
Jalangi: A Selective Record-Replay and Dynamic Analysis
Framework for JavaScript

Koushik Sen
∗

EECS Department
UC Berkeley, CA, USA.

ksen@cs.berkeley.edu

Tasneem Brutch, Simon Gibbs, and
Swaroop Kalasapur

Samsung Research America
75 West Plumeria Drive, San Jose, CA, USA
{t.brutch,s.gibbs,s.kalasapur}@sisa.samsung.com

ABSTRACT
JavaScript is widely used for writing client-side web applica-
tions and is getting increasingly popular for writing mobile
applications. However, unlike C, C++, and Java, there are
not that many tools available for analysis and testing of
JavaScript applications. In this paper, we present a simple
yet powerful framework, called Jalangi, for writing heavy-
weight dynamic analyses. Our framework incorporates two
key techniques: 1) selective record-replay, a technique which
enables to record and to faithfully replay a user-selected part
of the program, and 2) shadow values and shadow execu-
tion, which enables easy implementation of heavy-weight
dynamic analyses. Our implementation makes no special
assumption about JavaScript, which makes it applicable to
real-world JavaScript programs running on multiple plat-
forms. We have implemented concolic testing, an analysis
to track origins of nulls and undefined, and a simple form
of taint analysis in Jalangi. Our evaluation of Jalangi on
the SunSpider benchmark suite and on five web applications
shows that Jalangi has an average slowdown of 26X dur-
ing recording and 30X slowdown during replay and analysis.
The slowdowns are comparable with slowdowns reported for
similar tools, such as PIN and Valgrind for x86 binaries. We
believe that the techniques proposed in this paper are ap-
plicable to other dynamic languages.

1. INTRODUCTION
JavaScript is the most popular programming language for

client-side web programming. Advances in browser tech-
nologies and JavaScript engines in the recent years have
fueled the use of JavaScript in Rich Internet Applications,
and several mobile platforms including Android, iOS, Ti-
zen, Windows8, Blackberry, support applications written in
HTML5/JavaScript. A key reason behind the popularity of
JavaScript programs is that the are portable. Once written,

∗The work of this author was supported in full by Samsung
Research America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Under Submission Do Not Distribute
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

JavaScript based applications can be executed on any plat-
form that has a web browser with JavaScript support, which
is quite common in modern day devices. JavaScript being a
dynamic language, also attracts developers through its flex-
ible features that do not require explicit memory manage-
ment, static typing and compilation. With a renewed inter-
est in JavaScript, many complex applications such as google
docs, gmail, and a variety of games are being developed
using HTML5/JavaScript. However, unlike C/C++, Java
and C#, JavaScript is significantly shorthanded in the tools
landscape. The dynamic and reflective nature of JavaScript
makes it hard to analyze it statically [25, 31, 23].

In this paper, we present a dynamic analysis framework,
called Jalangi, for Javacript. The framework provides a
few useful abstractions and an API that significantly sim-
plifies implementation of dynamic analyses for JavaScript.
The framework works through source code instrumentation
and allows implementation of various heavy-weight dynamic
analyses techniques. Jalangi incorporates two ideas:

1. Selective record-replay, a technique which enables to
record and to faithfully replay a user-selected part of
the program. For example, if a JavaScript applica-
tion, uses several third-party modules, such as jQuery,
Box2DJS, along with an application specific library
called myapp.js, our framework enables us to only
record and replay the behavior of myapp.js.

2. Shadow values, which enables us to associate a shadow
value with any value used in the program. A shadow
value can contain useful information about the actual
value (e.g. taint information or symbolic representa-
tion of the actual value). The framework supports
shadow execution on shadow values, a technique in
which an analysis can update the shadow values and
analysis state, on each operation performed by the ac-
tual execution. For example, a shadow execution can
perform symbolic execution or dynamic taint propaga-
tion.

There are a few constraints which dictated the design of
the above techniques in Jalangi.

1. We wanted to design a framework that is independent
of browsers and JavaScript engines. Such a design en-
ables us to design dynamic analyses that are not tied
to a particular JavaScript engine. Independence from
browsers and JavaScript engines also enables us to eas-
ily maintain our framework in the face of rapidly evolv-
ing browser landscape—we do not need to upgrade or

rebuild our framework whenever there is an update of
the underlying browser. We achieve browser indepen-
dence through selective source instrumentation. An at-
tractive feature of Jalangi is that it can operate even
if certain source files are not instrumented.

2. We wanted a framework where dynamic analysis of
an actual execution on a browser (e.g. a mobile
browser) can be performed on a desktop or a cloud
machine. This is important when we want to per-
form a heavy-weight analysis, such as symbolic exe-
cution. A heavy-weight analysis is often impossible
to perform on a resource constrained mobile browser.
Moreover an analysis that requires access to various
system resources, such as file system, cannot be im-
plemented in a browser without significantly modify-
ing the browser. We address this design constraint
through a two-phase analysis framework. In the first
phase, an instrumented JavaScript application is exe-
cuted and recorded on a user selected platform (e.g.
mobile chrome running on Android). In the second
phase, the recorded data is utilized to perform a user
specified dynamic analysis on a desktop environment.

3. A dynamic analyses framework should allow easy im-
plementation of a dynamic analysis. Previous re-
search [28, 18, 7, 5, 19] and our experience with con-
colic testing [12, 27] and race detection techniques have
shown that support for shadow values and shadow ex-
ecution could significantly simplify implementation of
dynamic analyses techniques. A straight-forward way
to implement shadow value would be to replace any
value, say val, used in a JavaScript execution by an ob-
ject, called annotated value, {actual: val, shadow:

"tainted"}, where the field actual stores the actual
value and the field shadow can store necessary infor-
mation about val. To accomodate such replacements,
we modify every operation (e.g. +, *, field access)
performed by the JavaScript execution because every
value, whether primitive or not, could now be wrapped
by an object. The modified operations first retrieve the
actual values from the annotated values representing
the operands of the operation and then perform the
operation on the actual values to compute the result
of the operation. This simple implementation would
work if we can modify every operation performed by
a JavaScript engine. Unfortunately, Jalangi instru-
ments only user-specified code. Moreover, Jalangi
cannot instrument native code. Therefore, if we call
array.pop(), where array is an annotated value and
pop is a native function, we will get an exception.
Jalangi alleviates this problem by using the selective
record-replay engine: it only records the execution of
the instrumented code and replays the instrumented
code. Any code that is not and can not be instru-
mented, including native code, is not executed dur-
ing the replay phase. Since Jalangi supports shadow
values and shadow execution during the replay phase,
it will never execute un-instrumented code on anno-
tated values. Thus, Jalangi’s record-replay technique
is necessary for correct support of shadow values and
shadow execution.

In Jalangi, we have implemented three existing dynamic
analyses:

• Concolic Testing [12, 27]: concolic testing performs
symbolic execution along a concrete execution path,
generates a logical formula denoting a constraint on
the input values, and solves a constraint to gener-
ate new test inputs that would execute the program
along previously unexplored paths. Our implementa-
tion of concolic testing supports constraints over in-
tegral, string, and object types and novel type con-
straints.

• Tracking origins of null and undefined [5]: this anal-
ysis records source code locations where null and un-
defined values come into existence and reports them if
they cause an error. Whenever there is an error due to
such literals, such as accessing the field of a null value,
the shadow value of the literal is reported to the user.

• Dynamic taint analysis [19, 8]: A dynamic taint analy-
sis is a form of information flow analysis which checks
if information can flow from a specific set of memory
locations, called sources, to another set of memory lo-
cations, called sinks. We have implemented a simple
form of dynamic taint analysis in Jalangi.

We evaluated Jalangi on the CPU-intensive SunSpider
benchmark suite and on several user-interaction rich web
applications. Our evaluation results show that Jalangi has
an average overhead of 26X during recording and 30X during
replay. This is better than PinPlay [20] by a factor of 2X-3X
and slower that Valgrind [18]. We also found that existing
dynamic analyses could easily be implemented in Jalangi.
We expect to make Jalangi open-source by the end of April
2013.

2. TECHNICAL DETAILS
To simplify exposition of our techniques (and to avoid ex-

planation of the nuances of JavaScript), we use a simple
JavaScript-like imperative language. The syntax of this lan-
guage is shown below.

v, v1, v2, v3, . . . are variable identifiers
f, f1, f2, . . . are field identifiers
p, p1, p2, . . . are function parameter identifiers

op are operators such as +, -, *, ...
Pgrm ::= (` : Stmt)∗

Stmt ::= var v
v = c
v1 = v2 op v3
v1 = op v2
v1 = call(v2, v3, v4, . . .)
if v goto `
return v
v1 = v2[v3]
v1[v2] = v3
function v1(p1, . . .){(` : Stmt)∗} function definition

c ::= number
string
undefined
null
true
false
{f1: v1, . . .} object literal
[v1, . . .] array literal
function v1(p1, . . .){(` : Stmt)∗} function literal

A program in this language is a sequence of labeled state-
ments. The statements in the language are in three-address

code. if v goto ` is the only statement that allows condi-
tional jump to an arbitrary statement. A compiler frame-
work can be used to convert more complex statements of
JavaScript into statements of this language by introduc-
ing temporary variables and by adding additional state-
ment labels. For example, control-flow statements, such as
while, for, can be converted into a sequence of statements
in this language using if v goto `. We use the statement
v1 = call(v2, v3, v4, . . .) to represent function, method, and
constructor calls, where v2 denotes the function that is be-
ing called, v3 denotes the this object inside the function,
and v4, . . . denote the arguments passed to the function. We
use v1[v2] to denote both access to an element of an array
and access to a field of an object.

2.1 Selective Record-Replay
We assume that the user of Jalangi selects a subset of

the JavaScript source in a web application for record-replay.
Jalangi instruments the user-selected source for record-
replay. During the recording phase, the application is exe-
cuted with the instrumented files on a platform of the user’s
choice (e.g. a mobile browser or a node.js interpreter). Dur-
ing recording, the entire application is executed, i.e. all in-
strumented and un-instrumented JavaScript files and native
codes get executed. During the replay phase, Jalangi only
replays the execution of the instrumented sections. This
asymmetry of execution in the two phases has two key ad-
vantages:

1. One could record an execution of a JavaScript applica-
tion on an actual platform (e.g. a mobile browser) and
then replay the execution for the purpose of debugging
on a desktop JavaScript engine, such as node.js or a
JavaScript engine embedded in an IDE. The replay
does not require access to any browser-specific native
JavaScript libraries such as libraries for manipulating
the DOM.

2. During replay, since we avoid the execution un-
instrumented code and native code, we can easily
implement various dynamic analysis that depend on
shadow values and shadow executions.

For gradual introduction of Jalangi, we first describe an
unoptimized record-replay technique. Then we show how we
optimize the technique.

2.1.1 Unoptimized Record-Replay
A trivial way to perform faithful record-replay of an exe-

cution is to record every value loaded from memory during
an execution and use those values for corresponding memory
loads in the replay phase. This approach has two challenges:
1) How do we record values of objects and functions? 2)
How do we replay an execution when an un-instrumented
function or a native function, such as the JavaScript event
dispatcher, calls an instrumented function? Note that we
do not allow the execution of un-instrumented and native
functions during the replay phase. Therefore, we need an
alternative mechanism to execute instrumented functions
that are being invoked by un-instrumented functions dur-
ing recording. We address the first challenge by associating
a unique numerical identifier with every object and function
and by recording the value of those unique identifiers. We
address the second challenge by explicitly recording and call-

ing instrumented functions that are being invoked from un-
instrumented functions or are dispatched by the JavaScript
event dispatcher.

We next describe the unoptimized record-replay technique
in detail. Figure 1 shows the rules that Jalangi uses to in-
strument the user-selected JavaScript files. The instrumen-
tation does not change the behavior of the actual execution.
The instrumentation performs the following three transfor-
mations:

• If a local or global variable v or a field of an ob-
ject v1[v2] is loaded in a statement, we first call
v = sync(v1) or v1[v2] = sync(v1[v2]), respectively,
before the actual load. In the recording phase, the
function sync records the value stored in the mem-
ory. In the replay phase, sync returns the value cap-
tured during the recording phase. This ensures that in
the replay phase, Jalangi gets the exact value that is
loaded during the recording phase.

• We replace call(v2, v3, v4, . . .) by
sync(instrCall(v2, v3, v4, . . .)). During the replay
phase, function instrCall invokes call(v2, v3, v4, . . .)
if function v2 is instrumented. Otherwise, it explicitly
calls any instrumented function that is invoked while
executing the un-instrumented or native function
v2. We use the function replay defined in Figure 2
to call instrumented functions whose callers are not
instrumented.

• We insert the statement enter(v1) as the first state-
ment of any instrumented function with name, say v1.
In the recording phase, enter(v1) records the value of
the function v1. In the replay phase, instrCall in-
vokes the recorded function if the function is called
from a un-instrumented or native function.

Figure 2 defines the functions sync, instrCall, and
enter, which are inserted by Jalangi instrumentation. The
library maintains an array trace of the recorded values
along with their types. trace[i] stores the value of the
ith memory load. The array is initialized and populated
during the recording phase and is used in the replay phase.
At the end of recording, trace is serialized to the filesystem
in JSON format. During replay, the serialized file is used to
initialize trace.

Function sync is defined as described before. Jalangi
uses the flag recording to indicate if an execution is meant
for recording or replay. For a recording execution, sync

appends the value loaded from a memory to the trace. If
the value of v in sync is restricted to primitive types (i.e.
number, string, boolean, undefined, or null), we can simply
do trace[i] = v. However, type of v could be an object
or a function. To handle objects and functions, sync calls
trace[i] = getRecord(v), where getRecord(v) returns an
object whose type field is set to the type of v and val is set
to v if v is of primitive type. If type of v is non-null object or
function, then we use the unique numerical id of the object
or function as its value to be recorded. The unique numerical
id of a non-null object or function is stored in its hidden field
id. If the object or function has no unique id, getRecord
creates and assigns a unique numerical id to the object or
function.

In a replay execution, sync could simply return trace[i],
if the value of v in sync is restricted to primitive types.

var v =⇒ var v

v = c =⇒ v = sync(c)

v1 = v2 op v3 =⇒ v2 = sync(v2)
v3 = sync(v3)
v1 = v2 op v3

v1 = op v2 =⇒ v2 = sync(v2)
v1 = op v2

if v goto ` =⇒ v = sync(v)
if v goto `

return v =⇒ v = sync(v)
return v

v1 = v2[v3] =⇒ v2 = sync(v2)
v3 = sync(v3)
v2[v3] = sync(v2[v3])
v1 = v2[v3]

v1[v2] = v3 =⇒ v1 = sync(v1)
v2 = sync(v2)
v3 = sync(v3)
v1[v2] = v3

v1 = call(v2, v3, v4, . . .) =⇒ v2 = sync(v2)
v3 = sync(v3)
v4 = sync(v4)

.

.

.
v1 = sync(

instrCall(v2, v3, v4, . . .))

{f1: v1, . . .} =⇒ {f1: v1 = sync(v1), . . .}

[v1, . . .] =⇒ [v1 = sync(v1), . . .]

function v1(p1, . . .){ =⇒ function v1(p1, . . .){
(` : Stmt)∗ enter(v1)
} (` : Stmt)∗

}

Figure 1: Instrumentation for Unoptimized Record-Replay

Since type of v could be object or function, trace[i].type
records the type of v and trace[i].val stores the value or
unique id of v if v is of primitive type or object/function
type, respectively. If the type of v is non-null object or
function, we need to return the object or function that has
the unique id recorded in trace[i].val. sync calls syn-

cRecord(rec, v) to achieve this. syncRecord maintains a
map, objectMap, from unique identifiers to object/functions.
If syncRecord discovers that the recorded unique id maps to
an object/function in the objectMap, it returns that object/-
function. Otherwise, if syncRecord finds that the recorded
unique identifier has no map in the objectMap, syncRecord
does the following:

• If v is a fresh object/function (i.e. which has not
been assigned an unique id in the current execution),
syncRecord assigns the recorded unique id rec.val to
the object v and updates objectMap to remember this
mapping. syncRecord returns the object v.

• Otherwise, syncRecord has encountered an undefined
value or a stale value. Therefore, syncRecord creates
a mock empty object/function, assigns the recorded id
to that object, updates the objectMap, and returns the
mock object/function.

The function replay plays an important role in the re-

// p e r s i s t t r a c e a f t e r r e c o r d i n g
// du r i n g r e p l a y i n i t i a l i z e t r a c e
// from p e r s i s t e d t r a c e
var t r a c e = [] ;
var i = 0 , id = 0 , objectMap = [] ;

function getRecord (v) {
if (v !== null && (typeof v === ’ o b j e c t ’ | |

typeof v === ’ f u n c t i o n ’)){
if (! v [”∗ i d ∗ ”]) v [”∗ i d ∗ ”] = ++id ;
return { type : typeof v , va l : v [”∗ i d ∗ ”]}

} else {
return { type : typeof v , va l : v } ;

}
}

function syncRecord (rec , v) {
var r e s u l t = rec . va l
if (r ec . va l !==null && (rec . type=== ’ o b j e c t ’ | |

r ec . type === ’ f u n c t i o n ’)){
if (objectMap [r ec . va l])

r e s u l t = objectMap [r ec . va l] ;
else {
if (typeof v !== rec . type | | v [”∗ i d ∗ ”])
v = (rec . type=== ’ o b j e c t ’) ?{} : function (){}

v [”∗ i d ∗ ”] = rec . va l ;
objectMap [r ec . va l] = v ;
r e s u l t = v ;
}

}
return r e s u l t

}

function sync(v) {
i = i + 1 ;
if (r e co rd ing) {

t r a c e [i] = getRecord (v) ;
return v ;

} else {
return syncRecord (t r a c e [i] , v) ;

}
}

function enter(v) {
i = i + 1 ;
if (r e co rd ing) {

t r a c e [i] = getRecord (v)
t r a c e [i] . i sFunCal l = true

}
}

function instrCall(f , o , a1 , . . . , an) {
if (r e co rd ing | | i s Ins t rumented (f))

return call(f , o , a1 , . . . , an)
else

return r ep lay ()
}

function r ep lay () {
while (t r a c e [i +1] . i sFunCal l) {

var f = syncRecord (t r a c e [i +1] , undef ined)
f ()

}
return undef ined

}

Figure 2: Unoptimized Record-Replay Library

play phase. It ensures that any instrumented function that
got invoked from an un-instrumented or native function, is
called by Jalangi explicitly. The replay function is de-
pendent on the enter function inserted at the beginning of
every instrumented function. enter records the value of the
function that is currently being executed. It also sets the
field isFunCall of the record appended to trace to true. A
true value of trace[i].isFunCall indicates the record ap-
pended to trace corresponds to the invocation of the func-

tion denoted by trace[i].val. Now let us see how this
record is used in the replay phase. Jalangi calls instrCall
in place of any call statement in the code. instrCall, in
turn, invokes call if Jalangi is in the recording phase, or
during replay phase when function f is instrumented. This
ensures that Jalangi executes any function, whether instru-
mented or un-instrumented, normally during the recording
phase, and that Jalangi only executes instrumented func-
tions normally during the replay phase. If the function f

inside instrCall is un-instrumented, then there is a possi-
bility that f could have called some instrumented function
in the recording phase. In order to replay the execution of
those instrumented functions, Jalangi calls replay. re-

play first computes the function object by looking at the
next record in the trace and then invokes it if isFunCall is
true. The invocation does not pass any argument because
Jalangi has no record of the arguments being passed to the
function. The arguments get synced inside the function as
they are being read inside the function.

Jalangi starts the replay phase by calling the replay

function instead of calling the entry function of the applica-
tion.

2.1.2 Optimized Record-Replay
In the optimized record-replay mechanism, we avoid

recording of every load of memory. This is based on the
observation that if we can compute the value of a memory
load during the replay phase by solely executing the instru-
mented code, then we do not need to record the value of the
load.

In order to determine if the value of a memory load needs
to be recorded, Jalangi maintains a shadow memory dur-
ing the recording phase. The shadow memory is updated
along with the actual memory during the execution of in-
strumented code. Execution of un-instrumented and na-
tive code does not update the shadow memory. During the
load of memory in the recording phase, if Jalangi finds
any difference between the value of the actual memory be-
ing loaded and the value stored in the corresponding shadow
memory, Jalangi records the value of such memory loads.
This ensures that correct values are available during the re-
play phase.

Figure 3 shows the instrumentation that Jalangi per-
forms for optimized record-replay. Jalangi introduces a
shadow variable v′ for every local and global variable v.
Jalangi introduces a local variable p′ for every formal pa-
rameter p of an instrumented function. Similarly, for every
field f of every object, Jalangi introduces a shadow field
f ′. Note that if v1[v2] denotes access of the field denoted by
the string stored in v2, then v1[v2 + “′”] denotes the access
of the corresponding shadow field.

During the recording phase, Jalangi keeps the actual
memory and shadow memory in sync as much as possible.
Note that a field of an object may not be in sync with the
corresponding shadow field if the field gets updated in na-
tive or un-instrumented code. Whenever a variable or a field
of an object is updated, Jalangi adds instrumentation to
update the corresponding shadow variable or shadow field
of the object. For example, v1 = v2[v3] gets modified to
v1′ = v1 = v2[v3].

Function sync in optimized record-replay now takes two
arguments: the value loaded from the actual memory and
the value present in the corresponding shadow memory. (If

var v =⇒ var v′

var v

v = c =⇒ v′ = v = sync(c)

v1 = v2 op v3 =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1′ = v1 = v2 op v3

v1 = op v2 =⇒ v2′ = v2 = sync(v2, v2′)
v1′ = v1 = op v2

if v goto ` =⇒ v′ = v = sync(v, v′)
if v goto `

return v =⇒ v′ = v = sync(v, v′)
return v

v1 = v2[v3] =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v2[v3 + “′”] = v2[v3] =

sync(v2[v3], v2[v3 + “′”])
v1′ = v1 = v2[v3]

v1[v2] = v3 =⇒ v1′ = v1 = sync(v1, v1′)
v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1[v2 + “′”] = v1[v2] = v3

v1 = call(v2, v3, v4, . . .) =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v4′ = v4 = sync(v4, v4′)

.

.

.
v1′ = v1 = sync(

instrCall(v2, v3, v4, . . .))

{f1: v1, . . .} =⇒ {f1: v1′ = v1 =
sync(v1, v1′), . . .}

[v1, . . .] =⇒ [v1′ = v1 = sync(v1, v1′), . . .]

function v1(p1, . . .){ =⇒ function v1(p1, . . .){
(` : Stmt)∗ enter(v1)
} var p1′

.

.

.
(` : Stmt)∗

}

Figure 3: Instrumentation for Optimized Record-Replay.
sync(c) is equivalent to sync(c, undefined).

function sync(v1 , v2) {
i = i + 1 ;
if (r e co rd ing) {

if (v1 !== v2)
t r a c e [i] = getRecord (v1) ;

return v1 ;
} else {

if (t r a c e [i])
return syncRecord (t r a c e [i] , v1) ;

else
return v1 ;

}
}

Figure 4: Updated sync for Optimized Record-Replay

the second argument of sync is not provided, then we as-
sume that the second argument is undefined.) If these two
values are different, then in the recording phase, Jalangi
records the value and the type of the value in the sparse
array trace as before. Otherwise, Jalangi skips recording,

function AnnotatedValue (actua l , shadow) {
t h i s . a c tua l = ac tua l ;
t h i s . shadow = shadow ;

}

function a(v) {
if (v i n s t a n c e o f AnnotatedValue)

return v . ac tua l
return v

}

function s(v) {
if (v i n s t a n c e o f AnnotatedValue)

return v . shadow
return undef ined

}

Figure 5: Annotated Value

i.e. keeps the entry trace[i] undefined. The definition of
this modified sync is given in Figure 4. In the recording
phase, if trace[i] is undefined inside a call of sync, then
sync returns the value present in the actual memory. Other-
wise, as in the unoptimized record-replay, Jalangi returns
the value recorded in the trace.

The addition of shadow memory and the modification of
the sync function significantly reduces the amount of data
that needs to be recorded during the recording phase. Our
evaluation section illustrates this fact. Note that one can
argue that there is no need to maintain shadow memory
for local variables, because the values of local variables will
be same as the value of corresponding shadow variables in-
side instrumented functions. This is not true for JavaScript
because a call to eval could change local variables. More-
over, this is not true for formal parameters of a function
because each formal parameter of a function is aliased with
an element of the array-like object arguments. One could
perform a simple static analysis to identify the instrumented
functions where local variables can be modified due to a call
to eval or due to an access to arguments. Our current im-
plementation does not incorporate this optimization.

2.2 Shadow Values and Shadow Execution
Jalangi enables a robust framework for writing dynamic

program analyses through shadow values and shadow exe-
cution. A user-defined shadow execution can be performed
by Jalangi during the replay phase. Jalangi only per-
forms shadow execution of instrumented code: without in-
strumentation, Jalangi cannot analyze the behavior of un-
instrumented or native code.

In shadow execution, Jalangi allows the replacement of
any value used in the execution by an annotated value. The
annotated value can carry extra information about the ac-
tual value. For example, an annotated value can carry taint
information in a taint analysis or a symbolic expression de-
scribing the actual value in symbolic execution. In Jalangi,
we denote an annotated value using an object of type An-

notatedValue defined in Figure 5. An object of type Anno-

tatedValue has two fields: the field actual stores the actual
value and the field shadow stores the shadow value, i.e. ex-
tra information about the actual value. A value, say v, in
JavaScript can be associated with shadow value, say s, by
simply replacing v by new AnnotatedValue(v, s). The pro-
jection function a(v) returns the actual value of v, if v is an

var v =⇒ var v′

var v
if(anlys && anlys.literal)

v = anlys.literal(undefined)

v = c =⇒ v′ = v = sync(c)
if(anlys && anlys.literal)

v = anlys.literal(c)

v1 = v2 op v3 =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
v1′ = v1 = a(v2) op a(v3)
if(anlys && anlys.binary)

v1 = anlys.binary(op, v2, v3, v1)

v1 = op v2 =⇒ v2′ = v2 = sync(v2, v2′)
v1′ = v1 = op a(v2)
if(anlys && anlys.unary)

v1 = anlys.unary(op, v2, v1)

if v goto ` =⇒ v′ = v = sync(v, v′)
if(anlys && anlys.conditional)

anlys.conditional(v)

if a(v) goto `

return v =⇒ v′ = v = sync(v, v′)
return v

v1 = v2[v3] =⇒ v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
a(v2)[a(v3) + “′”] = a(v2)[a(v3)] =
sync(a(v2)[a(v3)], a(v2)[a(v3) + “′”])

v1′ = v1 = a(v2)[a(v3)]
if(anlys && anlys.getField)

v1 = anlys.getField(v2, v3, v1)

v1[v2] = v3 =⇒ v1′ = v1 = sync(v1, v1′)
v2′ = v2 = sync(v2, v2′)
v3′ = v3 = sync(v3, v3′)
a(v1)[a(v2) + “′”] = a(v1)[a(v2)] = v3
if(anlys && anlys.putField)

a(v1)[a(v2)] =
anlys.putField(v1, v2, v3)

v1 = =⇒ v2′ = v2 = sync(v2, v2′)
call(v2, v3, v4, . . .) v3′ = v3 = sync(v3, v3′)

v4′ = v4 = sync(v4, v4′)

.

.

.
v1′ = v1 = sync(

instrCall(a(v2), v3, v4, . . .))
if(anlys && anlys.call)

v1 = anlys.call(v2, v3, v4, . . . , v1)

{f1: v1, . . .} =⇒ {f1: v1′ = v1 =
sync(v1, v1′), . . .}

[v1, . . .] =⇒ [v1′ = v1 = sync(v1, v1′), . . .]

function v1(p1, . . .){ =⇒ function v1(p1, . . .){
(` : Stmt)∗ enter(v1)
} var p1′

.

.

.
(` : Stmt)∗

}

Figure 6: Instrumentation for Optimized Record-Replay
and Shadow Execution

annotated value and returns v otherwise. Similarly, the pro-
jection function s(v) returns the shadow value associated
with v if v is an annotated value and returns undefined

otherwise.
If a JavaScript value is replaced by a user-defined anno-

function syncRecord (rec , tv) {
M: var v = a(tv) , r e s u l t = rec . va l

if (r e c . va l !==null && (rec . type===’ o b j e c t ’ | |
r e c . type === ’ f u n c t i o n ’)){

if (objectMap [r ec . va l])
r e s u l t = objectMap [r e c . va l] ;

else {
if (typeof v !== rec . type | | v [”∗ i d ∗ ”])

v = (rec . type===’ o b j e c t ’) ?{} : function (){}
v [”∗ i d ∗ ”] = rec . va l ;
objectMap [r ec . va l] = v ;
r e s u l t = v ;
}

}
M: if (a(tv) === r e s u l t)
M: r e s u l t = tv

return r e s u l t
}

Figure 7: Updated syncRecord for Shadow Execution.
Modified lines are labeled with M:

tated value during an analysis, the built-in JavaScript oper-
ations will fail. For example, if we replace the number value
53 by the annotated value new AnnotatedValue(53, null),
then addition of this value with another number, say 31,
would result in NaN instead of 84. To avoid such situa-
tions, we instrument code so that Jalangi performs the
built-in JavaScript operations on the actual values instead
of the annotated values. For example, v1 op v2 is re-
placed by a(v1) op a(v2). Similarly, v1[v2] is replaced by
a(v1)[a(v2)]. The instrumentation inserted by Jalangi to
perform shadow execution with shadow values along with
optimized record-replay is shown in Figure 6.

The instrumentation assumes that the global variable
anlys could point to an user-defined analysis object dur-
ing the replay phase. After the execution of a JavaScript
statement, the corresponding method in the anlys object
is called to perform a user-specific analysis. For example,
consider the statement v1 = v2 op v3. After the execu-
tion of this statement in the replay phase, Jalangi calls
the v1 = anlys.binary(op, v2, v3, v1) to perform an analysis
specific function for the binary operation op. For example,
if v2 is the number 53 and v3 is the annotated value new

AnnotatedValue(31,“tainted”), then after the execution of
the actual statement v1 will be 84 and then execution of
v1 = anlys.binary(op, v2, v3, v1) could store new Annotat-

edValue(84,“tainted”) in v1 to represent the fact if one of the
operands of a binary operation is tainted, then the result of
the operation is also tainted. Following is another example
in the context of symbolic execution. If v2 is the anno-
tated value new AnnotatedValue(1, ”2x1 + 1”) and v3 is the
annotated value new AnnotatedValue(3, ”x2−x1”), then af-
ter the execution of v1 = anlys.binary(+, v2, v3, v1), where
anlys performs symbolic execution, v1 will be the annotated

value new AnnotatedValue(4, ”x1 + x2”). Note that in the
symbolic execution, the symbolic expression corresponding
to a concrete value is represented as a string in the shadow
value.

2.3 Example Analysis: Tracking Origin of
null and undefined Values

In Figure 8 we describe a simple dynamic analysis using
the shadow execution framework for Jalangi. The analy-

an lys = {
l i t e r a l : function (c) {

if (c === null | | c === undef ined) {
return new AnnotatedValue (c , getLocat ion ())

}
} ,

g e t F i e l d : function (v1 , v2 , r) {
if (r === null | | r === undef ined){

return new AnnotatedValue (r , getLocat ion ())
}

} ,

c a l l : function (f , o , a1 , . . . , an , r) {
if (r === null | | r === undef ined){

return new AnnotatedValue (r , getLocat ion ())
}

}
}

Figure 8: Tracking Origins of undefined and null

sis tracks the origin of null and undefined in a JavaScript
execution. If during an execution, access is made to the
field of a null or undefined value, or if an invocation of a
value which is null or undefined is encountered, the anal-
ysis could report the line number of code where the null or
undefined value originated.

The analysis creates an object anlys, where we define
the methods literal, getField, and call. The operations
corresponding to these methods could create null and un-

defined values. Therefore, if the value returned by any of
these operations is null or undefined, we annotate the re-
turn value with the location information. getLocation()

returns the line number in the original code where the in-
strumentation was inserted by Jalangi.

The above example shows how one could implement a
dynamic analyses using Jalangi. In our framework, we have
implemented full concolic testing and taint analysis using
shadow execution. We believe that many other dynamic
analyses could be implemented easily using Jalangi.

3. EXAMPLE
Consider the example JavaScript program in Figure 9. Let

us assume that the entire program is instrumented except
the body of the function foo. The trace generated by an
execution of the program in a browser is also shown in the
Figure. Note that during the recording phase, we create an
unique identifier for each of the objects accessed inside the
body of the program. The object document is available in
the browser, but the object never got created in the body
of the program. During the replay, a mock object is created
for document and document[“*id*”] is set to 2, an identifier
obtained from the recorded trace. document.URL is set to
"http://127.0.0.1/index.html", a string value obtained
from the trace. During the recording phase, mydoc gets set
to document inside un-instrumented code. Therefore, after
the execution of foo, mydoc will contain the object docu-
ment and the shadow variable mydoc’ will still be undefined.
Jalangi will, therefore, record the value of mydoc, when it
is returned from myload. During the replay, Jalangi will
sync the value of mydoc, which it will discover in objectMap.
The value of mydoc will be set to the mock object with id 2
created during the replay. Thus the replay phase will faith-

// un−i n s t r umen t ed
function f oo () {

mydoc = document ;
}
// to be i n s t r umen t ed
var mydoc ;

function myapp () {
document . onload = function myload () {

var ur l = document .URL;
foo () ;
return mydoc ;

}
} () ;

t r a c e = [
// sync f u n c t i o n l i t e r a l myapp and
// s e t myapp [”∗ i d ∗ ”] = 1

{ type : ” f u n c t i o n ” , va l : 1} ,
// r e c o r d e n t e r (myapp)

{ type : ” f u n c t i o n ” , va l : 1 , i sFunCal l : true } ,
// sync l o ad o f document and
// s e t document [”∗ i d ∗ ”] = 2

{ type : ” o b j e c t ” , va l : 2} ,
// sync f u n c t i o n l i t e r a l myload
// and s e t myload [”∗ i d ∗”]= 3

{ type : ” f u n c t i o n ” , va l : 3} ,
// r e c o r d e n t e r (myload)
// where myapp i s c a l l e d by the ev en t d i s p a t c h e r

{ type : ” f u n c t i o n ” , va l : 3 , i sFunCal l : true } ,
// sync g e tF i e l d , document [”URL”]

{ type : ” s t r i n g ” , va l : ”h t t p : / / 1 2 7 . 0 . 0 . 1 / i n d e x . h tm l ”} ,
// sync f u n c t i o n l i t e r a l f o o and
// s e t f o o [”∗ i d ∗”]= 4

{ type : ” f u n c t i o n ” , va l : 4} ,
// sync l o ad o f mydoc on r e t u r n

{ type : ” o b j e c t ” , va l : 2}
]

Figure 9: An example JavaScript program. Assume that
the function foo is not instrumented. Executing the pro-
gram on a browser generates the trace.

fully mimic the recorded execution even in a non-browser
environment.

4. IMPLEMENTATION
We have implemented Jalangi in JavaScript. The code

of this framework will be made open-source by the end of
April 2013. For instrumentation we use UglifyJS (https:
//github.com/mishoo/UglifyJS), which is a parsing library
for JavaScript written in JavaScript. In the actual imple-
mentation, we do not transform JavaScript into the three-
address code described in Section 2. Rather we modify the
AST in place by replacing each operation with an equivalent
function call.

Handling eval

Jalangi exposes the instrumentation library as a function
instrumentCode. This enables us also to dynamically in-
strument any code that is created and evaluated at run-
time. For example, we modify any call to eval(s) to
eval(instrumentCode(s)).

Handling Exceptions
Exceptions do not pose any particular challenge in Jalangi
except for uncaught exceptions being thrown from un-
instrumented code. We wrap every function within a try-
catch-finally block. In the catch block, we re-throw the ex-
ception. In the finally block, we call any analysis specific

code corresponding to the function call.
In optimized record-replay described in Figure 3, we

record any literal value, any value returned by a function
call, and any function value that is executed. This could
still result in large amount of record data. In our imple-
mentation, we avoid recording any literal value. We only
record the return value of a function, if the function is un-
instrumented or native. Similarly, we avoid recording a func-
tion value at the beginning of the execution of the function,
if the function is called from an instrumented function.

During recording phase, Jalangi generates a trace

array which contains all recorded values needed for re-
play. Jalangi serializes the trace array in JSON format.
Jalangi stores the serialized array in a file, or sends it to
a server for storage. Replay uses the serialized array stored
in the file to initialize the trace array. Replay can be per-
formed through an IDE or a stand-alone application (real-
ized with node.js for example). This enables us to perform
heavy-weight debugging or analysis of a recorded execution
outside a browser.

Concolic Testing
We have implemented con colic testing as an analysis in
Jalangi. We store the symbolic expression corresponding to
each concrete value in its shadow value. Concolic execution
takes place during the replay phase: the shadow execution
updates the shadow value of each value.

In our implementation of concolic testing, we handle linear
integer constraints and string constraints involving concate-
nation, length, and regular expression matching. We also
handle type constraints and a limited set of constraints over
pointers. For example, if the type of an input variable is
unknown, we infer the possible types of the variable by ob-
serving the operations performed on the variable.

Dynamic Taint Analysis
A dynamic taint analysis is a form information flow analysis
which checks if information can flow from a specific set of
memory locations, called sources, to another set of memory
locations, called sink. We have implemented a simple form
of dynamic taint analysis in Jalangi. In the analysis, we
treat read of any field of any object, which has not previ-
ously been written by the instrumented source, as a source
of taint. We treat any read of a memory location that could
change the control-flow of the program as a sink. We at-
tach taint information with the shadow value of an actual
value. Taint information is propagated by implementing the
various operations in the analysis. For example, if any of
the operands of an operation is tainted, then we return an
annotated value which is marked as tainted.

5. EVALUATION
We next report our results of evaluating Jalangi on sev-

eral benchmark programs. In our evaluation, we focussed
on four aspects: 1) ease of writing dynamic analyses, 2) fi-
delity and robustness of record-replay, and 3) performance
of Jalangi.

5.1 Ease of Writing Dynamic Analyses
We have written three dynamic analyses and a condition

coverage tool on top of Jalangi. The condition coverage
tool has 47 lines of JavaScript code, the origin tracker for null
and undefined has 61 lines of JavaScript code, taint analysis

has 68 lines of code, and concolic testing has 2225 lines of
code. In comparison, a concolic testing tool for Java with
lesser functionalities had more than 20,000 lines of code.
Even though number of lines of code is not a good measure
for the ease of writing a dynamic analysis, it provides a rough
estimate of the complexity of writing an analysis on top of
Jalangi. We believe that Jalangi’s support for shadow
values and shadow execution in the form of a simple anlys

API significantly reduces the barrier to implement various
dynamic analyses. An implementor of a dynamic analysis
need not worry about the quirks and nuances of JavaScript.
In future, we plan to enrich Jalangi with several other dy-
namic analyses.

5.2 Fidelity and Robustness
By fidelity, we mean the similarity between recording and

replay executions. By robustness, we mean the ability of
Jalangi to handle a program without introducing any errors
or exceptions of its own. To check fidelity of Jalangi, we
recoded all memory loads both in record and replay phases
and checked if the two sequences of loads are the same. We
also recorded the execution paths taken by both record and
replay phases and checked if they are the same. To check
robustness, we ran Jalangi on several real-world programs.

We managed to run Jalangi without any error on all pro-
grams that we considered for evaluation. This includes the
SunSpider benchmark suite for JavaScript and several web
apps developed for the Tizen OS. We list these benchmarks
in the next section. We also observed that the record and
the corresponding replay executions of these benchmarks in
Jalangi produced exactly the same sequence of memory
loads and followed exactly the same execution paths.

5.3 Performance of Jalangi

We performed record-replay on 26 programs in the
JavaScript SunSpider (http://www.webkit.org/perf/
sunspider/sunspider.html) benchmark suite and
on five web apps written for the Tizen OS using
HTML5/JavaScript (https://developer.tizen.org/
downloads/sample-web-applications). The web apps
include annex—a two-player strategy game, shopping
list—which uses local storage API of HTML5, scientific
calculator, go—a two-player strategy game, and tenframe—
a math-based three-game combo for kids. During the
replay phase of these benchmark programs, we ran three
dynamic analyses: no analysis (denoted by empty), tracking
origins of null and undefined (denoted by track), and a
taint analysis (denoted by taint). We report the overhead
associated with the recording and replay phases in Table 1.
We also report the number of values we recorded for each
benchmark program and the number of values that we
skipped recording due to the optimization described in
Section 2.1.2. The experiments were performed on a laptop
with 2.3 GHz Intel Core i7 and 8 GB RAM. We ran the web
apps on Chrome 25 and performed the replay executions on
node.js 0.8.14.

The SunSpider benchmarks have relatively small number
of lines of code, but they perform CPU intensive computa-
tions. The web apps perform both CPU intensive computa-
tions and manipulation of the DOM. We didn’t measure the
slowdown of the web apps because these are mostly inter-
active applications. For the SunSpider benchmark suite, we
observed an average slowdown of 26X during the recording

phase with a minimum of 1.5X and a maximum of 93X. On
the empty analysis during the replay phase, we observed an
average slowdown of 30X with a minimum of 1.5X and a
maximum of 93X. Track analysis showed an average slow-
down of 32.75X with a minimum of 1.5X and a maximum of
96X. The slowdown in recording is 2X-3X lower than that
of PinPlay [20] and the slowdown in the analysis phase is
slightly higher than slowdown noticed in valgrind [18], a
heavy-weight dynamic analysis tool for x86. We didn’t make
any effort to optimize our implementation, but we believe
suitable optimizations could reduce the overhead by a factor
of 3X. For some programs in the SunSpider suite we noticed
that the number values recorded is quite high and record-
ing phase has higher overhead than replay. This because
these programs made many expensive native calls. The re-
turn values of those calls were recorded. Replay skipped the
execution of those native calls, so we noticed lower overhead
for replay.

In Jalangi, if we record every memory load, then we no-
tice a slowdown of 300X -1000X. Our proposed optimization
(see Section 2.1.2) significantly reduces the number of loads
that we had to record for a faithful replay. The column titled
“% of Loads Recorded” reports the reduction in percentage.
We noticed an average reduction of 6.52% and a median re-
duction of 0.73%. Programs doing a lot of native calls and
performing frequent manipulation of the DOM resulted in
large recoding of memory loads.

Based on our evaluation, we are optimistic about the
utility of Jalangi as a tool framework aiding web devel-
opers. We believe that the utility offered by Jalangi is
much more valuable compared to the additional perfor-
mance penalty that the developers observe. Moreover, this
additional penalty would be incurred only during the de-
velopment phase, and the instrumentation introduced by
Jalangi would not become a part of the actual applications
deployed to users.

5.4 Performance of concolic testing
We ran concolic testing on several programs ported from

a concolic testing engine for Java. Even though concolic
testing is not focus of this paper, we report the results of
running concolic testing on a small program (shown in Ta-
ble 2), which has complex string operations involving inte-
gers, string length, regular expression matching, and con-
catenation. This program is a slight variant of the program
used as a case study in [4]. In concolic testing, we only use
the theory of linear integers of CVC3 [3] and model string
operations using this theory. For this program, we gener-
ated 9 input strings corresponding to the 9 distinct execution
paths of the program. We noticed an average slowdown of
145X during concolic execution with a maximum slowdown
of 613X and a minimum slowdown of 1.4X. The recording
phases showed a slowdown of 1.2X. The slowdown in the
concolic execution phase is mostly due to the calls to the
SMT solver.

6. RELATED WORK
There is a large body of work on record-replay systems

(see [9, 10] for survey of this area). In this section, we discuss
the papers that are closely related to Jalangi.

JSBench [24] is a technique for creating JavaScript bench-
marks using record-replay mechanisms. JSBench captures
the interaction of an web application with its surrounding

Benchmark LOC
Records fLoads SlowR Slowdown in Replay

empty taint track
3d-cube 339 3670 0.09 18.33 25.16 28.67 26
3d-morph 56 6 < 0.01 18.2 33.2 35.83 33.6
3d-raytrace 443 79791 2.68 38.17 29.05 30.5 35
b-trees 52 146048 18.26 57.8 40 42.4 42.8
fannkuch 68 246 < 0.01 40.6 76.4 73 80.4
nbody 170 78 < 0.01 19 25.8 25.67 24.16
nsieve 39 5 < 0.01 16.4 23.6 30 24.2
3bit-in-byte 38 1 < 0.01 16.6 29 31 30.2
bits-in-byte 26 1 < 0.01 25 25 51.4 47
bitwise-and 31 1 < 0.01 12.83 21.83 29.2 26.2
controlflow 25 1 < 0.01 20 33.2 34.6 28.33
crypto-md5 288 42 < 0.01 12 18 22.2 22
crypto-sha1 225 52 < 0.01 13.4 19.4 21 21.2
date-tofte 300 32018 1.59 92.16 92.67 92.83 95.5
date-xparb 418 95715 17.81 29.83 21 22.67 25.67
math-cordic 101 8 < 0.01 29.6 35.6 45.4 40.17
partial-sums 33 5 < 0.01 14.6 23.4 22.16 23.8
spectral-norm 51 15 < 0.01 19.8 25.2 29.2 29.4
regexp-dna 1714 42 21 2 4 3.17 3.8
string-fasta 90 56947 2.77 40.17 30.33 34.5 38.6
string-tagcloud 266 117577 16.23 51.42 50.86 44 42.8
string-unpack 67 193057 33.21 29.88 13.25 13.75 17
nsieve-bits 35 3 < 0.01 20 36.6 45.4 40
crypto-aes 425 23926 0.73 19 21 23.67 23
string-validate 90 60 13.27 1.5 1.5 1.4 1.5
string-base64 136 40965 3.38 25 27.2 29.6 29.2
annex 9663 87623 0.86 - - - -
calculator 787 1288 17.64 - - - -
go 10,039 114609 0.97 - - - -
tenframe 1491 4656 28.89 - - - -
shopping 5397 1144 22.79 - - - -

Table 1: Results: “Records” column reports number of values of
recorded, “fLoads”reports % of loads that were recorded, “SlowR”
reports slowdown during recording compared to normal execu-
tion.

function i sVal idQuery (s t r)
{
// (1) check tha t s t r c o n t a i n s ”/ ” f o l l o w e d
// by no ”/ ” and c o n t a i n i n g ”? q = . . . ”
var s l a s h = s t r . l a s t IndexOf (’ / ’) ;
if (s l a s h < 0){

return false ;
}
var r e s t = s t r . sub s t r i ng (s l a s h + 1) ;
if (! (RegExp(’ \\\? q=[a−zA−Z]+ ’)) . t e s t (r e s t)){

return false ;
}

// (2) Check tha t s t r s t a r t s wi th ”ht tp : / / ”
if (s t r . indexOf (”h t t p : / / ”)!==0){

return false ;
}

// (3) Take the s t r i n g a f t e r ”h t tp : / / ”
// s t r i p the ”www . ” o f f i f p r e s e n t
var t=s t r . sub s t r i ng (”h t t p : / / ” . length , s l a s h) ;
if (t . indexOf (”www . ”)===0){

t = t . subs t r i ng (”www . ” . l ength) ;
}

// (4) Check tha t the r e s t i s e i t h e r
// ” l i v e . com” or ” g o o g l e . com”
if (t !== ”g o o g l e . com ” && t!== ” l i v e . com ”){

return false ;
}
// s t r s u r v i v e d a l l c h e c k s
return true ;
}

Table 2: Sample code for evaluating per-
formance of concolic testing

execution environment. It then creates a replayable pack-
aged JavaScript benchmark which can execute in the ab-
sence of the surrounding environment. JSBench captures the
arguments passed and value returned from external function
calls. It also captures field accesses by external components.
However, JSBench does not capture all memory loads or
memory loads that could potentially be modified by eval
or un-instrumented code. Therefore, JSBench could func-
tion improperly in the presence of un-instrumented code.
Jalangi alleviates this problem by maintaining shadow
memory.

PinPlay [20], built on top of dynamic instrumentation
framework PIN [14] for x86, uses ideas similar to shadow
memory [17] to reduce the number of memory logs. PinPlay
keeps shadow memory, which they call UserMem, in sync
with the actual memory at the byte and word level. This
requires them to keep track of entire memory used by the
program. In JavaScript it is not possible to keep track of all
active objects solely through instrumentation, making it a
non-trivial problem. Jalangi uses a novel technique based
on unique identifiers to record and sync objects and func-
tions and uses mock objects to mimic behaviors of objects
created outside instrumented code. Since Jalangi does not
track memory at byte or word level, Jalangi is more effi-
cient than PinPlay.

Mugshot [16] is another record-replay system for
JavaScript that captures all events in a JavaScript program
and allows developers to deterministically replay past exe-
cutions of web applications. Ripley [30] replicates execution
of a client-side JavaScript program on a server side replica

to automatically preserve the integrity of a distributed com-
putation. DoDOM [21] records user interaction sequences
with web applications repeatedly executes the application
under the captured sequence of user actions and observes
its behavior. Based on the observations, DoDOM extracts
a set of invariants on the web application’s DOM structure.

The idea of shadow values in the context of x86 binaries
has been previously proposed in [18, 33] and has been used
in several analysis tools [33, 19, 5, 7]. Instead of creating
a separate address space for shadow values, Jalangi wraps
each JavaScript value in an object of type AnnotatedValue.
This simple technique is possible due to the dynamic nature
of JavaScript.

In the recent years, several static [32, 13, 1, 11, 31, 29] and
dynamic analyses [22, 25, 2, 15] tools for JavaScript have
been proposed. Richards et al. [25] observed that dynamic
features are widely used in JavaScript programs. These dy-
namic features make static analysis of JavaScript applica-
tions hard and previous research efforts have either ignored
or made incorrect assumptions regarding these dynamic fea-
tures. Dynamic analysis tools developed for JavaScript in-
clude tools for testing [2, 26], race detection [22], and secu-
rity analysis [30]. However, there exists no dynamic analysis
framework for JavaScript similar to valgrind [18], PIN [14],
DynamoRIO [6] for x86. Jalangi tries to fill this gap by pro-
viding a dynamic analysis framework in which one could eas-
ily prototype and build sophisticated browser-independent
dynamic program analyses for Javascript.

7. REFERENCES
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards

type inference for javascript. In 19th European conference
on Object-Oriented Programming, ECOOP’05, pages
428–452, 2005.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A
framework for automated testing of javascript web
applications. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
571–580. ACM, 2011.

[3] C. Barrett and C. Tinelli. CVC3. In 19th International
Conference on Computer Aided Verification (CAV ’07),
volume 4590 of LNCS, pages 298–302, 2007.

[4] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility
analysis for string-manipulating programs. In 15th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS ’09, pages
307–321. Springer-Verlag, 2009.

[5] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley. Tracking bad apples: reporting the origin
of null and undefined value errors. In ACM SIGPLAN
conference on Object-oriented programming systems and
applications, OOPSLA ’07, pages 405–422, 2007.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
International symposium on Code generation and
optimization: feedback-directed and runtime optimization,
CGO ’03, pages 265–275, 2003.

[7] M. Burrows, S. Freund, and J. Wiener. Run-time type
checking for binary programs. In Compiler Construction,
volume 2622 of LNCS, pages 90–105. Springer, 2003.

[8] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic
taint analysis framework. In International symposium on
Software testing and analysis, ISSTA ’07, pages 196–206.
ACM, 2007.

[9] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse,
T. Ghesquiere, and K. D. Bosschere. A taxonomy of
execution replay systems. In International Conference on
Advances in Infrastructure for Electronic Business,
Education, Science, Medicine, and Mobile Technologies on
the Internet, 2003.

[10] C. Dionne, M. Feeley, and J. Desbiens. A taxonomy of
distributed debuggers based on execution replay. In
International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 203–214,
1996.

[11] A. Feldthaus, M. Schaefer, M. Sridharan, J. Dolby, and
F. Tip. Efficient construction of approximate call graphs for
javascript ide services. In International Conference on
Software Engineering, ICSE ’13, 2013.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI’05, June 2005.

[13] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
analysis with lazy propagation. In 17th international
conference on Static analysis, SAS’10, pages 320–339, 2010.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’05, pages 190–200. ACM, 2005.

[15] A. Mesbah and A. van Deursen. Invariant-based automatic
testing of ajax user interfaces. In 31st International
Conference on Software Engineering, ICSE ’09, pages
210–220. IEEE, 2009.

[16] J. Mickens, J. Elson, and J. Howell. Mugshot: deterministic
capture and replay for javascript applications. In 7th
USENIX conference on Networked systems design and
implementation, NSDI’10, pages 11–11, 2010.

[17] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and
B. Calder. Automatic logging of operating system effects to
guide application-level architecture simulation. In
Proceedings of the joint international conference on
Measurement and modeling of computer systems,

SIGMETRICS ’06/Performance ’06, pages 216–227. ACM,
2006.

[18] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’07, pages 89–100. ACM, 2007.

[19] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In 12th Annual Network
and Distributed System Security Symposium, NDSS ’05,
2005.

[20] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
Pinplay: a framework for deterministic replay and
reproducible analysis of parallel programs. In Proceedings
of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, CGO ’10, pages 2–11,
2010.

[21] K. Pattabiraman and B. Zorn. Dodom: Leveraging dom
invariants for web 2.0 application robustness testing. In
Proceedings of the 2010 IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE ’10,
pages 191–200, 2010.

[22] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race
detection for web applications. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 251–262.
ACM, 2012.

[23] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. Jsmeter:
comparing the behavior of javascript benchmarks with real
web applications. In Proceedings of the 2010 USENIX
conference on Web application development, WebApps’10,
pages 3–3, 2010.

[24] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated
construction of javascript benchmarks. In ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA ’11, pages
677–694. ACM, 2011.

[25] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of javascript programs. In
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 1–12. ACM,
2010.

[26] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for
javascript. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy, SP ’10, pages 513–528. IEEE, 2010.

[27] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE’05, Sep 2005.

[28] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Annual
conference on USENIX Annual Technical Conference,
ATEC ’05, pages 2–2, 2005.

[29] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation tracking for points-to analysis of
javascript. In 26th European conference on Object-Oriented
Programming, ECOOP’12, pages 435–458, 2012.

[30] K. Vikram, A. Prateek, and B. Livshits. Ripley:
automatically securing web 2.0 applications through
replicated execution. In 16th ACM conference on Computer
and communications security, CCS ’09, pages 173–186.
ACM, 2009.

[31] S. Wei and B. G. Ryder. A practical blended analysis for
dynamic features in javascript. Technical report,
Department of Computer Science, Virginia Tech., 2012.

[32] D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript
instrumentation for browser security. In ACM symposium
on Principles of programming languages, POPL ’07, pages
237–249, 2007.

[33] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra:
Efficient and scalable memory shadowing. 8th Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, pages 22–31, 2010.

