) = (EA − EB) ∩ (VA ∩ VB × VA ∩ VB) = ∅.

If 〈i, j〉 ∈ AtC and i ∈ VA∩VC , then either 〈i, j〉 ∈ A or 〈i, j〉 ∈ C. In either
case, i ∈ VB, so we know that j is either in VA ∩ VB (because 〈i, j〉 ∈ A t B
and i ∈ VA ∩ VB) or in VC ∩ VB. Both of these sets are equal to VB, which is
in turn equal to VA ∩ VC , so we conclude that A � C.

Lemma 5 If A �B, then A � A uB.

Proof Since A �B, we know that

(EA − EB) ∩ (VA ∩ VB × VA ∩ VB) = ∅.

Since EA − EB = EA − (EA ∩ EB) and VA ∩ VB = VA ∩ (VA ∩ VB) we know
that

(EA − EAuB) ∩ (VA ∩ VAuB × VA ∩ VB) = ∅

holds. Since EAuB − EA = ∅ the second condition of equation (5.2) holds
trivially. If 〈i, j〉 is an edge in At (AuB), then 〈i, j〉 is certainly an edge in
A t B. Since A � B, we know that if i ∈ VA ∩ VB then j ∈ VA ∩ VB. Since
VA ∩ VB = VA ∩ VAuB, the third condition is satisfied and A � A uB.

To summarize, the following properties hold for the � relation:

A �B ∧B � C ∧ A � C =⇒ A tB � C (lemma 2)
A �B ∧B � C ∧ C ⊆ B =⇒ A � C (lemma 3)
A �B ∧B � C ∧ A u C = B =⇒ A � C (lemma 4)
A �B =⇒ A � A uB (lemma 5)

5.4.2 Properties of storage containment graphs

The goal is to show that for every pair of SCGs (SCGi, SCGj) in a program,
SCGi � SCGj. Using this and lemma 2, it follows that

∀pi,∀v1, v2 ∈ SCGi, C(v1, v2, SCGi) = C



v1, v2,
⊔

pj

SCGj



 .

65

To do this, we need a few properties of the SCGi and the pi. Note that
the general description of the transformations associated with the program
points is “follow paths from fixed vertices into a storage containment graph
to find some existing nodes, add some nodes, and add some edges from the
added nodes to the existing nodes.” The properties presented below are true
for any transformations of that general form.

Lemma 6 There is a definition node dj in SCGi if and only if there is a
path from a definition pj to pi.

Proof The only transformation that adds dj to an SCG is the one associated
with program point pj. Because all SCGs are as small as possible and because
the initial SCG does not contain dj, there must be a path from pj to pi if dj ∈
SCGi. If there is a path from a definition pj to pi, then the transformation
associated with pj will produce a graph containing dj, and no transformation
applied on the path will remove dj.

Lemma 7 SCGj ⊆ pi(SCGj).

Proof The transformation associated with pi only adds nodes and edges
to a graph, so this is true. Note that it is possible that SCGj = pi(SCGj).
Combining this lemma with the previous one, we see that if there is a path
from pj to pi, then SCGj ⊆ SCGi.

Lemma 8 If di 6∈ SCG, then SCG � pi(SCG).

Proof Since di is not in SCGj, di is not in SCGj u pi(SCGj). Furthermore,
ESCGj − Epi(SCGj) is empty, and all edges in Epi(SCGj) − ESCGj are of the
form 〈di, x〉. Since di is not in SCGj u pi(SCGj), the conditions of (5.2) are
satisfied and SCGj � pi(SCGj).

Lemma 9 If SCGj � SCGk for all j, k ∈ preds(pi), then

⊔

pj∈preds(pi)

pi(SCGj) = pi





⊔

pj∈preds(pi)

SCGj



 .

66

Proof Both sides of the equation contain the same vertices because pi al-
ways adds the same vertices. Therefore, if there are any differences in the
two graphs, the right hand side must contain edges not found in the left hand
side. Suppose that there is an edge 〈di, dj〉 in the rhs that is not in the lhs.
This means that there is a path from some node dk in

⊔

pj∈preds(pi) SCGj that
is not in any of the SCGj. However, for all l,

⊔

pj∈preds(pi) SCGj � SCGl, so
this is not possible.

Theorem 1 For a value-assignment language, the storage containment graphs
specific to program points may be replaced with a single storage graph without
losing any information.

Proof First, we must prove that the storage containment graphs for all of
the program points have containment preserving unions; that is,

∀SCGi, SCGj, SCGi � SCGj.

We can prove this for acyclic program flow graphs by induction on exe-
cution path length. Let Pn be the set of program points to which the longest
path from the entry node contains no more than n vertices. Let Sn be the cor-
responding set of storage containment graphs. Let the notation �Sn indicate
that for all SCGi and SCGj in Sn, SCGi � SCGj.

For the base case, we must demonstrate the truth of �S0. The only SCG
in S0 is the initial SCG, and it clearly preserves containment in unions with
itself.

For the inductive case, suppose that �Sn is true. Let Sn
′ = Sn+1 − Sn;

that is, Sn
′ contains the SCGs corresponding to those points to which the

longest path has length exactly n+1. To establish �Sn+1, I must prove both
that

∀SCGi ∈ Sn
′, ∀SCGj ∈ Sn, SCGi � SCGj

and that
∀SCGi ∈ Sn

′,∀SCGj ∈ Sn
′, SCGi � SCGj.

If SCGi ∈ Sn
′, then we know that

SCGi =
⊔

pj∈preds(pi)

pi(SCGj)

67

and that every pj in preds(pi) is in Sn. By lemma 9 we know that SCGi is
equal to

pi





⊔

pj∈preds(pi)

SCGj



 .

I will abbreviate
⊔

pj∈preds(pi) SCGj as Ui; that is, SCGi = pi(Ui). Because we
know that Ui is the result of a finite union of members of Sn and that �Sn

holds, we may conclude that Ui � SCG for every SCG in Sn.
Let Gn =

⊔

SCG∈Sn SCG; because this is a finite union we know that
Gn � SCG for every SCG in Sn and that Gn � Ui.

Because the program is acyclic, we know that vertex di is not in Ui, and
thus by lemma 8 we know that SCGi � Ui.

To use lemma 4 to show that SCGi �Gn, we must show that SCGiuGn =
Ui. Because the program is acyclic we know that vertex di is not in Gn, and
we know by the properties of pi that SCGi is equal to Ui plus the vertex di

and some edges of the form 〈di, x〉. Since di is not in Gn, we conclude that
SCGi uGn = Ui. By the lemma, we also conclude that SCGi �Gn.

Now, every SCGj ∈ Sn satisfies SCGj ⊆ Gn and SCGj � Gn. Since
SCGi �Gn, we can use lemma 3 to show that SCGi � SCGj.

To see that SCGi � SCGj for every SCGi and SCGj in Sn
′, notice that

SCGi u SCGj = Ui uUj. This is so because the graph is acyclic and because
the vertices di and dj added to Ui and Uj are distinct. Ui and Uj are both
finite unions of members of Sn, so we know that Ui � Uj. By lemma 5 we
know that Ui � Ui u Uj. Because

SCGi u SCGj = Ui u Uj ⊆ Ui

and SCGi � Ui and Ui � SCGi u SCGj we can use lemma 3 to show that
SCGi � SCGi u SCGj and similarly that SCGj � SCGi u SCGj. By lemma 4
we see that SCGi � SCGj; thus �Sn+1 holds true.

To prove that the storage containment graphs for a program whose flow
graph contains cycles have containment preserving unions we partition the
graph up into its strongly connected components. If there is a path from
pj to pi, then SCGj ⊆ SCGi. All points in a strongly connected component
C thus must have the same storage containment graph SCGC , and SCGC

must contain the SCGs associated with points on paths into the SCG. There
are additional vertices and edges in SCGC ; the extra vertices are associated
with definitions within C, and the extra edges originate at the extra vertices.

68

Thus, we may treat the collection on transformations within C as one large
transformation pC that adds several vertices and edges from those several ver-
tices. This transformation shares with the individial pj properties used above
in the proof; therefore the proof holds for this generalized transformation.

For an example demonstrating how this works, consider the piece of code

a ← new()
if . . .

then b.s ← a
else c.s ← a

. . .

In the then clause a definition node (call it dthen) is created that contains
a. Likewise the else clause defines delse containing a. Merging the storage
containment graphs from those two points produces a graph yielding the
information that a is contained in both dthen and delse in both clauses; that is,
it appears that merging the two graphs produces less accurate information.
The two definitions dthen and delse are only live in their respective clauses
however, so this does not matter. In other words, the information that a is
contained in b is only interesting if b is live.

5.5 Accounting for side-effects

Propagating side-effects to definition nodes is more complicated. Given an
assignment d : x.s ← y, any def nodes that might be aliased to x might be
changed by this update. The nodes aliased to x are those with edges to any
store node to which x has an edge.

5.5.1 First approach

One approach is to perform the following additional steps when building an
SCG for a language with side-effects. For a given update d : x.s ← y:

1. Form the set of store nodes adjacent to d.

2. Find all defs adjacent to those store nodes.

69

3. Attach to those defs edges labeled s to definitions for y. It is not safe
to remove edges labeled s from those nodes, since our information is
not precise, and this assignment might not actually change those edges.
This is so even if there is exactly one store node adjacent to x and its
alias, because that store node could represent two different allocations
from one site.

The SCG resulting from this method is not as precise as the set of SCGs
maintained for program points. This is because the SCG transformations for
a language with storage side-effects do not generate SCGs with containment
preserving unions.

5.5.2 Second approach

Notice that the major difference between updates with and without side-
effects is the edges added to the graph to reflect possible side-effects. For
a definition di, these side-effect edges need not have the form 〈di, x〉; all of
the other edges introduced by an update without side-effects are still added.
That is, lemmas 6 and 7 still hold, and thus the storage containment graphs
computed at points in a strongly connected component will all be the same.
Furthermore, at every point pi the storage containment graph reflecting side-
effects will contain within it the storage containment graph for that point
that does not reflect side-effects5.

At worst we need only construct one SCG per strongly connected com-
ponent of the program flow graph. This provides a convenient order for
constructing these SCGs; if the strongly connected components have been
identified, then we can process them in topological order. This also allows us
to share graphs, saving space and time. Given a point pi, it is only necessary
to consider the SCGs for pi’s predecessors to construct pi’s SCG. The SCG
so constructed will contain within it the predecessors’ SCGs, so they can be
shared to save space.

Though the point SCGs in a side-effect model always contain the corre-
sponding point SCGs in a side-effect-free model, information is lost if the
(single) side-effect-free SCG is shared by the SCGs in the side-effect model.
Consider the conditions under which an assignment d1 : x.s ← y can affect

5Except for the store nodes representing storage allocated at updates; these, however,
may be left out of a side-effect-free storage containment graph without affecting the rest
of it.

70

(add s-edges to definitions for y to) a definition node d2. First, d2 is only
affected if d1 and d2 both have edges to the same store node σ. If d2 precedes
d1 in the flow graph, then the edge from d2 to σ is in d1’s SCG, so we have
not lost any information. If d1 precedes d2 and d2 is x.s ← z, then d2 should
not include any s-edges to definitions for y; however, using the side-effect-
free SCG as a base for side-effect SCGs will cause those edges to appear as
a side-effect. If the side-effect-free SCG is not used in this way, then d2 and
d1 are not aliased at d1 and the side-effect will not occur.

I believe it is difficult to do better than this. We are creating SCGs as
precise as point-specific SCGs for a language with storage side-effects. One
way to improve this is to model the side-effect of a killed reference; that is,
remove edges in a point-to-point SCG transformation. This is not safe in the
current model, because an SCG only expresses may-contain relationships.
To remove an edge, it is necessary to have must-contain information. This
is especially hard in the SCG model because all instances of storage from
the same allocation are treated as one; no distinction is made between an
allocation that is repeated many times, though only one instance is live, and
an allocation that is repeated many times to build a large linked structure.

5.6 Comparison with SETL and Lisp analy-
ses

The SCG yields better information than the value-flow analysis used in SETL
[FSS83, Cou85]. An example demonstrating this is shown in figure 5.3.
There, a new piece of storage is assigned to a (line 1). The value con-
tained in a is subsequently incorporated into b as either the first or second
component (lines 2 and 3). At this point, the SETL value-flow analysis and
the SCG provide the same information; both tell that a may be contained
in b as either the first (definition at line 1) or second (definition at line 2)
component. Assigning b into c (line 4) forces the SETL analysis to combine
these two relationships into a single one; thus the SETL analysis can only
infer that a is a “CMP” (any component) of c. The SCG, on the other hand,
copies edges from the nodes for the definitions at lines 2 and 3, preserving the
information that a is either the first or second component of c. The SETL
analysis is also unable to infer that a cannot be the first member of c after
line 5, because combining “not CMP1” with “CMP” still yields “CMP”. The

71

SCG, however, can infer this fact and can also determine that after line 6 a
is not contained within c. This fact is not discovered by the SETL value-flow
analysis.

Line Code
1 a ← new []

if . . .
2 then b ← new [a, x, y]
3 else b ← new [x, a, y]
4 c ← b
5 c.1 ← z
6 c.2 ← w

Figure 5.3: Comparison of SETL value-flow analysis and SCG

The analysis in Lisp compilers to discover what closures may be stack-
allocated is a special case of this analysis. A closure may be stack-allocated if
all uses of the closure are applications occurring within functions which may
be stack-allocated. If a closure is assigned to a variable that is assigned to a
global, referenced from the heap, returned as a function result, or passed to
another procedure, then the closure cannot be stack-allocated.

A careful definition of “containment” for closures will induce a version
of the SCG analysis subsuming the Lisp analysis. For this purpose, a “use”
of a closure is any reference to it, and one closure “contains” another if the
text of the first contains an application of the second. In the SCG analysis,
the base case is at least as good as the one in the existing Lisp analysis; if a
closure is returned from a procedure or passed as an argument to a procedure,
then it cannot be stack-allocated. The SCG analysis may discover that an
assignment to a heap-allocated cell or global variable does not preclude stack
allocation, so here it may yield improved results. Given the same base case,
the new analysis will yield exactly the same results as the Lisp analysis.

The S-1 Common Lisp compiler yields better results for allocation of float-
ing point numbers than the SCG because (1) floating point parameters to a
procedure need not be heap-allocated, even with no knowledge of the proce-
dure’s behavior and (2) the Lisp compiler attempts to discover situations in
which no storage at all is needed.

Given that parameters need not be heap-allocated, the SCG analysis can
stack-allocate numbers whenever the Lisp analysis can, and perhaps in a

72

few situations where the Lisp compiler does not. This is because the Lisp
compiler heap-allocates any number that is contained within another object;
with containment analysis this conservative approach is not necessary. Use
of the SCG alone does not allow a compiler to conclude that no storage at all
is needed; doing this requires either analysis of pointer expressions or special
treatment to deal with the Lisp run-time data structures.

5.7 Complexity of constructing SCG for a value
language

The size of an SCG and the time required for its construction depend upon
several things. There will be one def node for each definition in the program,
and one store node for each allocation site in the program. There may also
be one ⊥t node for each “type” t in the program and a corresponding store
node σ⊥t . In the worst case, all of the def nodes can be linked to each others’
storage, producing O(|defs|2) edges. If all of the def nodes are linked to each
other by every possible selector, then there will be |defs|2×|selectors| edges.
Note that such a graph gives “bad news” answers; everything is contained
by everything else, and thus cannot be overwritten or stack allocated.

Some amount of pre-processing based upon the use-definition chains will
simplify the analysis of certain pathological graphs. One source of worst-case
behavior in an SCG is cyclic patterns of simple assignment. The program in
figure 5.4 gives rise to such a pathological graph. Here, the first 26 definitions

a ← new []
. . .
z ← new []
while . . . {

a ← b
b ← c
. . .
z ← a
}

Figure 5.4: Program yielding pathological SCG

(allocations) create 26 def nodes and 26 store nodes in the SCG. The next 26

73

definitions are assignment statements, adding 26 more def nodes to the SCG.
Each of the second 26 def nodes has copied to it edges leaving definitions for
the right hand side of its corresponding assignment. Ultimately, each of the
26 assignment nodes in the loop will have an edge to each of the 26 store
nodes.

The assignment graph (VA, EA) is formed by using definitions in the pro-
gram as the nodes VA and placing an edge from a node di to another node
dj if di is a definition for the right hand side of the assignment statement
corresponding to dj. In the program above, the assignment nodes clearly
form a strongly connected component. Since all of the edges leaving these
nodes will be identical, and because the questions we are asking depend only
upon the store nodes reached or not reached, it makes sense to collapse this
cycle into a single node. This eliminates the pathological behavior associated
with constructions similar to the one shown in figure 5.4.

Another transformation to the assignment graph that will not change
reachability properties of the SCG is the T1 transformation of Hecht and
Ullman [HU72]. Clearly, if there is only one definition for the right hand
side of an assignment statement, then the edges leaving that definition will
be identical to the edges leaving the definition node for the right hand side.
Note that the assignment graph for the example in figure 5.4 is not reducible,
so the T1 and T2 transformations alone are not sufficient to collapse the
assignment cycle into a single node.

5.7.1 Update Graph

The assignment graph can be generalized to include suitably labeled edges
from def nodes to all other definitions which they use.6 I will call this general-
ized graph the “update graph” (UG) because it can also be used to propagate
updates through the SCG as it is built. The update graph is also important
because transformations on the update graph can reduce the size of the final
SCG. In a language without storage side effects an update graph completely
specifies a storage containment graph. If side-effects are possible, then the
strongly connected components of the flow graph must also be known in order
to construct an SCG.

The update graph contains the same nodes as the SCG, but additional
6The direction of the edges is reversed, but this does not change the situation with

regard to strongly connected regions in the assignment graph.

74

edges and edge labels are added to describe the copying of edges required to
construct the SCG. An edge from one definition node x to another definition
node y indicates that x uses the value defined at y in some way. Where
an edge label is parameterized by some s, s is a selector. The UG edge
annotations (for edges directed from x to y) are:

copy(s, o) This edge is generated by an updating assignment statement or
by a simple assignment statement. In the updating case, x : a.s ← b,
x is the definition node for this statement, y is some definition node
for a, and the edge is labeled copy(s). In the simple case, x : a ← b, x
is the definition node for this statement and y is some definition node
for b. The edge is labeled copy(∅), meaning “no selector”. The addi-
tional parameter o indicates whether this is a overwriting assignment or
not; o has the values reference (overwriting) or value to describe what
sort of copying takes place. This parameter is often implicit; in many
value language implementations simple assignment is by reference, but
update is not.

select(s) This edge is generated by a selection from a variable that y can
define; that is, a ← b.s. Here, x is the definition node corresponding to
this statement, and y is a definition node for some statement defining b.

contain(s) This edge is either generated by an allocation/initialization or
by an updating assignment statement; for example, a.s ← b or a ←
new [. . . , b, . . .].

store This edge is generated by any definition that allocates storage whether
it is a copying update or an allocation.

Note that the update graph has number of nodes equal to the number of
definitions in the program plus the number of storage allocations (for store
nodes). The number of edges in the update graph is equal to the number
of edges in the use-definition chains plus the number of storage allocations
(for store edges). Thus, the update graph has size comparable to the use-
definition chains computed for a program.

The update graph completely specifies a storage containment graph. They
share the same nodes, and by applying a series of transformations to the up-
date graph the edges of the storage containment graph are obtained. Given
an edge 〈x, y〉 from a def node x to a def node y, apply the following trans-
formations depending upon the edge label.

75

copy(s, o) For each edge contain(t) : 〈y, z〉 such that t 6= s, create an edge
t : 〈x, z〉; that is, copy edges from y to x. If o is reference, then also
copy store edges from y, but otherwise do not. (If o is value then a
store node already exists.) If s = ∅ or if s is not a precise selector, then
copy all contain edges from y to x.

select(s) For each edge contain(t) : 〈y, z〉 such that t = s, create a new edge
copy(∅, reference) : 〈x, z〉. In a later iteration this edge will cause edges
to be copied from z to x.

contain(s) These edges do not cause any copying when the SCG is built,
but they are copied and are used to find nodes from which edges are
copied. After all transformations to the UG are complete, these edges
form the “selector edges” of the SCG.

To adapt the update graph for use with a side-effect language, some
contain edges must be further tagged to indicate that the contain-
ment represents an in-place modification. When such an edge, say
contain ′(s), is copied, the tag is not copied.

store These edges do not cause copying when the SCG is built, but are
themselves copied. After all transformations are complete, these edges
form the “store” edges of the SCG.

5.7.2 Shrinking the update graph

Transformations on the UG can reduce the number of nodes in the UG and
resulting SCG without affecting the information in the SCG. These transfor-
mations are very similar to changes to the assignment graph described above.
When the only edge leaving a node x is a copy(∅) edge to some node y, then
x may be merged with y and all edges 〈w, x〉 changed to 〈w, y〉. This is the
reversed form of the T1 transformation applied to the assignment graph7.

If there is a subgraph of the UG strongly connected by copy(∅, reference)
edges (hereafter referred to as copy edges), then all of the nodes in that sub-
graph may be merged into a single node and edges to any of them redirected
to the merged node. This is the same as removal of strongly connected regions
from the assignment graph. In the update graph, however, it is possible to
introduce additional copy edges to create strongly connected regions that do

7The sense of information flow is reversed, so the T1 transformation is also reversed.

76

not exist in the assignment graph. For example, consider the transformations
implied by the graph shown in figure 5.5. An edge labeled copy(∅, reference)

m m mx y z- -select(s) contain(s)

%&6 copy(∅, reference)

Figure 5.5: Introduction of copy edges

from x to z will be added. This forms a cycle of copy edges containing x and
z. It is important to discover strongly connected regions within the update
graph because every node in the region will have the same edges in the SCG;
there will be no additional information, but many more nodes and edges.
Since some strongly connected regions will appear as the update graph is
processed and it will reduce the size of the final answer, it may be advanta-
geous to incrementally discover and collapse strongly connected components
as edges are added.

There is an additional way to create copy(∅, reference) edges. Suppose
that there are two edges from x to y labeled copy(s, o) and copy(t, p). The
effect of the first edge is to copy all edges except for contain(s) edges; the
effect of the second edge is to copy all edges except for contain(t) edges.
Together the two nodes will copy all edges from y to x, and therefore should
be replaced with a single edge labeled copy(∅, q) (where q is reference if either
o or p is reference). Thus, there will never be more than one copy edge from
one node to another.

5.7.3 Processing the update graph

The descriptions above provide enough information for a chaotic reduction
of the update graph; if a reduction can be applied, then apply it. Other
methods may be more efficient, however, and it may be profitable to watch
for the creation of strongly connected components. Chaotic iteration does
not do this.

When a copy(s) edge from x to y is processed, the edges leaving x may
change. If this is so, then all nodes with copy or select edges directed to x
must be checked to see if they change. Notice that any algorithm that reduces
the update graph must perform a transitive closure along copy(∅, reference)

77

edges. Given this observation, I conclude that there is little point in sep-
arately searching for strongly connected components because the reduction
itself must perform a transitive closure; any search for cycles can better be
made part of the edge-propagation process.

Though the UG completely specifies an SCG in the value model, addi-
tional information from the control flow graph will aid in the efficient con-
struction of an SCG. If the containment information has been computed for
all of the (control-flow) predecessors of a node, then that node will only
need to be visited once. This holds in both the value and side-effect models;
side-effects only affect containment properties at successor nodes, though the
containment properties of predecessor nodes may be changed at the succes-
sors. Thus, if we partition the control flow graph into its strongly connected
components and topologically sort the resulting DAG, we can ensure that
each component is “visited” only once. This holds for both the side-effect
and value models, though in the side-effect model we create a new SCG for
each component. We have, however, reduced the problem for both models
to that of computing a storage containment graph on a strongly connected
component; the only difference now is that the algorithm for a side-effect
model must deal with edges modeling side-effects.

In the SCG for a value language each definition node d in a strongly
connected component C (in the control flow graph) can be the source of an
edge (containment or storage) to any of its predecessors. That is, if there are
m definition nodes in the component, n definition nodes in the rest of the
graph, and a maximum of S selectors applied to any definition node, then
there can be O(n × m × S) edges leaving nodes in C. There can also be
O(n×m×S) select edges leaving nodes in C, but these are fixed for a given
program; i.e., no new selection edges will appear.

We will use a worklist algorithm to model the addition of edges leaving
nodes in C. When a copy or contain edge 〈d, e〉 is created it is placed on the
worklist; to remove it from the worklist adjacent nodes are examined to see
if the addition of this edge creates new edges. When all the adjacent nodes
have been examined and the new edges created (and placed on the worklist),
this edge is removed from the worklist.

When a copy edge copy(s) : 〈d, e〉 is added, new edges are found by
examining contain edges leaving e. There can be O(n × S) of these edges,
and therefore as many as O(n×S) edges could be added to the worklist before

78

〈d, e〉 is removed. Since there can be only O(n ×m) copy edges leaving C8,
this gives us a worst-case complexity of O(n2 ×m× S).

When a contain edge contain(s) : 〈d, e〉 is added, new edges are found
by examining edges in C directed to d. There can be O(m) edges labeled
select(s), and these can cause the creation of O(m) copy edges. There can
be O(m) copy edges directed to d and these can create edges by copying this
edge. Since there can be O(m × n × S) contain edges leaving C, we obtain
a complexity of O(m2 × n× S).

Together, this gives us a worst-case complexity of O(n2×m×S) to process
a strongly connected component C of the control flow graph. If a strongly
connected component of copy edges is created in the SCG, all of the edges
must be between definition nodes in C. If the component is not detected
on the fly (and I have made no attempt to do this above) it can still be
detected with an ordinary transitive closure algorithm restricted to the copy
edges between nodes in C. This will have cost O(m3). Therefore, processing
all components of the graph for a language with value-assignment will have
worst-case time complexity O(S × n3).

To handle side-effects, note that an in-place contain ′ edge becomes a
contain edge when it is copied. Side effects occur when a store edge 〈d, σ〉 is
created and an in-place edge contain ′(s) : 〈d, e〉 exists. The result is to add
an edge contain(s) : 〈d′, e〉 for every d′ adjacent to σ. In the worst case, there
can be O(n) in-place contain edges leaving d, and O(n) store edges adjacent
to σ. Therefore, the time complexity to process one new store edge leaving
an in-place update is (worst-case) O(n2). Furthermore, since there can be as
many as O(n2) of these store edges, the total worst-case complexity is O(n4).

If a store edge 〈d, σ〉 is added and d is not an in-place update, it is still
necessary to consider side-effects to σ from some other in-place update. Here,
there can be n possible updates affecting σ and each of these can add as many
as n contain edges. Again, we obtain O(n4) worst-case complexity.

5.8 Dealing with procedure calls

The effects of calling procedures can also be modeled in the SCG. In the
simplest treatment, the results returned by a procedure call contain every-
thing that is both reachable within the procedure (via parameters or global

8Note the “trick” above for limiting the number of copy edges between two nodes to
one.

79

variables) and consistent with the type system. In a language with storage
side-effects a procedure call generates every possible consistent side-effect. In
language with private variables, the results of one procedure call can contain
objects reachable at another procedure call. This behavior can be mimicked
by treating private variables as global variables that are not accessed by other
procedures or modules.

Such an approximation is safe and requires no interprocedural analysis,
but it is very pessimistic. Less pessimistic estimates will require some inter-
procedural information. The most precise estimate possible using the storage
containment and update graphs is obtained by substituting a procedure’s UG
into the caller’s UG at a procedure call site when the SCG for the calling
procedure is built. This method suffers from two drawbacks:

• Recursive procedures cause infinite substitution.

• Reduction of the procedure’s substituted UG yields containment infor-
mation irrelevant to the caller—for example, containment relationships
holding in the called procedure’s temporary storage.

Both of these problems are solved by using a partially reduced update
graph. A PRUG contains information about storage accessible when the
procedure returns. This is typically storage reachable from returned values,
global variables, and reference parameters. The graph is “partially reduced”
because edges leaving the definition nodes corresponding to the procedure’s
parameters are not known, and thus cannot be copied or traversed. Thus,
any instance of copy(s) : 〈x, y〉 or select(s) : 〈x, y〉, where y is the definition
node corresponding to a formal parameter, cannot be reduced. Instead, node
x is marked “unreduced” and all other nodes copying or selecting from an
unreduced node will be marked “unreduced”. Any unreduced node might
contain storage from the caller that was not directly passed as a parameter.
Note that if the results of a procedure call contain (applying the relation
transitively) only reduced nodes then none of the caller’s storage can be
incorporated into those results.

This doesn’t yet explain how to deal with recursive procedures or use a
PRUG. A PRUG is substituted into a caller’s UG at the procedure call site.
By “substitution” I mean that a copy of the called procedure’s PRUG is
inserted into the caller’s graph, and copy(∅) edges are added from the formal
parameter definition nodes to definition nodes for the actual parameters in
the calling procedure and copy(∅) are added from uses of the results in the

80

caller to the result definitions in the called procedure. Because a PRUG
contains only nodes reachable at procedure exit, no nodes will be irrelevant.
It is correct to substitute a new copy of the PRUG for each call site because
storage allocated in different invocations of a procedure will be distinct, while
the definitions for global variables and parameters will be obtained from the
caller’s context.

For recursive procedures the PRUG is generated by successive approxima-
tion. PRUG0 is empty—nothing contains anything. Given PRUGi, PRUGi+1

is generated by substituting the edges of PRUGi into the UG at recursive
call sites. The nodes of PRUGi+1 are used instead of generating new copies.
When PRUGi+1 = PRUGi, the PRUG for the recursive procedure has been
found and is equal to PRUGi. This process must certainly terminate because
the size of the graph is bounded.

A disadvantage of substituting a new PRUG at each call site is that
this can lead to exponential growth of the update and storage containment
graphs. Suppose a procedure P0 contains two calls to P1, and for 1 ≤ i < n,
Pi contains two calls to Pi+1. This will produce 2i copies of the PRUG for
procedure Pi. One heuristic for avoiding this exponential growth is to perform
a single substitution for mutually unreachable (within one calling procedure)
calls to a procedure. This technique fails, however, to reduce the expansion
for the case where Pi contains calls to Pi+1 and Pi+2. It is not yet clear how
important it is to separate call sites, and it is not clear how large PRUG’s
will grow in practice. To achieve the exponential growth described above,
it is necessary for each Pi to actually make some structural contribution to
the graph; simple transmission of formal parameter (of Pi) uses to actual
parameter (of Pi+1) definitions should not increase the size of the PRUG for
Pi (this is so because of the reversed T1 transformation mentioned in section
5.7.2).

5.9 Shortcomings

The storage containment graph identifies and separates storage resulting from
different program points, but does not make any distinction between different
instances of storage resulting from a single point. One application where
this information would be very useful is in the parallelization of loops; if
the storage allocated and referenced in different iterations of the loop were
guaranteed to be disjoint, then it would be advantageous to run the loop

81

in parallel on multiple processors. Here, knowing that all instances of the
storage are disjoint helps in inferring that the loop can actually be run in
parallel (that there are no loop carried dependences [All83]) and ensures that
the memory allocations can be performed locally, thus reducing use of global
memory.

The worst-case complexity for construction of an SCG is also unappealing.
One hopes that sparseness or some other property of “typical programs” will
make the analysis affordable. On the other hand, the bounds described are
not tight; it is possible that a closer examination of the algorithm (or a better
algorithm) could reduce the time bound.

5.10 Related work

Though the SCG was derived from the value-flow analysis used in the SETL
compiler, it bears a strong resemblance to analysis proposed by Jones and
Muchnick [JM82]. There they use abstract interpretation [CC77, Myc81] to
construct approximations to values appearing at definition sites. These ap-
proximations can be regarded as regular tree languages describing the values
that can appear at the definition sites. The grammar for the regular tree
language is similar to the SCG but it describes only value approximations,
not use of storage. That is, the SCGs produced by value and side-effect se-
mantics are always different, but the interpretations produced by Muchnick
and Jones can be the same. By making the relationships between values and
storage explicit, my analysis deals naturally with aliasing, side-effects, and
the effects of overwriting optimizations on storage lifetime. I also feel that
the kinds of questions answered by this analysis are more naturally expressed
in a graphical framework; “can x contain y’s storage?” translates to “is there
a path from nodes defining x to storage used by y?”. Looking at regular tree
grammars and asking the same questions, I find myself treating the grammar
itself as the description of a graph.

Ruggieri has recently completed a dissertation [Rug87] in which a very
similar analysis is proposed. She establishes a lattice theoretic framework and
shows that the analysis is monotonic, but not distributive. She also describes
an interprocedural version of the analysis. The work presented here differs
in several ways: Ruggieri’s analysis associates containment information with
variables, while this work associates containment information with definition
sites. It turns out that this distinction is important; in the presence of

82

recursive data types, Ruggieri is forced to assume a heuristic choice of “order”
derived from the type-system. Past a certain point increasing the order
does not improve the information computed. This happens when detailed
information is combined with coarse information. For example, in

a ← b
l: a ← cons(x, a)

. . .
go to l

it is possible to establish that a could contain b nested 10 cdr’s deep; however,
a can also contain either a or b nested only one cdr deep. Increasing the
order to 10 does not yield any useful information about a. By associating
information with definition sites, however, this method automatically gets
the most precise information that can be obtained by tuning the order.

This work also treats the important special case of languages with value-
assignment semantics. For this case it is possible to compute a single instance
of the containment graph to accurately describe the entire program rather
than one per point or strongly connected component.

Ruggieri has devoted more attention to interprocedural containment and
lifetime analysis; my approach, though correct, is potentially very expensive.

83

Chapter 6

Improved allocation
optimizations

The heap-to-stack allocation conversion described here is better than the
one proposed for the SETL compiler; it is safer and more general. The
analysis in Lisp compilers is less general because it only attempts to optimize
allocations for closures and numbers; it may also be unsafe, but this is hard to
verify. Barth’s analysis seems safe, but it is not designed to use the stack and
depends on a reference counting model; when storage is nested, its allocation
is not eligible for optimization in his system.

6.1 Problems with interval-based stack allo-
cation

Schwartz describes a general method for converting heap allocations to stack
allocations. Each interval in the program flow graph is examined to discover
values whose lifetimes are contained within the interval. These are allocated
on the stack. Because the interval has one entry node, it is easy to record
the stack height at interval entry. At interval exit the stack is restored to
its height on entry, thus freeing all objects allocated on the stack within the
interval.

There are three problems with this approach. It is difficult to general-
ize to later interval reductions of the graph, it may interfere with tail-call
elimination, and in certain situations the stack can grow without bound.

84

Interval-based stack allocation does not easily generalize to later reduc-
tions because stack deallocations are introduced after the first reduction. If
a value x’s lifetime is contained within an interval I3 of the second reduction
(a G1 interval) but not within an interval of the first reduction (a G0 inter-
val), that means that it is allocated inside one G0 interval I1 but used within
another G0 interval I2. If the stack allocation for x is performed within I1,
then it will be undone at exit from I1; that is, before its use in I2. Because
x’s lifetime is not contained in any G0 interval, if x is to be stack allocated it
must be stack allocated “underneath” those values whose lifetimes are con-
tained within G0 intervals. This problem is illustrated in figure 6.1. There

I1

I2

I3 s stack allocation in I1s?s �
��� s stack allocation for I3 in I1

XXXXXX all stack allocations in I1 freeds?s stack allocation in I2

?s

Figure 6.1: Problems with interval-based stack allocation

are two ways to deal with this problem. The G0 interval can be “split” (as
shown in figure 6.2) and objects allocated within the first part are freed at
the split. At the true exit from the interval values on the stack are not freed.
The other approach is to preallocate storage before entering I1 (as shown in
figure 6.3). This is possible whenever the size of the object can be determined
before entering I1.

Interval-based stack allocation also interferes with tail recursion elimina-
tion, though the interference is somewhat trivial. Procedure calls occurring
at interval exits must be treated specially; if the interval can be split (as
described above), then this should be done so that all storage on the stack
may be freed.

The worst problem with interval-based stack allocation is that simple,
likely programs cause it to waste an unbounded amount of stack storage. This

85

I1

I2

I3 ss?s �
���

Free stack allocations for I1 heres
s?s

?s

Figure 6.2: Splitting Interval

I1

I2

I3 ss?s �
���

c stack allocation for I3 outside of
I1

�
��s initialization in I1 of storage allo-

cated outside of I1

s?s
?s

Figure 6.3: Hoisting allocation

86

is so because an interval may contain a loop (executed an unbounded number
of times) containing the allocation of a value whose lifetime is contained
within the body (one iteration) of the loop. Since this is all contained within
the interval containing the loop, that allocation may be performed on the
stack. Since the loop is entirely contained within the interval, nothing is
removed from the stack until after leaving the loop. Each iteration of the
loop executes another allocation, so each iteration of the loop consumes some
amount of the stack. The value, however, is not live from one iteration
to the next, so at any time all but one of the stack allocations is useless.
Note that if that storage had been heap-allocated it would be recoverable
by a garbage collection, but since it is allocated on the stack it cannot be
recovered until exit from the loop. This is a serious problem; optimization
should not convert a program with bounded resource consumption into one
with unbounded resource consumption.

This problem can be treated by being more careful of allocations within
loops, either by not moving these allocations to the stack or by popping al-
locations off of the stack after each iteration. I claim, however, that interval-
based stack allocation is the wrong approach. It uses a clean run-time model
and a clean compile-time analysis, but the model and the analysis are some-
what less elegant after all of the patches have been applied. The interval-
based model also pays too much attention to keeping the stack height low at
places where stack height is not a problem.

For example, the interval method works poorly for the following code
fragment:

a ← new(. . .)
loop {

. . .
a ← new(. . .)
. . .
}

. . . a . . .

Here, the loop forms an interval. The lifetime of the definition within the
loop, however, extends outside of the loop and thus outside of the interval,
so it cannot be freed within the loop. It is also unwise to perform those
allocations on the stack without freeing them within the loop, because there
is no bound on the amount (percentage) of stack that can be wasted. Clearly,
the interval method is not useful here.

87

6.2 An improved method

An algorithm to convert heap allocations to stack allocations should cer-
tainly obey one constraint: it should not convert a program that runs within
available memory resources to one that does not (ignoring for the moment
marginal cases). Rather than focusing on doing the optimization in intervals
and patching it up to keep it safe, I feel that one should focus on not doing
the optimization in situations where it will cause unbounded stack waste.

My notion of waste has been vague so far, because measuring waste in
terms of storage used makes it hard to guarantee that waste will not be
caused by single objects of large size. There is also the problem that in
marginal cases a garbage-collected system will continue to run, though very
slowly; in such situations, even a small amount of wasted storage will cause
failure. I will assume that objects’ sizes are much smaller than the total
amount of memory in use, and I do not guarantee that these optimizations
will not cause marginal programs to fail. I also want to assume that the total
amount of space available to the stack is much larger than the amount used
in any procedure activation.

Copying collectors and mark-and-sweep collectors typically require that
one-half to one-third of the available memory be unused; thus, to achieve
comparable resource consumption the storage-allocation optimization must
ensure that no more than (say) one-third of the storage on the stack is unused.
Together with the assumptions above, this means that a compiler should
ensure that:

1. There is a bound on the total number of unused stack objects with
unknown (to the compiler) size. This bound is necessary because a
pathological program might “waste” (for example) one object of size 9
for each useful object of size 1. If the number of these objects is not
bounded, then placing many of them on the stack could waste 90% of
the available memory.

2. The bounds on wasted stack space are not exceeded by objects with
size known to the compiler. The compiler may not be able to place a
bound on the number of unused stack objects, but it can bound the
fraction of stack space wasted by these objects.

I assume that all stack allocations within a procedure are undone upon
exit from the procedure. This is reasonable because this is a traditional way

88

to implement procedure linkages, and because a compiler usually processes
at least a whole procedure (as opposed to a part of a procedure). Given this,
to introduce stack allocations the compiler must consider three cases:

1. allocations occurring on paths to recursive1 calls—The compiler cannot
easily place a bound on the number of times one of these allocations
might be executed during a procedure activation.

2. allocations occurring within loops—The compiler cannot easily place
a bound on the number of times one of these allocations might be
executed during a procedure activation.

3. allocations occurring anywhere else—Each of these allocations is per-
formed no more than once per procedure activation.

To perform an allocation in the third class on the stack, the compiler must
guarantee that no storage resulting from that allocation is in use upon exit
from the procedure. Using the SCG and liveness information, the compiler
must ensure that no definition node on an SCG path to the allocation node
is live at the exit. A definition node is live at the exit if it can define the
procedure’s result, a global variable, or a reference formal parameter. Given
that such an allocation is not in use at procedure exit, it is always safe
to stack-allocate it because the statement performing the allocation can be
executed at most once before the memory is freed and the procedure itself is
not recursive. Thus, at most one instance of storage from the allocation can
be in use at any point during the execution of the program.

Converting allocations of the second class to use the stack requires more
care to ensure that the stack waste stays small. I will first treat the case of
allocations within “simple loops”—that is, single entry strongly connected
regions containing no embedded cycles that do not include the header (entry)
node.

6.2.1 Short allocations

An allocation d within a loop L is called short if its lifetime, restricted to
nodes and edges in L, contains no cycles. Less formally, this means that
there is a set of edges within L across which the allocation is known to be

1As determined by the call graph; without a call graph, one must assume that all calls
can be recursive.

89

dead, while permitting the value to “escape” through a loop exit and even
re-enter through the loop header node (via an edge outside of L). To place
these allocations on the stack requires the following transformations:

1. Record the stack height at loop entry. Call this the loop stack base.

2. Choose a set of edges which cuts the loop, and across which none of the
short allocations is live. This set of nodes may be found by depth-first
search from the loop header node forward along live edges in L. Insert
code on each edge to restore the stack height to the loop stack base.

Several important details are omitted in the above description. The complete
set of short allocations may have lifetimes whose union contains a cycle,
making it impossible to find a loop-cutting set of edges. Short allocations
with loop-invariant size should be allocated only once, in the loop header.
This may not be any more efficient than allocating them in the portion of the
stack that shrinks and grows with each loop iteration because it will still be
necessary to adjust the stack on each iteration (unless all short allocations
can be performed in the header), but it will make it easier to find a loop-
cutting set of edges (if such a set exists). The definitions for “nodes” and
“edges” in the graph are also important; it may be necessary to split a node
into two parts (if this is possible) to cut the loop.

Detecting opportunities to introduce stack allocation within loops re-
quires information computed “relative” to the loop. For example, I want to
ignore live ranges that escape the loop and re-enter through the top of the
loop. Such ranges are not short in the enclosing loop, but they are short in
the inner loop and should be stack allocated there. For the best informa-
tion from the SCG, this requires a SCG computed relative to the loop. The
problem is simplified somewhat because we are only interested in lifetimes of
values allocated within the loop; it is not necessary to construct a graph of
the type system or to use any of the information derived from the surround-
ing graph. In fact, the type system used can be completely trivial—only a ⊥
node with no leaving edges because anything reachable through the ⊥ node
came from outside the loop. For languages with side-effects, updating an
object allocated outside the loop to contain an object allocated within the
loop generates a containment edge from the ⊥ node to the second object,
giving it a non-short lifetime.

Several features of the heap-to-stack optimization for short allocations
should be noted:

90

1. Variables receiving stack-allocated values within the loop may also be
allocated outside of the loop. To see this, consider what happens on
the first iteration. At the loop entry, the loop stack base is set to the
current stack height and the body of the loop is entered. Somewhere
in the execution of the loop a cutting edge is traversed and the stack
height is reset to loop stack base. Any variable initialized outside the
loop points to storage below loop stack base, so it is affected neither
by the loop entry nor by the stack reset.

2. The live range of stack-allocated storage within the loop can span two
iterations. This is so because the stack height is reset at a cutting edge,
but not (necessarily) at a cycle edge or an exit edge.

3. The live range of stack-allocated storage within the loop can escape
the loop. This is so because the stack height is not reset upon loop
exit. Though the body of the loop can be executed many times, the
loop is entered only once, and thus it is exited only once. Since the
stack is reset during each iteration of the loop, there can be no more
additional objects on the stack than there are allocation sites within
the loop body.

4. The live range of stack-allocated objects within the loop can even ex-
tend beyond the lifetime of the procedure activation in certain cases.
When this is the case, the object must be copied from the stack to
heap-allocated storage upon exit from the loop, and pointers to the ob-
ject’s storage must be updated to reflect this. This is desirable because
it is expected that it will take less time do n (where n is the number
of loop iterations) stack allocations, one heap allocation and one copy
than it will to take to do n heap allocations. Within the loop, the
object’s address will not change during a garbage collection, so it is
possible to perform optimizations that use the object’s address within
the loop.

Note that objects with loop-invariant size, short lifetimes, but lifetimes
extending beyond the procedure activation should be heap-allocated
in the loop header unless it appears that optimizations involving the
object’s address will be exceptionally profitable.

If the union of the lifetimes of the short allocations contains a cycle, then
there will be no set of cutting edges. In this case, not all of the allocations

91

can be moved onto the stack. Ideally, the compiler will choose the “best”
allocations to place on the stack and heap-allocate the others. Determining
the minimum cost set of DAGS to remove to break all cycles, however, is an
NP-complete problem, even with unit cost. This follows by transformation
of vertex cover [GJ79] to cycle-breaking DAG removal (CBDR).

Proof First, show that an instance of vertex cover can be transformed to
CBDR in polynomial time.

Given an undirected graph G = (V, E), create a rooted directed graph G′

with root vertex R and vertices ai and bi for each vertex vi in G. For each
vi in G there are edges 〈R, ai〉 and 〈bi, R〉. For each vi in G, create a DAG
Di in G′ equal to

({bi, R, ai}, {〈bi, R〉, 〈R, ai〉})
At this point there are no cycles in G′, so there can be no cycles in the union
of the DAGs. The graph G′ is shown in figure 6.4. If n is the number of
vertices in G, then the number of vertices and edges in G′ are 2n+1 and 3n.

����
b1 ����

bi ����
bn

����
a1 ����

ai ����
an

����
R

�
�

�� ?

@
@
@R

· · · · · ·

· · · · · ·��

� �
?

��

� �
?

��

� �
?

Figure 6.4: Initial G′

Now consider the edges in G. For each edge 〈vi, vj〉, add four vertices

cj
i , d

j
i , c

i
j, d

i
j

and eight edges

〈ai, c
j
i 〉, 〈c

j
i , d

j
i 〉, 〈aj, ci

j〉, 〈ci
j, d

i
j〉, 〈ai, ci

j〉, 〈d
j
i , bj〉, 〈aj, c

j
i 〉, 〈di

j, bi〉

92

These are shown in figure 6.5. The vertices

cj
i , c

i
j, d

j
i , d

i
j

and edges
〈ai, c

j
i 〉, 〈c

j
i , d

j
i 〉, 〈ai, ci

j〉, 〈di
j, bi〉

are added to Di (shown in figure 6.6) and similar vertices and edges are added
to Dj. Note that Di and Dj remain acyclic. If the number of edges in G is
m, then G′ now has 1+2n+4m vertices and 3n+8m edges. Clearly, G′ can
be constructed in time polynomial in the size (number of vertices) in G.

����
bi

����
dj

i

����
cj
i

����
ai

����
bj

����
di

j

����
ci
j

����
aj

?

@
@
@R

?

@
@
@R

?

�
�

��

?

�
�

��

Figure 6.5: Effects of 〈vi, vj〉 on G′

����
bi

����
dj

i

����
cj
i

����
ai

����
bj

����
di

j

����
ci
j

����
aj

?

@
@
@R

?

�
�

��

Figure 6.6: Effects of 〈vi, vj〉 on Di

Neither Di nor Dj contains a cycle, but their union does. Each edge
〈vi, vj〉 in G adds cycles to the union of the DAGs, and these are the only
cycles added to the union. Repeating this process for all edges in G produces
a new G′ and new DAGs D1 through Dn. Clearly, if there is an edge in G
then there is a cycle in G′, and if there is a cycle in G′ there is an edge in G.

Removing a DAG Dj from the union of DAGs corresponds to removing
a vertex and its incident edges from G. The vertices aj and bj disappear,
because they are only contained in Dj, and for all i such that there is an
edge 〈vi, vj〉 in G, the edges 〈aj, ci

j〉,〈ci
j, d

i
j〉,〈aj, c

j
i 〉, and 〈di

j, bi〉 disappear;
the vertices cj

i , ci
j, dj

i and di
j remain because they are contained in Di, but

they are not part of any cycle and thus may be ignored. Thus, for all i the
effects on G′ of an edge 〈vi, vj〉 are undone.

93

Thus, removing DAGs to break all cycles in G′ corresponds to removing
vertices to totally disconnect G. A set of cycle-breaking DAGs in G′ corre-
sponds (one-for-one) to a vertex cover of G. Furthermore, given G, G′ can be
constructed in time polynomial in the number of vertices in G. Thus, CBDR
is NP-hard.

A solution to CBDR can be verified in polynomial time, so CBDR is also
NP and is thus NP-complete.

It might appear that CBDR is a harder problem than the one needed for
the optimization because storage lifetimes are always rooted graphs, while
the DAGs constructed in the proof are not, but it is possible to re-root each
DAG Di with the addition of a vertex di and edges from di to all vertices dj

i .
Thus, the problem remains NP-complete even for rooted DAGs.

In fact, I would like to allow heap-to-stack transformations on an even
larger class of allocations. Constraining the lifetime of allocated storage to
be contained within a DAG guarantees that there will be at most one piece
of storage allocated from a given site at any point within the loop. The
DAG description is over-restrictive; if the lifetime contains no cycles passing
through the allocation site, then at most one piece of storage allocated at the
site is active within the loop. The corresponding constraint on the union of
the lifetimes is that no allocation site lies on a cycle in the union. Of course,
this is a generalization of CBDR, so it is NP-hard, and a solution can be
verified in polynomial time, so it is NP-complete.

6.2.2 Long allocations

A long allocation within a loop is one creating storage that will be used in
later iterations of the loop. Moving these allocations onto the stack does not
waste space because their storage is guaranteed to be reachable during the
execution of the loop.

In a loop, each long allocation adjusts both the stack pointer and the
loop stack base, so that the storage remains allocated across edges where the
stack pointer is reset to loop stack base. Both long and short allocations can
be moved to the stack in the same loop, but their combination can cause
some storage to be wasted. Ideally, a long allocation will occur at a point
where the stack pointer is equal to the loop stack base; this means that all
the storage allocated between the loop stack base and the initial (at loop
entry) stack pointer will be devoted to instances of the long allocation and

94

thus will all be in use.
If this is not the case, short allocations live at the long allocation site

will be “pinned” underneath the long allocation. Since short allocations
are guaranteed to be live in two or fewer iterations of the loop, this will
waste storage. Furthermore, the sizes of short allocations within the loop
are unknown, because (as noted above) any short allocation with known size
can be performed outside of the loop. The size of the long allocations may
or may not be known. This puts the optimizer into a difficult situation;
moving all the long allocations to the stack might lead to excessive memory
consumption.

One solution to this is to check at run-time the size of the long allocation
against the size of the storage that it will pin (equal to the difference of loop
stack base and stack height). If it is greater than or equal to this amount, then
the waste is limited to 50%. If it is not this large, then it is allocated from the
heap instead and stack height base is left alone. The benefits of this approach
may be marginal, since the object’s address may still be in collectible storage
and thus be movable; that is, the possibility of the object’s collection can
interfere with optimization of expressions including that address. However,
it will cut down on the amount of collectible memory used if long-allocated
objects are large.

A serious drawback to this optimization is that it is hard to show that
an allocation is long. The storage containment graph does not help, because
it encodes may information, not must information. It is also difficult to
copy “a” long allocation from the stack to the heap, because many instances
of storage resulting from the long allocation will be active (one for each
execution of the allocation, by definition).

6.2.3 Nested Loops

When loops are nested, it is possible to analyze them from the inside out
and treat the inner loops as single unbreakable nodes in enclosing loops.
The node must be unbreakable because the stack height cannot fall below
(inner) loop stack base after entering the (inner) loop. Thus, any storage
stack-allocated at entry to the loop must remain stack allocated until after
loop exit. In analysis of outer loops, any allocations escaping inner-loops are
treated as allocations at the single unbreakable node. Using this treatment,
it is possible to apply the techniques described above to nested loops.

It may happen that an allocation nested within loops L1 (outermost)

95

through Ln (innermost) is short in loops Li through Ln, but not in Li−1. If
it is also not long in Li−1, then it must be copied to the heap upon exit from
Li. This is not always possible; consider this piece of code:

L1:while ...{
a ← new array
b ← new
for i = 1 to n

if f(i)
then a[i] ← b
else a[i] ← x

} ...
return a

Both a and b are short within L1 because they are assigned new values at
the top of the loop; clearly, the stack can be reset before executing the first
statement of the loop body. It is also clear that the storage pointed to by a
can be copied to the heap after leaving L1 because the only pointer to it is a.
It is not easy, however, to copy the storage to which b points because there
are also pointers to it stored in various elements of the array referenced by
a.

If, on the other hand, an allocation is short in loops Li through Ln and
long in Li−1 (assuming that the compiler is able to discover this), the compiler
must ensure that not too much space is wasted by other allocations that are
still on the stack at exit from Li. This is only possible at compile-time if the
objects have constant size.

Nested long allocations are much more difficult to cope with. The diffi-
culty of copying the results of a long allocation to the heap has already been
noted. It is also difficult to compute the size of a long allocation, since its
size is actually the sum of the sizes of several objects that may be linked
by pointers in an arbitrary (perhaps even cyclic) way. This makes it dif-
ficult to guarantee what fraction of the stack will be wasted. Thus, if a
nested allocation is long in more than one loop than it very likely will not be
stack-allocated.

96

6.2.4 Procedure calls

Parameter and local allocations

An allocation whose lifetime spans a procedure call may be stack allocated
provided that

1. the call is not recursive;

2. the allocation’s lifetime does not escape the calling procedure’s acti-
vation. It may be necessary to use the called procedure’s partially
reduced update graph to discover that this is so; without this infor-
mation, worst-case assumptions about global variables imply that the
allocation’s lifetime is not bounded.

or that

1. the call is recursive;

2. the allocation’s lifetime does not escape the calling procedure’s activa-
tion;

3. the allocation’s lifetime spans the call to and return from the procedure;
this corresponds to a long allocation in a loop.

If neither of these sets of constraints is satisfied and a standard linkage
is used, then there is no bound on the number of objects resulting from the
allocation that might become unreachable. Unless these objects are known
to be small compared to the activation record and the coexisting long (call-
spanning) allocations, they should not be stack-allocated because that could
lead to excessive waste of stack space.

In some situations it is possible to tailor a recursive procedure call in such
a way that allocations not spanning a recursive call can be stack-allocated
without wasting space. Suppose there is an allocation a in a procedure P ,
and a’s lifetime extends into a recursive call of P but not across it. That
is, a is dead in one activation of P , but live into part of the next. With
an ordinary linkage, first the allocation a is performed, then the activation
record for the call to P is (stack) allocated. Sometime later a becomes
inaccessible while the recursive call’s activation record is still in use. In a
tailored linkage, the two allocations are reversed. First the activation record
is (stack) allocated, then the storage for a is (stack) allocated. Sometime later

97

a becomes inaccessible. If it is also true that no stack allocations performed
since a was allocated are live, then the stack can be restored to reclaim
the now-dead space. Note that this requires that a’s lifetime not extend
past a’s allocation in the called procedure, and that it not extend past the
construction of the activation record for the second recursive call to P . This
is clearly a special-case optimization, since it can only be used when all these
conditions are met, and it requires generation of a separate, tailored copy of
a recursive procedure.

Result allocations

So far any allocation that might be incorporated into a procedure’s results
has been performed on the heap because the allocation might be active when
the activation record is removed from the stack. No amount of analysis
in the called procedure itself can change this, because the lifetime of the
result depends upon the calling procedure. If the calling routine preallocates
storage for the result and passes it in, then it becomes possible to analyze the
lifetime of the allocation within the calling procedure and possibly perform
it on the stack. If the result allocation’s lifetime is not contained within
the calling procedure’s activation, then it is part of the calling procedure’s
result and can be allocated by the calling procedure’s caller. It appears that
this process removes the need for garbage collected storage, but (as noted
by Ruggieri [Rug87]) it is difficult to reserve storage for linked and variably
sized objects because their sizes may not be known at compile time.

A second complication arises when results are preallocated for recursive
procedures. When storage is reserved, it is not yet live; it is wasted until
it is used. It can happen that none of the storage preallocated for a series
of recursive calls to a procedure is live, and it can also be the case that the
number of live instances of the result is bounded by a constant. Thus, wasted
stack space can occur.

A third complication is the possibility that no storage will be needed;
the called routine might return an existing object. Again, this is a more
serious problem for recursive procedures because the number of activations
is not bounded, and thus the potential waste (one object per activation) is
not bounded.

The situation is much better for non-recursive procedures. Preallocation
is still impractical if the result size is unknown, but the number of activations
is bounded. Preallocation can result in waste, but this waste is no greater

98

than the waste produced by local values during a procedure activation. Note
that in any case result stack preallocation must satisfy the same constraints
as stack allocation of local storage. If a result is stack-preallocated within
a loop, then the storage lifetime must be short or long, or else it will waste
storage in the same way that a local allocation can waste storage.

99

Chapter 7

Conclusions

I think that this dissertation is very important, because it is the first work
that I have seen that proposes anything near a practical approach to analysis
of nested objects. Previous work on optimization and garbage collection
missed the problems caused by their combination, and previous algorithms
to convert heap allocations into stack allocations did not address the problem
of excess storage consumption.

7.1 Contributions

The third chapter gave examples showing how common optimizations applied
to addressing expressions can interfere with garbage collection. Invariant,
inductive and redundant expression optimizations create pointers that the
garbage collector cannot reliably follow or update. Dead code elimination
can remove code that establishes collector invariants. Register allocation
makes it difficult to distinguish pointers from non-pointers. The efficiency
lost to non-optimization of code is a hidden cost of garbage collection.

Garbage collection and optimizations can coexist. This is done through
the use of a protocol defining what the run-time environment should look like
just before a garbage collection. The compiler generates code that converts
the optimized environment to a collectible environment (the cleanup map)
and code that reflects change in the collectible environment back into the
run-time environment (the dirtyup map); calls to the garbage collector are
bracketed by calls to these maps. Because garbage collections occur very
infrequently and have non-trivial cost, it is expected that the time spent

100

mapping run-time environments will be more than made up by improved
optimizations. Note that if there is no optimization, then these maps are
trivial and add little to the cost of a garbage collection.

Optimizations that convert heap allocations into stack allocations have
multiple benefits because of interference. The allocation itself is cheaper;
less memory obtained from the heap means longer intervals between garbage
collections, and thus lower direct garbage collection costs; the address of a
stack-allocated object will not change during a garbage collection, and thus
(unlike the address of a heap-allocated object) may be treated as a constant
across heap allocations; the address of a heap-allocated object is constant
across a stack allocation, so this optimization tends to extend the ranges
over which the addresses of heap-allocated objects are constant. This is
ample motivation for heap-to-stack allocation optimizations.

Chapter five introduces the storage containment graph. This graph has
a number of useful properties. It correctly models sharing, aliasing and
overwriting. By associating information with definition sites instead of with
variables it obtains information at least as good as any existing containment
analysis. The derivation of this graph falls into a monotone data-flow analy-
sis framework; in a separate proof it is shown that the derivation of an SCG
has the Church-Rosser property (and thus a unique solution is obtained in-
dependent of any algorithm). However, the derivation is not distributive. In
addition, the storage containment graph is invariant over strongly connected
components of the control flow graph, thus requiring fewer instances of the
graph to precisely describe the containment that may hold in a program.
For a language with value-assignment semantics it is proved that only one
instance of the graph is required for precise information.

Chapter six describes a better approach to heap-to-stack allocation opti-
mizations. The most important constraint in any code optimization should
be: Do not break a running program. Existing techniques are either ad hoc
or do not satisfy this constraint. The new approach allows a heap allocation
to be converted to a stack allocation whenever it can be shown that this will
not lead to unbounded waste of stack storage. For allocations within loops
this leads to a characterization of allocation as short or long ; a short allo-
cation’s lifetime is non-cyclic within a loop, so it may be reclaimed at each
iteration; a long allocation has the property that all instances of storage
allocated remain live through all iterations of the loop, and thus the stor-
age is not wasted. Associated with optimization of short allocations is the
cycle-breaking-DAG-removal problem; this is shown to be NP-complete. In-

101

terprocedural allocation optimizations are discussed in light of “do not break
a running program,” and some pitfalls are pointed out.

7.2 Future Research

This thesis describes an analysis and proposes optimizations; it would be
interesting to see how well it works in the real world. Likely languages to
compile might be variants of Pascal and Modula without free; it is other-
wise possible to compile and optimize these languages, so the addition of
a garbage collector and the optimizations described here is an incremental
task. Application to Lisp, Scheme, ML or Russell might be profitable, but
ordinary analysis and optimization of these languages is not as easy because
of polymorphism, higher-order functions, and continuations. In addition, the
classical run-time representation of Lisp and Scheme data structures does not
provide many opportunities for address optimizations. Backus’s FP might
present good opportunities for using this work.

Numerous loose ends remain; I describe how exact information about
object initialization is needed to perform certain forms of dead code elimi-
nation in a garbage-collected system, but I do not describe a way to get this
information. Without such analysis newly allocated objects must always be
initialized.

I describe conversion of heap allocations with long lifetimes into stack al-
locations, but I provide no help in determining when an allocation is actually
long; in fact, the storage containment graph is inappropriate for this because
it expresses only may-contain information.

I describe an algorithm for generating a storage containment graph, but
the time bound that I derive is unappealing. I do not think that the algorithm
is really that bad in practice, but I do not have proof of this.

The algorithm presented here for interprocedural containment analysis
has exponential worst-case behavior, and minimum-cost cycle-breaking DAG
removal is NP-complete. Investigations of approximations for these two prob-
lems might be fruitful.

102

Bibliography

[AC72] Frances E. Allen and John Cocke. A catalogue of optimizing
transformations. In Randall Rustin, editor, Design and Opti-
mization of Compilers. Prentice-Hall, 1972.

[ACK81] F. E. Allen, John Cocke, and Ken Kennedy. Reduction of oper-
ator strength. In Steven S. Muchnick and Neil D. Jones, editors,
Program Flow Analysis: Theory and Applications, pages 79–101.
Prentice-Hall, 1981.

[All70] Fran E. Allen. Control flow analysis. SIGPLAN Notices, 5:1–19,
1970. Cited in Hecht [Hec77].

[All83] J. R. Allen. Dependence Analysis for Subscripted Variables and
its Application to Program Transformations. PhD thesis, Rice
University, 1983.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers,
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[Bac78] John Backus. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs. Com-
munications of the ACM, 21(8):613–461, August 1978.

[Bak78] Henry G. Baker, Jr. List processing in real time on a serial com-
puter. Communications of the ACM, 21(4):280–294, April 1978.

[Bar77] Jeffrey M. Barth. Shifting garbage collection overhead to compile
time. Communications of the ACM, 20(7):513–518, July 1977.

[BB77] A. P. Batson and R. E. Brundage. Segment sizes and lifetimes in
ALGOL 60 programs. Communications of the ACM, 20(1):36–44,
January 1977.

103

[BGS82] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele Jr.
An optimizing compiler for lexically scoped LISP. In SIGPLAN
Symposium on Compiler Construction, pages 261–275, 1982.

[Bob75] D. G. Bobrow. A note on hash linking. Communications of the
ACM, 18(7):413–415, July 1975.

[Bob80] Daniel G. Bobrow. Managing reentrant structures using refer-
ence counts. ACM Transactions on Programming Languages and
Systems, 2(3):269–273, July 1980.

[Bro75] Frederick P. Brooks, Jr. The Mythical Man Month. Addison-
Wesley, 1975.

[Bro85] D. R. Brownbridge. Cyclic reference counting for combinator
machines. In Functional Programming Languages and Computer
Architecture, pages 273–288, 1985.

[BS83] Stoney Ballard and Stephen Shirron. The design and implemen-
tation of VAX/Smalltalk-80. In Glenn Krasner, editor, Smalltalk-
80: Bits of History, Words of Advice, pages 127–150. Addison-
Wesley, 1983.

[BW88] Hans Boehm and Mark Weiser. Garbage collection in an unco-
operative environment. Software, Practice and Experience, pages
807–820, September 1988.

[CAC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John
Cocke, Martin E. Hopkins, and Peter W. Markstein. Register
allocation via coloring. Computer Languages, 6:47–57, 1981.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conf. Record of the
Fourth Annual Symposium on Principles of Programming Lan-
guages, pages 238–252, 1977.

[CG77] D. W. Clark and C. C. Green. An empirical study of list structure
in LISP. Communications of the ACM, 20(2):78–87, February
1977.

104

[CH84] Frederick Chow and John Hennessy. Register allocation by
priority-based coloring. In SIGPLAN Symposium on Compiler
Construction, pages 222–232, 1984.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Com-
munications of the ACM, 13(11):677–678, November 1970.

[Cla79] Douglas W. Clark. Measurements of dynamic list structure use
in Lisp. IEEE Transactions on Software Engineering, 5(1):51–59,
January 1979.

[CLZ86] Ron Cytron, Andy Lowry, and Ken Zadeck. Code motion of con-
trol structures in high-level languages. In Conf. Record of the
Thirteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 70–85, 1986.

[CN83] Jacques Cohen and Alexandru Nicolau. Comparison of compact-
ing algorithms for garbage collection. ACM Transactions on Pro-
gramming Languages and Systems, 5(4):532–553, October 1983.

[Coc70] John Cocke. Global common subexpression elimination. SIG-
PLAN Notices, 5:20–24, 1970. Cited in Hecht [Hec77].

[Coh81] Jacques Cohen. Garbage collection of linked data structures.
Computing Surveys, 13(3):341–367, September 1981.

[Col60] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, 1960.

[Cou85] Courant Inst. of Mathematical Sciences, The SETL Project. The
SETL optimizer. Source listing, May 1985.

[CS70] J. Cocke and J. T. Schwartz. Programming Languages and Their
Compilers. Courant Institute of Mathematical Sciences, New
York, 1970.

[DB76] L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremen-
tal, automatic garbage collector. Communications of the ACM,
19(9):522–526, September 1976.

105

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(11):966–975,
November 1978.

[FSS83] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir.
Experience with the SETL optimizer. ACM Transactions on Pro-
gramming Languages and Systems, 5(1):26–45, January 1983.

[FW79] D. P. Friedman and D.S. Wise. Reference counting can manage
the circular invironments[sic] of mutual recursion. Information
Processing Letters, 8(1):41–44, 1979.

[FY69] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-
collector for virtual-memory computer systems. Communications
of the ACM, 12(11):611–612, November 1969.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractibility: A Guide to the Theory of NP-Completeness. W.H.
Freeman and Co., 1979.

[GW76] S. L. Graham and M. Wegman. A fast and usually linear algo-
rithm for global flow analysis. Journal of the ACM, 23(1):172–202,
January 1976. Cited in Kennedy [Ken81].

[HB85] Paul Hudak and Adrienne Bloss. The aggregate update prob-
lem in functional programming systems. In Conf. Record of the
Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 300–314, 1985.

[Hec77] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland, 1977.

[Hen82] John Hennessy. Symbolic debugging of optimized code. ACM
Transactions on Programming Languages and Systems, 4(3):323–
344, July 1982.

[HU72] Matthew S. Hecht and Jeffrey D. Ullman. Flow graph reducibility.
SIAM Journal on Computing, 1:188–202, 1972. Cited in Tarjan
[Tar74] and Kennedy [Ken81].

106

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and
applications to term rewriting systems. Journal of the ACM,
27(4):797–821, October 1980.

[Hug85] John Hughes. A distributed garbage collection algorithm. In
Functional Programming Languages and Computer Architecture,
pages 256–272, 1985.

[JM82] Neil D. Jones and Steven S. Muchnick. A flexible approach to
interprocedural data flow analysis and programs with recursive
data structures. In Conf. Record of the Ninth Annual Symposium
on Principles of Programming Languages, pages 66–74, 1982.

[Ken72] Kenneth W. Kennedy. Safety of code motion. Intern. J. Computer
Math., 3:117–130, 1972.

[Ken81] Kenneth W. Kennedy. A survey of data flow analysis techniques.
In Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, pages 5–54. Prentice-Hall,
1981.

[KKR+86] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams. ORBIT: An optimizing compiler
for Scheme. In SIGPLAN Symposium on Compiler Construction,
pages 219–233, 1986.

[KS75] Kenneth W. Kennedy and Jacob T. Schwartz. An introduction to
the set theoretical language SETL. Comp. & Maths with Appls,
1:97–119, 1975.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the ACM,
26(6):419–429, June 1983.

[Mar71] S. Marshall. An ALGOL 68 garbage collector. In J. E. L. Peck, ed-
itor, ALGOL 68 Implementation, pages 239–243. Elsevier North-
Holland, 1971.

[MJ76] Steven S. Muchnick and Neil D. Jones. Binding time opti-
mizations in programming languages: Some thoughts toward
the design of an ideal language. In Conf. Record of ACM

107

SIGACT/SIGPLAN Symposium on Principles of Programming
Languages, pages 77–91, 1976.

[Moo84] David Moon. Garbage collection in a large Lisp system. In SIG-
PLAN Symposium on LISP and Functional Programming, pages
235–246, 1984.

[Myc81] Alan Mycroft. Abstract Interpretation and Optimising Transfor-
mations for Applicative Programs. PhD thesis, University of Ed-
inburgh, 1981.

[New42] M. H. A. Newman. On theories with a combinatorial definition
of “equivalence”. Annals of Mathematics, 43(2):223–243, April
1942. Cited in [Hue80].

[Nie77] Norman R. Nielsen. Dynamic memory allocation in com-
puter simulation. Communications of the ACM, 20(11):864–873,
November 1977.

[Owi81] Susan Owicki. Making the world safe for garbage collection. In
Conf. Record of the Eight Annual Symposium on Principles of
Programming Languages, pages 77–86, 1981.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058,
December 1972.

[PB85] Paul Walton Purdom, Jr. and Cynthia A. Brown. The Analysis
of Algorithms. Holt, Reinhart and Winston, 1985.

[RLW85] Paul Rovner, Roy Levin, and John Wick. On extending Modula-2
for building large, integrated systems. Technical Report 3, DEC
Systems Research Center, 1985.

[Rov85] Paul Rovner. On adding garbage collection and runtime types to
a strongly-typed, statically checked, concurrent language. Tech-
nical Report CSL-84-7, Xerox Palo Alto Research Center, 1985.

[Rug87] Christina Ruggieri. Dynamic Memory Allocation Techniques
Based on the Lifetimes of Objects. PhD thesis, Purdue University,
August 1987.

108

[Sch75] J. T. Schwartz. Optimization of very high level languages—I.
Value transmission and its corollaries. Journal of Computer Lan-
guages, 1:161–194, 1975.

[Sch76] Jacob T. Schwartz. A coarser, but simpler and considerably
more efficient copy optimization technique. SETL Newsletter 176,
Courant Inst. of Mathematical Sciences, New York Univ., August
1976.

[SCN84] W. R. Stoye, T. J. W. Clarke, and A. C. Norman. Some practical
methods for rapid combinator reduction. In SIGPLAN Sympo-
sium on LISP and Functional Programming, pages 159–166, 1984.

[SS76] Guy Lewis Steele Jr. and Gerald Jay Sussman. LAMBDA: The
ultimate imperative. AI Memo 353, Massachusetts Institute of
Technology, 1976.

[Ste77a] Guy L. Steele Jr. Debunking the “expensive procedure call”
myth or, procedure call implementations considered harmful, or
LAMBDA: The ultimate GOTO. In ACM National Conference,
pages 153–162, 1977.

[Ste77b] Guy L. Steele Jr. Fast arithmetic in MacLISP. In Proceedings of
the 1977 MACSYMA Users’ Conference, pages 215–224, 1977.

[Ste78] Guy L. Steele Jr. RABBIT: A compiler for SCHEME. Technical
report, Massachusetts Institute of Technology, May 1978.

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[Tar74] Robert E. Tarjan. Testing flow graph reducibility. Journal of
Computer and System Sciences, 9:355–365, 1974.

[Ung84] David Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 157–167,
1984.

109

[Wir83] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, sec-
ond edition, 1983.

[Wod71] P. L. Wodon. Methods of garbage collection for ALGOL 68. In
J. E. L. Peck, editor, ALGOL 68 Implementation, pages 245–262.
Elsevier North-Holland, 1971.

[Zel83] Polle T. Zellweger. An interactive high-level debugger for control-
flow optimized programs. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on High-
Level Debugging, pages 159–171, 1983.

110

	Introduction
	Intended application
	Organization

	Background
	Garbage collection
	Basic algorithms
	Important characteristics

	Data-flow analysis
	Control flow
	Local analysis
	Global analysis

	Optimizations
	Register allocation
	Redundant expression elimination
	Loop reduction in strength
	Loop invariant code motion
	Dead code elimination
	Procedure linkage conventions and tailoring

	Interference
	Setting
	Interference
	Register allocation
	Redundant expression elimination, loop invariant code motion, and reduction in strength
	Dead code elimination

	Coping with interference in the collector
	Identifying pointers to objects
	Discovering targets of offset pointers

	Coping with interference in the compiler
	Adapting existing algorithms

	Allocation optimization and analysis
	Non-heap allocation
	Activation records
	Numbers
	Variables

	Overwriting allocation
	Assisting the garbage collector
	SETL
	Overwriting in SETL
	Stack allocation in SETL
	Area allocation in SETL
	Later work

	Discussion

	Improved containment analysis
	Storage containment relationships
	Using the SCG
	Constructing an SCG for a language with value-assignment semantics
	Detailed description
	Uniqueness of resulting SCG
	Correcting for overwriting update
	Coping with incomplete information

	What's really happening
	Containment-preserving unions
	Properties of storage containment graphs

	Accounting for side-effects
	First approach
	Second approach

	Comparison with SETL and Lisp analyses
	Complexity of constructing SCG for a value language
	Update Graph
	Shrinking the update graph
	Processing the update graph

	Dealing with procedure calls
	Shortcomings
	Related work

	Improved allocation optimizations
	Problems with interval-based stack allocation
	An improved method
	Short allocations
	Long allocations
	Nested Loops
	Procedure calls

	Conclusions
	Contributions
	Future Research

