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Abstract

We present the design and implementation of an activity
recognition system for wide area aerial video surveillance
using Entity Relationship Models (ERM). In this approach,
finding an activity is equivalent to sending a query to the
Relational DataBase Management System (RDBMS). By in-
corporating reference imagery and Geographic Information
System (GIS) data, tracked objects can be associated with
physical meanings, and several high levels of reasoning,
such as traffic patterns or abnormal activity detection, can
be performed. We demonstrate that different types of activ-
ities, with hierarchical structure, multiple actors, and con-
text information, are effectively and efficiently defined and
inferred using the ERM framework. We also show how vi-
sual tracks can be better interpreted as activities by using
geo information. Experimental results on both real visual
tracks and GPS traces validate our approach.

1. Introduction
The ability to automatically or interactively infer mean-

ingful activities and events from large volumes of existing
video data should be of considerable help to analysts. The
goal of this paper is to provide an efficient activity recog-
nition framework for wide area aerial video surveillance
where vehicular segmented tracks are the essential compo-
nents.

The input to our activity recognition framework is geo-
registered tracks inferred by a tracking module. Activities
are defined as tracks associated with certain properties and
their relationships with one or more objects (be it tracks, or
other georeferenced entities). Since an activity may involve
a sequence of motion patterns (events) and multiple actors,
how to represent events and activities is a challenging task.

We propose to define and recognize a large number of

Figure 1. An example of identified “loop” from wide area im-
agery [4] using our method. Rendered closed-up view, using
Google Earth [1], shows that the location is a parking lot (left).
A GPS track (yellow color) and a set of identified “loops” (red
color) (right).

activities with the Entity Relationship Model (ERM) frame-
work [7]. The ERM is an appropriate framework to capture
multiple relationships between elements, which allows us to
efficiently represent hierarchical structures, multiple actor
activities, and context information. We use a RDBMS (Re-
lational DataBase Management System), such as Microsoft
SQL [2], to store and retrieve all meta-data in our activity
recognition system, including tracking results, geospatial
objects and context information, and use Structured Query
Language (SQL) [2] to define and recognize activities. In
this approach, finding an activity is equivalent to sending a
set of SQL statements to the RDBMS. As an additional ben-
efit, RDBMS scales well to a distributed system to handle
large amounts of data.

Many activities can only be inferred within the context
of geospatial information and the ERM framework is ide-
ally suited to incorporate Geographic Information System
(GIS) data. We use open geospatial data from Open Street
Map [3] to extract geospatial objects, such as road networks
and road types. To represent geospatial activities, we link
visual tracks and geospatial objects.
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The contribution is summarized as follows:

• We propose to use the entity relationship model
(ERM), a well-established methodology in real world
applications, to design and implement an activity
recognition system for wide aerial video surveillance
where vehicular segmented tracks are the essential
components. By leveraging the powerful computa-
tional features of a RDBMS, which is an implementa-
tion of ERM, finding an activity is equivalent to send-
ing a query to the RDBMS.

• We validate our approach on noisy visual tracks esti-
mated from real data using a state of the art tracker [21]
for wide area aerial imagery.

• We demonstrate that different types of activities, with
hierarchical structure, multiple actors, and (geo) con-
text information, can be effectively defined and in-
ferred using the ERM framework.

• We also show that visual tracks can be interpreted
as activities using geo information. By incorporating
reference imagery and extensive use of GIS context,
tracked objects can be associated with physical mean-
ings, and several high levels of reasoning, such as traf-
fic patterns or abnormal activity detection, can be per-
formed.

The derived information can be integrated into an exist-
ing GIS, providing the capability to analyze and infer higher
levels of activities. Furthermore, existing interactive visual-
ization tools for geospatial data, such as Google Earth [1],
can be immediately taken advantage of (Fig. 1).

2. Related Work
We now present an overview of methods to represent

activities. A recent survey [23] describes actions, simple
motion patterns usually performed by a single actor, repre-
sented by non-parametric (e.g. template matching and di-
mensional reduction), volumetric (e.g. space-time filtering
and tensors), and parametric (e.g. HMMs and linear dy-
namic systems) methods. Activities, which are complex se-
quences of actions, are represented using graphical models
(e.g. Dynamic Bayesian Nets and Petri nets [5]), Syntactic
(e.g. Context Free Grammars and Attribute Grammars), and
Knowledge Based (Constraint Satisfaction, Logic Rules,
and Ontologies) approaches.

Classical pattern classification formulations, employing
a fixed dimensional input vector, cannot handle complex ac-
tivities which need to consider temporal relationships and
context information. In [13], Gaur et al. propose a “sting of
feature graphs” model to represent local collections of fea-
tures, which are matched using graph-based spectral tech-
niques and dynamic programming. It allows variability

in sampling rates and speed of activity execution. HMM-
based approaches are widely applied to speech recognition
to recognize a sequence of features. However, the assump-
tion of Markovian dynamics and the time-invariant nature
of the model restrict the method to simple stationary tem-
poral patterns [23].

Graphical models, including Bayesian networks (BN)
and Dynamic belief networks (DBN), have been widely ap-
plied for higher level representation and reasoning since
Bayesian networks present conditional dependencies be-
tween random variables [14]. For a large scale, real world
problem, defining and learning the structure of the DBNs is
difficult because of the large number of variables with com-
plex dependencies, and the closed world assumption.

AND-OR graph, an equivalent representation to context-
free grammars, is applied to image interpretation [16]. Be-
cause deterministic grammars (e.g. FSA, CFG) cannot code
low-level uncertainties, Stochastic Context Free Grammars
(SCFG) are presented for complex activities [17]. The lim-
itation of SCFG is that complex temporal constraints, such
as parallelism, overlap, and synchrony, cannot be expressed.
For example, the rule A → abB does not specify whether
the events can overlap or not, as mentioned in [9]. Damen
and Hogg propose attribute grammars [10] to constrain the
spatial relationships in visual scenes although the method is
able to handle a single event.

Logic-based approaches rely on formal logic rules to
describe activities related with common sense knowl-
edge [19]. “Video Event Recognition Language” (VERL)
is proposed based on an ontology and first-order logic [11].
Fung et al. [12] presented a combination of predicate logic
and probability for information fusion and decision support.

We now briefly review the literature on activity in wide
area surveillance. Reilly et al. [22] shows object detection
and tracking in a wide area surveillance domain, where bi-
partite graph matching and linking tracks were applied to
detection results, and grid cells were employed to provide
a set of local scene constraints such as road orientation and
object context for tracking. Pollard et al. [20] presented ac-
tivity detection results using a complex probabilistic frame-
work but only single activity, convoys, was presented and
geospatial constraints were not considered. In [15], high-
level complex event inference from multimodal data using
Markov Logic Networks is presented for wide area surveil-
lance.

Given our domain, where vehicular segmented track-
lets are the essential components, we believe that activities
can be effectively and efficiently inferred using a relational
database model.

3. ERM-based Activity Recognition
The input to our system is a set of tracks O =

{o1,o2, · · · ,oN}, where N is the total number of



Figure 2. Overview of the proposed approach.

tracks. Each track contains M tracked points o =
(p1, p2, · · · , pM ). In activity recognition, multiple tracks
can be associated with a single activity and a single track
can contribute to multiple activities. Hence, it is a many-
to-many mapping from a set of input data to a set of class
symbols. The activity recognition suggested in this pa-
per is defined to automatically find a subset of the in-
put data (O), which matches an activity1 aj , (O,aj) →
{o′1,o′2, · · · ,o′N} where o′i is a subset of the track oi. Fig-
ure 2 shows an overview of our approach.

3.1. Estimating tracks

Recognizing meaningful activities from vehicle tracks
requires that the estimated tracks be useful – long enough
to capture interesting motion patterns. Any tracking algo-
rithm that is robust enough to provide such tracks can be
used in our work. In our implementation, we use a state of
the art real-time tracker for wide area imagery introduced in
[21], which has been used by Lawrence Livermore National
Lab on real data.

3.2. Tracklets from tracks

The atomic spatio-temporal information in our system is
a tracklet, a segmented portion of a track, representing ve-
hicle’s “instantaneous” motion. Each tracklet has a collec-
tion of attributes xi = {λ1, λ2, · · · , λm}, where an element
λi presents a physical property such as time, location, and
speed.

Tracks, as computed from the tracking module or cap-
tured using GPS, are represented as a set of points that are
uniformly sampled in time, but not uniformly sampled in
space. In other words, the distance between two adjacent
point samples varies, depending on the target’s speed. This
distance may be long enough to prevent accurate geospa-
tial activity inference in locations between the point sam-
ples. Therefore, we cannot generate tracklets by directly

1We do not distinguish between simple actions (or events) and activities
since our ERM framework can represent both consistently

enumerating the segments between raw point samples. The
trajectories need to be resampled, but we do not want a very
high density sampling, as that increases storage and compu-
tational requirements.

Clearly, the most important points of the track are those
where the direction of travel changes. Between these points,
the motion pattern is constant and predictable. Therefore,
we segment the track’s trajectory into segments which are
accurately approximated by lines (linear model). Points on
the trajectory between these segments are where the direc-
tion of travel changes, often as a result of the vehicle mak-
ing a turn. Before segmentation, we filter out noise in the
trajectories output from the tracker by minimizing a robust
cost function (Huber) over a sliding window of 5 locations.

We determine the trajectory segmentation optimally, us-
ing a classic dynamic programming algorithm “segmented
least squares” [6]. Before the segmentation, the trajectories
are densely resampled so that the distance between adjacent
sample points is constant (∼ 4 meters).

Tracklets are determined from the resulting segmenta-
tion by creating one tracklet for each segment (“straight”
tracklet), as well as one for the path between every two adja-
cent segments (“turn” tracklet). Furthermore, straight track-
lets longer than 100 meters are broken into shorter 50 meter
segments. Now, for each tracklet, we compute a collection
of attributes, such as location, heading (applies to straight
tracklets), heading change (applies to turn tracklets), speed,
acceleration, and accumulated distance traveled so far.

3.3. Activity Representation Using ERM

We use ERM (Entity Relationship Models) to capture
multiple relationships between elements. Such a framework
has been extensively used and validated for a long period
of time in real world applications [8, 7]. The basic entity-
relationship modeling approach is based on describing data
in terms of the three parts: entities, relationships between
entities, and attributes of entities or relationships. The rela-
tionships include “Belonging to”, “Set and subset relation-
ships”, “Parent-child relationships”, and “Component parts



Table 1. ERM representation
Entity

track point, tracklet, track, traffic rule,
road, building, area, · · ·

Relationship
tracklet -is on- road
road -has- traffic rule
must stop -is a- traffic rule, · · ·

Event can be represented by a relationship
tracklet (track id, · · · , speed=95)
tracklet (track id, · · · , road id)
road (road id, · · · , speed limit)
speeding: tracklet.speed > road.speed limit

of an object”.
Hence, we represent track points {p}, tracklets {x}, and

tracks {o} as entities and link the three entities: {p} ⊂
{x} ⊂ {o}. The collection of physical properties of each
tracklet is represented as the attributes of the tracklet entity
(a RDBMS table).

We also represent geospatial data (traffic rules, roads,
buildings, and areas) the same way. An entity “road” is a
collection of road segments and each segment has a set of
attributes such as type, name, and speed-limit. Table 1 il-
lustrates our ERM representation.

An activity aj is defined as a collection of tracklets obey-
ing certain properties: aj = {x|x ∈ Ωj , Cj(x) > θj},
where Ωj , Cj(x) ∈ [0, 1], and θj represent the relation-
ship associated with the activity, the confidence function
and the recognition threshold, respectively. The relationship
Ωj links between the attributes of entities, which include
both the physical properties of tracklets and the geospatial
data. We can define relationships that are not explicitly rep-
resented in the ERM.

For example, “Speeding” can be seen as an activity de-
fined by the relationship between the attributes of tracklets
(e.g. speed) and geospatial objects (e.g. speed-limit):

speeding := {x| r ∈ Groad, x.roadID = r.ID, x.s > r.s,
C(x.s, r.s) > θ}

(1)
where r, r.ID, x.roadID, x.s, r.s represent a road from

GIS data (Groad), its ID, the road ID of tracklet x, the speed
of x, and the speed limit of r, respectively. C(x.s, r.s) de-
scribes the activity confidence, which increases with the gap
between x.s and r.s. The confidence measure is used to en-
sure the reliability of composite activities as well as offering
users a way to tune the system.

An ERM has these desirable properties:

• Hierarchical structure: a complex activity composed
of many sub-actions can be represented by a “compo-
nent parts of an object” relationship (Section. 3.4.2).

• Multiple actors: the mathematical foundation of
ERM is set theory, so that an activity involving mul-
tiple actors can be defined naturally (Section. 3.4.3).

• Context information: low level observations can be
represented by uncertain numerical values while back-
ground knowledge often needs to be described by sym-
bolic representations. Observation and prior knowl-
edge can easily be integrated (Section. 3.4.4).

• Scalability: queries can be executed efficiently and in
parallel (Section. 4.4).

While it is limited by the maturity of the underlying tech-
nologies (tracking, etc.), ERM offers a graceful degrada-
tion in performance. Tracks that are fragmented will not
be detected for activities defined over long time periods.
These tracks, however, will still be detected for activities
happening on shorter time scales. Activity definitions do
not have to be modified for future improvements in track-
ing. These will be immediately reflected in the recognition
performance.

ERM, as we have defined it, is a rule-based, rather than
a probabilistic framework. However, we believe there is
nothing inherent in the framework that prevents the addition
of probabilistic reasoning to handle uncertainty [18]. In this
paper, our focus is on the fundamental design of a scalable
activity recognition framework for wide area aerial imagery.

3.4. Activity Inference

The ERM-based representation implies that inferring an
activity is a search problem to find a subset of tracklets from
entire data set, which satisfies certain conditions.

ERM is implemented as a standard RDBMS and we can
express set operations by SQL to find an activity from our
database. The activity recognition problem is equivalent to
sending queries to the RDBMS.

A basic SQL statement has SELECT, FROM, and
WHERE clauses: The SELECT command specifies the out-
put attributes of entities, FROM defines the domain entities
associated with the activity, and WHERE describes the set
of relationships to define the activity and also its confidence.
Activity definitions can easily be expressed by SQL state-
ments.

In the following section we explain how to define dif-
ferent types of activities using ERM and how to infer those
activities using SQL commands.

3.4.1 Example I: Simple Activity

Activities associated with motion patterns, such as “U-
turn”, “Loop”, and “3-point-turn”, are easily defined and
inferred by the ERM framework and its corresponding SQL
statements.



Definition. A “Loop” is defined as a segmented track
where there exist two tracklets {xi, xj} whose Euclidean
distance ‖xi.pos − xj .pos‖ is smaller than the traveling
distance: Loop = {xi, xj |(1 − ‖xi.pos−xj .pos‖

xj .acc−xi.acc ) > θ, i <

j, xi.ID = xj .ID}, where (xj .acc− xi.acc) represent the
traveling distance between xi and xj . The traveling distance
is computed as the difference of the accumulated distances
between these two tracklets.

The above definition is represented by SQL as shown in
Table 2, where RDBMS tables T1 and T2 come from the
input tracklet table (e.g SELECT * INTO T1 FROM track-
let) and dist(·, ·) is a user defined function 2 to compute the
Euclidean distance.

Table 2. SQL: “Loop”

SELECT * FROM T1, T2
WHERE

T1.track id = T2.track id AND
(1 - (dist(T1.pos, T2.pos)/(T2.acc - T1.acc))) > θ

Figure 1 shows a result of “Loop” recognition, where a
track contains several loops. Its corresponding SQL defini-
tion provides a set of tracklets associated with the activity.

3.4.2 Example II: Composite Activity

Suppose that we have three independent events identified as
three entity sets: “Entry” (aEn), “Stay” (aSt) and “Exit”
(aEx). “Visit” is a composite activity that can be described
as a combination of these events.

Definition. We define “Visit” as the sequence of aEn,
aSt, and aEx: visit = {xj |i = j − 1, k = j + 1, xi ∈
aEn, xj ∈ aSt, xk ∈ aEx, C(xi)EnC(xj)StC(xk)Ex >
θ}, with xi, xj , xk, three tracklets from the same
track. This definition can be represented by SQL as
shown in Table 3. Each identified event is a table,
Activity(ID, Confidence), that contains the IDs of track-
lets and the confidence values. The confidence of “Visit” is
defined as CEn(xi)CSt(xj)CEx(xk).

3.4.3 Example III: Multiple Actors Activity

Activities associated with multiple actors, such as
“Source”, “Sink”, “Convoy”, and “Following”, can also
be defined and inferred by ERM and SQL statements. We
identify a source of tracks by finding a set of tracks that have
the same starting location in different time periods.

Definition. Let us first define “2-Source” as a tem-
porary set of 2 tracklets which exit from the same loca-
tion: 2src = {(xi, xj)|xi.trackID 6= xj .trackID, xi ∈
aEx, xj ∈ aEx, ‖xi.pos − xj .pos‖ < ω}, where ω is a

2For simplicity, we use an abstract notation and the function can be
implemented using a common RDBMS [2].

Table 3. SQL: “Visit”
SELECT * FROM T1, T2, T3, En, St, Ex
WHERE

T1.track id = T2.track id AND
T2.track id = T3.track id AND
T1.id + 1 = T2.id AND
T2.id + 1 = T3.id AND
T1.id = En.id AND
T2.id = St.id AND
T3.id = Ex.id AND
(En.conf * St.conf * Ex.conf) > θ

threshold. It provides a set of tracklet pairs which appear
as many times as they are involved in a 2-tuple source. Ex-
tracting N-tuple source needs to count the number of oc-
currence for each tracklet: source = {xi|Si = {(xi, ·) ∈
2src}, |Si| > θ}, where |Si| is the cardinality of each sub-
set Si which contains the same tracklets in the pairs of the
2src set. Note that this definition provides all “SOURCE”
, where the number of tracklets is greater than two and we
can count the number of tracklets as a confidence measure
as shown in Table 4, where “Exit” action is represented a
table, Ex(id, conf), that contains the id of tracklets.

Table 4. SQL: “Source”
SELECT T1.id as id INTO tmp FROM T1, T2, Ex
WHERE

T1.track id 6= T2.track id AND
T1.id = Ex.id AND
T2.id = Ex.id AND
dist(T1, T2) > θ;

SELECT id, count(id) as confidence FROM tmp
GROUP BY id

3.4.4 Example IV: Geospatial Activities

The ERM framework is ideally suited to incorporate GIS
information, as was shown for “Speeding”(Section. 3.3).
Many activities can only be inferred within the context of
geospatial information. We can find “all tracklets on a spe-
cific road” by looking at the correspondences between the
locations of tracklets and the locations of known road seg-
ments.

Definition. “On-road-X” is a set of tracklets which
are on the same road: on road X = {x|x.roadID =
r.ID, r.name = “X”, 1/‖x.pos − r.pos‖ > θ ∀r ∈
Groad}, where r and r.name designate a road segment and
its name, and ‖x.pos − r.pos‖ the Euclidian distance be-
tween the road segment and the tracklet. This definition
is represented by SQL as shown in Table 5, where T1 and
Road are the tracklet and road segment tables, respectively.
Here, we compute the location of each tracklet in advance,



and store the id of road segment into the tracklet table. The
optional condition (1/dist(T1.pos, Road.pos) > θ) provides
a confidence measure.

Table 5. SQL: “On-road-X”
SELECT * FROM T1, Road
WHERE

T1.id = Road.id AND
Road.name = “X” AND
1/dist(T1.pos, Road.pos) > θ

Note that most spatial activities can also be enriched by
having a geospatial attribute. For instance, a “convoy” be-
comes a “convoy traveling on highway X” when the spatial
tracks are associated with geospatial information.

3.5. Scalability

One of the benefits of using an ERM model for activ-
ity recognition is that there are highly optimized commer-
cial implementations [2]. Furthermore, there has been a lot
of effort in making RDBMS perform equally well in dis-
tributed environments, under high load, and with limited
downtime. Therefore, by expressing activity definitions in
SQL, we can take advantage of existing, distributed, indus-
trial parsers, making our proposed system very scalable.

Some of the ways that RDBMS achieve high efficiency
is through the use of indexing and data slicing. We take
advantage of both of these strategies. For example, when
a query requires joining of several tables on “id” attribute,
an index is built on this attribute in any (temporary) tables
taking part in the join. Similarly, when recognizing an activ-
ity happening over a relatively short time interval, we first
slice the database into multiple time intervals (with over-
lap), and then query each interval in turn for this activity.
This is much faster than querying the whole database at
once (Sec. 4.4). Of course, all known query optimization
strategies can be adopted here.

4. Experimental results
We have implemented our framework using a stan-

dard RDBMS (MS-SQL [2]), and validated the ap-
proach on real visual tracks and GPS datasets. We de-
fine 7 activities for evaluation (including “Loop”): a
three point turn (“3PT”) consists of two neighbor turns
{xi, xj |((xi.φ/π)(xj .φ/π))/(‖xi.pos − xj .pos‖) > θ};
a two point turn (“2PT”) has an acute angle: {x|x.φ >
θ}; “Stay” is defined by the ratio between the time
and travel distance between two points {xi|(‖(xj .time −
xi.time)‖)/(‖xj .acc − xj .acc‖) > θ}; “U-turn” has an
acute angle turn between two tracklets which are located on
the same road {xj |(‖xj .φ < π/4, ‖xi.pos − xk.pos‖ <
ω1, (xk.acc − xi.acc) > ω2}; “Entry” and “Exit” is de-

Table 6. Confusion Matrix (Real Data Set)
Out� Actual Loop 2PT 3PT Entry Exit None

Loop 2 0 0 2 0 0
2PT 0 2 1 1 1 0
3PT 0 0 2 0 0 0

Entry 1 0 0 7 1 0
Exit 0 0 0 1 6 0
None 0 0 0 0 1 -

fined with a stop, turns, speed changes and the travel dis-
tance. “Entry” is defined as {xk|xk.end = True, xk.s <
xi.s, xj .φ > ω1, xk.acc > ω2}. {xi, xj , xk}, x.φ, and ωi

represent different tracklets from the same track, such as
i < j < k, the turn angle attribute, and internal thresholds
associated with the definition, respectively.

4.1. Real dataset (CLIF 2006)

Data. The dataset is a set of tracking results extracted
from the CLIF 2006 dataset [4]. This dataset contains wide
area motion imagery captured from an airborne sensor. The
sensor is composed of a matrix of 6 cameras, where the size
of each image tile is 4008 × 2672. The video is captured
at roughly 2Hz, and it is in grayscale. The sequence is an
example of persistent surveillance imagery, where the air-
plane makes several circular flyovers around the campus of
Ohio State University. The footprint of the area where we
computed tracks is about 1km2, and its duration is about 8
minutes. Each track is on average 1 minute long. The to-
tal number of tracks estimated in the sequence of interest is
more than 8000.

The main challenge is the sheer number of objects, or
points of interest, one must consider to determine whether
an activity is happening. Furthermore, an activity is not a
static concept that one can identify at a glance. Instead, one
must verify that a whole sequence of actions is happening
to label something a particular activity.

Method. Our input is a set of tracks extracted by the
tracking module described in Section. 3.2. To build a set
of ground truth data, from a set of automatically extracted
tracks, we manually selected individual tracks that include
pre-defined activities and assign labels for each data. In our
dataset, we used 2 loops, two 2 point turns, three 3 point
turns, 8 entry and 7 exits. We inserted all selected tracks
into a single table in our RDBMS and infer activities using
pre-defined SQL statements.

Some tracks have more than one activity (e.g. a loop
and a 3 point turn) but the locations associated with spe-
cific activities can be different. To evaluate the result of an
activity, we extracted all tracklets, compared to the activ-
ity definition, from entire dataset, visualize the result using
Google Earth, and then, verify manually whether the ex-
tracted tracklets represent the actual activity or not.



Table 7. Confusion Matrix (GPS Data Set I)
Out� Actual Loop 3PT U-turn Stay None

Loop 17 0 0 0 0
3PT 0 7 0 0 0

U-turn 0 0 13 0 1
Stay 0 0 0 3 0
None 0 2 2 0 -

Results. Table 6 shows the confusion matrix among 5
activities, where “None” is a NULL activity to count miss-
ing and false alarms. Result shows that we can identify all
simple activities, such as “2 point turn”, “3 point turn”, “En-
try”, “Exit”, and “loop”, which can be easily seen in real
data set.

In addition, we identified a number of geospatial activi-
ties, such as “on road X”, “speeding”, and “approaching X”,
as well as some complex activities including multiple ac-
tors, such as “sink (or sink) around X”. The extracted activ-
ities and geospatial objects can be visualized using Google
Earth, where we can identify both activities and associated
geospatial objects.

4.2. GPS trajectory dataset I

Data. We also evaluated our method on labeled data
from GPS acquisition. We used a standard GPS to record
short trips between 10 and 40 minutes long. GPS filters
were deactivated, so only raw data have been recorded.
Compared to the results we manually labeled from our
tracking module, GPS tracks do not differ a lot. First the
localization error is mostly the same in both systems, with
a 5 meters accuracy for the video geo-registration against
1 to 10 meters at 95% for GPS data. Second, the GPS ac-
quisition frequency (1Hz) is only half our video framerate
(2Hz).

Method. We use the same tracking module to extract
tracklets from the GPS dataset. To build a set of ground
truth data, from a set of automatically extracted tracks, we
manually selected individual tracks that include pre-defined
activities and assign labels for each data. The dataset in-
cludes 17 loops, 7 three point turns, and 13 u-turns. Since
GPS tracks are much longer than the real tracks and each
track includes many activities, we inserted a single track
into a single table in our RDBMS and inferred activities us-
ing pre-defined SQL statements. To evaluate the result of an
activity, we extracted a set of tracklets, corresponding to the
activity definition, from a single track, visualize the result
using Google Earth, and then, verify manually both missing
and false alarms.

Results. Table 7 shows the confusion matrix among
4 activities. Result shows that we can identify all simple
activities, such as “Loop”, “3 point turn”, “U-turn”, and
“Stay”, which can easily seen in real data set.

Table 8. Recognition performance on GPS trajectory dataset II.
Activity Precision Recall
Brushpass 0.44 0.65
Coordinated Movement 0.64 0.38
Dead Drop 0.16 0.54

4.3. GPS trajectory dataset II

Data. We were able to acquire another proprietary GPS
trajectory dataset. This dataset was collected over 7 hours,
and contains about 50 tracks. These tracks were generated
by directing several groups of vehicles to execute various
types of activities over the data collection period. These ac-
tivities ranged in complexity from single-actor, composite,
to multiple-actor activities. Each activity was supposed to
be executed in a 15-minute interval, but the location and
time were otherwise unconstrained. Therefore, the ground
truth that is available for this dataset (directions for drivers)
is only approximate.

Method. Tracklets were estimated from GPS trajectories
and stored in a database. To evaluate the recognition perfor-
mance, we executed a query for each activity, and measured
(automatically) the precision and recall using the supplied
ground truth.

Results. The results are shown in Table 8. The best per-
formance is obtained for brushpass and coordinated move-
ment activities. After analyzing the retrieved tracks in de-
tail, we observed that the ground truth does not always
match perfectly to the actual executed activities. How-
ever, we did not alter the supplied ground truth in any
way. Furthermore, activities labeled as coordinated ar-
rival were sometimes “mistakenly” detected as coordinated
movement. This indicates the need for an ontology in eval-
uating activity recognition performance. Given these cir-
cumstances, the recognition performance is encouraging.

4.4. Scalability

To verify the scalability of our proposed system, and ex-
amine its behavior with respect to data slicing, we used GPS
trajectory dataset 2. We used a “brushpass” activity for the
purposes of evaluation. This activity requires the join of two
tables, twice, so it is a good representative for evaluation.

The scalability of our system can be evaluated by mea-
suring query completion time with respect to the number
of tracklet rows. We varied the number of rows by tempo-
rally dividing the dataset into a various number of intervals
(28,14,7,3,1). Query completion time was then measured
in each such time interval. This experiment was performed
twice, each time with a different group of vehicles. The
results are shown in Figure 3. It shows that query time in-
creases quadratically with the number of rows in the worst
case, but the growth is linear for smaller database sizes.
This kind of low-order polynomial growth allows the ERM



Figure 3. Query completion time rises slowly with the size of the
dataset.

Table 9. Data slicing reduces the query completion time.
Intervals Avg. Query Time (sec)

28 233.25
14 279.95
7 499.02
3 897.65
1 2010.95

framework to scale to large database sizes which appear in
practice.

To understand the effects of data slicing on query com-
pletion time, we use the same data as in the previous exper-
iment. We measure query completion time as the sum of all
interval query completion times. These are averaged for the
two groups of vehicles. The results are shown in Table 9. It
is clear that data slicing reduces the total query completion
time. Therefore, when recognizing activities using ERM, it
is more efficient to temporally divide the data into intervals
(even with overlap) and run the query within each interval
than to run the query on the entire database at once.

5. Conclusion
Our results show that using Entity Relationship Models

we can identify simple activities, such as “U-turn”, “2 point
turn”, “3 point turn”, “Entry-Exit”, “loop”, and “speeding”,
as well as some complex activities including multiple ac-
tors, such as “source” and “sink” in wide area aerial im-
agery. Extracted activities are visualized using widely avail-
able software for viewing geospatial data, such as Google
Earth, where we can identify associated geospatial objects.
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